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Abstract: The vulnerability of alpine environments to climate change presses an urgent need to
accurately model and understand these ecosystems. Popularity in the use of digital elevation models
(DEMs) to derive proxy environmental variables has increased over the past decade, particularly
as DEMs are relatively cheaply acquired at very high resolutions (VHR; <1 m spatial resolution).
Here, we implement a multiscale framework and compare DEM-derived variables produced by
Light Detection and Ranging (LiDAR) and stereo-photogrammetry (PHOTO) methods, with the
aim of assessing their relevance and utility in species distribution modelling (SDM). Using a case
study on the arctic-alpine plant, Arabis alpina, in two valleys in the western Swiss Alps, we show
that both LiDAR and PHOTO technologies can be relevant for producing DEM-derived variables for
use in SDMs. We demonstrate that PHOTO DEMs, up to a spatial resolution of at least 1 m, rivalled
the accuracy of LiDAR DEMs, largely owing to the customizability of PHOTO DEMs to the study
sites compared to commercially available LiDAR DEMs. We obtained DEMs at spatial resolutions of
6.25 cm–8 m for PHOTO and 50 cm–32 m for LiDAR, where we determined that the optimal spatial
resolutions of DEM-derived variables in SDM were between 1 and 32 m, depending on the variable
and site characteristics. We found that the reduced extent of PHOTO DEMs altered the calculations
of all derived variables, which had particular consequences on their relevance at the site with
heterogenous terrain. However, for the homogenous site, SDMs based on PHOTO-derived variables
generally had higher predictive powers than those derived from LiDAR at matching resolutions.
From our results, we recommend carefully considering the required DEM extent to produce relevant
derived variables. We also advocate implementing a multiscale framework to appropriately assess
the ecological relevance of derived variables, where we caution against the use of VHR-DEMs finer
than 50 cm in such studies.

Keywords: alpine ecology; Arabis alpina; digital elevation models (DEMs); light detection and
ranging (LiDAR); multiscale; photogrammetry; spatial scale; species distribution models (SDM);
terrain attributes; very high resolution

1. Introduction

Alpine environments are among the most sensitive ecosystems to climate change
and associated extreme weather fluctuations [1]. Increases in mean annual air temper-
ature coupled with changes in precipitation patterns have been associated with glacial
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retreats, permafrost degradation, and increases in sedimentation and erosion, leading to
an upward migration of vegetation belts and increased interspecies competition over the
past 100 years [2–6]. As such, there is a growing interest in alpine conservation research
to understand how plants are likely to respond to novel pressures, and with this, guide
appropriate and effective management strategies.

Modelling species distributions in alpine environments requires a move from the tra-
ditional methods that rely on environmental and climatic data interpolated from regional-
scale sensors, such as local weather stations [7,8]. New evidence highlights the importance
of incorporating fine-scale topographic information for modelling microclimatic condi-
tions [9,10], as microclimates are thought to largely determine habitat availability, the
number of species a region can support, and the ability of species to either stay or go under
a changing climate [7–9,11].

Recently, ecologists have been turning towards remote sensed digital elevation models
(DEMs) to obtain accurate topographical attributes that proxy for environmental vari-
ables [12,13]. Originally adopted in the fields of geology and hydrology to describe terrain
steepness and orientation, the primary terrain attributes of slope, aspect, and curvature de-
rived from DEMs can be used to calculate more complex secondary terrain attributes. These
secondary derived variables have been developed to accurately model ecologically-relevant
environmental factors, such as soil depth, nutrient status, solar radiation, terrain rugged-
ness, humidity, and soil wetness [7,10,12,14–16], for example, which have been successfully
used to model species distributions [7,17,18], for studying responses to environmental
change [8,9,11], and for evaluating capacities for local adaptation [19].

Accurate modelling of microhabitat conditions requires very high resolution (VHR)
DEMs of 1 m or finer, which have recently become more financially and logistically ob-
tainable. There are two main capture systems to produce VHR-DEMs: airborne Light
Detection and Ranging (LiDAR) and drone-based stereo-photogrammetry (PHOTO). While
LiDAR is traditionally the method used to acquire DEMs, particularly as it produces highly
accurate models under most weather, light, and vegetation conditions [20–22], popularity
is increasing for PHOTO as a practical and cheaper solution to LiDAR [23–25], particularly
in alpine terrain above the tree line where the models are directly of the surface [26], despite
PHOTO’s limitations regarding sensitivity to terrain complexity, vegetation, lighting, and
weather conditions [27,28]. Technical differences between the technologies result in an
important trade-off between the maximum extent captured during a flight and the final
spatial resolution [23,29]: LiDAR’s use of an active laser system restricts it to airborne
platforms, resulting in larger extents at resolutions typically around 50cm, while the camera
equipment of the passive PHOTO method allows its use on drones, restricting extent while
improving spatial resolution by up to 10 times that of LiDAR (i.e., finer than 5 cm).

Acquiring VHR-DEMs raises important questions relating to accuracy and scale, such
as: is such level of detail necessary for ecological studies? And: what resolution is precise
enough to adequately represent topography and microclimates? Indeed, DEM resolutions
that are too fine may hold an excess of detail, while those that are too coarse may over-
generalize and lose important features [30,31]. The optimal spatial resolution depends on
the derived variable: predictions of soil depth, for example, were found to be most accurate
when using DEMs at 2 m resolution [32], while models of topsoil pH were optimized when
using DEMs at 1 m resolution [33]. Similar patterns are found for climatic variables, where
one study found optimal resolutions to be between 0.5 and 4 m [15]. Unsurprisingly, species
distribution models (SDMs) have been shown to depend on the spatial resolution of the
input variables [18,34]. Yet, a general lack of guidance and formal discussion around the
topic of spatial scale has resulted in the arbitrary selection of resolutions in many ecology
studies [35,36], with consequences for ecological modelling [37,38].

Here, we implement a multiscale framework and compare DEM-derived variables
produced by LiDAR and PHOTO technologies on the same two alpine regions, with the
aims of: (i) assessing the predictive powers of variables derived from each technology,
(ii) illustrating the importance of mindfully selecting spatial scale, and (iii) highlighting
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key differences between the two technologies. We implement SDMs with data from a
case study on Arabis alpina in the western Swiss Alps to evaluate the ecological relevance
of DEM-derived variables at multiple scales from both technologies. We conclude by
providing a comparison of LiDAR- and PHOTO-based DEMs for use in ecological research,
and we outline key differences between the technologies to help researchers decide on the
appropriate DEM-acquisition technology to use in their research.

2. Materials and Methods

We obtained VHR (<1 m resolution) DEMs for two alpine sites located in the western
Swiss Alps, in the context of a landscape genomics project (GENESCALE) [25,39,40]. We
were interested in testing the adequacy of the cheaper and logistically simpler PHOTO
method using a drone compared to state-obtained LiDAR using airplanes, with the moti-
vation for cost-effective repeatability of the project in other areas. This presented a good
opportunity to compare DEMs produced by LiDAR and PHOTO technologies, as well as
their associated derived variables, particularly as a lack of vegetation and man-made struc-
tures at the study sites meant that the digital surface model (DSM) obtained by PHOTO
made it equivalent to a terrain model [26]. To avoid ambiguity, we use the term spatial
resolution to describe the pixel size of DEMs and derived variables, while we use the term
extent to describe the total area sampled or analyzed [36].

2.1. Study Sites

Both La Para (Para) and Col des Martinets (Martinets) target study sites cover 0.5 km2

and are located in alpine valleys located above the tree line in the western Swiss Alps
(Figure 1). Para is located in a narrow valley and is characterized by bumpy and steep
slopes; Martinets is located at a slightly higher elevation in a wider valley and is char-
acterized by flatter terrain with a cliff across the middle of the site (Table 1). These sites
were selected for this case study as they show a diverse range of alpine habitat types (e.g.,
rocks, grassy-meadows, low shrub, cliff-faces) with high topographic complexity [25]. A
total of 181 and 123 geo-referenced points (±3 cm) were recorded across Para and Mar-
tinets, respectively, using a Leica DGPS (Table 1). Of these, 24 and 13 points, respectively,
were measured specifically as recognizable ground control points for producing PHOTO
DEMs using Global Navigation Satellite Systems in Real-Time Kinematic mode (GNSS
RTK), while 146 and 100 points were geo-referenced locations of the alpine perennial plant,
A. alpina (Brassicaceae). The remaining geo-referenced points (n = 11 and 10, respectively)
correspond to the location of environmental loggers, whose data were not used in the
present study. Location of plant and logger points were selected across the sites to represent
contrasting microhabitats within the context of the landscape genomics project.

2.2. Digital Elevation Models
2.2.1. LiDAR Acquisition

Raw LiDAR point clouds were obtained from a laser survey carried out by the Direc-
tion of Land registry and of Geoinformation (DCG), of the Swiss state of Vaud in June 2015,
and distributed by ASIT Vaud [41]. The point cloud was acquired using a LiDAR Optech
ALTM Gemini at a wavelength of 1064 nm and a flight altitude of approximately 650 m
above the terrain. The laser used a scanning angle of ~20◦ on both sides of the vertical and
resulted in a point density of between 8 to 12 points m−2.
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Table 1. Location and characterization of the two study sites, Martinets and Para, situated in valleys in the western Swiss 
Alps, including the areas of the target study sites and DEM extents, as well as the number of geo-referenced points used 
in the analyses. 

 Martinets Para 
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Orientation NE NNE 

Slope (mean ± sd) 0.45 ± 0.17 rad 0.50 ± 0.16 rad 
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Area of PHOTO DEM 0.7 km2 0.7 km2 

Area of target site  0.5 km2 0.5 km2 
Ground control points 13 24 
Plant occurrence points 100 146 

Logger points 10 11 
Assessment points 2 110 157 

1 VRM = Vector Ruggedness Measure (no unit). 2 Sum of plant occurrence points and logger points, used for assessing 
DEM accuracy. 

  

Figure 1. Location of (a) Martinets and (b) Para study sites in the western Swiss Alps (location indicated in black rectangle
on the Swiss map insert). The site perimeter is outlined in white and geo-referenced points are indicated as black dots.
The Light Detection and Ranging (LiDAR) digital elevation models (DEMs) are superimposed on an elevation map of the
surrounding area and are in darker colors.

Table 1. Location and characterization of the two study sites, Martinets and Para, situated in valleys in the western Swiss
Alps, including the areas of the target study sites and DEM extents, as well as the number of geo-referenced points used in
the analyses.

Martinets Para

Coordinates 46◦12′37”N; 7◦5′12”E 46◦23′23”N; 7◦9′6”E
Elevation range 1928–2368 m asl 1826–2320 m asl

Orientation NE NNE
Slope (mean ± sd) 0.45 ± 0.17 rad 0.50 ± 0.16 rad

Eastness (mean ± sd) 0.34 ± 0.6 rad 0.44 ± 0.5 rad
Northness (mean ± sd) 0.48 ± 0.6 rad 0.64 ± 0.4 rad

VRM 1 (mean ± sd) 4.7 × 10−3 ± 9.6 × 10−3 4.5 × 10−3 ± 7.3 × 10−3

Area of LiDAR DEM 3.7 km2 6.0 km2

Area of PHOTO DEM 0.7 km2 0.7 km2

Area of target site 0.5 km2 0.5 km2

Ground control points 13 24
Plant occurrence points 100 146

Logger points 10 11
Assessment points 2 110 157

1 VRM = Vector Ruggedness Measure (no unit). 2 Sum of plant occurrence points and logger points, used for assessing DEM accuracy.
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2.2.2. Photogrammetry Acquisition

PHOTO data were collected in August 2014 using a SenseFly eBee fixed-wing UAV [42],
which is capable of autonomous flight in wind speeds up to 50 km h−1 (rapid wind and
weather changes are common at altitude in this region; actual windspeed of approximately
35 km h−1 was recorded during flights). A flight plan was developed to account for a 130 m
flight-height above the terrain aiming for a ground pixel resolution of about 4 cm, as well as
a 75% longitudinal and 60% lateral overlap of images to allow for good stereoscopy. Param-
eters were slightly modified when flown over certain terrain types, particularly cliff areas,
to ensure a homogeneous ground pixel size throughout the flight. Images were analyzed
and orthorectified using Pix4D software (v1.1.45, 2014). Images were initially processed
at double image size to maximize extracted features and improve accuracies, after which,
additional 3D points were computed based on the original image size to maximize point
cloud densification, and the minimum number of matches per 3D point was set to three.
The DSM was produced at a resolution of 5cm per pixel using inverse distance weighting,
where noise and errors in calculated points were filtered using the median elevation of
neighboring points, and small bumps were removed using the medium surface smoothing
filter. This was exported as a .las file. All PHOTO DEM acquisition and processing was
performed at HEIG-VD, Switzerland.

2.2.3. DEM Processing

We used CloudCompare (v 2.10.2, 2020) to process the point cloud .las files from both
technologies. The Rasterize tool was used to produce the VHR-DEMs from the point clouds
using average cell height, where missing data were filled using linear interpolation with
values from the nearest neighboring cells. The finest resolution DEM from the LiDAR
point cloud was 0.5 m (the finest resolution available from ASIT Vaud [41]), while the finest
resolution DEM for PHOTO was 6.25 cm (the finest resolution available from the drone
flight that was a factor of 0.5m to allow for comparison with LiDAR). The DEMs were
modified in R (v3.6.0, 2019) to add empty pixels along the right and bottom borders, such
that the raster extents were divisible by 2n for multiscale decomposition up to n times. All
DEMs were geo-referenced in the Swiss reference system (MN95: CH1903+/LV95). See
Table 1 for the areas of the finest-resolution DEMs obtained for LiDAR and PHOTO at both
sites, as well as the areas of the target study sites.

2.2.4. DEM Multiscale Decomposition

A multiscale framework was used to investigate the effect of spatial scale on the
accuracy of DEMs obtained by LiDAR and PHOTO technologies, as well as to assess
the optimal spatial scales of derived variables. We generalized the DEMs to multiple
scales using the Gaussian Pyramid algorithm in MATLAB with the impyramid function
(MathWorks: MATLAB R2019a, 2019) [43–45], which reduces image size by half, each
step. The PHOTO DEM was generalized from 6.25 cm to 12.5 cm, 25 cm, 50 cm, 1 m, 2 m,
4 m, and 8 m, and the LiDAR DEM was generalized from 50 cm to 1 m, 2 m, 4 m, 8 m,
16 m, and 32 m, where the maximum resolution of 32 m was selected, as it covers the
commonly used resolution of 25 m in ecological studies (e.g., [10]). The differences in
the ranges of DEM spatial resolutions produced for LiDAR and PHOTO are due to the
trade-off between the finest obtainable pixel size and the extent of the area captured. The
generalized DEM rasters were then manually cropped using QGIS (v3.4, 2019) to remove
incorrectly calculated border pixels, due to edge effects during generalization.

2.2.5. DEM Accuracy Assessment

The accuracy of each DEM (LiDAR at 7 resolutions; PHOTO at 8 resolutions) was
evaluated as the vertical error (∆hi) of the elevation obtained from the DEM compared to
the accurately measured assessment points (∆hi = Assessment point – DEM point; Para:
n = 157, Martinets: n = 110), following the DEM accuracy assessments as recommended
by [46]. All calculations were performed in R. The distribution of ∆hi was first visualized
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using boxplots and quantile–quantile (Q-Q) plots to check for deviations from a normal
distribution. Vertical accuracy was assessed using standard accuracy measures (assuming
a normal distribution of errors), including mean, standard deviation (sd), and root mean
square error (RMSE), as well as assessed with robust measures of accuracy, including
minimum, maximum, median, and the normalized median absolute deviation (NMAD)—
an estimate for the standard deviation that is more resilient to outliers. Outliers were
defined as points with a |∆hi| greater than three times the RMSE [47].

2.3. DEM-Derived Variables
2.3.1. Derived Variable Computation

A total of 23 variables relating to terrain morphometry, hydrology, and solar radiation
were derived from each DEM using SAGA GIS (v7.5.0, 2019). Eastness and Northness were
calculated as the sine and cosine of Aspect in R. Descriptions and parameters used in calcu-
lations of all the derived variables are provided in Table S1 in the Supplementary Materials.

2.3.2. Derived Variable Correlations

Correlations between each pair of derived variables generated at 0.5m resolution were
calculated to select independent variables following rules adapted from [15]. Spearman’s
rank correlations were calculated based on a subset of 15,000 random points across each
study site. Using a correlation threshold of |rs| ≥ 0.8 [48], we reduced the number of
variables to eight (Table 2), prioritizing primary terrain attributes (slope, aspect, curvature),
followed by variables that were deemed to be more ecologically meaningful to high-
altitude alpine plants [49]. For each DEM, we reassessed pairwise correlations for the
eight independent variables to investigate how spatial resolution, technology, and site
characteristics alter collinearity. Additionally, we produced scatterplots to directly compare
the eight independent LiDAR and PHOTO DEM-derived variables at the common spatial
resolutions of 0.5 m, 1 m, 2 m, 4 m, and 8 m.

Table 2. Description of independent DEM-derived variables computed at each resolution for LiDAR and PHOTO. See
Table S1 in the supplementary material for the parameters used in calculations.

Variable Abbv. Description Units Ref.

Pr
im

ar
y

at
tr

ib
ut

es

Elevation Elev. DEM elevation, interpolated from LiDAR or PHOTO, generalized to
multiple resolutions using B-spline wavelet transforms. m [42,43]

Slope Slope Morphometry. Local morphometric terrain parameters; proxies for water
flow, snow movements, erosion, solar radiation, etc. Eastness and Northness
represent the sine and cosine of Aspect (Orientation), respectively. Curvature

is used to understand erosion and runoff processes.

radians

[50]
Eastness East radians

Northness North radians
Plan curvature Hcu 1/m

Se
co

nd
ar

y
at

tr
ib

ut
es

Vector
ruggedness

measure
VRM Morphometry. Quantifies rugosity with less correlation to slope, indicating

a combined variability in slope and aspect. No unit [51]

SAGA wetness
index SWI

Hydrology. Modified version of Topographic Wetness Index (TWI), which
is a calculation of the slope and a modified catchment area (MCa). It

predicts a more accurate soil moisture for cells situated on the valley floor
(when compared to the TWI)

MCa/ Slope [52,53]

Sky view factor SVF Lighting. Ratio of the radiation received by a planar surface to the
radiation emitted by the entire hemispheric environment No unit [14,54,55]

Total Solar
radiation in June Ti06 Lighting. Sum of direct and diffuse insolation in summer (calculated for 1

to 30 June 2015). kWh/m2 [12,14]

2.3.3. Derived Variables in Species Distribution Models

To investigate the ecological relevance of DEM-derived variables from LiDAR and
PHOTO at various spatial resolutions, we performed SDMs at each site following the
methods of [56]. As we had presence-only data of A. alpina across the sites, we used the
machine learning method of MaxEnt [57] through the R package, maxnet [58], to estimate
the probability distribution n of the plants across the sites based on incomplete species
presence-only data and environmental predictor variables [59,60].
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For each model, we used Elevation and the eight independent variables from Table 2,
varying only the DEM-acquisition technology and spatial resolution, where all rasters were
limited to the extent of the study site, as indicated in the maps of Figure 2. To determine
the technology–resolution combination that can best discriminate plant location from
random background points for each variable at each site, we performed Student t-tests
in R with the t.test function, comparing the plant presence data (Para: n = 146, Martinets:
n = 100; green dots in Figure 2) to 10,000 random background points at each site. We
considered a technology–resolution combination to be significant if the t-test value was
<0.01 after applying a Bonferroni correction for multiple comparisons. For each variable at
each site, we retained the technology–resolution combination that produced the largest
T-value and used these in a “combination” model for each site (see Table S2 for summary
of t-tests results).
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Figure 2. Location of Arabis alpina individuals (green dots) across (a) Martinets (n = 100 locations) and (b) Para (n = 146
locations) sites, where target site perimeters are outlined in black. The sky view factor (SVF) variable derived from PHOTO
is shown in light colors and superimposed on hill shaded DEMs.

As species’ responses to environmental factors tend to be complex [59], MaxEnt allows
for non-linear transformations, termed feature classes (FC) of predictor variables, which
are regulated for overfitting with regularization multipliers (RM) [60]. To optimize these
two parameters for our SDMs, we assessed the performance of MaxEnt models produced
for each site using the combination models specific for each site, where we varied the FC
transformations (linear; linear-product; linear-quadratic; linear-product-quadratic) and RM
values (1, 2, 5, and 10). We ran 20 models each with a different random subset, using 75%
of the data to train the models and 25% to test them, and projected the models using the
cloglog scaled output. Two metrics were used to evaluate the performance of the MaxEnt
models [61]: the mean of the commonly used Area Under the Receiver Operating Curve
(AUC) [62], based on the test data (AUCtest), which was complemented with the mean
sample-size corrected Akaike Information Criterion (AICc) [63]. From this we determined
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that the optimal parameters for the SDM at both sites was the linear-product-quadratic FC
coupled with a RM of 1 (LPQ1; Table S3). Finally, we performed MaxEnt SDM for A. alpina
at both study sites separately, using the optimized parameters to transform the predictor
variables. We performed one model for each technology–resolution combination, resulting
in a total of 15 models in addition to the combination model, per site. Though at the coarser
resolutions there were instances of multiple plant occurrences per grid, we retained all
presence locations to maintain consistent sample sizes in the models with different spatial
resolutions [61].

3. Results
3.1. DEM Accuracy Assessment

DEM accuracy (∆hi), measured as DEM vertical error when compared to assessment
points, decreased at coarser spatial resolutions, particularly from 4 m onwards (Figure 3;
Table S4). However, accuracy remained relatively constant from 6.25 cm through to 50 cm.
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resolutions for (a) Para (n = 157) and (b) Martinets (n = 110). Boxplots are accompanied by examples of Q–Q plots of LiDAR
and PHOTO DEM errors at 0.5m resolution. The complete set of Q–Q plots for both sites can be found in Figure S1.
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Visual inspection of the vertical error distribution using Q–Q plots (Figure 3 for Q–Q
plots of 0.5 m DEMs; Figure S1 for all Q–Q plots) showed strong deviations from a normal
distribution, where heavy tails at the finer resolutions indicate the presence of extreme
values, such as outliers. These extreme values diminished at coarser resolutions. Skews
in the data were stronger at Para than at Martinets, with four outliers detected at Para
compared with two at Martinets. We assessed accuracy using robust measures that are
more resistant to outliers, though we report both standard and robust measures in Table S4.

The accuracy of PHOTO DEMs was equal to, if not better than, the accuracy of the
LiDAR DEMs for spatial resolutions up to 1 m at Martinets and 4 m at Para. At coarser
resolutions for both sites, PHOTO DEMs became more varied and less accurate than LiDAR.
At Para, LiDAR and PHOTO DEMs showed similar magnitudes of error, where PHOTO
had slightly more outliers than LiDAR at matching resolutions (Figure 3a, Table S4a).
Additionally, PHOTO DEMs at Para had approximately the same variation as LiDAR
DEMs at matching resolutions, as determined by NMAD, the robust estimate for standard
deviation (Table S4, Figure S2a). At Martinets, PHOTO DEMs were more accurate than
the LiDAR DEMs when compared to the assessment points (Figure 3b, Table S4b), where
the 0.5 m PHOTO DEM over-estimated elevation by a median of 10 cm, while the 0.5 m
LiDAR DEM over-estimated elevation by a median of 1.4 m. Additionally, PHOTO DEMs
at Martinets showed less variation in error than did LiDAR DEMs up to resolutions of
1 m (Table S4, Figure S2b), after which vertical errors in PHOTO DEM were slightly more
variable than LiDAR.

3.2. DEM-Derived Variables
3.2.1. Derived Variable Correlations

Eight independent DEM-derived variables were retained from an initial 23, based on
a Spearman rank correlation threshold of |rs| ≥ 0.8 for the variables at 0.5 m resolution
(Table 2). When correlations were reassessed at coarser resolutions, most correlations
remained consistent and below the |rs| = 0.8 threshold (Table S5).

The data showed strong correlations between the DEMs of LiDAR and PHOTO at all
resolutions (rs = 1), but this was not observed for the derived variables between the tech-
nologies (Figure S3). Indeed, there was a high degree of scatter, indicating inconsistencies
between variables derived from the LiDAR versus PHOTO DEMs, particularly at finer
resolutions. This was especially notable for HCu and VRM at both sites, where variables
were poorly correlated at 0.5 m resolutions (rs < 0.2 and <0.45, respectively), but were more
aligned at 8 m resolutions (rs > 0.8 and >0.89, respectively). For other variables, including
East, North, and Ti06, LiDAR and PHOTO produced relatively congruent variables at both
sites, with rs > 0.75 at the 0.5m resolution and rs > 0.9 at the 8 m resolution. In general,
variables derived from LiDAR and PHOTO DEMs were slightly more consistent for Para
than Martinets.

3.2.2. Predictive Power of Derived Variables in Species Distribution Models

The optimal resolution–technology combination that distinguished plant presence
from random background points was dependent on the site characteristics (Table S2). At
Para, 120 of the 135 variable–resolution combinations (9 variables each at 15 resolutions)
were able to significantly distinguish plant locations from random background points at a
significance level of p ≤ 0.05, where more derived variables were from LiDAR than from
PHOTO DEMs. As such, all derived variables used in the “combination” MaxEnt model
for Para were LiDAR-derived. The optimal spatial resolution depended on the variable:
Elevation and Slope at 32 m; VRM at 16m; Hcu, SVF and SWI at 8 m; Ti06 at 4 m; and
East and North at 1 m. At Martinets, 101 of the 135 variable–resolution combinations were
able to distinguish plant location from random points, with weaker significances than at
Para. Interestingly, 59 variables significantly able to distinguish plants from background
were PHOTO-derived, while 42 were LiDAR-derived. Despite this, all variables that could
most significantly distinguish plant location were LiDAR-derived, with the exception of
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SVF, where most variables were optimized at the coarser resolutions: Elevation, East, Hcu,
Slope, and Ti06 at 32 m; SWI at 16m; SVF at 4 m; and North and VRM at 1 m. These
optimal variables for each site, as listed above and highlighted in grey in Table S2, were
then used to determine that the optimal MaxEnt model parameters to use are a FC of
linear-product-quadratic coupled with a RM of 1 (LPQ1; Table S3).

The ability of each MaxEnt model to predict the distribution of A. alpina at each site
was assessed using AUCtest and AICc (Figure 4). At Para, all models appeared to be well
suited to predicting plant location, with mean AUCtest values >0.8 (Figure 4a). Model
performance at Para improved with variables at 6.25 cm to 12.5 cm, after which SDM perfor-
mance was approximately equal with variables at 12.5 cm to 4 m resolutions (Figure 4a,c).
The highest predictive power was the model produced with 16m resolution variables,
followed by the Para combination model. MaxEnt model performance at Para was slightly
improved when variables were derived from LiDAR rather than from PHOTO. SDMs at
Martinets were marginally less accurate than at Para, with mean AUCtest values >0.75.
While model performance improved as input variable resolution coarsened, particularly
from 6.25 cm to 1 m, there was little difference in model performance from 2 m to 32 m
(Figure 4b,d). Highest model performance was obtained with the combination model,
followed by 4 m PHOTO, and 32 m LiDAR. With the exception of 1 m resolution, SDMs
based on PHOTO-derived variables had higher predictive power than those based on
LiDAR at Martinets.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 19 
 

PHOTO-derived, while 42 were LiDAR-derived. Despite this, all variables that could most 
significantly distinguish plant location were LiDAR-derived, with the exception of SVF, 
where most variables were optimized at the coarser resolutions: Elevation, East, Hcu, 
Slope, and Ti06 at 32 m; SWI at 16m; SVF at 4 m; and North and VRM at 1 m. These optimal 
variables for each site, as listed above and highlighted in grey in Table S2, were then used 
to determine that the optimal MaxEnt model parameters to use are a FC of linear-product-
quadratic coupled with a RM of 1 (LPQ1; Table S3). 

The ability of each MaxEnt model to predict the distribution of A. alpina at each site 
was assessed using AUCtest and AICc (Figure 4). At Para, all models appeared to be well 
suited to predicting plant location, with mean AUCtest values >0.8 (Figure 4a). Model 
performance at Para improved with variables at 6.25 cm to 12.5 cm, after which SDM 
performance was approximately equal with variables at 12.5 cm to 4 m resolutions (Figure 
4a,c). The highest predictive power was the model produced with 16m resolution 
variables, followed by the Para combination model. MaxEnt model performance at Para 
was slightly improved when variables were derived from LiDAR rather than from 
PHOTO. SDMs at Martinets were marginally less accurate than at Para, with mean 
AUCtest values >0.75. While model performance improved as input variable resolution 
coarsened, particularly from 6.25 cm to 1 m, there was little difference in model 
performance from 2 m to 32 m (Figure 4b,d). Highest model performance was obtained 
with the combination model, followed by 4 m PHOTO, and 32 m LiDAR. With the 
exception of 1 m resolution, SDMs based on PHOTO-derived variables had higher 
predictive power than those based on LiDAR at Martinets. 

 
Figure 4. MaxEnt SDM performances evaluated using AUCtest and AICc at Para ((a) and (c), respectively) and Martinets 
((b) and (d), respectively) as a function of variable resolution (x-axes) and DEM-acquisition technology (LiDAR in orange, 
PHOTO in blue). Each point represents the evaluation criteria mean ± sd, based on the results of 20 model iterations for 

Figure 4. MaxEnt SDM performances evaluated using AUCtest and AICc at Para ((a,c), respectively) and Martinets ((b,d),
respectively) as a function of variable resolution (x-axes) and DEM-acquisition technology (LiDAR in orange, PHOTO in
blue). Each point represents the evaluation criteria mean ± sd, based on the results of 20 model iterations for the input
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4. Discussion

Using a multiscale framework to model plant distributions across two alpine study
sites, we systematically evaluated the ecological relevance of DEMs, and derived variables
acquired from both LiDAR and PHOTO technologies.

Here, the accuracy of PHOTO DEMs rivalled that of LiDAR DEMs, putting the
current paradigm of LiDAR being the most accurate DEM-acquisition method into question.
Furthermore, we show that the optimal spatial resolutions for DEM-derived variables in
alpine plant distribution modelling is between 1 and 32 m, depending on the variable
and the characteristics of the study site. This reiterates concerns regarding the use of the
finest obtainable resolutions (<0.5 m) to represent micro-climatic conditions experienced
by sessile organisms, further supporting suggestions that such high resolutions are simply
introducing noise to ecological models [18]. Here, we discuss the influence of spatial scale
and DEM-acquisition technologies on the relevance of derived variables in SDM at the two
study sites, after which we provide an overview of the technologies to assist in selecting
the most appropriate method for producing data to use in alpine ecology studies.

4.1. Spatial Scale

Through a multiscale framework, we show that DEM accuracy is stable up to 2 m
resolution, then reduces at coarser resolutions. This corroborates previous studies [31,33,44]
that show how DEM generalization smooths over topography, removing information about
microtopography and noise from outliers that are present at the finer resolutions.

Despite higher accuracies of the VHR-DEMs, SDMs using variables at coarser reso-
lutions between 1 and 32 m best predicted the distribution of A. alpina across the study
sites. Indeed, DEM-derived variables for use in ecological modelling need to be at spatial
resolutions that accurately represent climatic variables, such as air temperature, humidity,
and soil moisture, where it has been shown in a similar Alpine region that climatic variables
are best represented by derived variables between 1 and 4 m [15]. It should be noted that
despite relatively lower performance, the SDMs built with VHR input variables remained
useful models of plant distribution. Additionally, it has been shown that the number of
location points and their clustering across a site can alter the performance of SDMs [61],
which may influence optimal spatial resolution for SDMs.

The optimal spatial resolution depended strongly on the derived variable and char-
acteristics of the study site [15,61]. Indeed, there was some improvement in SDM when
each input variable was used at its specific optimal resolution in the “combination” model.
Additionally, SDMs for more flat and homogeneous topography variables, as at Martinets,
were optimized with coarser resolution, while SDMs for more complex heterogenous areas,
such as Para, were optimized with a combination of coarse- and fine-resolution variables,
supporting conclusions from previous studies [62].

We demonstrate that the relationships between the eight retained independent vari-
ables changed with spatial resolution and characteristics of the study sites. For example,
the relationship between SVF and East was stronger at Para, with its NNE orientation,
than at Martinets, with its NE orientation, where the correlation between North with SVF
weakened as the spatial resolution coarsened.

4.2. LiDAR Versus Photogrammetry

At matching resolutions, PHOTO DEMs rivalled the accuracy of LiDAR DEMs, where
PHOTO DEMs up to at least 1 m resolution were in fact more accurate than the LiDAR
DEMs. There are two main reasons why we might have seen this result. First, the use of the
logger and plant points to measure DEM accuracy favors the PHOTO DEMs, as these points
were collected at the same time that the PHOTO DEM was produced, while the LiDAR
DEM was collected as part of a state-wide elevation campaign and may have differences
in calibration. Second, the two DEMs were collected at different times of the year: while
PHOTO was collected in August, LiDAR was collected in June of the following year, at
a time when snow was likely to be covering parts of these high-altitude sites. We found
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that at Martinets in particular, the LiDAR DEM over-estimated elevation by approximately
1.4 m when compared to the assessment points at 0.5 m resolution, while the PHOTO DEM
over-estimated elevation by approximately 10 cm.

Despite customization and overall higher accuracies of PHOTO DEMs, they had
more outliers than LiDAR DEMs, where the quantity of outliers was influenced by the
topography at the study sites. Indeed, a major drawback of PHOTO is the influence of
external factors on DEM accuracy, where bumpy terrain is known to cause problems due
to the projection of shadows and lighting irregularities [23]; sites with more complex
topography are likely to produce DEMs with more outliers and inaccuracies than sites with
smoother terrain [27]. These errors and outliers can be edited out during post-processing,
as was done here, but this does involve considerable time and good knowledge of DEM-
processing systems, such that it might not be feasible for non-experts.

DEM extent affected the calculation of derived variables, such that we found between
LiDAR and PHOTO DEM-derived variables. Though DEM extents of both technologies
surpassed the targeted areas, LiDAR captured much larger extents than did PHOTO and
included the surrounding topography (mountains, cliffs, etc.). Inclusion of surrounding
topography is particularly important for variables such as total irradiance in June (Ti06),
whose accuracy depends on the inclusion of the overall surface orientation and total
incoming solar radiation, which may be affected by obstructing objects, such as mountains
or boulders [14]. Limited extent for the PHOTO DEM also affected the number of times it
could be generalized before border pixels were lost over the target site.

The relevance of DEM-derived variables from each technology depended on study site
characteristics. At Para, SDM performance was improved with LiDAR-derived variables,
indicating the importance of having a DEM with a large enough extent to include the site’s
surrounding mountainous topography. At Martinets, PHOTO DEM-derived variables at
the mid-range resolutions were more relevant in predicting A. alpina distributions than
LiDAR derived variables at matching resolutions. This may reflect the reduced influence
of surrounding mountains at Martinets, as well as the bias for PHOTO variables due to
potential snow cover in the LiDAR DEM.

4.3. Recommendations

Both LiDAR and PHOTO are valid technologies for acquiring DEMs in alpine regions,
particularly when collected with the aim of deriving ecologically relevant variables. The
choice between which technology to use depends on the characteristics of the study site,
the extent, and spatial resolution required, as well as budget and planned frequency of
surveys required to be carried out. The key characteristics and technical properties of
LiDAR and PHOTO technologies are summarized in Table 3. We acknowledge that though
LiDAR is now available on drones and is thus cheaper than airplane-based LiDAR, the
drones required to carry the LiDAR and its battery means that it remains expensive when
compared with drone-based PHOTO (LiDAR on drones > US$10k; PHOTO on drones >
US$5k), while raising the same issues as drone-based PHOTO of limited extents at arguably
too fine resolutions (1–3 cm resolutions). As such, we focus only on comparing airborne
LiDAR and drone-based PHOTO.

4.3.1. Characteristics of the Study Site

LiDAR is preferred for sites with moderate vegetation and complex terrain, as the
laser is not impacted by illumination and can penetrate vegetation. As PHOTO produces
digital surface models (DSMs), the site must have minimal vegetation and obstructions
present. In homogenous terrain with minimal vegetation, PHOTO is just as good as LiDAR.

We recommend that the extent of DEMs cover larger areas than simply the target site,
particularly when surrounding topography is likely to influence variables, and to ensure that
information around the border is not lost when generalizing DEMs to coarser resolutions.
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Table 3. Key differences between airborne LiDAR and drone photogrammetry (PHOTO) technologies to acquire DEMs,
with regards to technical aspects and data characteristics. An additional column ‘Pref.’ indicates whether LiDAR or PHOTO
are preferred for a given aspect, where “Both” is marked in cases where the preferred technology is context dependent. See
[15,23,29,30,63] for review articles of these two technologies.

LiDAR PHOTO Pref.

Data acquisition
Sensor Active (laser and sensor) Passive (images) Both

Vehicle used Fixed-wing vehicle or helicopter Drones Both

Flight details
Faster and longer flight, with 20–30%

overlap, more complicated flight
planning

Slower and shorter flight, with 60–90%
overlap, more simple flight planning Both

Area covered Regional Local Both

Flight conditions Light- and weather-independent
Light- and weather-dependent

(diffused light to avoid shadows, dry
weather, low winds)

LiDAR

Terrain type Suited to most terrain types Suited to open areas with smooth,
visually distinct objects LiDAR

Processing time Fast/direct Long/slow LiDAR

Cost Aircraft: ~US$680–1400/km2

(outsourced service)

Drone: >US$5000 (for complete drone
and sensor purchase—acquisition for

own use)
PHOTO

Software
Open source available (e.g., PDAL);

Software licenses start at
~US$150/month (e.g., TerraScan)

Open source available (e.g., MicMac);
Software licenses start at

~US$200/month (e.g., Pix4D)
Both

Data characteristics
DEM produced DTM + DSM 1 DSM (DTM if little or no vegetation) LiDAR

Data presentation Monochrome, points only; additional
camera can be used for photos Color and near-infrared images, photos PHOTO

Land classification Points classified based on reflection and
return of laser

Pixels classified later based on
point height LiDAR

Data resolution 50 cm depending on sensor and
flight height

1–3 cm depending on sensor and
flight height PHOTO

Feature preservation May miss some
geomorphological features

High performance in preserving
geomorphological features PHOTO

Derived variables Produces more variables
Produces fewer variables due to

reduced coverage of
surrounding topography

LiDAR

Data accuracy
Accuracy Better vertical than horizontal Better horizontal than vertical Both

Characteristics Accuracy may not be uniform over
survey area

More homogeneous within the
image format Both

Control points Low number for validation High number for photo matching
and validation LiDAR

1 DTM = Digital terrain model; DSM = Digital surface model.

Given that SDM performance seems to reduce when input variables are at very high
resolutions, in addition to the increase in computational time when using such detail, we
recommend carefully considering the necessity and use of VHR variables finer than 0.5 m in
ecological alpine studies of plants, and we strongly encourage implementing a multiscale
approach to optimize the spatial resolution of derived variables.

4.3.2. Logistics

Acquiring DEMs using the PHOTO method requires more pre-flight planning, particu-
larly as PHOTO is heavily influenced by weather and light conditions, as well as vegetation
and other non-topographical obstructions. Light conditions are of particular note, as opti-
mal PHOTO results are obtained with diffused light (e.g., on an overcast day or with the
sun low on the horizon), as full sunlight results in high contrast and can lead to errors
in the DEM. The effect of light is amplified in alpine regions where fewer atmospheric
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particles means less light scattering and higher contrasts than at sea level, resulting in more
errors. In regions of complex topography where vegetation, lighting, and weather may
pose problems, LiDAR is likely to be the more accurate option. For more information, see
reviews, such as [25,29,30].

Despite logistical difficulties in acquiring PHOTO data, it remains the cheapest option
for producing DEMs—an advantage when an area needs frequent surveys. Where LiDAR
DEMs can cost upwards of US$680–1400 per km2 depending on whether it is specifically
commissioned or already available, costs of purchasing one’s own PHOTO equipment
(drones and sensors) begin at around US$5000, such that cost per km2 reduces with use.
Post-processing is required for both LiDAR and PHOTO technologies, and while open-
source software are available, professional software licenses that improve speed and quality
start at around US$150–200 per month, or several thousand USD for a permanent license,
for both technologies.

4.3.3. Environmental Variables

Here, we began with 23 commonly derived variables, and after assessing correla-
tion using a Spearman’s rank threshold of 0.8, we retained eight uncorrelated variables,
prioritizing primary terrain attributes and variables that were deemed to be more eco-
logically meaningful to high-altitude alpine plants, such as soil pH, solar radiation, and
wind exposure [48]. While we used an example of eight variables, there are a plethora of
other variables available for use in ecological studies. As the variable selected can alter
the outputs of ecological models, they must be carefully selected [64]. Indeed, [13] have
compiled a table that groups frequently covarying variables together so that the reader
can select six to seven terrain attributes that likely capture about 70% of surface structures
across a site. We recommend that the reader consults this table prior to selecting variables
for their own research.

When selecting variables for ecological models, one must first ensure independence
between variables to avoid redundancy [13,19]. One option is to reduce the dimensionality
of the data by performing a principal component analysis (PCA) with all variables that may
be relevant to the study, then use the coordinates of the PCA-components as uncorrelated
input predictor variables in the model. While this method inherently ensures independence
between input variables, there is a loss of specific information about the environmental
variables that might be driving patterns seen in the study. An alternative is to assess the
collinearity of the derived variables, and to select only those that are uncorrelated at a
certain threshold (here we used |rS| ≥ 0.8 as suggested by [48]). In using this latter option,
however, it should be noted that collinearity between variables may vary with spatial
resolution, so we recommend reassessing variable collinearity at the spatial resolutions
intended to be used.

4.3.4. Evaluation

Prior to deriving variables, we recommend assessing the accuracy of DEMs as an
indication of the reliability of the final model results. We recommend consulting [46], who
have detailed outlines on best practices for evaluating DEMs. Derived variables can be
evaluated by comparing them with field-collected environmental data from sensors or
ecological species indicator values. In our case, a multiscale VHR-DEM was evaluated in
this way in a close area during the pilot phase of the GENESCALE project [15].

5. Conclusions

Advancements in LiDAR and photogrammetry (PHOTO) technologies are opening
new doors for ecologists to model alpine habitats at very high spatial resolutions (VHR).
Reductions in costs and improvements in accuracy and ease-of-use, particularly for PHOTO,
has allowed researchers to obtain VHR-digital elevation models (DEMs) at finer than 1 m
spatial resolution, which are being used to produce VHR-derived environmental variables.
Here, we demonstrate that PHOTO DEMs rivalled the accuracies of LiDAR up to a spatial
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resolution of at least 1 m. Despite this, the reduced extent of the PHOTO DEMs had
consequences on the calculations of derived variables, with subsequent effects on their
relevance in species distribution models (SDM). Indeed, for the heterogeneous site situated
in a narrow valley, PHOTO-derived variables resulted in reduced SDM performances,
likely attributable to its reduced accuracy and extent, leading to inaccuracies in some
places. At the homogenous site in a wider valley, however, SDM performance based on
PHOTO-derived variables generally had higher predictive powers than those of LiDAR, as
they sufficiently covered the relevant terrain, and because the LiDAR DEM was affected by
snow cover.

We support the use of the cheaper PHOTO technology, as long as the researcher
acknowledges this technology’s drawbacks across complex terrain with obstructions and
that certain weather conditions may cause issues for PHOTO sensors. However, and
regardless of the technology used, we do not recommend using VHR-DEMs finer than
0.5 m resolution for alpine plant research. We encourage researchers to implement a
multiscale framework to appropriately assess ecological relevance of derived variables,
and we urge researchers to carefully select variables prior to obtaining DEMs to ensure
sufficient coverage over the study site.

Supplementary Materials: The following supplementary tables and figures are available online
at https://www.mdpi.com/article/10.3390/rs13081588/s1, Table S1: Description and parameters
for Elevation and 23 digital elevation model (DEM)derived variables, Table S2: Student t-tests for
MaxEnt analyses, Figure S1: Quantile-quantile (Q–Q) plots for digital elevation model (DEM) vertical
error, Table S3: Summary results ranking MaxEnt species distribution models (SDM) to determine
optimal parameters, Table S4: Summary statistics of digital elevation models (DEM) vertical error,
Figure S2: Normalized median absolute deviation (NMAD) of digital elevation model (DEM) vertical
error, Table S5: Spearman’s correlation rs between pairs of independent derived variables, Figure S3:
Scatterplots of derived variables from LiDAR and photogrammetry.
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