Genomic consequences of domestication of the Siamese fighting fish

Authors: Young Mi Kwon^{1,2,3}, Nathan Vranken^{4,5}, Carla Hoge^{1,3}, Madison R Lichak^{1,2}, Kerel X

3	Francis ^{1,2} , Julia Camacho-Garcia ⁴ , Iliana Bista ^{7,8} , Jonathan Wood ⁷ , Shane McCarthy ^{7,8} , William
4 5	Chow ⁷ , Heok Hui Tan ⁹ , Kerstin Howe ⁷ , Sepalika Bandara ¹⁰ , Johannes von Lintig ¹⁰ , Lukas Rüber ^{11,12} , Richard Durbin ^{7,8*} , Hannes Svardal ^{4,6} ^{†*} , Andres Bendesky ^{1,2} ^{†*}
5	Ruber **, Richard Durbhi **, Hannes Svardar * , Andres Bendesky
6	Affiliations:
7	¹ Zuckerman Mind Brain Behavior Institute, Columbia University; NY, USA.
8 9	² Department of Ecology Evolution and Environmental Biology, Columbia University; NY, USA.
10	³ Department of Biological Sciences, Columbia University; NY, USA.
11	⁴ Department of Biology, University of Antwerp; 2020 Antwerp, Belgium.
12	⁵ Department of Biology, KU Leuven; 3000 Leuven, Belgium.
13	⁶ Naturalis Biodiversity Center; 2333 Leiden, The Netherlands.
14	⁷ Wellcome Sanger Institute; Cambridge, UK.
15	⁸ Department of Genetics, University of Cambridge; Cambridge, UK.
16	⁹ Lee Kong Chian Natural History Museum, National University of Singapore; Singapore.
17	¹⁰ Department of Pharmacology, Case Western Reserve University; OH, USA.
18 19	¹¹ Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern; Bern 3012, Switzerland.
20 21	¹² Naturhistorisches Museum Bern; Bern 3005, Switzerland.
22	†equal contribution
23	*Corresponding authors. a.bendesky@columbia.edu (AB), hannes.svardal@uantwerpen.be

*Corresponding authors. a.bendesky@columbia.edu (AB), hannes.svardal@uantwerpen.be (HS), rd109@cam.ac.uk (RD)

24

1

Abstract: Siamese fighting fish, commonly known as betta, are among the world's most popular 1 and morphologically diverse pet fish, but the genetic processes leading to their domestication and 2 3 phenotypic diversification are largely unknown. We assembled de novo the genome of a wild 4 Betta splendens and whole-genome sequenced multiple individuals across five species within the B. splendens species complex, including wild populations and domesticated ornamental betta. 5 Given our estimate of the mutation rate from pedigrees, our analyses suggest that betta were 6 domesticated at least 1,000 years ago, centuries earlier than previously thought. Ornamental betta 7 individuals have variable contributions from other Betta species and have also introgressed into 8 9 wild populations of those species. We identify *dmrt1* as the main sex determination gene in ornamental betta but not in wild B. splendens, and find evidence for recent directional selection 10 at the X-allele of the locus. Furthermore, we find genes with signatures of recent, strong 11 selection that have large effects on color in specific parts of the body, or the shape of individual 12 13 fins, and are almost all unlinked. Our results demonstrate how simple genetic architectures paired with anatomical modularity can lead to vast phenotypic diversity generated during animal 14 domestication, and set the stage for using betta as a modern system for evolutionary genetics. 15

One-Sentence Summary: Genomic analyses reveal betta fish were domesticated more than
 1,000 years ago and the genes that changed in the process.

1 Main Text:

Domesticated animals have provided important insights into the genetic bases of a wide range of morphological, physiological, and behavioral traits. Because of their intimate relationship with people, domesticates have also furthered our understanding of human history and culture, and of our interactions with other species (1). Genetic studies of animal domestication, however, have largely focused on mammals and birds (1, 2), and only few genome-wide analyses of fish domestication have been performed (3–5).

- Siamese fighting fish have been selectively bred for fighting in Southeast Asia for centuries, 8 with reports dating back to as early as the 14th century A.D. in Thailand, making them one of 9 the oldest fish domestications (6). Starting in the early 20th century, Siamese fighting fish 10 also began to be bred for ornamental purposes, becoming one of the world's most popular pet 11 fish, commonly known as betta (7). Although it is generally presumed —based on 12 morphology and few genetic markers (8, 9)— that domesticated fighting fish derive mainly 13 from *Betta splendens*, it has been suggested that other closely related species (collectively 14 called the Betta splendens species complex) may have contributed to modern varieties (10). 15 Ornamental betta have been diversified from their short finned ancestors into an astonishing 16 array of fin morphologies, colors and pigmentation patterns, providing a rich phenotypic 17 repertoire for genetic analysis. This remarkable and long history of domestication for 18 fighting, followed by breeding for ornamental purposes, combined with one of the smallest 19 vertebrate genomes at only ~450 megabase pairs (Mbp) (11-13), makes betta an appealing 20 subject for evolutionary genetic studies of domestication. 21
- Here, we use a synergistic combination of population and quantitative genetic approaches to investigate the historical processes and molecular changes that lead to the domestication and phenotypic diversification of betta fish.

25 A wild *Betta splendens* reference genome

26 We generated a high-quality reference genome assembly of wild *B. splendens* using long-27 read PacBio technology, optical mapping with BioNano, scaffolding with 10X Genomics linked reads, and polishing with Illumina short reads. We obtained a genome reference 28 comprised of 441 Mb, of which 98.6% is assigned to the 21 chromosomes expected from its 29 karyotype (14), with a contig N50 of 2.50 Mb and scaffold N50 of 20.13 Mb, meeting the 30 standards set forth by the Vertebrate Genomes Project (15). To annotate the genome, we 31 performed RNA sequencing from male and female brain, fin, liver, spleen, and gonad. This 32 annotated reference genome is now the representative B. splendens reference in NCBI 33 (fBetSpl5.3, GCA_900634795.3). 34

To discover structural chromosomal rearrangements that may have arisen during domestication, we performed whole genome alignments using three ornamental betta references (*11–13*) and our wild *B. splendens* reference, with *Anabas testudineus* (climbing perch) as an outgroup (*8*, *15*). Except for a large intrachromosomal rearrangement of chromosome 16 in ornamental betta, the genome was largely syntenic between wild *B*.
 splendens and ornamental betta (Suppl. Fig. 1, Note 1).

3 Complex evolutionary relationships between *Betta* species

To determine the genetic origin of ornamental betta and understand its relationships with 4 species of the *Betta splendens* complex, we sequenced to $\sim 15 \times$ coverage the whole genomes 5 of (i) 37 ornamental betta from different sources, representing a diversity of ornamental traits 6 (Fig. 1A,B; Suppl. Table 1); (ii) 58 wild individuals, including representatives of all species 7 of the *B. splendens* complex (except for *Betta stiktos*), and four populations of *B. splendens* 8 from different parts of its natural range (Fig. 1A); and (iii) an outgroup (Betta compuncta). 9 We aligned the sequencing reads to our B. splendens reference genome, then called and 10 filtered variants to generate a final set of 27.8 million phased biallelic SNPs. 11

We first assessed relationships across the wild species of the *B. splendens* complex by constructing neighbor-joining (NJ) and maximum-likelihood (ML) based phylogenies (Fig. 18; Suppl. Fig. 2A,B). We observed strong bootstrap support for *B. smaragdina* as the outgroup to the other species of the *B. splendens* complex with *B. mahachaiensis* as the outgroup to the remaining species. *B. imbellis* and *B. siamorientalis* together form a sister clade to all wild *B. splendens* populations.

We then tested for evidence of evolutionary processes that violate tree-like species 18 relationships such as hybridization, by computing ABBA-BABA statistics (Patterson's D and 19 f4 admixture ratio (16)) for all triplets of individuals organized according to the phylogeny. 20 This analysis revealed widespread patterns of excess allele sharing between non-sister 21 species, suggesting that the speciation history of these groups was complex, involving either 22 structured ancestral populations, cross-species gene flow, or both (Fig. 1B; Suppl. Fig. 3A; 23 Suppl. Note 2). Interestingly, two out of three B. mahachaiensis samples and one of the two 24 B. imbellis samples showed highly significant excess allele sharing with B. splendens 25 populations compared to their conspecifics sampled from different locations, consistent with 26 gene flow from *B. splendens* into particular populations of these species (Suppl. Fig. 3A,B; 27 Suppl. Note 2). 28

Ornamental betta derive from *B. splendens* but have variable contributions from other species

Adding the ornamental betta samples to the phylogeny, we found that they cluster with *B. splendens* (Fig. 1B; Suppl. Fig. 2). This result was also observed through principal component analysis (PCA), where ornamental betta showed no apparent loading on axes representing non-*splendens* species (Suppl. Fig. 7). In both phylogenies and PCA, ornamentals form a clearly defined group distinct from all wild *B. splendens* populations (Fig. 1B,C). These results indicate that ornamental betta are genetically most similar to *B. splendens*.

To test whether ornamental betta carry non-*splendens* ancestry, we computed all ABBA-1 BABA tests of the form D(ornamental except focal, focal ornamental; non-splendens species, 2 3 outgroup) (Suppl. Fig. 4G-J). These tests revealed that 76% (28 out of 37) of ornamental 4 betta carry significant ancestry from non-*splendens* species. To examine the chromosomal distribution of non-splendens ancestry in these individuals, we computed regional ABBA-5 BABA statistics (fdM) along their genomes and confirmed non-splendens ancestry in high-fdM 6 regions by constructing local gene trees (Fig. 1D,E; Suppl. Figs. 8,12). The analyses revealed 7 that signals of excess allele sharing are driven by genomic tracts where one or, more rarely, 8 9 both haplotypes of the focal sample clustered with *B. imbellis* or *B. mahachaiensis* (Supp. Fig. 8). The genomic locations of these tracts, which encompass between 0 and 6% of the 10 genomes of ornamental betta (Fig. 1D), are generally different among individuals (Suppl. 11 Fig.12). The ornamental sample with the second highest levels of introgression from other 12 13 species is particularly interesting, since some of its chromosomes are a mosaic of alternating regions of *B. imbellis* and *B. mahachaiensis* ancestry, consistent with a natural or man-made 14 hybrid of those species having been backcrossed into ornamental betta (Fig. 1E). Altogether, 15 our analyses indicate that ornamental betta are clearly derived from *B. splendens*, yet most 16 17 individuals have relatively recent contributions from *B. mahachaiensis* and *B. imbellis*.

18 Ornamental betta introgression is widespread among wild Betta

Interestingly, the topology of relationships between wild *B. splendens* populations in NJ-19 based phylogenies changed after including ornamental bettas (Suppl. Fig. 2A,C; Suppl. Note 20 3,4). To further investigate this, we computed ABBA-BABA statistics within the framework 21 of the phylogeny including ornamentals (Suppl. Fig. 2C), and assessed each individual's 22 relationship with respect to the other species of the Betta splendens species complex, as well 23 as ornamentals (Suppl. Fig. 5A,7). Together, these analyses revealed strong evidence for 24 ornamental betta ancestry in two out of three wild B. mahachaiensis samples and in 25 individuals from three out of four populations of wild *B. splendens* (Suppl. Note 4). 26 Investigating the signals along the genome, we found that for the two *B. mahachaiensis* 27 samples, *mahachaiensis*-like and ornamental-like haplotypes alternate at near-chromosome 28 scale, suggesting an ornamental ancestor only a few generations back (Suppl. Fig. 6B). 29 Conversely, for wild B. splendens individuals with ornamental betta ancestry, the genome-30 31 wide signals of excess allele sharing with ornamentals were diffusely distributed along the chromosomes with only a few relatively short, clearly distinguishable ornamental haplotypes 32 (Suppl. Fig. 6A), suggesting that there was enough time for introgressed haplotypes to be 33 broken down by recombination. In summary, ornamental introgression into wild *Betta* seems 34 35 to be geographically diffuse and to have happened both long ago and very recently. This finding is perhaps related to the practice by breeders of releasing excess domesticated betta 36 into the wild and may constitute a conservation threat to wild *Betta* populations. 37

1 Timing the domestication of *B. splendens*

2 To determine when ornamental betta initially diverged from wild populations, we performed coalescence-based demographic analysis. In order to date events in the domestication of B. 3 4 splendens, we needed to know the germline mutation rate. To determine this, we sequenced an ornamental trio and a quartet to $>30 \times$ coverage and found the mutation rate to be 5 3.75×10^{-9} per bp per generation (95% CI: 9.05×10^{-10} to 9.39×10^{-9}). This rate is similar to the 6 rate previously inferred for cichlids (17) and approximately 3-fold lower than that of humans 7 (18). Assuming a generation time of six months (7), our demographic analyses suggest that 8 ornamental and wild populations began to split around 4,000 years ago (~1,000 to ~7,000 9 years based on mutation rate CI). This divergence was coupled to a reduction in population 10 size in ornamental betta as would be expected if a subset of wild individuals began to be bred 11 in captivity (Fig. 1F; Suppl. Fig. 9). Low nucleotide diversity (0.00137 per bp in wild fish 12 and 0.00113 per bp in ornamental betta) and elevated linkage disequilibrium relative to the 13 14 wild populations further support a decrease in population size throughout domestication that has not fully recovered (Suppl. Figs. 10,12). Even the lower bound (~1,000 years ago) for 15 divergence of the ornamental betta population from wild is earlier than the origin of 16 domestication in the 14th century previously suggested by historical documents (6). 17

18 Genetic signals of selection in ornamental betta

Genetic variants that increase fitness in captivity or that are associated with phenotypic traits 19 20 actively selected by breeders are expected to increase in frequency during domestication. To discover such loci with signatures of selective sweeps in ornamental betta, we searched for 21 extended homozygosity tracts using H-scan (19) and for high-frequency haplotypes using 22 G12 (20) across 37 ornamental betta (Fig. 2A). Both tests identified concordant loci with 23 24 strong evidence of selective sweeps in 11 of the 21 B. splendens chromosomes, and peaks remained when run on a downsampled set of 24 ornamentals (Supp. Fig 11). Equivalent 25 selection scans using whole-genome sequencing of 24 wild B. splendens did not reveal clear 26 signals (Fig. 2A). These results are consistent with footprints of selection in ornamental betta 27 being related to the domestication process. 28

The most prominent selection peak shared across ornamentals but absent in wild *B. splendens* falls on chromosome 9 and is centered on *zinc and ring finger 3 (znrf3)*. In zebrafish, *znrf3* is required for the formation of fin rays, and in mammals it is required for limb formation and testis development (21–23). All the ornamental fish we sequenced have large fins compared to wild *B. splendens*. Therefore, we hypothesize that *znrf3* has contributed to either sexual development or the expansion of fins during betta domestication.

The majority (34/37) of the ornamental betta we sequenced represented four of the most popular varieties along two phenotypic dimensions: color and fin morphology. The fish were royal blue (n=17), solid red (n=17), veiltail (n=18) and crowntail (n=16), represented by males (n=20) and females (n=17). Veiltails are characterized by large, flowing caudal fins, and crowntails have fins that are webbed between the rays (Fig. 1B). To determine whether

the footprints of selection we detected were driven by fish of a particular variety or sex, we
 compared H-scan and haplotype frequencies across subsets of fish representing these traits
 (Fig. 2B-E).

A peak close to *znrf3*, centered on *double-sex and mab-3 related transcription factor 1* (*dmrt1*), became apparent when comparing males to females (Fig. 2C). *dmrt1* is critical for gonad development in vertebrates, and functions as the sex determination gene in several fish species (24–26), in *Xenopus laevis* frogs (27), and in birds (28), suggesting *dmrt1* has a role in sex determination in betta.

- A strong sweep in blue fish on chromosome 2 harbors multiple genes involved in 9 pigmentation (Fig. 2B): proopiomelanocortin (pomc), which encodes alpha and beta 10 melanocyte stimulating hormones) (29); T-box transcription factor 19 (tbx19), which 11 encodes a transcription factor expressed specifically in pituitary cells that will express pomc 12 (30); xanthine dehydrogenase (xdh), which encodes an enzyme whose homologs synthesize 13 yellow-red pteridine pigments (31, 32); ALK and LTK-ligand 2-like (alkal2l), which encodes 14 a cell-signaling molecule important for the development of iridophores (33-36), and beta-15 carotene oxygenase like-1 (bco11), which encodes an enzyme whose homologs metabolize 16 orange-red carotenoid pigments (37, 38). These results suggest that one or more of these 17 pigmentation genes were a target of selection by betta breeders. 18
- 19 Two selection peaks, one on chromosome 22 and another on chromosome 24, were not 20 detected when all ornamental fish were combined or in an analysis including only veiltail 21 fish, but were significant in the subset of crowntail fish (Fig. 2D,E), suggesting their 22 importance to crowntail fin morphology.

23 The evolution of sex determination

To test whether the loci containing *znrf3* and *dmrt1*, which had evidence of a selective sweep 24 in ornamental betta, are involved in sex determination, we performed a genomewide 25 association study (GWAS) using sex as the phenotype. We focused on ornamental betta, 26 27 since we had a large enough sample size (20 males and 17 females) to detect variants with large effect on sex. A ~30-kb region overlapping *dmrt1* but not *znrf3* was strongly associated 28 with sex, with 16/17 females being homozygous at the most strongly associated SNPs, while 29 16/20 males were heterozygous (Fig. 3A,C). We call "Y" the male-specific allele of *dmrt1* 30 and "X" the allele present in both males and females. These results strongly implicate *dmrt1* 31 32 as the sex determination gene in ornamental betta and indicate that males are the heterogametic sex. 33

The reference genome was generated from a wild male *B. splendens*, so genomic sequences present only in females or only in ornamental betta would not be represented in the SNPs that we used for GWAS. Only 0.5% of sequencing reads of individuals from both sexes could not be mapped to the reference genome (male vs female P=0.64), indicating there are no major sex-specific regions that are absent from the reference (Suppl. Fig 13A). To test if smallerscale sequence differences were associated with sex, we performed a GWAS independent of

the reference genome using k-mers from the sequencing reads. We found k-mers 1 significantly associated with sex, and when we assembled those k-mers into contigs, they 2 3 corresponded to *dmrt1*, consistent with the results from SNP-based GWAS (Suppl. Fig. 13B). 4 Smaller copy number variations (CNVs) not captured by genome size estimation or by kmers could be associated with sex but not be tagged by linked SNPs. To test for this 5 possibility, we compared the frequency of individual CNVs genomewide between the sexes, 6 but none were significantly associated (Suppl. Fig 13C). Although sex chromosomes often 7 carry chromosomal rearrangements, we found no evidence of an inversion in X or Y (Fig. 3D 8 9 and Methods). These results indicate that, at this level of detection, only a small genomic region <30 kb within otherwise non-sexually differentiated chromosomes (autosomes) 10 distinguish female and male ornamental betta. 11

- Because *dmrt1* had a strong signal of a selective sweep in ornamental betta, we hypothesized 12 that *dmrt1*'s role in sex determination evolved rapidly during domestication. To explore the 13 14 relationship between *dmrt1* and sex in wild and ornamental betta, we first built a phylogenetic tree of the *dmrt1* locus defined as a ~30 kb linkage-disequilibrium block (Fig. 15 3E). Consistent with the selective sweep, all ornamental females, but only one wild female, 16 had a particular haplotype we call X_1 . In wild *B. splendens*, 50% (6/12) of XX individuals 17 were female and 91% (10/11; binomial P=0.00048) of XY individuals were male (Fig. 18 19 3F,G). While this evidence suggests *dmrt1* Y promotes maleness in wild *B. splendens*, it is possible that multiple sex determination systems segregate in the wild, similar to what is seen 20 in African cichlids (39). In contrast, in ornamental betta, 87% (94/108; the 17 fish in the 21 GWAS plus 91 independent samples; binomial $P < 10^{-12}$) of XX individuals were female and 22 93% (83/89; binomial $P < 10^{-12}$) of XY individuals were male (Fig. 3F,G). These results are 23 consistent with a higher penetrance of XX in promoting female development in ornamental 24 betta than in wild *B. splendens* (Fisher's exact test two-tailed *P*=0.005) and suggest this effect 25 contributed to the selective sweep around *dmrt1*. In line with selection at the *dmrt1* locus 26 occurring preferentially on the X, the ornamental X₁ haplotype had 33% lower nucleotide 27 diversity than the ornamental Y haplotype. Assuming no sex differences in mutation rates, X 28 has $\sim 3 \times$ more opportunity to accumulate mutations than Y, since it is present as two alleles in 29 most females (XX) but only as one in most males (XY). Adjusting by this 3:1 ratio of X to Y, 30 X₁ has 78% lower diversity than Y. The more marked decrease in diversity on X₁ supports 31 the hypothesis that selection in ornamental betta has preferentially occurred in the X_1 32 haplotype. 33
- Since *dmrt1* XX-XY status was not perfectly related to gonadal sex, we searched for 34 additional sex-linked loci that may have been missed by GWAS. To do so, we performed two 35 quantitative trait locus (OTL) mapping experiments, one in a cross between an XX female 36 and an XY male, and another between an XX female and an XX male. In the $XX \times XY$ cross, 37 52% of the offspring were female and we detected a single sex-linked locus encompassing 38 *dmrt1* (Fig 3B,H). In the XX \times XX cross, 90% of the offspring were female and no locus was 39 linked to sex (Fig 3B,H). In the XX \times XY cross, 85% of the XX offspring were female and 40 90% of the XY offspring were male. However, in the XX \times XX cross all offspring were XX 41

yet 10% of these fish developed as males, confirming the incomplete penetrance of the XX XY locus in sex determination, as has been observed in *Oryzias latipes* (medaka fish) that
 also bear a *dmrt1* XX-XY sex determination system (40). In sum, these results confirm that
 the *dmrt1* locus is strongly linked to sex in ornamental betta, but that XX and XY are neither
 necessary nor sufficient to determine a particular sex.

To determine whether the X and Y transcripts of *dmrt1* are differentially expressed during 6 sex determination, we performed allele-specific expression analyses in XY ornamental larvae 7 at several time points after fertilization. The results indicated that the dmrt1 Y allele 8 constitutes 65% of the *dmrt1* mRNA molecules at 4 days post fertilization (dpf) and that this 9 allelic bias progressively decreases at 8 and 12 dpf, until it reverses in adult testis, where only 10 45% of the *dmrt1* transcripts originate from the Y allele (Fig. 3I). This timing of *dmrt1* XY 11 allele-specific expression is consistent with that of sex determination, since we found that by 12 4 dpf, XX and XY larvae have started the process of sex differentiation: XY larvae express 13 higher levels of gonadal soma derived factor (gsdf), a teleost-specific gene essential for testis 14 development (41, 42), and higher levels of *antimullerian hormone* (amh), a gene that 15 promotes vertebrate male development (Fig 3J). Each of these genes are the sex 16 determination locus in other fish species (43, 44) and are in separate chromosomes from 17 *dmrt1* in betta, indicating that their sex-specific expression is a response in *trans* to *dmrt1*. 18 19 Thus, the variants that distinguish *dmrt1* X from Y are associated with higher expression of the *dmrt1* Y allele in a manner that is temporally linked to sex differentiation, further 20 implicating *dmrt1* as the major sex determination gene in ornamental betta. 21

22 Genetic bases of coloration in ornamental betta

- Ornamental betta breeders have generated a vast array of fish varieties (e.g. "royal blue") 23 24 that differ along multiple axes of coloration: hue, brightness, saturation, and the anatomical distribution of these features. To determine if any of the genes we found to be under strong 25 selection, as well as any others, contribute to coloration in ornamental betta, we performed a 26 GWAS of the red (n=17) and blue (n=17) fish that were used for the selection scans (Fig. 4A; 27 Suppl. Fig. 14A). Red and blue fish lie at opposite ends of the betta hue spectrum and also 28 differ in their brightness and saturation (Fig. 4A,C; Suppl. Fig. 15). However, association 29 mapping alone between pure red and pure blue fish, which are largely fixed for all these 30 color features, cannot establish which of these features are affected by significant loci. 31 Therefore, we also performed a QTL mapping experiment by generating a second-generation 32 (F2) hybrid population of red-blue fish in which individual coloration components could 33 segregate (Fig. 4B). In these 211 F2 hybrids, we measured the proportion of the anal, caudal 34 and dorsal fins, of the side of the body, and of the head, that was red, blue, or very dark 35 (which we refer to as black). We also measured the hue, brightness, and saturation of the red 36 and blue areas on each body part and used these phenotypes for QTL mapping. 37
- The strongest GWAS signal occurred between *augmentator-\alpha 2 (alkal2l)* and *beta-carotene* oxygenase 1-like (bco1l) on chromosome 2 (Fig. 4A,K), a region with a large difference in

selection sweep signal between blue and red fish (Fig. 2B). This GWAS peak was aligned 1 with a QTL at which the allele swept in blue fish increased the proportion of blue and 2 3 decreased the proportion of red on fins and body in the hybrids (Fig 4E,G). Interestingly, this 4 locus modulates blue saturation only on the body and not on the fins or the head (Fig. 4E). alkal2l encodes a ligand of Leukocyte Tyrosine Kinase (33, 36) which is expressed in the 5 precursors of iridophores, the chromatophores that generate refractive colors such as blue 6 (34, 35). In zebrafish, alkal2l is necessary for iridophore development (33). Altogether, this 7 suggests that the large number of iridophores in blue ornamental betta, compared to red fish, 8 9 is caused by genetic variation affecting this developmental cell-signaling ligand. alkal2l likely corresponds to the gene referred to by betta breeders as the *spread iridocyte* gene, 10 hypothesized to increase the prevalence of iridescence throughout the body (45). 11

- Notably, the *alkal2l–bco11* locus also modulated the red hue of the red parts of the body (Fig. 12 4E,G), suggesting that *bcoll*, which encodes a protein predicted to metabolize orange-red 13 14 carotenoids, could also be involved in differences between red and blue fish. Through biochemical assays, we found that, as predicted by its sequence homology to other BCO1 15 proteins, BCO1L has 15,15'-dioxygenase activity that cleaves β -carotene into two molecules 16 of all-trans retinal (Suppl. Fig. 16A-D). Consistent with the QTL effect on red hue and 17 BCO1L biochemical activity, we found that red fish have more β -carotene and echinenone in 18 their skin than blue fish (Fig. 4D). One of the *bcoll* variants most strongly associated with 19 red and blue coloration results in a change from threonine in red fish to isoleucine in blue 20 fish (Suppl. Fig. 14B and Suppl. Fig. 16E,F). We did not detect differential biochemical 21 activity of the two alleles in vitro, but it is possible that their activity, stability, or gene 22 expression differs in vivo (Suppl. Fig. 14C). Therefore, variation in the locus containing 23 alkal2l and bcoll likely affects both blue and red coloration through these two genes located 24 25 only ~50 kb apart. The tight linkage might explain why breeders struggle to make the "perfect" red fish without any iridescence. 26
- The second strongest GWAS peak, on chromosome 8, mapped to *adenylosuccinate lyase* 27 (adsl), and the strongest OTL at this locus was for the brightness of blue areas on the body 28 (Fig. 4E,I,M). adsl encodes an enzyme involved in the de novo synthesis of purines (46). 29 Purines are the major components of the reflective platelets in fish skin iridophores that 30 underlie iridescence (47), and these platelets differ in structure between blue and red betta 31 fish (48). While the homologs of *adsl* have not been previously implicated in animal 32 coloration, mutations in other genes in the de novo purine synthesis pathway cause 33 iridophore defects in zebrafish (49). adsl likely corresponds to the gene betta breeders refer 34 35 to as *blue* (48, 50–52).

The third strongest GWAS peak, on chromosome 1, mapped to *solute carrier family 2, member 15b* (*slc2a15b*), a gene necessary for the development of larval yellow xanthophores in medaka (*53*), but whose role in adult pigmentation was previously not described (Fig. 4A,J). We found a QTL that overlaps *slc2a15b* that strongly affected the saturation of red areas in the fins, but not of the body or the head (Fig. 4E,F). Intense coloration on the fins

relative to the body is a phenotype referred to by breeders as the "Cambodian" variety, and
 our results suggest *slc2a15b* contributes to this phenotype.

The fourth strongest GWAS peak, on chromosome 6, mapped to kit ligand (kitlga), whose 3 4 orthologues affect melanin pigmentation in other fish and in mammals (54, 55) (Fig. 4A,L). A QTL overlapping *kitlga* strongly modulated the proportion of black, blue, and red on the 5 head and fins, but less so on the body (Fig. 4E,H). A black head, a phenotype we found is 6 linked to *kitlga*, is referred to by breeders as the *mask* trait (7). This QTL also modified the 7 saturation of blue areas on the fins but not on the body, and had minor effects on red 8 saturation outside the head. Its comparatively stronger impact on blue saturation may be 9 related to the tight histological association of iridophores and melanophores as a unit in betta 10 skin (48). 11

- Altogether, we discovered that red-blue variation in ornamental betta is linked to genetic polymorphisms near two genes encoding cell-signaling ligands (*alkal2l* and *kitlga*), two enzymes (*bco1l*, which metabolizes pigments, and *adsl*, which produces material for reflective structures), and a membrane solute transporter (*slc2a15b*). Genes we identified likely correspond to those inferred, but not molecularly identified, by betta geneticists
- likely correspond to those inferred, but not molecularly identified, by betta geneticists
 beginning in the 1930s (52, 56). Notably, all of these genes had anatomical specificity, and
 all but two were on separate chromosomes (Fig. 4A,D).
- 19 Genetic bases of tail morphology in ornamental betta

We found strong signals of selective sweeps in crowntail fish on chromosomes 22 and 24, 20 suggesting these regions could harbor variants associated with crown morphology (Fig. 21 2D,E). To identify such variants within selective peaks, and elsewhere throughout the 22 genome, we performed a GWAS with the 18 veiltail and 16 crowntail fish used for the 23 selection scans. We found two significant peaks, one on chromosome 22 and another on 24 chromosome 24, overlapping the selection peaks (Fig. 5A), indicating that these regions are 25 not only under selection but are the main loci contributing to differences between veiltail and 26 crowntail fish. 27

To confirm the involvement of the GWAS loci in fin morphology, we performed a QTL 28 mapping experiment in an F2-hybrid population from a cross between veil and crowntail fish 29 (Fig. 5B). In agreement with the GWAS results, we found two significant QTLs, one on 30 chromosome 22 and another on chromosome 24, that overlap the GWAS peaks. Surprisingly, 31 32 we found that the chromosome 22 locus is significantly linked only to anal fin webbing and not caudal fin webbing, whereas the chromosome 24 locus is linked to caudal fin webbing 33 but not significantly linked to anal fin webbing (Fig. 5B). These complementary association 34 and quantitative mapping experiments demonstrate that two loci are the primary determinants 35 of veil-crown morphology and that webbing of different fins is under separate genetic 36 control. 37

Examining the genes at the crown-veil GWAS peaks identified promising causal genes. The strongest association signal on chromosome 22 maps to *frmd6*, which encodes the protein

willin that regulates tissue growth as part of the hippo pathway (57) (Fig. 5C,D; Suppl. Fig.
17). The region of strongest association on chromosome 24 is larger and encompasses 22
genes. Of these, *tfap2b* and *tfap2d*, which have evolutionarily ancient roles in ectodermal
development (58), are prominent candidate genes (Fig. 5C,D; Suppl. Fig. 17). Interestingly,
as with the variants that affect coloration, we also find evidence of anatomical modularity for
the variants that affect fin morphology. These results also demonstrate that there is no single
"crowntail gene", as had been speculated by ornamental betta breeders (7).

8 Discussion

9 Using whole genome sequencing of multiple *Betta* species, populations, and individuals, we take an important first step in unraveling the domestication history of betta fish. Our results 10 suggest that betta were domesticated more than 1,000 years ago —at least three centuries 11 earlier than previously suggested. While domesticated betta are largely derived from *Betta* 12 splendens, they carry genetic contributions from two other species that are also endemic to 13 14 the Malay Peninsula: B. imbellis and B. mahachaiensis. None of the alleles derived from 15 these other *Betta species* are present in all ornamental individuals, nor do they contribute to the regions under selection driving sex determination, coloration, or fin morphologies (Supp. 16 Fig 12). These introgressed alleles, however, might contribute to other traits of domesticated 17 18 betta or represent historical attempts by breeders to introduce new phenotypes into ornamental fish through hybridization. 19

The strongest genetic evidence of selection during domestication involves *dmrt1*, which we 20 discover is the sex determination gene in ornamental betta. Most females are XX and most 21 males are XY, settling a long-standing question in the field (59). A selective sweep of a 22 dmrt1_X allele with increased penetrance may have been selected by breeders, since it would 23 24 lead to more predictable sex ratios in spawns. The lower penetrance of *dmrt1* on sex 25 determination in wild *B. splendens* suggests that additional sex determination loci that operate in the wild are not present in domesticated betta, similar to what is seen in zebrafish 26 (60). In contrast to domesticated zebrafish, where sex is not determined by a single locus, in 27 ornamental betta sex is predominantly determined by a single large-effect locus that maps to 28 dmrt1. 29

In poeciliid fishes such as guppies and swordtails, the sex determination locus is linked to 30 multiple color genes that contribute to sexually dimorphic coloration and shape the genetics 31 of female preference for male color traits (61). In contrast, the betta sex determination locus 32 is only ~30 kb in size and is not linked to genes known to affect color. These results are 33 34 consistent with coloration not being particularly sexually dimorphic in betta. Instead, we find that color and fin morphology in betta has a lego-like logic, in which major-effect genes 35 located on different chromosomes modulate color and fin morphology with surprising 36 anatomical specificity (Suppl. Table 2). Betta breeders are keenly aware of the mix-and-37 match possibilities of betta, and leverage this feature to breed new fish varieties by 38 39 combining different body, head, and fin colors with various fin morphologies.

- 1 Our results provide molecular entry points for further study of the developmental and
- 2 evolutionary bases of change in morphology and sex determination. The genomic resources
- 3 we generated will also enable genetic studies into how centuries of artificial selection of betta
- 4 for fighting purposes have shaped their aggression and other fighting-related traits.
- 5 Altogether, our work elucidates the genomic consequences of the domestication of
- ornamental betta and helps establish this fish as a modern system for evolutionary genetic
 interrogation.

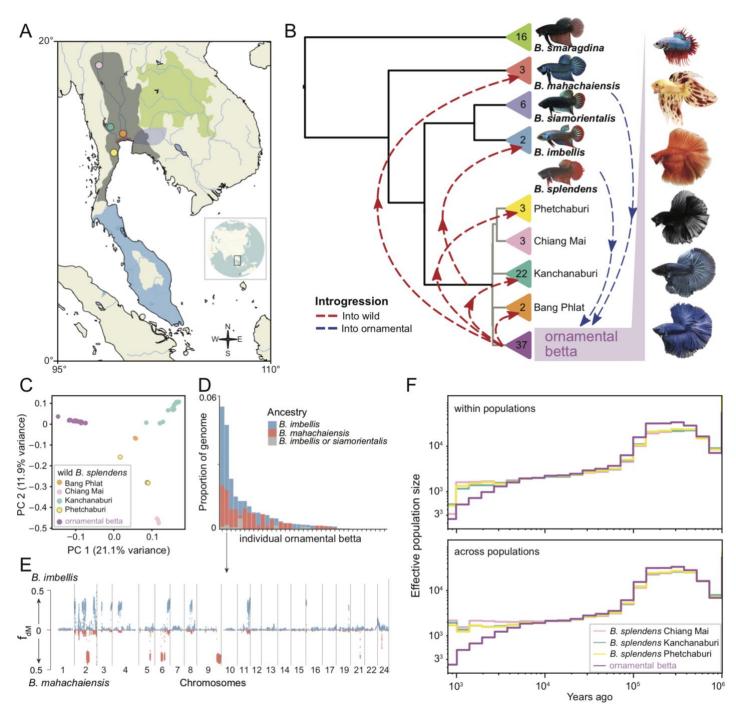


Figure 1. Betta phylogeny, gene flow, and demographic history. (A) Distribution ranges of B. 1 splendens species complex and sampling locations. Colors according to panel B. (B) Species and 2 3 population relatedness based on neighbor-joining of group pairwise genetic differences. Arrows denote introgression events involving specific samples. Triangles contain sample numbers. 4 5 Photos show representative males of ornamental varieties; from top to bottom: crowntail plakat, 6 dalmatian veiltail, orange doubletail, superblack halfmoon, steel halfmoon, royal blue halfmoon. 7 Image credits, with permission: Frank Sriborirum and Kasey Clark. (C) Principal component analysis of *B. splendens* samples. Further principal components are in Suppl. Fig. 7. (D) 8 9 Proportion of genome introgressed from non-splendens species in each ornamental individual

- based on f_{dM} and regional trees. (E) Genome-wide f_{dM} plot of ornamental betta Orn45 (p1=other 1
- 2 ornamental bettas; p2=Orn45; p3=B. mahachaiensis or imbellis; outgroup=B. compuncta). (F)
- 3 Effective population size as estimated by Relate within populations (top panel) and between
- sequences from wild B. splendens populations and ornamental betta (bottom panel); see 4
- Methods. 5

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.29.442030; this version posted April 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

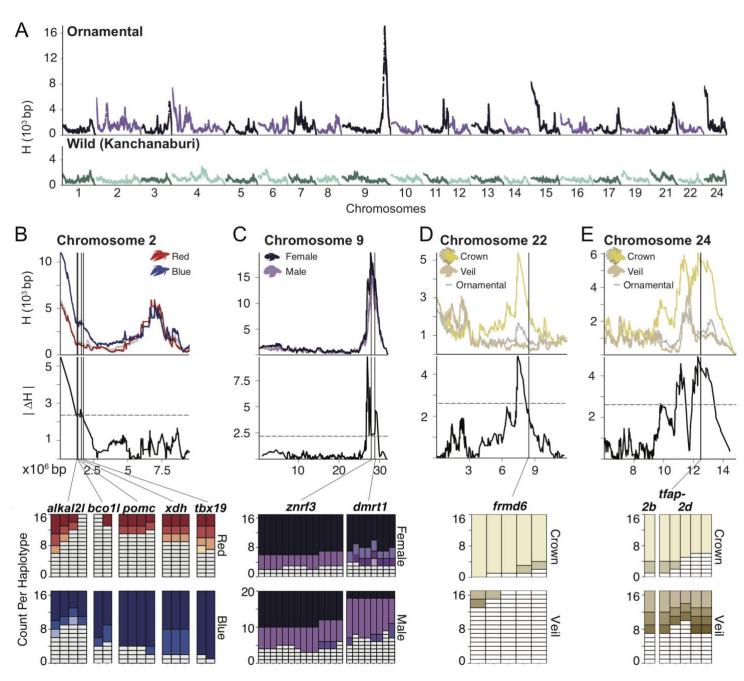


Figure 2. Genomic signals of selection in ornamental betta. (A) Genome-wide H-scan within 1 ornamental betta (n=37) and within wild *B. splendens* from Kanchanaburi (n=24). (B-E) Top: H-2 scan close-up of ornamentals (n=37, grey line). Middle: ornamentals separated by (B) color (red: 3 17, blue: 17), (C) sex (female: 17, male: 20), and (D,E) fin morphology (crown: 16, veil: 18). 4 Grey dashed lines denote genome-wide threshold of significance (α =0.05) for the absolute 5 difference in H-scan ($|\Delta H|$) between ornamentals separated by color, sex, and fin type. (B-E) 6 7 Bottom: Distribution of haplotypes in genes identified as outliers in both H-scan and G12 and statistically different between ornamentals separated by color, sex, and fin morphology which are 8

9 further discussed in Figs. 3-5. White indicates a haplotype observed only in a single fish.

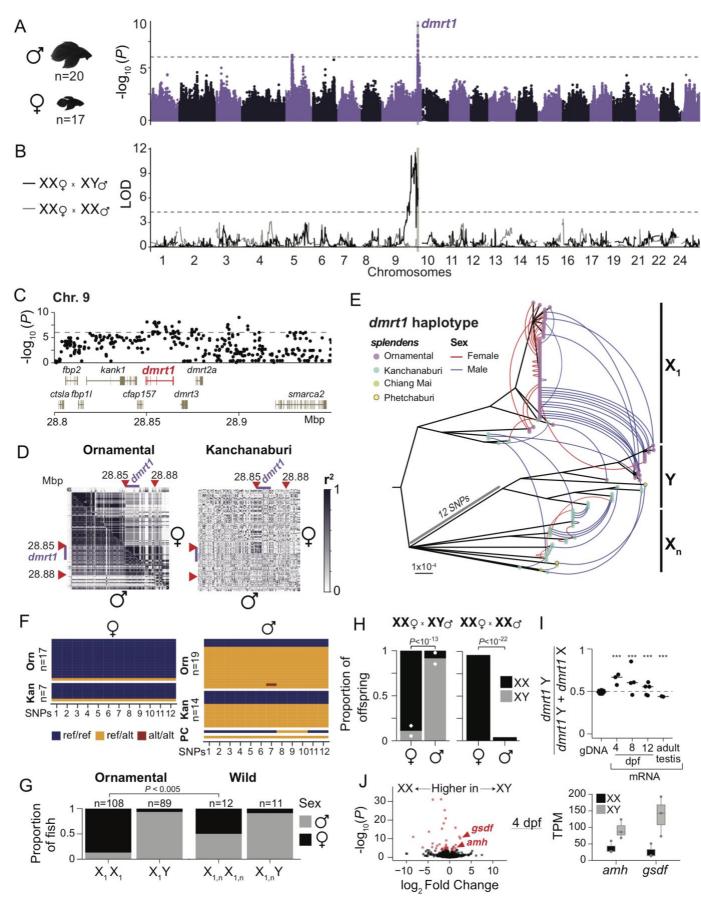
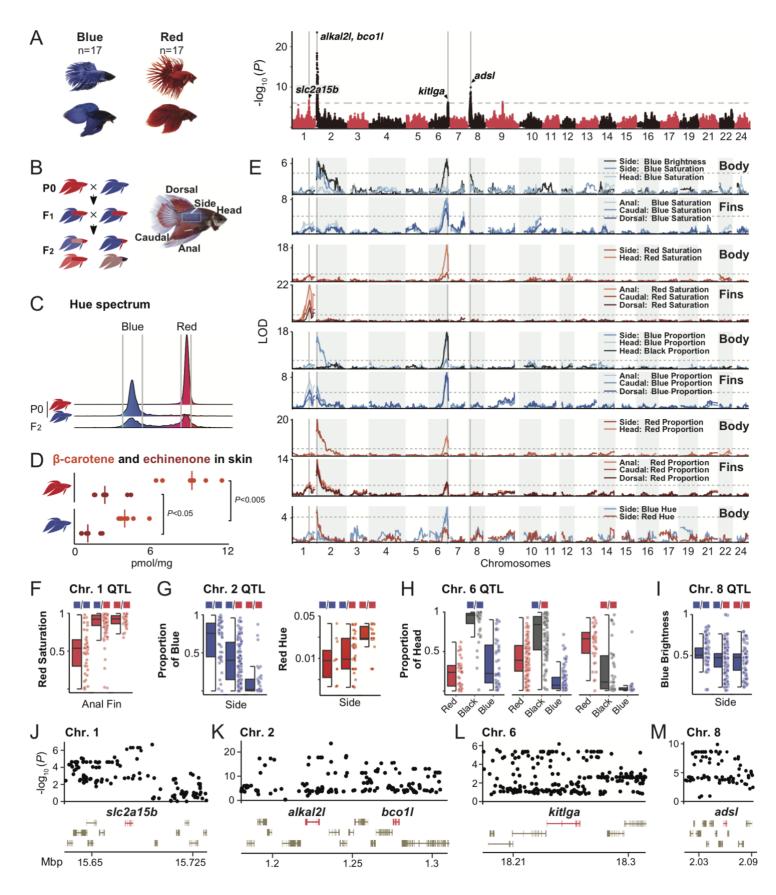
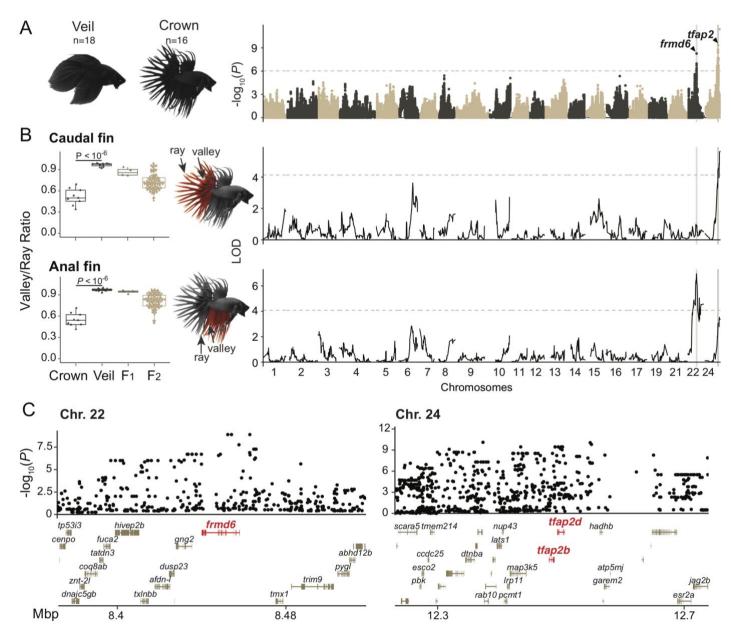




Figure 3. dmrt1 is a sex determination gene in ornamental betta. (A) Manhattan plot for 1 GWAS of sex in ornamental betta. Dashed line denotes the genome-wide significance threshold; 2 see Methods. (B) OTL mapping of two F2 intercrosses: $dmrt1 X_1X_1$ female $\times dmrt1 X_1Y$ male 3 cross with 211 F2 hybrids (black line); $dmrt1_X_1X_1$ female $\times dmrt1_X_1X_1$ male cross with 100 4 F2 hybrids (grey line). Dashed line denotes the genome-wide significance threshold at α =0.05. 5 (C) GWAS zoom-in of the *dmrt1* locus with gene annotations. (D) Linkage disequilibrium plot 6 7 for chromosome 9 surrounding the *dmrt1* locus for ornamental betta and wild *B. splendens* from Kanchanaburi. Upper triangle, females; lower triangle, males. Red arrowheads denote the region 8 of the *dmrt1* haplotype in (E). Purple bar denotes *dmrt1*. (E) Maximum likelihood phylogeny 9 with at least 80% bootstrap support for the *dmrt1* haplotype across *B. splendens* rooted by *B.* 10 siamorientalis. Each tip represents one of the two alleles of a sample, colored by population. 11 Arches link the alleles of each sample and are colored by gonadal sex. (F) Genotypes of males 12 and females from ornamental betta and wild *B. splendens* across 12 SNPs present in all samples 13 within the *dmrt1* Y group. P=Phetchaburi; C=Chiang Mai. (G) Sex ratios for *dmrt1* haplotypes 14 observed in ornamental betta and wild B. splendens. P denotes the result of Fisher's exact test. 15 (H) Average haplotype ratios across sex for offspring from two $dmrt1_X_1X_1$ female \times 16 dmrt1 X₁Y male crosses (n=101 labeled with diamond.112 labeled with circle) and *dmrt1* X₁X₁ 17 male $\times dmrt1_X_1X_1$ female cross (n=100). ***, P<0.001 by Fisher's exact test. (I) Allele-18 specific expression of dmrtl across days post fertilization (dpf) for dmrtl X₁Y larvae from a 19 $dmrt1_X_1X_1 \times dmrt1_X_1Y$ cross. Each dot represents a sample. ***, P<0.001 by binomial test. 20 (J) Differential mRNA expression between 3 dmrt1 X₁Y and 3 dmrt1 X₁X₁ 4-dpf larvae. Red 21 denotes expression differences where $P < 10^{-6}$. Left: Differential mRNA expression between 3 22 *dmrt1* X₁Y and 3 *dmrt1* X₁X₁ 4-dpf larvae. Red denotes expression differences where $P < 10^{-10}$ 23 24 ⁶. Right: Transcripts per million (TPM) of two genes important for male sex development: *anti*mullerian hormone (amh) and gonadal soma-derived factor (gsdf). 25

Figure 4. Genomic loci regulating coloration in ornamental betta. (A) Manhattan plot for 1 GWAS of color between 17 blue and 17 red ornamental betta. Dashed line denotes the genome-2 wide significance threshold (see Methods). (B) Schematic of the red and blue F2 intercross and 3 photo of a hybrid annotated with the body parts analyzed. (C) Distribution of hues observed in 4 the red and blue founder (P0) populations (red, n=13; blue, n=11), and F2 hybrids (n=202). Grey 5 vertical lines depict the hue intervals for red and blue assessed in the F2 population. (D) 6 Concentration of β -carotene and echinenone in skin of red and blue ornamental betta. P denotes 7 8 the result of a Mann-Whitney U test. (E) QTL mapping of color features across different body parts. Dashed lines denote the genome-wide significance threshold at α =0.05. (F,G,H,I) 9 Phenotypic distribution for QTL genotypes across the F2s (red and blue squares denote alleles 10

- 11 inherited from red and blue P0's, respectively). (J,K,L,M) GWAS zoom-in with gene
- 12 annotations across significant loci.

Figure 5. Genomic loci regulating fin morphology in ornamental betta. (A) Manhattan plot for GWAS of fin type between 18 veiltail and 16 crowntail ornamental betta. Dashed line denotes the genome-wide significance threshold (see Methods). (B) Left: valley/ray ratio in anal and caudal fins across crown (n=9) and veil (n=13) founder populations, F1 (n=4), and F2 hybrids (n=139). *P* denotes the result of a Mann-Whitney U test. Right: QTL mapping of valley/ray ratios for caudal and anal fins. Dashed line denotes the genome-wide significance

8 threshold at α =0.05. (C) GWAS zoom-in with gene annotations across significant loci.

1 **References and Notes**

2

- 1. L. A. F. Frantz, D. G. Bradley, G. Larson, L. Orlando, Animal domestication in the era of ancient genomics. *Nat. Rev. Genet.* **21**, 449–460 (2020).
- C.-J. Rubin, M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M.
 Ingman, T. Sharpe, S. Ka, F. Hallböök, F. Besnier, O. Carlborg, B. Bed'hom, M. Tixier-Boichard, P.
 Jensen, P. Siegel, K. Lindblad-Toh, L. Andersson, Whole-genome resequencing reveals loci under
 selection during chicken domestication. *Nature*. 464, 587–591 (2010).
- P. Xu, X. Zhang, X. Wang, J. Li, G. Liu, Y. Kuang, J. Xu, X. Zheng, L. Ren, G. Wang, Y. Zhang, L. Huo, Z. Zhao, D. Cao, C. Lu, C. Li, Y. Zhou, Z. Liu, Z. Fan, G. Shan, X. Li, S. Wu, L. Song, G. Hou, Y. Jiang, Z. Jeney, D. Yu, L. Wang, C. Shao, L. Song, J. Sun, P. Ji, J. Wang, Q. Li, L. Xu, F. Sun, J. Feng, C. Wang, S. Wang, B. Wang, Y. Li, Y. Zhu, W. Xue, L. Zhao, J. Wang, Y. Gu, W. Lv, K. Wu, J. Xiao, J. Wu, Z. Zhang, J. Yu, X. Sun, Genome sequence and genetic diversity of the common carp, *Cyprinus carpio. Nat. Genet.* 46, 1212–1219 (2014).
- Z. Chen, Y. Omori, S. Koren, T. Shirokiya, T. Kuroda, A. Miyamoto, H. Wada, A. Fujiyama, A.
 Toyoda, S. Zhang, T. G. Wolfsberg, K. Kawakami, A. M. Phillippy, NISC Comparative Sequencing
 Program, J. C. Mullikin, S. M. Burgess, De novo assembly of the goldfish (*Carassius auratus*)
 genome and the evolution of genes after whole-genome duplication. *Sci Adv.* 5, eaav0547 (2019).
- D. Chen, Q. Zhang, W. Tang, Z. Huang, G. Wang, Y. Wang, J. Shi, H. Xu, L. Lin, Z. Li, W. Chi, L. Huang, J. Xia, X. Zhang, L. Guo, Y. Wang, P. Ma, J. Tang, G. Zhou, M. Liu, F. Liu, X. Hua, B.
 Wang, Q. Shen, Q. Jiang, J. Lin, X. Chen, H. Wang, M. Dou, L. Liu, H. Pan, Y. Qi, B. Wu, J. Fang, Y. Zhou, W. Cen, W. He, Q. Zhang, T. Xue, G. Lin, W. Zhang, Z. Liu, L. Qu, A. Wang, Q. Ye, J. Chen, Y. Zhang, R. Ming, M. Van Montagu, H. Tang, Y. Van de Peer, Y. Chen, J. Zhang, The evolutionary origin and domestication history of goldfish (*Carassius auratus*). *Proc. Natl. Acad. Sci.* U. S. A. 117, 29775–29785 (2020).
- 25 6. M. Bekoff, *Encyclopedia of Human-Animal Relationships* (Greenwood Press, 2007).
- 26 7. M. Brammah, *The Betta Bible* (CreateSpace Independent Publishing Platform, 2015).
- L. Rüber, R. Britz, R. Zardoya, Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: *Anabantoidei*). *Syst. Biol.* 55, 374–397 (2006).
- N. Sriwattanarothai, D. Steinke, P. Ruenwongsa, R. Hanner, B. Panijpan, Molecular and
 morphological evidence supports the species status of the Mahachai fighter *Betta* sp. Mahachai and
 reveals new species of *Betta* from Thailand. *J. Fish Biol.* 77, 414–424 (2010).
- International Betta Congress, About *Betta splendens. IBC* (2020), (available at https://www.ibcbettas.org/about-betta-splendens/).
- G. Fan, J. Chan, K. Ma, B. Yang, H. Zhang, X. Yang, C. Shi, H. Chun-Hin Law, Z. Ren, Q. Xu, Q.
 Liu, J. Wang, W. Chen, L. Shao, D. Gonçalves, A. Ramos, S. D. Cardoso, M. Guo, J. Cai, X. Xu, J.
 Wang, H. Yang, X. Liu, Y. Wang, Chromosome-level reference genome of the Siamese fighting fish *Betta splendens*, a model species for the study of aggression. *Gigascience*. 7 (2018),
 doi:10.1093/gigascience/giy087.
- S. Prost, M. Petersen, M. Grethlein, S. J. Hahn, N. Kuschik-Maczollek, M. E. Olesiuk, J.-O.
 Reschke, T. E. Schmey, C. Zimmer, D. K. Gupta, T. Schell, R. Coimbra, J. De Raad, F. Lammers, S.
 Winter, A. Janke, Improving the chromosome-level genome assembly of the Siamese fighting fish
 (*Betta splendens*) in a university master's course. *G3 Genes/Genetics*. 10, 2179–2183

(2020).

1

- L. Wang, F. Sun, Z. Y. Wan, B. Ye, Y. Wen, H. Liu, Z. Yang, H. Pang, Z. Meng, B. Fan, Y. Alfiko,
 Y. Shen, B. Bai, M. S. Q. Lee, F. Piferrer, M. Schartl, A. Meyer, G. H. Yue, Genomic basis of
 striking fin shapes and colours in the fighting fish. *Mol. Biol. Evol.* (2021),
 doi:10.1093/molbev/msab110.
 - 14. N. L. Bennington, Germ cell origin and spermatogenesis in the Siamese fighting fish, *Betta splendens*. J. Morphol. **60**, 103–125 (1936).
- 15. A. Rhie, S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti, S. Koren, M. Uliano-Silva, W. Chow, 8 A. Fungtammasan, G. L. Gedman, L. J. Cantin, F. Thibaud-Nissen, L. Haggerty, C. Lee, B. J. Ko, J. 9 10 Kim, I. Bista, M. Smith, B. Haase, J. Mountcastle, S. Winkler, S. Paez, J. Howard, S. C. Vernes, T. M. Lama, F. Grutzner, W. C. Warren, C. Balakrishnan, D. Burt, J. M. George, M. Biegler, D. Iorns, 11 12 A. Digby, D. Eason, T. Edwards, M. Wilkinson, G. Turner, A. Meyer, A. F. Kautt, P. Franchini, H. William Detrich, H. Svardal, M. Wagner, G. J. P. Naylor, M. Pippel, M. Malinsky, M. Mooney, M. 13 Simbirsky, B. T. Hannigan, T. Pesout, M. Houck, A. Misuraca, S. B. Kingan, R. Hall, Z. 14 15 Kronenberg, J. Korlach, I. Sović, C. Dunn, Z. Ning, A. Hastie, J. Lee, S. Selvaraj, R. E. Green, N. H. Putnam, J. Ghurye, E. Garrison, Y. Sims, J. Collins, S. Pelan, J. Torrance, A. Tracey, J. Wood, D. 16 17 Guan, S. E. London, D. F. Clayton, C. V. Mello, S. R. Friedrich, P. V. Lovell, E. Osipova, F. O. Al-Ajli, S. Secomandi, H. Kim, C. Theofanopoulou, Y. Zhou, R. S. Harris, K. D. Makova, P. 18 Medvedev, J. Hoffman, P. Masterson, K. Clark, F. Martin, K. Howe, P. Flicek, B. P. Walenz, W. 19 20 Kwak, H. Clawson, M. Diekhans, L. Nassar, B. Paten, R. H. S. Kraus, H. Lewin, A. J. Crawford, M. T. P. Gilbert, G. Zhang, B. Venkatesh, R. W. Murphy, K.-P. Koepfli, B. Shapiro, W. E. Johnson, F. 21 22 Di Palma, T. Margues-Bonet, E. C. Teeling, T. Warnow, J. M. Graves, O. A. Ryder, D. Hausler, S. J. O'Brien, K. Howe, E. W. Myers, R. Durbin, A. M. Phillippy, E. D. Jarvis, Towards complete and 23 error-free genome assemblies of all vertebrate species. Nature, In press. (2021), 24 doi:10.1101/2020.05.22.110833 25
- 16. N. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan, T. Genschoreck, T. Webster, D.
 Reich, Ancient admixture in human history. *Genetics*. 192, 1065–1093 (2012).
- M. Malinsky, H. Svardal, A. M. Tyers, E. A. Miska, M. J. Genner, G. F. Turner, R. Durbin, Whole genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. *Nat Ecol Evol.* 2, 1940–1955 (2018).
- 18. F. L. Wu, A. I. Strand, L. A. Cox, C. Ober, J. D. Wall, P. Moorjani, M. Przeworski, A comparison of
 humans and baboons suggests germline mutation rates do not track cell divisions. *PLoS Biol.* 18,
 e3000838 (2020).
- F. Schlamp, J. van der Made, R. Stambler, L. Chesebrough, A. R. Boyko, P. W. Messer, Evaluating
 the performance of selection scans to detect selective sweeps in domestic dogs. *Mol. Ecol.* 25, 342–
 356 (2016).
- A. M. Harris, N. R. Garud, M. DeGiorgio, Detection and classification of hard and soft sweeps from
 unphased genotypes by multilocus genotype identity. *Genetics*. 210, 1429–1452 (2018).
- A. Harris, P. Siggers, S. Corrochano, N. Warr, D. Sagar, D. T. Grimes, M. Suzuki, R. D. Burdine, F.
 Cong, B.-K. Koo, H. Clevers, I. Stévant, S. Nef, S. Wells, R. Brauner, B. Ben Rhouma, N. Belguith,
 C. Eozenou, J. Bignon-Topalovic, A. Bashamboo, K. McElreavey, A. Greenfield, ZNRF3 functions
 in mammalian sex determination by inhibiting canonical WNT signaling. *Proc. Natl. Acad. Sci. U. S.*A. 115, 5474–5479 (2018).

1 22. E. Szenker-Ravi, U. Altunoglu, M. Leushacke, C. Bosso-Lefèvre, M. Khatoo, H. Thi Tran, T. Naert, R. Noelanders, A. Hajamohideen, C. Beneteau, S. B. de Sousa, B. Karaman, X. Latypova, S. Başaran, E. B. Yücel, T. T. Tan, L. Vlaminck, S. S. Nayak, A. Shukla, K. M. Girisha, C. Le Caignec, N. Soshnikova, Z. O. Uyguner, K. Vleminckx, N. Barker, H. Kayserili, B. Reversade, RSPO2 inhibition of RNF43 and ZNRF3 governs limb development independently of LGR4/5/6. *Nature*. 557, 564–569 (2018).

2 3

4

- 7 23. Y. Tatsumi, M. Takeda, M. Matsuda, T. Suzuki, H. Yokoi, TALEN-mediated mutagenesis in zebrafish reveals a role for r-spondin 2 in fin ray and vertebral development. FEBS Lett. 588, 4543-8 9 4550 (2014).
- 24. U. F. Mustapha, D.-N. Jiang, Z.-H. Liang, H.-T. Gu, W. Yang, H.-P. Chen, S.-P. Deng, T.-L. Wu, 10 C.-X. Tian, C.-H. Zhu, G.-L. Li, Male-specific Dmrt1 is a candidate sex determination gene in 11 12 spotted scat (Scatophagus argus). Aquaculture. 495, 351–358 (2018).
- 25. I. Nanda, M. Kondo, U. Hornung, S. Asakawa, C. Winkler, A. Shimizu, Z. Shan, T. Haaf, N. 13 Shimizu, A. Shima, M. Schmid, M. Schartl, A duplicated copy of DMRT1 in the sex-determining 14 15 region of the Y chromosome of the medaka, Oryzias latipes. Proc. Natl. Acad. Sci. U. S. A. 99, 11778–11783 (2002). 16
- 26. Z. Cui, Y. Liu, W. Wang, Q. Wang, N. Zhang, F. Lin, N. Wang, C. Shao, Z. Dong, Y. Li, Y. Yang, 17 M. Hu, H. Li, F. Gao, Z. Wei, L. Meng, Y. Liu, M. Wei, Y. Zhu, H. Guo, C. H. K. Cheng, M. 18 Schartl, S. Chen, Genome editing reveals *dmrt1* as an essential male sex-determining gene in 19 20 Chinese tongue sole (Cynoglossus semilaevis). Sci. Rep. 7, 42213 (2017).
- 21 27. S. Yoshimoto, N. Ikeda, Y. Izutsu, T. Shiba, N. Takamatsu, M. Ito, Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of *Xenopus laevis*: implications of a ZZ/ZW-type 22 23 sex-determining system. Development. 137, 2519–2526 (2010).
- 24 28. C. A. Smith, K. N. Roeszler, T. Ohnesorg, D. M. Cummins, P. G. Farlie, T. J. Doran, A. H. Sinclair, The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature. 461. 25 267-271 (2009). 26
- 27 29. L. Cal, P. Suarez-Bregua, J. M. Cerdá-Reverter, I. Braasch, J. Rotllant, Fish pigmentation and the melanocortin system. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 211, 26-33 (2017). 28
- 29 30. J. Liu, C. Lin, A. Gleiberman, K. A. Ohgi, T. Herman, H. P. Huang, M. J. Tsai, M. G. Rosenfeld, Tbx19, a tissue-selective regulator of POMC gene expression. Proc. Natl. Acad. Sci. U. S. A. 98, 30 8674-8679 (2001). 31
- 32 31. I. Ziegler, The pteridine pathway in zebrafish: regulation and specification during the determination of neural crest cell-fate. Pigment Cell Res. 16, 172-182 (2003). 33
- 34 32. A. G. Reaume, D. A. Knecht, A. Chovnick, The rosy locus in Drosophila melanogaster: xanthine dehydrogenase and eye pigments. Genetics. 129, 1099–1109 (1991). 35
- 33. E. S. Mo, Q. Cheng, A. V. Reshetnyak, J. Schlessinger, S. Nicoli, Alk and Ltk ligands are essential 36 for iridophore development in zebrafish mediated by the receptor tyrosine kinase Ltk. Proc. Natl. 37 Acad. Sci. U. S. A. 114, 12027–12032 (2017). 38
- 39 34. A. Fadeev, P. Mendoza-Garcia, U. Irion, J. Guan, K. Pfeifer, S. Wiessner, F. Serluca, A. P. Singh, C. 40 Nüsslein-Volhard, R. H. Palmer, ALKALs are in vivo ligands for ALK family receptor tyrosine kinases in the neural crest and derived cells. Proc. Natl. Acad. Sci. U. S. A. 115, E630–E638 (2018). 41

1 35. S. S. Lopes, X. Yang, J. Müller, T. J. Carney, A. R. McAdow, G.-J. Rauch, A. S. Jacoby, L. D. 2 Hurst, M. Delfino-Machín, P. Haffter, R. Geisler, S. L. Johnson, A. Ward, R. N. Kelsh, Leukocyte 3 tyrosine kinase functions in pigment cell development. PLoS Genet. 4, e1000026 (2008). 4 36. A. V. Reshetnyak, P. B. Murray, X. Shi, E. S. Mo, J. Mohanty, F. Tome, H. Bai, M. Gunel, I. Lax, J. Schlessinger, Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and 5 6 LTK: Hierarchy and specificity of ligand-receptor interactions. Proc. Natl. Acad. Sci. U. S. A. 112, 7 15862-15867 (2015). 8 37. H. Helgeland, M. Sodeland, N. Zoric, J. S. Torgersen, F. Grammes, J. von Lintig, T. Moen, S. 9 Kjøglum, S. Lien, D. I. Våge, Genomic and functional gene studies suggest a key role of betacarotene oxygenase 1 like (bcoll) gene in salmon flesh color. Sci. Rep. 9, 20061 (2019). 10 38. M. A. Gazda, P. M. Araújo, R. J. Lopes, M. B. Toomey, P. Andrade, S. Afonso, C. Marques, L. 11 12 Nunes, P. Pereira, S. Trigo, G. E. Hill, J. C. Corbo, M. Carneiro, A genetic mechanism for sexual dichromatism in birds. Science. 368, 1270-1274 (2020). 13 39. W. J. Gammerdinger, T. D. Kocher, Unusual diversity of sex chromosomes in African cichlid fishes. 14 15 Genes. 9 (2018), doi:10.3390/genes9100480. 40. I. Nanda, U. Hornung, M. Kondo, M. Schmid, M. Schartl, Common spontaneous sex-reversed XX 16 males of the medaka Oryzias latipes. Genetics. 163, 245-251 (2003). 17 18 41. T. Myosho, H. Otake, H. Masuyama, M. Matsuda, Y. Kuroki, A. Fujiyama, K. Naruse, S. 19 Hamaguchi, M. Sakaizumi, Tracing the emergence of a novel sex-determining gene in medaka, 20 Oryzias luzonensis. Genetics. 191, 163–170 (2012). 21 42. T. Imai, K. Saino, M. Matsuda, Mutation of gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem. Biophys. Res. Commun. 467, 109–114 (2015). 22 23 43. H. Kaneko, S. Ijiri, T. Kobayashi, H. Izumi, Y. Kuramochi, D.-S. Wang, S. Mizuno, Y. Nagahama, 24 Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol. Cell. Endocrinol. 415, 87–99 (2015). 25 44. R. S. Hattori, Y. Murai, M. Oura, S. Masuda, S. K. Majhi, T. Sakamoto, J. I. Fernandino, G. M. 26 Somoza, M. Yokota, C. A. Strüssmann, A Y-linked anti-Müllerian hormone duplication takes over a 27 critical role in sex determination. Proc. Natl. Acad. Sci. U. S. A. 109, 2955–2959 (2012). 28 29 45. G. A. Lucas, A study of variation in the Siamese fighting fish, *Betta splendens*, with emphasis on color mutants and the problem of sex determination (1968) (available at 30 https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4488&context=rtd). 31 32 46. S. Ratner, in *The Enzymes*, P. D. Boyer, Ed. (Academic Press, 1972), vol. 7, pp. 167–197. 47. N. M. LeDouarin, C. Kalcheim, *The Neural Crest* (Cambridge University Press, 1999). 33 34 48. G. Khoo, T. M. Lim, V. P. E. Phang, Cellular basis of metallic iridescence in the Siamese fighting 35 fish, Betta splendens. The Israeli Journal of Aquaculture-Bamidgeh (2014) (available at https://evols.library.manoa.hawaii.edu/handle/10524/49087). 36 49. A. Ng, R. A. Uribe, L. Yieh, R. Nuckels, J. M. Gross, Zebrafish mutations in gart and paics identify 37 38 crucial roles for de novo purine synthesis in vertebrate pigmentation and ocular development. 39 Development. 136, 2601–2611 (2009).

- 1 50. K. Umrath, Über die vererbung der farben und des geschlechts beim schleierkampffisch, *Betta* 2 *splendens. Z. Indukt. Abstamm. Vererbungsl.* **77**, 450–454 (1939).
- 51. K. Eberhardt, Die vererbung der farben bei *Betta splendens* Regan. Z. Indukt. Abstamm.
 Vererbungsl. 79, 548–560 (1941).
- 5 52. H. M. Wallbrunn, Genetics of the Siamese fighting fish, *Betta splendens. Genetics.* 43, 289–298 (1958).
- T. Kimura, Y. Nagao, H. Hashimoto, Y.-I. Yamamoto-Shiraishi, S. Yamamoto, T. Yabe, S. Takada,
 M. Kinoshita, A. Kuroiwa, K. Naruse, Leucophores are similar to xanthophores in their specification
 and differentiation processes in medaka. *Proc. Natl. Acad. Sci. U. S. A.* 111, 7343–7348 (2014).
- 54. A. Slominski, D. J. Tobin, S. Shibahara, J. Wortsman, Melanin pigmentation in mammalian skin and
 its hormonal regulation. *Physiol. Rev.* 84, 1155–1228 (2004).
- 55. K. A. Hultman, E. H. Budi, D. C. Teasley, A. Y. Gottlieb, D. M. Parichy, S. L. Johnson, Defects in
 ErbB-dependent establishment of adult melanocyte stem cells reveal independent origins for
 embryonic and regeneration melanocytes. *PLoS Genet.* 5, e1000544 (2009).
- 56. H. B. Goodrich, R. N. Mercer, Genetics and colors of the Siamese fighting fish, *Betta splendens*.
 Science. **79**, 318–319 (1934).
- M. Sudol, K. F. Harvey, Modularity in the Hippo signaling pathway. *Trends Biochem. Sci.* 35, 627–633 (2010).
- T. L. Hoffman, A. L. Javier, S. A. Campeau, R. D. Knight, T. F. Schilling, Tfap2 transcription
 factors in zebrafish neural crest development and ectodermal evolution. *J. Exp. Zool. B Mol. Dev. Evol.* 308, 679–691 (2007).
- 59. T. P. Lowe, J. R. Larkin, Sex reversal in *Betta splendens* Regan with emphasis on the problem of sex determination. *J. Exp. Zool.* 191, 25–32 (1975).
- 60. C. A. Wilson, S. K. High, B. M. McCluskey, A. Amores, Y.-L. Yan, T. A. Titus, J. L. Anderson, P.
 Batzel, M. J. Carvan 3rd, M. Schartl, J. H. Postlethwait, Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. *Genetics*. **198**, 1291–1308 (2014).
- A. Lindholm, F. Breden, Sex chromosomes and sexual selection in poeciliid fishes. *Am. Nat.* 160
 Suppl 6, S214–24 (2002).
- 62. M. Malinsky, R. J. Challis, A. M. Tyers, S. Schiffels, Y. Terai, B. P. Ngatunga, E. A. Miska, R.
 Durbin, M. J. Genner, G. F. Turner, Genomic islands of speciation separate cichlid ecomorphs in an
 East African crater lake. *Science*. 350, 1493–1498 (2015).
- A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data.
 Bioinformatics. 30, 2114–2120 (2014).
- 64. C. Kowasupat, B. Panijpan, P. Ruenwongsa, T. Jeenthong, *Betta siamorientalis*, a new species of
 bubble-nest building fighting fish (Teleostei: Osphronemidae) from eastern Thailand. *Vertebr. Zool.* 62, 387–397 (2012).
- A. Monvises, B. Nuangsaeng, N. Sriwattanarothai, B. Panijpan, The Siamese fighting fish: well known generally but little-known scientifically. *Sci. Asia.* 35, 8–16 (2009).

1 2 3 4	66.	CS. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum, C. Dunn, R. O'Malley, R. Figueroa-Balderas, A. Morales-Cruz, G. R. Cramer, M. Delledonne, C. Luo, J. R. Ecker, D. Cantu, D. R. Rank, M. C. Schatz, Phased diploid genome assembly with single-molecule real-time sequencing. <i>Nat. Methods.</i> 13 , 1050–1054 (2016).
5 6 7	67.	A. C. English, S. Richards, Y. Han, M. Wang, V. Vee, J. Qu, X. Qin, D. M. Muzny, J. G. Reid, K. C. Worley, R. A. Gibbs, Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. <i>PLoS One</i> . 7 , e47768 (2012).
8 9	68.	E. Garrison, G. Marth, Haplotype-based variant detection from short-read sequencing. <i>arXiv</i> (2012), (available at http://arxiv.org/abs/1207.3907).
10 11 12	69.	J. M. Flynn, R. Hubley, C. Goubert, J. Rosen, A. G. Clark, C. Feschotte, A. F. Smit, RepeatModeler2 for automated genomic discovery of transposable element families. <i>Proc. Natl.</i> <i>Acad. Sci. U. S. A.</i> 117 , 9451–9457 (2020).
13 14	70.	A. L. Price, N. C. Jones, P. A. Pevzner, De novo identification of repeat families in large genomes. <i>Bioinformatics</i> . 21 Suppl 1 , i351–8 (2005).
15 16	71.	Z. Bao, S. R. Eddy, Automated de novo identification of repeat sequence families in sequenced genomes. <i>Genome Res.</i> 12 , 1269–1276 (2002).
17 18	72.	S. Ou, N. Jiang, LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. <i>Plant Physiology</i> . 176 (2018), pp. 1410–1422.
19 20	73.	D. Ellinghaus, S. Kurtz, U. Willhoeft, LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. <i>BMC Bioinformatics</i> . 9 , 18 (2008).
21 22	74.	SMIT, F. A. A., Repeat-Masker Open-3.0. <i>http://www.repeatmasker.org</i> (2004) (available at https://ci.nii.ac.jp/naid/10029514778/).
23 24	75.	G. Marçais, A. L. Delcher, A. M. Phillippy, R. Coston, S. L. Salzberg, A. Zimin, MUMmer4: A fast and versatile genome alignment system. <i>PLoS Comput. Biol.</i> 14 , e1005944 (2018).
25 26	76.	M. Chakraborty, N. W. VanKuren, R. Zhao, X. Zhang, S. Kalsow, J. J. Emerson, Hidden genetic variation shapes the structure of functional elements in <i>Drosophila</i> . <i>Nat. Genet.</i> 50 , 20–25 (2018).
27 28	77.	H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. <i>arXiv</i> (2013), (available at http://arxiv.org/abs/1303.3997).
29 30	78.	Broad Institute, "Picard Toolkit", Broad institute, GitHub repository. <i>Picard Toolkit</i> (2019), (available at http://broadinstitute.github.io/picard/).
31 32 33	79.	H. Li, A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. <i>Bioinformatics</i> . 27 , 2987–2993 (2011).
34 35 36 37	80.	A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. <i>Genome Res.</i> 20 , 1297–1303 (2010).
38 39	81.	J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, J. P. Mesirov, Integrative genomics viewer. <i>Nat. Biotechnol.</i> 29 , 24–26 (2011).

- 82. M. Martin, M. Patterson, S. Garg, S. O. Fischer, N. Pisanti, G. W. Klau, A. Schöenhuth, T.
 Marschall, WhatsHap: fast and accurate read-based phasing. *Cold Spring Harbor Laboratory* (2016),
 p. 085050.
- 83. O. Delaneau, J.-F. Zagury, M. R. Robinson, J. L. Marchini, E. T. Dermitzakis, Accurate, scalable
 and integrative haplotype estimation. *Nat. Commun.* 10, 5436 (2019).
- 84. Y. M. Kwon, K. Gori, N. Park, N. Potts, K. Swift, J. Wang, M. R. Stammnitz, N. Cannell, A. Baez-Ortega, S. Comte, S. Fox, C. Harmsen, S. Huxtable, M. Jones, A. Kreiss, C. Lawrence, B. Lazenby,
 S. Peck, R. Pye, G. Woods, M. Zimmermann, D. C. Wedge, D. Pemberton, M. R. Stratton, R.
 Hamede, E. P. Murchison, Evolution and lineage dynamics of a transmissible cancer in Tasmanian
 devils. *PLoS Biol.* 18, e3000926 (2020).
- S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar,
 P. I. W. de Bakker, M. J. Daly, P. C. Sham, PLINK: a tool set for whole-genome association and
 population-based linkage analyses. *Am. J. Hum. Genet.* 81, 559–575 (2007).
- 86. B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler, R.
 Lanfear, IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 37, 1530–1534 (2020).
- 87. S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin, ModelFinder: fast
 model selection for accurate phylogenetic estimates. *Nat. Methods.* 14, 587–589 (2017).
- 19 88. M. Malinsky, M. Matschiner, H. Svardal, Dsuite Fast D-statistics and related admixture evidence
 20 from VCF files. *Mol. Ecol. Resour.* 21, 584–595 (2021).
- 89. G. Nilsen, K. Liestøl, P. Van Loo, H. K. Moen Vollan, M. B. Eide, O. M. Rueda, S.-F. Chin, R.
 Russell, L. O. Baumbusch, C. Caldas, A.-L. Børresen-Dale, O. C. Lingjaerde, Copynumber: efficient algorithms for single- and multi-track copy number segmentation. *BMC Genomics*. 13, 591 (2012).
- 90. A. Bergström, S. A. McCarthy, R. Hui, M. A. Almarri, Q. Ayub, P. Danecek, Y. Chen, S. Felkel, P.
 Hallast, J. Kamm, H. Blanché, J.-F. Deleuze, H. Cann, S. Mallick, D. Reich, M. S. Sandhu, P.
 Skoglund, A. Scally, Y. Xue, R. Durbin, C. Tyler-Smith, Insights into human genetic variation and
 population history from 929 diverse genomes. *Science*. 367 (2020), doi:10.1126/science.aay5012.
- 28 91. K. Ulm, A simple method to calculate the confidence interval of a standardized mortality ratio
 29 (SMR). *Am. J. Epidemiol.* 131, 373–375 (1990).
- 30
 92. A. J. Dobson, K. Kuulasmaa, E. Eberle, J. Scherer, Confidence intervals for weighted sums of
 31
 Poisson parameters. *Stat. Med.* 10, 457–462 (1991).
- N. R. Garud, P. W. Messer, E. O. Buzbas, D. A. Petrov, Recent selective sweeps in North American
 Drosophila melanogaster show signatures of soft sweeps. *PLoS Genet.* 11, e1005004 (2015).
- 34 94. L. Speidel, M. Forest, S. Shi, S. R. Myers, A method for genome-wide genealogy estimation for
 35 thousands of samples. *Nat. Genet.* 51, 1321–1329 (2019).
- J. Terhorst, J. A. Kamm, Y. S. Song, Robust and scalable inference of population history from
 hundreds of unphased whole genomes. *Nat. Genet.* 49, 303–309 (2017).
- 38 96. X. Zhou, M. Stephens, Genome-wide efficient mixed-model analysis for association studies. *Nat.* 39 *Genet.* 44, 821–824 (2012).

- 97. A. Rahman, I. Hallgrímsdóttir, M. Eisen, L. Pachter, Association mapping from sequencing reads using k-mers. *Elife*. **7** (2018), doi:10.7554/eLife.32920.
- 98. S. D. Jackman, B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo, S. A. Hammond, G. Jahesh, H.
 Khan, L. Coombe, R. L. Warren, I. Birol, ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. *Genome Res.* 27, 768–777 (2017).
- S. Picelli, A. K. Björklund, B. Reinius, S. Sagasser, G. Winberg, R. Sandberg, Tn5 transposase and
 tagmentation procedures for massively scaled sequencing projects. *Genome Res.* 24, 2033–2040
 (2014).
- 100. R. Corbett-Detig, R. Nielsen, A hidden markov model approach for simultaneously estimating
 local ancestry and admixture time using next generation sequence data in samples of arbitrary
 ploidy. *PLoS Genet.* 13, e1006529 (2017).
- 101. K. W. Broman, H. Wu, S. Sen, G. A. Churchill, R/qtl: QTL mapping in experimental crosses.
 Bioinformatics. 19, 889–890 (2003).
- 14 102. D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: improving the 15 ultrafast bootstrap approximation. *Mol. Biol. Evol.* **35**, 518–522 (2018).
- 103. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T.
 R. Gingeras, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 29, 15–21 (2013).
- 104. B. Li, V. Ruotti, R. M. Stewart, J. A. Thomson, C. N. Dewey, RNA-Seq gene expression
 estimation with read mapping uncertainty. *Bioinformatics*. 26, 493–500 (2010).
- M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA seq data with DESeq2. *Genome Biol.* 15, 550 (2014).
- L. D. Thomas, S. Bandara, V. M. Parmar, R. Srinivasagan, N. Khadka, M. Golczak, P. D. Kiser,
 J. von Lintig, The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids
 and apocarotenoids. J. Biol. Chem. 295, 15553–15565 (2020).
- J. von Lintig, K. Vogt, Filling the gap in vitamin A research. Molecular identification of an
 enzyme cleaving beta-carotene to retinal. *J. Biol. Chem.* 275, 11915–11920 (2000).
- M. E. Kelly, S. Ramkumar, W. Sun, C. Colon Ortiz, P. D. Kiser, M. Golczak, J. von Lintig, The
 biochemical basis of Vitamin A production from the asymmetric carotenoid β-cryptoxanthin. *ACS Chem. Biol.* 13, 2121–2129 (2018).
- A. Daruwalla, J. Zhang, H. J. Lee, N. Khadka, E. R. Farquhar, W. Shi, J. von Lintig, P. D. Kiser,
 Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. *Proc. Natl. Acad. Sci. U. S. A.* 117, 19914–19925 (2020).
- 33

1

2

34

Acknowledgments: The DNA pipelines staff at the Wellcome Sanger Institute generated
 sequencing data. Debbie Leung and Hiroki Tomida photographed fish. Ronny Kyller as well as
 members of the International Betta Congress including Liz Hahn, Sieg Illig, Karen MacAuley,
 and Holly Rutan provided samples. Leo Buss, Darcy Kelley, Carol Mason, and Molly
 Przeworski provided comments on the manuscript.

- Funding: Searle Scholarship and Sloan Foundation Fellowship (AB). Wellcome grant
 WT206194 (IB, JW, SM, WC, KH, RD). Wellcome grant WT207492 (SM, RD). Flemish
 University Research Fund (JC-G, HS). FWO Research Foundation Flanders Ph.D.
 fellowship (NV). National Institutes of Health grant EY020551 (JvL). National Institutes
 of Health grant EY028121 (JvL).
- 12

6

- Author contributions: Conceptualization: AB, RD, YMK, HS. Formal analysis: AB, IB, WC,
 JC-G, KH, YMK, SM, HS, NV, JW. Funding acquisition: AB, RD, JvL, HS.
 Investigation: AB, SB, KXF, CH, YMK, MRL, HS. Project administration: AB, RD, HS.
 Resources: HHT, LR. Software: JC-G, YMK, HS, NV. Supervision: AB, RD, JvL, HS.
 Visualization: SB, YMK, HS, NV. Writing original draft: AB, YMK, HS. Writing –
 review & editing: AB, RD, CH, KH, YMK, JvL, MRL, LR, HS.
 Competing interests: Authors declare that they have no competing interests.
- Data and materials availability: Data used in the analysis are available in NCBI GenBank
 GCA_900634795.3 and BioProject PRJNA486171.