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Abstract Despite the impact of red blood cell (RBC) Life-

spans in some disease areas such as diabetes or anemia of

chronic kidney disease, there is no consensus on how to

quantitatively best describe the process. Several models have

been proposed to explain the elimination process of RBCs:

random destruction process, homogeneous life-span model,

or a series of 4-transit compartment model. The aim of this

work was to explore the different models that have been

proposed in literature, and modifications to those. The impact

of choosing the right model on future outcomes prediction—

in the above mentioned areas- was also investigated. Both

data from indirect (clinical data) and direct life-span mea-

surement (biotin-labeled data) methods were analyzed using

non-linear mixed effects models. Analysis showed that: (1)

predictions from non-steady state data will depend on the

RBC model chosen; (2) the transit compartment model, which

considers variation in life-span in the RBC population, better

describes RBC survival data than the random destruction or

homogenous life-span models; and (3) the additional incor-

poration of random destruction patterns, although improving

the description of the RBC survival data, does not appear to

provide a marked improvement when describing clinical data.
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Introduction

Erythropoiesis is a complex multistep process encom-

passing the proliferation and differentiation of hemopoietic

stem cells to mature erythrocytes (RBC or red blood cell).

A normal homeostasis of the erythropoietic system requires

a balance between the rate of red blood cell production and

destruction. Red-cell mass is controlled within a narrow

range at which rheological properties and delivery of

oxygen to tissues are optimal. When red-cell mass

decreases, i.e. in bleeding, the kidneys, sensing a decrease

in the tissular oxygen content, release erythropoietin (Epo)

which increases production and prevents apoptosis of early

erythroid precursors [1]. The continuous cell production

occurs in bone marrow and is ensured by pluripotent stem

cells, which have the unique property of both self-renewal

and differentiation through progressive commitment to

maturing precursors. During the differentiation process, the

cells become progressively and transiently sensitive to Epo

due to the appearance of erythropoietin receptors [2, 3].

The typical life-span of a human RBC is reported to be

about 120 days, after which the RBC undergoes a process of

senescence with morphological changes leading to the

removal from circulation through phagocytosis by the

macrophages [2, 4]. In addition to senescence, random

destruction of red blood cells may also occur, as a result of

pathologic factors, such as bleeding, hemolysis or clotting.

This process causes the premature disappearance of cells

which are not potentially immortal, but have a life-span

limited by senescence [5, 6].
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Although the mechanisms describing the fate of aged

erythrocytes have been of great interest for many years,

and a number of candidate pathways have been proposed

[7–9], there is still no universally accepted model of red

cell senescence and removal from the circulation. Besides

physiological considerations and cellular mechanisms

involved in this phenomenon, a better understanding of the

kinetics describing RBC production, release in the circu-

lation and destruction would be useful in both the clinical

and research settings. This is because RBC life-span plays

a key role in some pathophysiological models impacting on

treatment decisions in individual patients, as well as on

analyses and predictions in drug development. The process

of haemoglobin glycosylation and the erythropoietic

response to rHuEPO, both strongly dependent on the RBC

life-span, illustrate the importance of this concept for the

management of diabetic and anemic patients.

Several models describing the life-span concept of RBC

have been proposed: (1) Uehlinger et al. proposed a

homogeneous life-span model in uremic patients, where the

life-span concept is considered as a delay time parameter—

the life-span of a specific RBC population. This approach

thus assumes that each of the patient’s erythrocytes has the

same life-span [10]. This type of model has also been

applied to describe the effect of rHuEPO on reticulocytes

and RBC by other authors [11–14]. (2) A second type of

model has been proposed, that considers RBC removal

from circulation as a random process. This random

destruction model was used for example by Petersson et al.

[15] and de Winter et al. [16] to describe RBC LS in

diabetic patients. In this case, the elimination process fol-

lows a first order decay. The life-spans for an individuals’

RBC population is considered to follow an exponential

distribution. (3) A third type of model, proposed by

Hamrén et al. considers a series of 4 transit compartments

with transition between compartments and elimination

from the last compartment as first order, random, pro-

cesses. This model, which has life-span distributions which

are intermediate to the two preceding types of models, was

developed based on HbA1c measurements in diabetic

patients [17].

In order to determine the RBC life-span we can either use

an indirect approach as in the studies described above, where

model based analysis is used to infer this information from

e.g.: changes in the glycosylated haemoglobin fraction

(HbA1c) or haemoglobin concentration -time profiles under

rHuEPO treatment [18]. Alternatively, direct measurements

of the life-span, based on different cell labelling methods,

allow elimination to be followed for a sample of the RBC

population. There are two labelling approaches: cohort

labels and population (also called random) labels. The for-

mer identifies the RBC released from the bone marrow

during a defined time period. At subsequent times all of the

labeled RBCs are approximately the same age. In the latter

case, labels are placed on RBC of all ages. In humans, these

procedures are always done ex vivo, followed by immediate

reinfusion of the labeled cells. A recent review on the dif-

ferent techniques can be found in Franco et al. [4].

Cellular biotinylation has been shown to give particu-

larly precise determinations of cell survival for almost the

entire RBC life-span, because the number of false positives

events in the flow cytometer is extremely low (*10/106).

Compared to the prior gold standard population label

technique with 51Cr, cellular biotinylation yields equivalent

values for RBC and offers some advantages such as lack of

radioactivity and little elution from the cells which makes

it more suitable method for entire survival curve analysis

[19–24]. Even when some loss of biotin occurs, presum-

ably due to plasma biotinase activity, the cell still falls

within the positive analysis region and is therefore counted

the same as if there were no loss. The same is true for loss

of surface area or hemoglobin as the cells age.

However, there are also some disadvantages compared

to 51Cr. The biotin labeling procedure requires more

manipulation of the cells, with multiple washes to remove

unreacted reagent and reaction by products, which could

damage the RBCs. Because the flow cytometric analysis

determines labeled cells as a percentage of the total cells,

an underlying assumption is that the total number of RBC

is at steady-state during the lifespan measurement [4].

A recent study by Cohen et al., based on biotin labeled

RBCs in a small number of healthy volunteers and diabetic

subjects, showed that the observed variation in RBC sur-

vival was large enough to have a significant impact on the

interpretation of HbA1c levels [20].

Given the impact of a good description of the RBC life-

span in the above mentioned disease areas, and the lack of

consensus on the model that best describes the RBC life-

span, the aim of this work was to explore the different

models that have been proposed in the literature, and to

assess modifications to them, by analysing data relevant to

the underlying processes involved. The impact that

choosing the right model would have on the prediction of

future outcomes was also investigated. In order to cover a

wider spectrum of cases, both data from indirect and direct

life-span measurement methods were used.

Methods

Data analysed

Biotin-labeled data

Survival RBC fraction—time profiles following biotin-

labelling for 6 diabetic and 6 non-diabetic participants
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reported in Fig. 2 of the publication by Cohen et al. [20]

were extracted by digitization (DigitalizeIt software ver-

sion 1.5). A three replicate digitization was performed and

for each time record the average of the replicated digitized

values was taken, providing a satisfactory precision (mean

SD of 0.4 % units).

rHuEPO-data

Clinical data from 54 hemodialysis patients with end stage

renal disease (ESRD) patients, previously reported by Ueh-

linger et al. [10] was analysed in the present study. The data

consisted of haemoglobin concentration–time profiles fol-

lowing initiation of an i.v. rHuEPO substitution in rHuEPO

naı̈ve patients receiving long-term high-flux hemodialysis.

HbA1c-data

A dataset of time-courses of fasting plasma glucose (FPG)

and HbA1c in 1083 type II diabetic patients [25] was

analysed. The data originate from phase II and III studies

within the development program of tesaglitazar, an a-c-

PPAR agonist, where both naı̈ve and previously treated

patients were followed during wash-out, treatment and

post-treatment phase with either placebo or tesaglitazar.

Models assessed

The three datasets presented in the previous paragraph

were analysed with a non-linear mixed effect modelling

approach using NONMEM VI. The first-order conditional

estimation method (FOCE) and subroutine ADVAN6 were

used. Inter-individual variability (IIV) in model parameters

was assumed to be log-normally distributed. Additive,

proportional and additive plus proportional models were

assessed as residual error models.

The three previously published models considered are

described below.

Homogeneous life-span model

First described by Uehlinger et al. [10], this model treats

the RBC ageing and removal as a zero-order process, and

assumes that each of the patients’ erythrocytes has the

same life-span. The survival function is 1 if time is less

than the life-span or 0 otherwise. The corresponding dif-

ferential equation is:

dRBC

dt
¼ kinðtÞ � kinðt � LSÞ ð1Þ

where kin(t) represents the cell production and kin(t-LS) the cell

loss, following a zero-order rate process, which means that the

number of dying cells in a fixed time interval (life-span) does

not depend on the total number of cells. Each RBC lives for the

same period of time LS and then disappears as a consequence

of senescence. This life-span determines the cell elimination

rate, which is the rate of cell production delayed by the time

LS.

Random destruction, or turn-over, model

This model treats the RBC removal as a first-order, i.e.

random, process. The following equations describe the

model:

dRBC

dt
¼ kin � kout � RBC ð3Þ

kout ¼
1

LS
ð4Þ

where kin is a zero-order RBC production rate constant and

kout the first-order rate constant representing the RBC

removal process.

Transit compartment model

Hamrén et al. [17] introduced four, in series coupled,

transit compartments to describe the RBC ageing, starting

with a zero-order release of RBC into circulation (kin). The

first-order rate constant (ktr) defines the RBC transition

from one age stage to the next until the cell dies, when

removed from the last compartment. As in the previous

case, the model assumes a distribution of life-span around a

mean for a RBC cohort in an individual. The shape of this

distribution is given by the number of transit compart-

ments. The equations describing the RBC cohort ageing

and removal process for a 4-transit compartment model are

as follow. In this case the number of compartment NC = 4.

dRBC1

dt
¼ kin � ktr � RBC1 ð5Þ

dRBC2

dt
¼ ktr � RBC1 � ktr � RBC2 ð6Þ

dRBC3

dt
¼ ktr � RBC2 � ktr � RBC3 ð7Þ

dRBC4

dt
¼ ktr � RBC3 � ktr � RBC4 ð8Þ

ktr ¼ NC

LS
ð9Þ

The random destruction model is equivalent to a transit

compartment model with a single transit compartment. The

homogenous life-span model corresponds to a transit com-

partment model with an infinite number of transit compart-

ments. Thus, increasing the number of transit compartments

from one and upwards, explores intermediary models

between these two extremes. In the software chosen, the
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maximum number of compartments possible to implement

was 30, 29 and 14 for the biotin-labeled, the rHuEPO- and the

HbA1c-data sets, respectively. For the biotin-labeled and

rHuEPO-data sets also the exact implementation of the

homogenous life-span model was evaluated.

In addition, a random destruction process, in parallel to

the transit compartments, and occurring from every com-

partment was also incorporated into the models and

explored for the biotin-labeled and the rHuEPO data sets.

Again, the optimal number of transit compartments was

assessed. The random destruction process was investigated

by considering a linear description of the process with krd

as a first-order rate constant describing the destruction.

dRBC1

dt
¼ kin � ktr � RBC1 � krd � RBC1 ð10Þ

dRBC2

dt
¼ ktr � RBC1 � ktr � RBC2 � krd � RBC2 ð11Þ

dRBC3

dt
¼ ktr � RBC2 � ktr � RBC3 � krd � RBC3 ð12Þ

dRBC4

dt
¼ ktr � RBC3 � ktr � RBC4 � krd � RBC4 ð13Þ

(…) successively till 29 compartments.

ktr ¼ NC

LS
ð14Þ

where NC is the number of transit compartments, in this

case 29, krd the first order constant for random destruction.

Variance of mean residence time

The mean residence time (MRT) represents the average

time spent in circulation by the RBCs. The variance in

MRT (VMRT) provides a quantitative measure of hetero-

geneity in life-spans within an individual and the coeffi-

cient of variation in MRT (% CVMRT) is a convenient and

robust measure [26]. The following equations apply:

MRT ¼
R1

0
t � RBCel � dt

R1
0

RBCel � dt
ð15Þ

VMRT ¼
R1

0
ðt �MRTÞ2 � RBCel � dt
R1

0
RBCel � dt

ð16Þ

where t is time and RBCel the RBCs eliminated at time t,

which can be calculated as follows:

RBCel ¼ �ktr � RBCn ð17Þ

RBCel ¼ �krd � ½RBC1þ RBC2þ � � � þ RBC29� � ktr
� RBC29

ð18Þ

where n in Eq. 17 would correspond to the last compartment,

depending on the model and Eq. 18 represents the eliminated

RBCs expression in the model considering RBC ageing and

random destruction. As we are referring to fractions of RBC

eliminated, it can be simplified as follows:

MRT ¼
Z 1

0

t � f � dt ð19Þ

VMRT ¼
Z 1

0

ðt �MRTÞ2 � f � dt ð20Þ

CVMRT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VMRT
p

MRT
� 100 ð21Þ

where t is time and f the RBCs fraction eliminated at time t.

Model evaluation

OFV mapping

In the models investigated, the OFV was evaluated with

varying numbers of transit compartments. The number of

estimated parameters remained constant between models

during the OFV mapping, so that any improvement was

due to the increase or decrease in the number of transit

compartments. This was done both with and without the

addition of a random destruction component. For two

nested models, the difference in OFV is approximately v2

distributed with the number of degrees of freedom given by

the difference in number of parameters.

Visual predictive checks (VPC)

To evaluate the predictive performance of the model,

visual predictive checks were performed using the final

model parameter estimates [27]. The visual predictive

check illustrates the model’s ability to simulate the data

that have been used for the model development. Time-

courses of RBC count were simulated 1,000 times using the

original design of the study in question. Percentiles (5th,

50th and 95th) of the observations were compared to per-

centiles (including confidence intervals) of the simulated

values. The goodness of fit plots and graphical represen-

tation of visual predictive performance were performed in

Xpose [28].

Impact of model choice on predictive performance

To assess the impact that the choice of a given model

would have on future outcomes, the predictive performance

applied to two disease areas where RBC life-span has a

major impact was studied:

1. Simulations of Hb concentrations versus time were

performed in an anemic patient. It was assumed that

observations were made at 0 and 30 days after starting

treatment with rHuEPO resulting in a constant increase
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in RBC mass. Prediction of the Hb concentration

beyond 30 days was performed using the different

models that had previously been derived using the

biotin-labeled data (homogeneous life-span model,

random destruction model, 12-transit compartment

model and 29-transit compartment model with random

destruction).

2. Changes in HbA1c levels were investigated by

predicting for a diabetic patient with a FPG level at

baseline of 8.2 mmol/L, future HbA1c levels after an

assumed immediate 25 % decrease in FPG. The model

used for the simulations was based on that published

by Hamrén et al. [17] but expanded to 12 transit

compartments.

Results

Figure 1 shows the OFV values when analysing the biotin-

labeled data with the models described in the ‘‘Methods’’

section. The 12 transit compartments best described the

data (OFV = 345.57) while the random destruction model

behaved worst (OFV = 579.72), followed by the homo-

geneous life-span model (OFV = 517.08). Figure 2 shows

model predictions for a RBC cohort, the fraction elimi-

nated per day versus time (a) and the fraction remaining to

be eliminated (b). This illustrates the high variance on

mean residence time (VMRT) for the random destruction

model (CV 100 %), followed by the 12-transit compart-

ment model (CV 27 %), whereas in the homogeneous life-

span model the CV is 0 %, as all cells will die at the same

time. Panel (c) shows the probability that the remaining

RBC will be eliminated in the next day, for the different

models. For the random destruction model, this probability

will be the same every day, whereas for the homogeneous

life-span model will be zero, except for the day prior to the

life-span where the probability will be of 1. In the transit

compartment model, the probability will increase over

time.

The visual predictive checks (VPC) showed a better

predictive performance of the 12-transit compartment

model as compared to the other models assessed (Fig. 3).

However, when the transit model with additional random

destruction process was assessed, a 29-transit compartment

model was found to describe the data better (OFV =

250.7). The improvement was not clearly visible in the

VPC as shown in Fig. 3, but may be related to the two

more parameters capturing the inter-individual variability

better. The estimated life-span was also very similar for the

best two models: 92 (12-transit compartment model) and

95 days (29-transit compartment model with random

destruction). In addition, calculated CVMRTs were similar

in both cases, 27 versus 43 %, respectively. Estimated

parameter values for the 4 main models are given in

Table 1.

For the two other datasets, the random destruction

model again behaved the worst, followed by the homoge-

neous life-span model. In these cases, the optimal number

of transit compartments was 10 for the HbA1c data, and 16

for the rHuEPO data. This is also illustrated in Fig. 1,

which illustrates the OFV relative to the random destruc-

tion model. The combination of transit compartment model

with random destruction process was also investigated for

the rHuEPO data. In this case there was no marked

improvement when the random destruction process was

added as the DOFV value of the model with and without

random destruction term was -0.243. The estimated rate

constant for random destruction was also low, 0.000323/

day.

Figure 4 shows the estimated mean life-span for models

with different number of transit compartments. For the

optimal transit compartment models the mean life-span

values were: 91.8 days (12-compartment; biotin-labeled

RBC in normal subjects), 75.4 days (16-compartment; Hb

data in ESRD), and 87.5 days (10-compartment; HbA1c

data in diabetic patients).

The impact of the model choice on individual predic-

tions for long term outcomes was also investigated. In

Fig. 5, the homogeneous life-span model would predict the

fastest and the random destruction model the slowest

improvement in Hb levels for an individual anemic patient

based on Hb measurements on days 0 and 30 after start of

rHuEPO therapy. In Fig. 6, HbA1c predictions are illus-

trated for the 12 transit compartment model and the random

destruction model. In this case, it is shown how a 25 %

decrease of FPG at baseline will translate to different

HbA1c levels changes, depending on the life-span model

considered.

Fig. 1 The OFV mapping for the different data sets, where NC is the

number of transit compartment assessed. The result for the homoge-

neous life-span model is indicated at NC = 30. The diamond shapes

high-light the optimal model for each dataset
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Discussion

Three published models for the RBC life-span are: the

homogeneous life-span model (Uehlinger et al. [10],

Kryzanski et al. [11], Perez-Ruixo et al. [14]), which

considers an ageing process where all RBC die at the same

time; the random destruction model (e.g. de Winter et al.

[16]); and the 4 transit compartment model (Hamrén et al.

[17]), which results in a distribution of RBC life-spans

intermediate to the previous two models.

After the analysis of the biotin-labeled RBC survival

curves from Cohen et al., with the afore mentioned models

and some modified ones with varying number of transit

compartments, a 12 transit compartment model reached the

minimum OFV and showed a better predictive perfor-

mance (Figs. 1, 3). The trend with regard to the best

description of the data was as follows: 12-transit com-

partment model [ 4-transit compartment model [ homo-

geneous life-span model [ random destruction model.

This pattern was again observed when analysing the other

two datasets. However, in these cases, 16 and 10 transit

compartment models showed a better description of the

rHuEPO and HbA1c data, respectively (Fig. 1).

The LS increase with increasing number of transit

compartments is illustrated in Fig. 4. It is also observed

that the mean LS obtained with the biotin labeled data and

the HbA1c data are similar—91.8 and 87.5 days (with 12

and 10 transit compartments models, respectively)—

whereas based on the rHuEPO data in uremic patients this

is lower, 75.4 days (with a 10 transit compartment model).

It is well known that the RBC LS in uremic patients is

decreased, the mechanism for this is unknown but it may

be related to the abnormal biochemical environment [29].

Transit compartment models with about 12 compart-

ments or more assumes an increasing probability to be

eliminated with increasing age and with an almost zero

probability at the youngest ages (Fig. 2). The latter may not

be true for patients with a substantial random destruction of

RBC caused for instance by bleeding or hemolysis, where

the elimination process is insensitive to the cell age. This

hypothesis, of a combined ageing process with a random

destruction one—occurring at any RBC age—was also

Fig. 2 a The daily eliminated RBC fraction from a RBC cohort

formed at time zero as predicted by the different models for biotin-

labeled data. b The survival fraction profiles of a RBC cohort versus

time for models for the biotin-labeled data. c The probability of a

remaining RBC to be eliminated during a day versus time for the

different models
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assessed in the present study for the biotin-labeled and

rHuEPO datasets. Transit compartment models with vary-

ing number of compartments were evaluated, where both

life-span and random destruction parameters were esti-

mated. A 29-transit compartment model with random

destruction process best described the biotin-labeled data,

as shown in Fig. 3 and Table 1. However, a relatively

small difference with the 12-compartment model in terms

of visual goodness-of-fit and therapeutically relevant pre-

diction was observed. The average LS estimated with this

model (95 days) was very similar to the corresponding one

in the 12-transit compartment model without random

destruction (91.8 days). While a relative improvement was

shown for the biotin-labeled data, no significant improve-

ment by considering the combination of random destruc-

tion process with senescense destruction patterns was

shown for the rHuEPO data from Uehlinger et al.

Recently Korell et al. have published a survival model that

describes the underlying distribution of RBC life-spans [30].

The model uses a human life-span inspired description of the

Fig. 3 Visual predictive checks

for the most significant

investigated models when

analysing the biotin-labeled data

are shown: a Random

destruction model

(OFV = 579.7);

b Homogeneous life-span

model (OFV = 517.0);

c Transit compartment with

random destruction

(OFV = 250.7); d Transit

12-compartment model

(OFV = 345.6). In each panel:

the dots represent the

observations, the black line
represents the median of the

observations and the dashed-
black lines the 5th and 95th

percentiles of the observed data.

Whereas the grey line represents

the median of the simulated

data, the grey-dashed lines the

5th and 95th percentiles of

simulated data, and the grey
area the 90 % CI around the

simulated median and

prediction intervals

Table 1 Parameter values estimated with the life-span models assessed with the biotin-labeled dataset are shown (RSE %)

Parameter Random

destruction

model

Homogeneous

life-span model

12-Transit

compartment

model

29-Transit compartment

model? random

destruction

OFV Objective function 579.7 517.1 345.6 250.7

LS (days) RBC life-span 54.5 (3.7) 98 (3.6) 91.8 (3.6) 95.5 (3.1)

IIV-LS (CV %) Inter-individual variability on LS 11 ((28) 12.1 % (16) 12.4 (19) 10.7 (21)

krd (1/days) 1st order rate constant of random destruction – – – 0.0053 (15)

IIV-krd (CV %) Inter-individual variability on krd – – – 47.3 (24)

Additive RE Residual error (SD) 6.37 (6.7) 4.5 (9) 1.14 (14) 0.51 (18)

Proportional RE Residual error (CV %) (*) (*) 3.96 (12) 2.76 (10)
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underlying mechanisms affecting RBC life-span, as it uses a

bath tub-shaped hazard curve, and incorporates several

mechanisms of destruction of the RBC, including: senes-

cence, random destruction, death due to initial or delayed

failures and neocytolisis (early cell mortality). The model,

originally derived from a survival analysis in an Indonesian

population, was adjusted for the RBC setting and used for

simulations of two different scenarios previously published

in literature. One of the scenarios Korell et al. reproduce is

the model we have derived herein based on the Biotin labeled

data, of 29 compartment with random destruction. These

authors show to predict a similar typical individual RBC

survival profile to the one that our model predicts. However,

their model fails to incorporate random effects accounting

for inter-individual variability in a population, which is of

interest if the model is intended to be used in the clinic for

treatment adjustments. Finally, the same authors validate

their model by describing data from a population of 12

patients with chronic kidney disease and 12 healthy subjects,

where RBC survival had been measured by 51Cr methodol-

ogy [31]. Their model is able to describe the data, however

not able to estimate all parameters related to destruction

processes. When trying to estimate the parameters related to

initial or delayed RBC destruction, they found not significant

improvement, which yields to the same mechanisms of

destruction that have been explored in the present work:

senescense and random destruction. In addition, the model

presented herein has been validated for three different pop-

ulations, and describes the mechanisms in a semi-mecha-

nistic manner, where compartments represent age stages of

RBCs.

In the present work the RBC distribution was described by

life-span models. Krzyzanski [32], has recently pointed out

that under some circumstances the models used here and

models described by life-span indirect response (LIDR)

models are the same. Under some other considerations,

results from transit compartment models can be similar. In

the present situation, at least the HbA1c model would not

have been possible to implement as an LIDR model. In other

circumstances the LIDR models may offer advantages as

more condensed model description and faster runtimes.

The current study illustrates that different types of data

inform differently about the underlying processes involved.

Based on the OFV functions values, one can see that the

biotin-labeled data is most informative, followed by the

rHuEPO data and the least informative HbA1c data. The

DOFV between the worst and the best model was: 234.15

(biotin-labeled), 55.6 (Hb) and 147.2 (HbA1c). Taking into

account the number of individuals in the analysis, the DOFV/

individual was: 19.5 (biotin-labeled)[ 1.03 (rHuEPO) [0.14

(HbA1c). These values provide a measure of the information

in an individual’s data with respect to the life-span.

Fig. 4 It is shown how the estimated life-span (LS) increases with

the number of transit compartments (NC) for the different models

assessed with the different data sets

Fig. 5 Predicted Hb time-profiles for an individual patient receiving

rHuEPO therapy with LS calculated based on observations at 0 and

30 days after starting treatment with rHuEPO assuming rHuEPO

momentarily increases RBC production rate

Fig. 6 HbA1c predictions for a hypothetical diabetic patient with an

FPG baseline of 8.2 mmol/L are shown when an instantaneous 25 %

decrease on FPG occurs at time zero, for the random destruction and

the 12 transit compartment models
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The aim of this study was not only to assess the model

that best describes the different types of data, but to eval-

uate the impact of choosing a given model on predictions in

the clinical setting. This is illustrated in Fig. 5 for a typical

individual patient following rHuEpo therapy. How would

the models predict Hb concentrations, if only observations

at baseline and 30 days, after starting the treatment, were

available. A considerable variation in predictions is

observed, which points out the clinical relevance that a

good description of the RBC kinetic mechanisms will have

for decision making in regards to treatment adjustments.

Any mathematical model aiming at the prediction of the

average HbA1c concentration must be able to account not

only for the kinetics of the hemoglobin glycosylation, but

also for RBCs formation and elimination processes [33]. It

should also take into account the heterogeneity associated

with the RBC survival between individuals, which has been

shown to be large enough to cause clinically important dif-

ferences in HbA1c levels for a given mean blood glucose

concentration [20]. Again, the better description of these

relationships can give answer to questions when changes of

state occur, such as how long it will take for a change in

HbA1c when initiating treatment. This is illustrated in Fig. 6,

which depicts the impact that a 25 % decrease in FPG from

baseline (8.2 mmol/L) would have on predicted HbA1c

levels of a typical individual patient when implementing

different life-span models. This demonstrates again the

importance of identifying the appropriate model in order to

predict individual changes in HbA1c levels under treatment.

The main conclusions of the present study can be

summarised as follows: (1) predictions from non-steady

state data will depend on the RBC model chosen. (2) the

transit compartment model, which considers variation in

life-span in the RBC population (intra-subject or inter-

subject) better describes RBC survival data than the ran-

dom destruction or homogenous life-span models, and (3)

the additional incorporation of random destruction patterns

although improving the description of the RBC survival

data, does not appear to provide a marked improvement

when describing clinical data.
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