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1 Introduction

The muon anomalous magnetic moment is one of the most precise measurements in particle
physics. The world average [1] for the anomaly aµ = (g − 2)/2 is

aexp
µ = 116 592 089(54)(33)× 10−11 . (1.1)

The experimental accuracy is expected to improve with the now running experiment at Fer-
milab [2] and the planned experiment at J-PARC [3]. The Standard Model prediction [1] is

aSM
µ = 116 591 810(43)× 10−11 . (1.2)

The difference between this and the experimental value from Brookhaven National Labo-
ratory [4] is

∆aµ ≡ aexp
µ − aSM

µ = 279(76)× 10−11 , (1.3)

or a 3.7σ discrepancy. In light of this discrepancy and the expected improved experimental
accuracy it is important that the theoretical accuracy is checked as much as possible. The
QED [5, 6] and the electroweak contribution [7, 8] are precise enough for the foreseeable
future. The error is dominated by the hadronic contributions, the hadronic vacuum polar-
ization [9–15] is at present the largest theory uncertainty but is steadily being improved.
The remaining part, the hadronic light-by-light (HLbL) contribution is at present [1]

aHLbL
µ = 92(18)× 10−11. (1.4)
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This number contains the next-to-leading (NLO) HLbL contribution [16] and the average of
the lattice [17] and phenomenological evaluation of the lowest-order HLbL. In the remain-
der we will use HLbL as a synonym for the LO part only, this contribution is depicted in
figure 1. The number in (1.4) is in good agreement with the older estimates [18–22] and the
more recent Glasgow consensus [23] but with a smaller and much better understood error.

The phenomenological estimate of the HLbL [1],

aHLbL-phen
µ = 92(19)× 10−11, (1.5)

uses the methods of ref. [24] to separate different contributions. The pole contributions
from π0, η, η′ [25–27] as well as the two-pion box and rescattering and two-kaon box con-
tribution [28] are well-understood and together give

aHLbL-1
µ = 69.4(4.1)× 10−11 . (1.6)

The main uncertainty comes from the intermediate and short-distance domain. Heavier in-
termediate states have been considered in refs. [29–34]. The heavy-quark contribution from
charm is sufficiently well estimated from the quark loop and estimates of non-perturbative
contributions and that of the bottom and top quarks are negligible [1, 35–37]. The light-
quark contribution can be estimated using the quark loop and/or higher resonance ex-
changes and leads to [1]

aHLbL-SD1
µ = 20(19)× 10−11. (1.7)

The large error is due to the large uncertainty of which resonances to include and that
their couplings to two off-shell photons are badly known [1]. In addition one needs to make
sure that there is a proper matching with the short-distance QCD constraints.

Some short-distance constraints are used in determining the form-factors needed in the
contributions from hadrons directly, see e.g. ref. [38]. Here we discuss instead the short-
distance constraints on the hadronic function defined in (2.1) and depicted as the shaded
blob in figure 1. First attempts at matching the short-distance were using the quark loop
and matching it on a long-distance contribution from the extended Nambu-Jona-Lasinio
model [19]. The quark loop itself has a long history of being used in this context, see
e.g. refs. [39–44]. The first proper short-distance constraint was derived in ref. [45]. It is
valid in the regime where two of the internal photons have a virtuality much larger than
the third one. Recent work in the latter regime includes refs. [36, 37, 46–52].

This paper is concerned with the limit where all virtualities of the internal photon
lines in figure 1 are large. The underlying problem here is that the external photon,
corresponding to the magnetic field, has zero momentum, i.e. q4 → 0 in figure 1. The
usual operator product expansion (OPE) in vacuum [53] corresponds to all four photon
virtualities large and diverges when setting q4 → 0. The solution was found in ref. [54].
One needs to use an alternative OPE in a background magnetic field as was done for the
QCD sum rule calculations of nucleon magnetic moments [55, 56]. This method was earlier
used in the context of the electroweak contribution to aµ [7]. The first order term in this
expansion corresponds to the massless quark loop [54], the next order is suppressed by
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Figure 1. The HLbL contribution to the (g − 2)µ.

quark masses and the small value of the magnetic susceptibility [54, 57]. For the non-
perturbative part of this OPE the contribution suppressed by up to four powers of large
momenta compared to the leading term have been evaluated in ref. [57]. There are a number
of subtleties involved and large number of expectation values in a magnetic field needed
to be evaluated. The conclusion from [54, 57] is that the contribution from these higher
orders in the non-perturbative part are small. The remaining uncertainty from this regime
is the perturbative correction from gluon exchange to the massless quark loop. This paper
performs that calculation. The putting together of this work with the other short-distance
constraint [45] and the parts calculated using hadronic methods is deferred to future work.

In section 2 we recall the main definitions needed for the calculation of the HLbL part
of aµ. We define here a set of intermediate quantities, the Π̃i that are both ultraviolet
and infrared finite. From these we then determine the quantities Π̂i that are needed to
calculate aµ. The main procedure of the calculation is described in section 3. Section 4
gives the numerical results and discusses implications. We reiterate our main results in
section 5. A number of technical issues are relegated to the appendices. The final result is
too large to include in the manuscript but is included in the supplementary material.

2 The HLbL tensor and aHLbL
µ

The HLbL tensor Πµ1µ2µ3µ4 is a 4-point correlation function of electromagnetic currents
Jµ(x) = q̄(x)Qqγµq(x), where the quark fields are collected in q = (u, d, s) and the cor-
responding charge matrix is Qq = diag(eq) = diag(2/3,−1/3,−1/3). The correlator in
question is defined via

Πµ1µ2µ3µ4 = −i
∫

d4q4
(2π)4

( 4∏
i=1

∫
d4xi e

−iqixi

)
〈0|T

 4∏
j=1

Jµj (xj)

 |0〉 , (2.1)

where the qi are the momenta of the external photon legs. This definition is slightly
unconventional but allows to exploit more of the symmetries, as remarked in ref. [57]. The
contribution from the HLbL tensor to the (g−2)µ is depicted in figure 1. It involves a loop
integration over q1, q2 and q3, whereas the fourth leg is in the static limit, i.e. q4 → 0.
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The HLbL tensor satisfies the Ward identities qi, µi Πµ1µ2µ3µ4 = 0 for i = 1, 2, 3, 4 ,
which implies [58]

Πµ1µ2µ3µ4 = −q4, ν4
∂Πµ1µ2µ3ν4

∂q4, µ4
. (2.2)

The whole information about the HLbL is then contained in its derivative. In fact, in the
(g − 2)µ kinematics,

lim
q4→0

∂Πµ1µ2µ3ν4

∂qµ4
4

, (2.3)

there are only 19 independent Lorentz structures, which can be found by applying 19
independent projectors P Π̃i

µ1µ2µ3µ4ν4 , this according to

Π̃i = P Π̃i
µ1µ2µ3µ4ν4 lim

q4→0

∂Πµ1µ2µ3ν4

∂qµ4
4

. (2.4)

A possible set of projectors is

P Π̃1
µ1µ2µ3µ4ν4 = gµ1µ2 gµ3ν4 q1,µ4 , (2.5)

P Π̃2
µ1µ2µ3µ4ν4 = gµ2µ3 gµ1ν4 q2,µ4 , (2.6)

P Π̃3
µ1µ2µ3µ4ν4 = gµ3µ1 gµ2ν4 q3,µ4 , (2.7)

P Π̃4
µ1µ2µ3µ4ν4 = gµ2µ1 gµ3ν4 q2,µ4 , (2.8)

P Π̃5
µ1µ2µ3µ4ν4 = gµ3µ2 gµ1ν4 q3,µ4 , (2.9)

P Π̃6
µ1µ2µ3µ4ν4 = gµ1µ3 gµ2ν4 q1,µ4 , (2.10)

P Π̃7
µ1µ2µ3µ4ν4 = gµ1ν4 gµ2µ4 q2,µ3 , (2.11)

P Π̃8
µ1µ2µ3µ4ν4 = gµ2ν4 gµ3µ4 q3,µ1 , (2.12)

P Π̃9
µ1µ2µ3µ4ν4 = gµ3ν4 gµ1µ4 q1,µ2 , (2.13)

P Π̃10
µ1µ2µ3µ4ν4 = gµ1µ2 q1,µ3q1,ν4 q2,µ4 , (2.14)

P Π̃11
µ1µ2µ3µ4ν4 = gµ2µ3 q2,µ1q2,ν4 q3,µ4 , (2.15)

P Π̃12
µ1µ2µ3µ4ν4 = gµ3µ1 q3,µ2q3,ν4 q1,µ4 , (2.16)

P Π̃13
µ1µ2µ3µ4ν4 = gµ1ν4 q1,µ2q2,µ3 q3,µ4 , (2.17)

P Π̃14
µ1µ2µ3µ4ν4 = gµ2ν4 q2,µ3q3,µ1 q1,µ4 , (2.18)

P Π̃15
µ1µ2µ3µ4ν4 = gµ3ν4 q3,µ1q1,µ2 q2,µ4 , (2.19)

P Π̃16
µ1µ2µ3µ4ν4 = gµ2ν4 q2,µ1q1,µ3 q3,µ4 , (2.20)

P Π̃17
µ1µ2µ3µ4ν4 = gµ3ν4 q3,µ2q2,µ1 q1,µ4 , (2.21)

P Π̃18
µ1µ2µ3µ4ν4 = gµ1ν4 q1,µ3q3,µ2 q2,µ4 , (2.22)

P Π̃19
µ1µ2µ3µ4ν4 = q3,µ1q1,µ2 q2,µ3q1,ν4 q2,µ4 , (2.23)
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which has been built in such a way that, combined with the crossing symmetries of the
HLbL tensor, the Π̃ satisfy the following crossing symmetries

Π̃1 = C12[Π̃4], Π̃2 = C12[Π̃6], Π̃3 = C12[Π̃5], Π̃7 = C12[Π̃7], Π̃8 = C12[Π̃9], Π̃10 = C12[Π̃10],
Π̃11 = C12[Π̃12], Π̃13 = C12[Π̃16], Π̃14 = C12[Π̃18], Π̃15 = C12[Π̃17], Π̃19 = C12[Π̃19],
Π̃1 = C13[Π̃5], Π̃2 = C13[Π̃4], Π̃3 = C13[Π̃6], Π̃7 = C13[Π̃8], Π̃9 = C13[Π̃9], Π̃10 = C13[Π̃11],

Π̃12 = C13[Π̃12], Π̃13 = C13[Π̃17], Π̃14 = C13[Π̃16], Π̃15 = C13[Π̃18], Π̃19 = C13[Π̃19]. (2.24)

The operator Cij interchanges two momenta qi and qj . Notice how, from the knowledge
of five of them, for example Π̃1,7,10,13,19, one can easily infer the rest from these crossing
symmetries. These Π̃i are well-defined and are both ultraviolet and infrared finite to the
order in α we are working. For our calculation we use two different sets of Π̃i, related by
gauge invariance, which thus provides a cross-check of our results.

An OPE is only valid for large Euclidean momenta [53]. As a consequence, it cannot
be directly applied to the tensor in (2.1) for the (g − 2)µ kinematics, since by definition
the external photon is soft, q4 → 0, even though the other Euclidean momenta are large,
−q2

i ≡ Q2
i � Λ2

QCD [54, 57]. However, precisely the same fact allows one to connect the
tensor in (2.1) to the OPE of the tensor operator with the background photon field

Πµ1µ2µ3(q1, q2) = −1
e

∫
d4q3
(2π)4

( 3∏
i=1

∫
d4xi e

−iqixi

)
〈0|T

 3∏
j=1

Jµj (xj)

 |γ(q4)〉 . (2.25)

The OPE in question holds for large photon virtualities Q2
1 ∼ Q2

2 ∼ Q2
3 � Λ2

QCD. In
this expansion, any local operator with the same quantum numbers as Fµν , including Fµν
itself, can absorb the remaining soft static photon and, as a consequence, give a contribu-
tion [7, 54, 57]. Higher-dimensional operators are suppressed by extra powers of

(ΛQCD
Qi

)d
,

providing a hierarchy of contributions with a systematic counting. A very detailed study
of this OPE can be found in ref. [57], where the different power corrections were computed
and found to be small compared to the leading contribution.1 The leading term comes from
the Fµν operator itself and is given by the massless quark loop at order α0

s, and the leading
mass effects are very small. In fact, this quark loop corresponds to the zero momentum
limit of the derivative of the naive massless perturbative QCD tensor of (2.1), i.e.

lim
q4→0

∂Πµ1µ2µ3ν4
pert
∂qµ4

4
. (2.26)

In this work, we compute the leading αs correction to the direct Fµν contribution in the
OPE of (2.25). This corresponds to a two-loop massless QCD calculation with three ex-
ternal legs off-shell.

Before discussing the gluonic correction to the quark loop in the next section, we first
write down the quark loop result for the Π̃i basis. As will be remarked upon below, this basis

1Obviously, the results of this expansion cannot be applied to the whole integral domain of (2.34), but
it can be used, apart from matching resonance models, for directly evaluating the significant contributions
coming from the regions were the OPE is valid.
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was not used in ref. [57]. The whole solution for the quark loop can be simply written as

π2Π̃1
Nce4

q

=C123(0)
(
Q2

3−Q2
1

)
−1+Q−2

2 Q2
3 +2Q2

2Q
−2
3 −Q

2
1Q
−2
2 −2Q2

1Q
−2
3

+log Q
2
2

Q2
3

(
1−Q2

2Q
−2
3 −Q

2
1Q
−2
3

)
+log Q

2
1

Q2
3

(
−5

2 + 1
2Q
−2
2 Q2

3 +Q2
2Q
−2
3 + 1

2Q
2
1Q
−2
2 +Q2

1Q
−2
3

)
, (2.27)

π2Π̃7
Nce4

q

=C123(0)
(
Q2

3−Q2
2−Q2

1

)
+log Q

2
2

Q2
3

(
−1−Q2

2Q
−2
3 +Q2

1Q
−2
3

)
+log Q

2
1

Q2
3

(
−1+Q2

2Q
−2
3 −Q

2
1Q
−2
3

)
, (2.28)

π2Π̃10
Nce4

q

=C123(0)
(1

2Q
4
3−

1
2Q

2
2Q

2
3−

1
2Q

2
1Q

2
3 +Q2

1Q
2
2

)
− 1

2Q
2
3 +Q2

2−
1
2Q

4
2Q
−2
3 +Q2

1 +Q2
1Q

2
2Q
−2
3 −

1
2Q

4
1Q
−2
3

+log Q
2
2

Q2
3

(
−3

4Q
2
3−

1
2Q

2
2 + 1

4Q
4
2Q
−2
3 +Q2

1−
1
4Q

4
1Q
−2
3

)
+log Q

2
1

Q2
3

(
−3

4Q
2
3 +Q2

2−
1
4Q

4
2Q
−2
3 −

1
2Q

2
1 + 1

4Q
4
1Q
−2
3

)
, (2.29)

π2Π̃13
Nce4

q

=C123(0)
(1

2Q
4
3−

1
2Q

4
2−Q2

1Q
2
3 + 1

2Q
2
1Q

2
2

)
+ 1

4Q
−2
2 Q4

3−
1
2Q

2
3 + 1

4Q
2
2−

1
2Q

2
1Q
−2
2 Q2

3−
1
2Q

2
1 + 1

4Q
4
1Q
−2
2

+log Q
2
2

Q2
3

(
−1

4Q
2
3−

7
4Q

2
2 + 3

4Q
2
1

)
+log Q

2
1

Q2
3

(
−Q2

3 +Q2
2 + 1

4Q
2
1Q
−2
2 Q2

3 + 1
4Q

2
1−

1
4Q

4
1Q
−2
2

)
, (2.30)

π2Π̃19
Nce4

q

=C123(0)
(
− 1

4Q
6
3 + 1

4Q
2
2Q

4
3 + 1

4Q
4
2Q

2
3−

1
4Q

6
2 + 1

4Q
2
1Q

4
3−

3
2Q

2
1Q

2
2Q

2
3 + 1

4Q
2
1Q

4
2

+ 1
4Q

4
1Q

2
3 + 1

4Q
4
1Q

2
2−

1
4Q

6
1

)
+ 1

2Q
4
3−Q2

2Q
2
3 + 1

2Q
4
2−Q2

1Q
2
3−Q2

1Q
2
2 + 1

2Q
4
1

+log Q
2
2

Q2
3

(1
2Q

4
3 + 1

2Q
2
2Q

2
3−Q4

2−Q2
1Q

2
3 + 1

2Q
2
1Q

2
2 + 1

2Q
4
1

)
+log Q

2
1

Q2
3

(1
2Q

4
3−Q2

2Q
2
3 + 1

2Q
4
2 + 1

2Q
2
1Q

2
3 + 1

2Q
2
1Q

2
2−Q4

1

)
. (2.31)

Here Nc is the number of colours and C123(0) is a loop integral function that is defined in
appendix A.

For the (g−2)µ integration, it is convenient using the generic results of refs. [24, 28, 57].
Following them, the HLbL tensor can be expanded in a basis of 54 scalar functions Πi
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weighted with Lorentz structures Tµ1µ2µ3µ4
i ,

Πµ1µ2µ3µ4 =
54∑
i=1

Tµ1µ2µ3µ4
i Πi . (2.32)

Using

lim
q4→0

∂Πµ1µ2µ3ν4

∂qµ4
4

= lim
q4→0

54∑
i=1

∂Tµ1µ2µ3ν4
i

∂qµ4
4

Πi , (2.33)

the 19 Π̃i defined in (2.4) can be identified with the static q4 → 0 limit of certain linear
combinations of the Πi. Denoting these linear combinations Π̂i it can further be shown
that for aHLbL

µ only six Π̂i contribute, namely Π̂1,4,7,17,39,54.2 In particular, the aHLbL
µ may

be written [24, 28]

aHLbL
µ = 2α3

3π2

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτ
√

1− τ2Q3
1Q

3
2

12∑
i=1

Ti(Q1, Q2, τ) Πi(Q1, Q2, τ) .

(2.34)
The integration variable τ is defined via Q2

3 = Q2
1 + Q2

2 + 2τ Q1Q2, the Ti(Q1, Q2, τ) are
functions and the Πi are functions of the six Π̂i. The latter set of functions is related to
the Π̂i through

Π1 = Π̂1 , Π2 = C23
[
Π̂1
]
, Π3 = Π̂4 , Π4 = C23

[
Π̂4
]
,

Π5 = Π̂7 , Π6 = C12
[
C13

[
Π̂7
]]
, Π7 = C23

[
Π̂7
]
,

Π8 = C13
[
Π̂17

]
, Π9 = Π̂17 , Π10 = Π̂39 ,

Π11 = −C23
[
Π̂54

]
, Π12 = Π̂54 . (2.35)

In summary, knowledge of Π̂1,4,7,17,39,54 is enough to determine aHLbL
µ from (2.34).

The Π̂i can be obtained from the derivative of the HLbL tensor in the static limit with the
projectors given in ref. [57]. There we defined

Π̂i = PΠ̂iµ1µ2µ3µ4ν4
lim
q4→0

∂Πµ1µ2µ3ν4

∂q4,µ4
. (2.36)

with the projectors PΠ̂iµ1µ2µ3µ4ν4
given in appendix A of [57]. Using the definitions of the

Π̃ in (2.4) the relation between the Π̂ and the Π̃ follows immediately. We have checked
that this procedure reproduces the massless quark loop results as given in ref. [57]. The Π̃i

representation of the massless quark loop was given in (2.27)–(2.31), and it can be noted
that it is much simpler than the expressions for the Π̂i in ref. [57].

3 The two-loop perturbative correction

In this section we present the calculation of the two-loop contribution. For the analytic
calculation we use FORM [59]. The master integral reduction is done by means of Kira [60],

2Using the set of projectors defined in ref. [57], the identification of these Π̂i as combinations of the Π̃i

is straightforward.
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Figure 2. Two examples of the two-loop perturbative topologies. The external static photon has
been indicated by a crossed vertex.

which employs a Laporta algorithm to reach a minimal set of master integrals. Explicit
analytic expressions of the master integrals can be found in the literature.

The gluonic corrections to the quark loop are obtained by including two quark-gluon
vertices from the Dyson series expansion in (2.1), i.e.

Πµ1µ2µ3µ4 = −i
∫

d4q3
(2π)4

( 4∏
i=1

∫
d4xi e

−iqixi

)

× 〈0|T

 4∏
j=1

Jµj (xj)
1
2

∫
d4z1 d

4z2 iLqgq
int (z1) iLqgq

int (z2)

 |0〉 . (3.1)

Denoting colour indices with bars, the interaction Lagrangians above are of the form

Lqgq
int (zi) = gS

λai

γ̄iδ̄i

2 Bai
νi

(zi) q̄γ̄i(zi)γνiqδ̄i(zi) , (3.2)

where Bai
νi

is the gluon field, gS is the strong coupling and λai is an SU(3)c Gell-Mann
matrix. The only nonzero topology at this order is obtained by connecting all the quarks
to the same line. Two examples of the diagrams in question are shown in figure 2. As
a consequence of the topology, both the quark electric charge e4

q and the colour factor,
Tr(λaλb)δab = 2(N2

c − 1), can be factored out, allowing to re-express the total contribution
as a sum of all possible hexagons where two of the external lines are to be contracted to
form the second loop, i.e.,

Πµ1µ2µ3µ4 =
(N2

c − 1)g2
se

4
q

4

∫
d4q5
(2π)4

gµ5µ6

q2
5

lim
q6→−q5

Hµ1µ2µ3µ4µ5µ6 , (3.3)

where

Hµ1µ2µ3µ4µ5µ6≡
∫

d4p

(2π)4

∑
σ(1,2,4,5,6)

Tr
(
γµ3S(p+q1+q2+q4+q5+q6)γµ1S(p+q2+q4+q5+q6)

×γµ2S(p+q4+q5+q6)γµ4S(p+q5+q6)γµ5S(p+q6)γµ6S(p)
)
. (3.4)
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Bq:

q → → q

C123:

q1 → ← q3

↓ q2

Sq:

q → → q

V312:

q1 → ← q2

↓ q3

V̇312:

q1 → ← q2

↓ q3

W312:

q1 → ← q2

↓ q3

Figure 3. Master integrals appearing in the two-loop calculation. The dot on the propagator in
V̇312 corresponds to a doubling of that propagator.

Here, S(p) = /p

p2 is the massless quark propagator and σ(1, 2, 4, 5, 6) the set of pairwise
permutations of µi and qi for i = 1, 2, 3, 5, 6. The corresponding Π̃i for the two loops are

Π̃i = P Π̃i
µ1µ2µ3µ4ν4 lim

q4→0

∂Πµ1µ2µ3ν4

∂qµ4
4

= −
(N2

c − 1)g2
se

4
q

4

∫
d4q5
(2π)4

gµ5µ6

q2
5

lim
q4→0
q6→−q5

P Π̃i
µ1µ2µ3µ4ν4

∂

∂qν4
4
Hµ1µ2µ3µ4µ5µ6 . (3.5)

After taking the derivative, using

∂

∂qν4
4
S(p+ q4) = −S(p+ q4)γν4S(p+ q4) , (3.6)

the limit q4 → 0 and the projectors, we have for every Π̃i a large set of scalar two-loop
integrals depending on two external momenta, q1, and q2, which can be parametrized as

M(i1, . . . , i7) = 1
i2

∫
ddp1
(2π)d

∫
ddp2
(2π)d

× 1
p2i1

1 (p1 − q1)2i2(p1 + q2)2i3p2i4
2 (p2 − q1)2i5(p2 + q2)2i6(p1 − p2)2i7

. (3.7)

Using KIRA [60] they can be reduced to the ones in table 1, whose corresponding topologies
are represented in figure 3. This reduction is done in d = 4− 2ε 6= 4 dimensions.

This is a good point to discuss how we handle renomalization and regularization.
Both ultraviolet and infrared divergences are regulated using dimensional regularization.
We work to the lowest order in α and to first order in αS in the massless quark limit.
There are no counterterms needed to this order and infrared divergences must vanish since
the three photon amplitude vanishes because of charge-conjugation. However, individual
diagrams and master integral can be infrared and ultraviolet divergent. The quantities Π̃i

are finite and the cancellation of all divergences, up to 1/ε3 provides another good check
on our calculations.

Strong efforts have been made to successfully obtain compact analytical expressions
for all those two-loop integrals. All of the appearing master integrals can be found in
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i1, . . . , i7 M(i1, . . . , i7)
1, 1, 0, 1, 1, 0, 0 B2

1

1, 0, 1, 1, 0, 1, 0 B2
2

0, 1, 1, 0, 1, 1, 0 B2
3

1, 0, 1, 1, 1, 0, 0 B1B2

0, 1, 1, 1, 1, 0, 0 B1B3

0, 1, 1, 1, 0, 1, 0 B2B3

1, 1, 1, 1, 1, 0, 0 B1C123

1, 1, 1, 1, 0, 1, 0 B2C123

1, 1, 1, 0, 1, 1, 0 B3C123

0, 1, 0, 1, 0, 0, 1 S1

0, 0, 1, 1, 0, 0, 1 S2

0, 0, 1, 0, 1, 0, 1 S3

0, 0, 1, 1, 1, 0, 1 V123

0, 0, 1, 1, 1, 0, 2 V̇123

1, 0, 1, 0, 1, 0, 1 V213

1, 0, 1, 0, 1, 0, 2 V̇213

0, 1, 1, 1, 0, 0, 1 V312

0, 1, 1, 1, 0, 0, 2 V̇312

0, 1, 1, 1, 0, 1, 1 W123

0, 1, 1, 1, 1, 0, 1 W213

1, 0, 1, 1, 1, 0, 1 W312

1, 1, 1, 1, 1, 1, 0 C2
123

Table 1. List of master integrals M(i1, . . . , i7) needed for the massless fully off-shell triangle at
two-loop order. The last one is not needed at this order.

terms of classical polylogarithms in refs. [61, 62] up to the order that we need. They are
collected together with their corresponding ε expansions in appendix A. Using these we
find, as expected, that all the intermediate divergences exactly cancel, leading to a result
of the following form

Π̃m = fpqrm,ijkFijk(2)Q2p
1 Q

2q
2 Q

2r
3 + wpqrm,ijkWijk(0)Q2p

1 Q
2q
2 Q

2r
3 + cpqrm,ijkCijk(0)Q2p

1 Q
2q
2 Q

2r
3

+ npqrm,1Q
2p
1 Q

2q
2 Q

2r
3 log Q

2
1

Q2
3

+ npqrm,2Q
2p
1 Q

2q
2 Q

2r
3 Cijk(0) log Q

2
2

Q2
3

+ lpqrm,ijk1Q
2p
1 Q

2q
2 Q

2r
3 Cijk(0) log Q

2
1

Q2
3

+ lm,ijk2Q
2p
1 Q

2q
2 Q

2r
3 Cijk(0) log Q

2
2

Q2
3
. (3.8)

The remaining loop functions, Cijk(0),Wijk(0), Fijk(2) can also be found in appendix A.
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Π̃1 Π̃7 Π̃10 Π̃13 Π̃19

Quark loop −0.0816 0.123 0.0363 0.0274 0.0263
Gluon corrections (×π/αs) 0.0781 −0.136 −0.0376 −0.0398 −0.0411

Table 2. Values for the quark loop and gluonic correction contributions to the Π̃ in GeV units for
a benchmark tuple (Q2

1, Q
2
2, Q

2
3) = (1, 1.3, 1.7) GeV2. Sum over the three flavours has been made.

The last line is in units of αs/π.

Π̂1 Π̂4 Π̂7 Π̂17 Π̂39 Π̂54

Quark loop −0.0210 −0.0119 −0.00384 0.00386 0.0119 0.000422
Gluon corrections (×π/αs) 0.0178 0.00560 0.00302 −0.00750 −0.0103 −0.000427

Table 3. Values for the quark loop and gluonic correction contributions to the Π̂ in GeV units for
a benchmark tuple (Q2

1, Q
2
2, Q

2
3) = (1, 1.3, 1.7) GeV2. Sum over the three flavours has been made.

The last line is in units of αs/π.

The explicit numerical coefficients can be found in the file pitildes.txt of the supple-
mentary material. In table 2 we give numerical results for them in a benchmark point,
(Q2

1, Q
2
2, Q

2
3) = (1, 1.3, 1.7) GeV2, giving also the analogous quark loop ones for compari-

son. The loop corrections are found of the order of ∼ −αs
π , i.e. they are found to be small

as far as αs is not large. The scale at which αs should be set is similar to the scale Q2 at
which the Π̃ are evaluated. Otherwise, large logarithms ln µ

Qi
appearing at higher orders

would break the perturbative series. As a consequence, the series are found to be reliable
as far as we do not go below ∼ 1 GeV.

Taking the linear combinations of the Π̃i which lead to the Π̂, one finds analogous
expressions for them, but with explicit negative powers of Källén functions λ = (Q2

1 +Q2
2−

Q2
3)2 − 4Q2

1Q
2
2. They introduce singularities which are, however, spurious. When expand-

ing around them, they cancel against the zeros of the polylogarithms, as explicitly checked
in different kinematic limits. Details on these expansions can be found in appendix A.
Numerical values for the Π̂i in the same benchmark point and comparison with the cor-
responding quark loop are given in table 3. The analytical expressions are too long to
be included here and are given in the file resultsgluon.txt of the supplementary mate-
rial. The equivalent results for the massless quark loop are in the file resultsquark.txt.
We have, however, included analytical expressions for both the quark loop and gluonic
correction at the symmetric point Q1 = Q2 = Q3 in appendix B.

A possible check on our result is taking the limit where one of the virtualities is much
smaller than the other two, i.e. the limit of ref. [45], where it is argued that the leading term
should have no corrections. The consequences of this limit for the Π̂i has been analyzed in
ref. [36], where it is shown that only for Π̂1 there is an unambiguous prediction. Taking
into account the corrections to the OPE of two-photon currents to the axial current, i.e.
the axial current gets an extra factor of 1−αS/π [51, 63–65], we see that our result indeed
satisfies the arguments of ref. [45].
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Quark loop Gluon corrections (αs
π units)

Π̄1 0.0084 −0.0077
Π̄2 13.28 −12.30
Π̄3 0.78 −0.87
Π̄4 −2.25 0.62
Π̄5 0.00 0.20
Π̄6 2.34 −1.43
Π̄7 −0.097 0.056
Π̄8 0.035 0.41
Π̄9 0.623 −0.87
Π̄10 1.72 −1.61
Π̄11 0.696 −1.04
Π̄12 0.165 −0.16
Total 17.3 −17.0

Table 4. Leading contributions to the (g − 2)µ integration from Qmin = 1 GeV in 10−11 units.

4 Results for the (g − 2)µ and phenomenological implications

Now that we have the needed gluonic corrections to the Π̂i, we can introduce them
into (2.34) to calculate their corresponding contributions to aHLbL

µ . Obviously, the identi-
fication of the Π̂i with the ones obtained using the OPE only makes sense when such an
expansion is valid, i.e., above some cut for the Euclidean momenta, Q1,2,3 > Qmin. We
restrict ourselves to those integration regions, keeping in mind that the (dominant) contri-
butions from the remaining regions, necessarily computed with non-perturbative methods,
must be added to the ones computed here.

The numerical integration has been done with the VEGAS implementation in the
CUBA library, as well as our own implementation of two deterministic algorithms. We have
checked that the results agree. The general expressions for the quark loop and the gluonic
corrections have large negative powers of λ and become numerically unstable whenever λ
is small. We therefore use, as in our previous work for the quark loop [57], expansions
whenever that happens. There are six different expansions that need to be done. This is
explained in more detail in appendix B. We have checked that the numerical results are
not sensitive to changing the boundaries where we use the different expansions.

We perform the integrals of the 12 Π̄i contributions at different Qmin, both for the
leading OPE contribution, the quark loop, and the gluonic corrections. They are displayed
for Qmin = 1GeV in table 4.

Consistently with the size of the gluonic corrections found for the Π̃i in the previ-
ous section, we find that they are negative and of order αs

π . Given the power fall-off of
the contributions of the Π̂ with respect to the studied energies, the quantitative contri-
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µ
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Figure 4. Numerical results for the hadronic HLbL (g − 2)µ in the Qi > Qmin region, using the
LO (massless quark loop) and NLO (gluonic corrections) contributions of its corresponding OPE.
Uncertainties, apart from the one coming from the αs(MW ) input, represented by shaded areas
have being estimated attending to ambiguities when setting the αs input (exact choice of scale and
order of running for the β function) as a consequence of not including higher-orders.

bution above some energy cut Qmin is saturated by the regions nearby such a cut. As
a consequence, a natural scale to effectively avoid large logarithms in the corresponding
perturbative series is µ ∼ Qmin, however the exact choice of it is ambiguous. In order to
estimate perturbative uncertainties we will vary the scale dependence, a consequence of
cutting the series at two-loops or at the first αS correction, in the interval µ2 ∈ (1

2 , 2)Q2
min.

At the studied order, the whole scale dependence comes from αs(µ). Taking αNf =5
s (MZ)

from ref. [66], we run it at five loops to αNf =3
s (mτ ).3 As a further conservative estimates

of perturbative uncertainty, we add quadratically the difference obtained by taking the one
obtained running from α

Nf =3
s (mτ ) to αNf =3

s (Qmin) with the five loop running (which we
take as our central result) with the one obtained keeping αNf =3

s with a fixed scale, µ = mτ ,
which at the order we are working with is also a legitimate choice. Finally we also add
quadratically the subleading uncertainty coming from α

Nf =5
s (MZ).

The result, where we show the quark loop, the gluonic corrections and the obtained
uncertainties is shown in figure 4. While in general we consider our uncertainty estimates
reliable, we notice that they may be slightly over-conservative in the region just below
1 GeV and over-optimistic just above it. This is a consequence of the sharp break down
of the αs running at µ ∼ 0.7 GeV which makes our uncertainty strongly dependent on the
exact scale interval chosen to estimate them. In essence, we find that the correction is small
and negative and that the series are well-behaved, having a gluonic correction of around
−10% above the perturbative breakdown.

3We implement the running, in the conventional MS scheme, using Rundec [67].
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5 Conclusions

One of the main sources of uncertainties entering in (g− 2)µ comes from the contributions
of the short-distance regions of the HLbL tensor contributions. In this work, which can be
regarded as a continuation of refs. [54] and [57], we have culminated our task of giving a
precise and systematic description of the contributions for three large loop momenta.

For years, it was assumed that some form of the quark loop, maybe with constituent
quark masses, should be the leading order of some systematic expansion of the HLbL
contribution tensor to the (g − 2)µ for large loop momenta. However, it was shown in
ref. [54] how applying an OPE directly to the HLbL tensor, where the massless quark loop
is indeed the leading order, does not make sense for the (g − 2)µ kinematics. The correct
expansion in this kinematic region was presented in that reference, where the massless
quark loop was shown to be the leading order and the leading non-perturbative quark
mass-suppressed correction was computed.

A very comprehensive analysis to study the role of both the quark mass-suppressed
and not suppressed non-perturbative corrections to the expansion was made in ref. [57],
where many formal aspects and subtleties of the expansion were developed and presented
in full detail, showing that it is well founded. The obtained results showed how above
1 GeV the non-perturbative corrections, even when functionally more important than in
other expansions, are still typically below 1%.

In view of that, the most important corrections to the leading massless quark loop,
and the one that ultimately allows to understand from where the expansion is valid, is the
pure gluonic correction, which has been the subject of this work.

While in principle a multi-scale four-loop integral could be regarded as a formidable
task, it has become feasible through combining existing tools developed for generic con-
tributions of the HLbL tensor to the (g − 2)µ, methods on finding compact expressions
developed in ref. [57], optimized software on reduction to master integrals, analytic reduc-
tion of those remaining master integrals and numerical integration routines.

Our final result brings good news. The size of the gluonic corrections are found small,
typically of size −10% above the perturbative breakdown scale, and, as a consequence, the
expansion is able to give a precise description of the (g − 2)µ contributions above it.

Taking all of this into account, we suggest as a legitimate method to compute the HLbL
contribution to (g−2)µ to use the results of this expansion from some point between Qmin =
1GeV and Qmin = 2GeV, which should give a more precise prediction than resonance
models, and possible discontinuities in the matching should be incorporated as systematic
model uncertainty.
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A Master integrals

The aim of this appendix is to list the expressions of the master integrals needed in section 3
(see also figure 3). They can be found in refs. [61, 62, 68].4 All n-loop master integrals
contain the overall factor SnD, where

SD = SD(ε) = (4π)ε

16π2
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε) . (A.1)

The functions C123 and W312 are finite in the limit d → 4. Their ε-expansions can be
written as follows

C123 ≡
∫
dp

1
p2γ(p− q1)2(p+ q2)2

= SDC123(0) + SDC123(1)ε+ C123(2)ε2 +O(ε3) , (A.2)

W312 ≡
∫
dp1dp2

1
p2

1(p1 + q2)2p2
2(p2 − q1)2(p1 − p2)2

= S2
DW312(0) + S2

DW312(1)ε+W312(2)ε2 +O(ε2) , (A.3)

where q1 + q2 + q3 = 0 and d = 4− 2ε. The integrations are defined as

∫
dp = 1

i

∫
ddp

(2π)d . (A.4)

The remaining integrals appearing in the calculation contain some singularities which cancel
out in the final amplitude. The ε-expansions of the integral Bq and Sq read

Bq ≡
∫
dp

1
p2(p− q)2

= SD
ε

+ SD
[
2− log(−q2)

]
+ SD

[
4− 2 log(−q2) + 1

2 log2(−q2)
]
ε+O(ε2) , (A.5)

and

Sq ≡
∫
dp1dp2

1
(p1 − q)2p2

2(p1 − p2)2

= −S2
D

q2

4ε + S2
D

[
−13

8 q
2 + 1

2 log(−q2)q2
]

+ S2
D

[
−115

16 q
2 + 13

4 log(−q2)q2 − 1
2 log2(−q2)q2

]
ε+O(ε2) . (A.6)

4The formulas given in this appendix and those in ref. [62] differ in a sign: an overall minus sign has
been missed in (4.18) of ref. [62]. This in turns leads to a minus instead of the plus sign in the second line
of (4.24), which corresponds to our (A.7). We checked that our sign agrees with the corresponding formulas
in ref. [68], which is also cited in ref. [62].

– 15 –



J
H
E
P
0
4
(
2
0
2
1
)
2
4
0

The integrals V123 and V̇123 can be expressed as functions of the finite integrals C123 and
W312. Their ε-expansions can be written as

V̇312 ≡
∫
dp1dp2

1
p2

1(p1 − q1)2(p1 + q2)2p2
2(p1 − p2)2

= −S2
D

C123(0)
ε

+ S2
D

[1
2C123(0)

(
log(−q2

1) + log(−q2
2)
)
− C123(1)

]
− S2

D

4
[
C123(0)

(
log2(−q2

1) + log2(−q2
2)
)
− 2C123(1)

(
log(−q2

1) + log(−q2
2)
)

+ 4(C123(2) +W312(0))
]
ε+O

(
ε2
)
, (A.7)

and

V312≡
∫
dp1dp2

1
(p1−q1)2(p1+q2)2p2

2(p1−p2)2

=S2
D

2ε2 +S2
D

[5
2−log(−q2

3)
]1
ε

+S2
D

2
[
C123(0)(−q2

1−q2
2+q2

3)

+log(−q2
1)
(
log(−q2

3)−log(−q2
2)
)
+log(−q2

2)log(−q2
3)+log2(−q2

3)−10log(−q2
3)+19

]
+S2

D

[1
2(F312(2)+65)+1

2C123(1)(−q2
1−q2

2+q2
3)

+C123(0)
(
−5

2(q2
1+q2

2−q2
3)+1

4log(−q2
1)(q2

1+q2
2−q2

3)+1
4log(−q2

2)(q2
1+q2

2−q2
3)
)

+log(−q2
1)
(

log(−q2
2)
(

log(−q2
3)−5

2

)
−log2(−q2

3)+5log(−q2
3)

2

)

+log(−q2
2)
(

5log(−q2
3)

2 −log2(−q2
3)
)

+1
3log3(−q2

3)+5
2log2(−q2

3)−19log(−q2
3)
]
ε

+O(ε2), (A.8)

where C123(i) and W312(i) are the coefficients of the ε-expansion of their corresponding
Master integral (cf. (A.2) and (A.3)). Not all these coefficients survive in the gluonic
corrections we are computing in section 3: C123(1), C123(2), W312(1) and W312(2) cancel
in the final expression. The coefficients C123(0) and W312(0) that contribute, as well as the
function F312(2) which appears in the expansion of V312, are given below

C123(0) = 2q−2
3
P2(z)
z − z

, (A.9)

W312(0) = 6q−2
3
P4(1− z−1)

z − z
, (A.10)

and finally

F312(2) = −6P3(z)− 6P3(1− z) + 1
2 log(u) log2(v) + 1

2 log2(u) log(v) + 6ζ3 , (A.11)

where u = q2
1
q2

3
, v = q2

2
q2

3
and z is given by

z = 1
2

(
1 + u− v + i

√
−λ̄
)
,

λ̄ = (1 + u− v)2 − 4u . (A.12)
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The Pi(z) are real (purely imaginary) functions over the complex plane when i is odd (real).
They can be expressed using polylogarithms:

P2(z) = Li2(z)− Li2(z̄) + log |z|(log(1− z)− log(1− z̄))

P3(z) = Li3(z) + Li3(z̄)− log |z|(Li2(z) + Li2(z̄))− 1
3 log2 |z|(log(1− z) + log(1− z̄))

P4(z) = Li4(z)− Li4(z̄)− log |z|(Li3(z)− Li3(z̄)) + 1
3 log2 |z|(Li2(z)− Li2(z̄)) (A.13)

The polylogarithms can be defined recursively

Lin(z) =
∫ z

0

dt

t
Lin−1(t) , and Li1(z) = − log(1− z) . (A.14)

The Pi satisfy a number of relations

P2(z) = −P2(1/z) ,
P3(z) = P3(1/z) ,
P4(z) = −P4(1/z) ,
P2(z) = P2(1− 1/z) = −P2(1− z) = P2(1/(1− z)) = −P2(z/(z − 1)) ,
P3(z) + P3(1− z) + P3(1− 1/z) = P3(1) = 2ζ(3) (A.15)

which can be used to show that the master integrals have the required symmetries under
interchange of momenta.

B Analytical formulae

In this section we present analytical formulae for the scalar functions entering into the
calculation of aHLbL

µ . We in particular discuss the momentum expansions of the master
integrals needed to make spurious singularities cancel numerically. As an explicit example,
we also give the expressions for the Π̂ at the symmetric point Q1 = Q2 = Q3 for the quark
loop and gluonic correction in appendix B.2.

B.1 Expansions

In the numerical evaluation of aHLbL
µ there are certain limits of the kinematics requiring

particular care. The integration domain can be divided into several regions as in figure 5.
We there see the so-called side, corner and inside regions together with their boundaries.
Also the cut-off µ has been indicated. Unless the side and corner regions are properly
taken care of, the numerical integration will diverge as one obtains zeros in denominators
that numerically do not cancel the zeros in numerators. Below we discuss the two types of
problematic regions.

The precise definition of the regions is: Qi ≥ µ = Qmin. The corners are defined by
Qi/(Q1 +Q2 +Q3) ≤ ε1 for i = 1, 2, 3. The sides are the part of the remaining region that
satisfy (2Qi/(Q1 + Q2 + Q3) − 1 ≤ ε2 for i = 1, 2, 3. The inside is the remaining allowed
region.
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Figure 5. Different regions to consider in order to deal with the singularities of the Π̂ when λ→ 0.
The regions are shown for Q1 +Q2 +Q3 = Λ.

B.1.1 Side regions

The side regions are defined as the kinematical limit where one Qi is close to Qj +Qk, or,
in other words when

Side Region Si : Q2
i = (Qj +Qk)2 − δ ≡ Q2

i − δ , (B.1)

where δ is a small parameter. The inverse powers of the Källén function in the Π̂i diverge
in the side regions. These apparent singularities do, however, cancel when all the kinemat-
ical factors, the master integrals C123(0), W312(0), W213(0), W123(0), F312(2), F213(2) and
F123(2) as well as the Källén function itself are expanded in δ. For a finite result we have
to expand the master integrals up to order δ9. The analytical forms of these expansions
are very long and we here therefore only give the first two orders for one case, S3. In the
supplementary material file sideexpansions.txt, however, we provide the full expansions
needed for all Si. In region S+3 we have
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To obtain these one has to expand the relevant Pi functions around a general z. Note that
one obtains e.g. P3(1 +Q2/Q1), which, from the definition of the function in (A.13) gives
rise to log (−Q2/Q1). This lies on the branch-cut of the (poly-)logarithm. However, the Pi
are well-behaved, single-valued functions without branch-cuts and one can safely neglect
these issues.

When the Π̂ are expanded, the negative powers of δ cancel. The expressions are not
displayed here due to their length, but they can be found in the supplementary mate-
rial file resultsgluon.txt. Equivalent expressions are provided for the quark loop in
resultsquark.txt.

B.1.2 Corner regions

In the corner regions the situation is different. There one has two small parameters instead
of one

Corner Region Ci : Qi � Qj , Qk and δ ≡ Qj −Qk � Qi ≡ Qj +Qk . (B.9)
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Below, we list the expansions in the region C3.5 The expansions of the master integrals
are given by
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In the corner regions one has to expand the Pi(z) for three different z, namely z = 0, 1, ∞.
However, from the relations in (A.15) one can relate Pi(z) to Pi(1/z), so only z = 0, 1 are
needed in practice.

5In the supplementary material file cornerexpansions.txt, we provide the full expansions needed for
all corner regions.
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The Π̂ in region C3 are given by
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with the overall factor cs = 2παs(N2
c−1)e4

q

(16π2)2 . While all these expressions are finite when
the small parameter δ tends to zero, some of them diverge when Q2

3 → 0. However, this
divergence has no physical meaning, since that limit lies outside the region of validity of the
OPE. The expansion of the Π̂ in the other corner regions can be found in the supplementary
material file resultsgluon.txt. Equivalent expressions are provided for the quark loop
in resultsquark.txt.

B.2 Symmetric point

In this section, we write the expressions for the Π̂ at the symmetric point Q1 = Q2 = Q3 =
Q.6 For the quark loop these are
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where
∆(n) ≡ ψ(n)(1/3)− ψ(n)(2/3) . (B.24)

and ψ(n) is the polygamma function of order n defined by

ψ(n)(z) ≡ dn+1

dzn+1 log Γ(z) . (B.25)

One then has

∆(1) ≈ 7.031721716 , (B.26)

∆(3) ≈ 456.8524809 . (B.27)
6The associated Π̃ are also available upon request.
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These expressions agree with those given in ref. [36]. For the gluonic correction the result
is
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where cs = 2παs(N2
c−1)e4

q

(16π2)2 .
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