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Abstract: Inadequate sodium and potassium dietary intakes are associated with major, yet pre-
ventable, health consequences. Local public health interventions can be facilitated and informed
by fine-scale geospatial analyses. In this study, we assess the existence of spatial clustering (i.e., an
unusual concentration of individuals with a specific outcome in space) of estimated sodium (Na),
potassium (K) intakes, and Na:K ratio in the Bus Santé 1992–2018 annual population-based surveys,
including 22,495 participants aged 20–74 years, residing in the canton of Geneva, using the local
Moran’s I spatial statistics. We also investigate whether socio-demographic and food environment
characteristics are associated with identified spatial clustering, using both global ordinary least
squares (OLS) and local geographically weighted regression (GWR) modeling. We identified clear
spatial clustering of Na:K ratio, Na, and K intakes. The GWR outperformed the OLS models and
revealed spatial variations in the associations between explanatory and outcome variables. Older age,
being a woman, higher education, and having a lower access to supermarkets were associated with
higher Na:K ratio, while the opposite was seen for having the Swiss nationality. Socio-demographic
characteristics explained a major part of the identified clusters. Socio-demographic and food en-
vironment characteristics significantly differed between individuals in spatial clusters of high and
low Na:K ratio, Na, and K intakes. These findings could guide prioritized place-based interventions
tailored to the characteristics of the identified populations.

Keywords: geospatial analysis; sodium; potassium; GWR; social determinants of health; GIS; spa-
tial clustering

1. Introduction

Elevated blood pressure and hypertension are major, yet preventable, risk factors for
cardiovascular diseases and mortality, contributing to 49% of all coronary heart disease and
62% of all stroke events, and are leading causes of morbidity and mortality worldwide [1–5].
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Diets low in sodium (Na) and high in potassium (K) reduce the risk of hypertension and
related diseases [3,4,6–8]. Findings from past studies suggest that the ratio of the two
nutrients (Na:K ratio) is an even more important risk factor for cardiovascular disease and
mortality and, therefore, Na and K intakes should be examined jointly [9,10]. The World
Health Organization (WHO) recommends restricting Na intake to 2 g/day (equivalent
to 5 g salt/day), increasing K intake to 3.5 g/day [11] and having a Na:K intake ratio
of around 1 for optimal health [12]. Nevertheless, in most countries around the world,
populations are consuming much more Na and less K than recommended by the WHO
guidelines [11,13,14]. Salt reduction strategies are considered essential and cost-effectives
measures to improve public health [15–17]. Accordingly, various public health and policy
interventions have been implemented internationally and nationally to promote diets
low in Na and to increase attention to the risks associated with inadequate Na and K
intakes [18]. In Switzerland, for example, where adults consume around 9 g per day of salt,
the Salt Strategy, which has been in place since 2008, aims to reduce the population’s salt
consumption, gradually and on a voluntary basis, to reach a consumption of less than 8 g
per day in the medium term and less than 5 g per person per day in the long term [19].

Several studies have pointed out the existence for socioeconomic and geographic
gradients in salt intake, with socioeconomically disadvantaged populations having higher
intake of Na and lower K intake [20–22]. These populations are more likely to rely on
cheap, processed foods, which are often high in salt [20]. Numerous studies have also
assessed the association between the local food environment and dietary behaviors, mainly
in the context of the obesity epidemic [23,24]. However, until now, no study has jointly
examined the relations between socio-demographic and food environment characteristics
and Na:K ratio, Na, and K intakes.

In recent decades, spatial-based information and spatial analysis methods have been
increasingly used in epidemiological research to explore and examine the role of “place” as
a contextual factor for different health risk factors [25,26]. These spatial approaches offer
exploratory and explanatory insights beyond conventional epidemiological association
studies, which implicitly rely on the assumption that associations are invariant across
space. Most existing studies considering spatial variations are conducted using large
administrative units by aggregating individual-level data, which may alter the original
signal or not coincide with an adequate scale for the implementation of local policies or
public health interventions aimed at promoting a diet low in Na and high in K. Spatial
statistics and clustering methods allow determining whether observations in a study area
with a specific outcome are randomly distributed or unusually concentrated in space. In
case of spatial clustering, factors that may explain spatial dependence may be investigated
to provide insights into their underlying causes [26]. In this study, we aimed to (i) verify the
existence of spatial dependence of Na:K ratio, Na, and K intakes in a large population-based
study and (ii) investigate whether socio-demographic and residential food environment
factors are associated with the identified spatial clusters.

2. Materials and Methods
2.1. Study Design and Sample

Data were collected through the Bus Santé study, a continuing population-based study
in the canton of Geneva, Switzerland, with approximately 500,000 inhabitants in 2021,
monitoring health and cardiovascular risk factors. Independent samples of residents were
subjected to health examination surveys since 1993. The recruitment procedure has been
described in details in previous studies [27,28]. The average participation rate was 59%
(SD ± 7.4%) and ranged from 48% (2008) to 75% (2017). The geographic coordinates of
the residential address of the Bus Santé participants were used for spatial analyses. The
Bus Santé study was approved by the Cantonal Research Ethics Commission of Geneva,
Switzerland (PB_2016-00363).
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2.2. Food Frequency Questionnaire

Na and K intakes were assessed using a self-administered, semiquantitative food
frequency questionnaire (FFQ) originally developed and validated against 24-h dietary
recalls. The same FFQ was used throughout the entire study period (1993–2018). This
FFQ has been described in details elsewhere [25,29]. Daily Na and K intakes estimated
using this FFQ have been used in a previous study [30]. Briefly, Belle et al. converted food
portions into micronutrients based on two different food composition datasets: the French
Information Center on Food Quality and the Swiss Food Composition Database of the
Federal Food Safety and Veterinary Office [31,32]. K intake was calculated by summing
up the content of each FFQ item. We calculated Na intake using equations developed
specifically for this FFQ for males and females separately [13,30]:

Males :
(8.2 + 0.38 ∗ Na (g/day) f rom FFQ)

2.54
(1)

Females :
(4.55 + 0.67 ∗ Na (g/day) f rom FFQ)

2.54
(2)

These equations are based on calibrations on total salt intake from 24-h urine col-
lections in a validation study that included 100 healthy people [13,30]. Salt intake was
converted into Na intake, 1 g Na being equal to 2.54 g of salt (NaCl). The Na:K ratio corre-
sponds to the estimated Na intake (g/day) divided by the estimated K intake (g/day) [30].

2.3. Individual-Level Socio-Demographic Characteristics

Educational attainment was categorized into three categories: tertiary education, sec-
ondary education, and primary education. Occupation was categorized into four categories:
high (professional and intermediate professions), medium (non-manual occupations), low
(manual or lower occupations), and not working (unemployed, retired, or stay-at-home
participants, for whom data on their last occupied job was not available) [33]. Civil status
was dichotomized as being married/cohabiting or not; age was defined as a continuous
variable; nationality was dichotomized as having Swiss nationality or not.

2.4. Neighborhood Food Environment

We obtained the dataset of all registered companies in the canton of Geneva, compiled
by the “Répertoire des entreprises de Genève” (REG) [34] and made available by the
“Système d’information du territoire à Genève” (SITG) [35]. Yearly listings of all the
companies registered in the canton were available from 2003 to 2018, except 2006 and
2007, and contained designations that allowed us to disaggregate by outlet type, including
supermarket, grocery, and convenience stores. Geographic coordinates of each amenity
were provided in the dataset.

For each participant, we assessed the density of each food outlet category through
accessibility analyses. To consider the evolution in the built environment over the study
period (1993–2018), we matched the participation year of each participant to the closest
year available in the food outlet dataset. The number of food outlets by category and year
is described in Table S1.

For each participant and each food outlet category, we computed the density of food
outlets in the neighborhood. A linear decay function with a bandwidth of 800 m was used
to account for decreasing attractivity as the distance from home increased [36,37]. The street
network of the canton of Geneva was obtained using the OSMnx Python package [38]. The
study participants and food outlets were snapped (50 m maximum snapping distance) to
the nearest segment of the street network, and the Pandana Python package [39] was used to
perform the accessibility analyses. We specifically defined neighborhoods as an 800 m street
network distance for three reasons. First, distances between 400 m and 800 m are often used
as acceptable walking distances [36,37,40]. Secondly, street network buffers, in comparison
to circular buffers, better capture human mobility patterns because they account for the
constrains imposed by the street connectivity and impermeable barriers [41]. Finally, the
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800 m distance corresponds to the distance of maximum global spatial autocorrelation for
the Na:K ratio (see Section 3.3.1). Maps of the spatial distribution of the density of the three
different food outlets are presented in Figure S1.

2.5. Additional Area-Level Explanatory Variable

Since individual income data was unavailable, we used the yearly area-level median
household income for the years from 2005 to 2016, assigned to each individual based on
their year of participation (i.e., 1993–2004 assigned to 2005 and 2017 and 2018 assigned to
2016) and their corresponding statistical subsector in the Geneva (GIRECs)-neighborhood
definition by the State of Geneva (Office Cantonal de la Statistique, www.ge.ch/statistique
(accessed on 28 November 2020)).

2.6. Exclusion Criteria

We excluded participants that were not located within the canton of Geneva (n = 17,
0.06%). We excluded participants outside the 20–74 age range (n = 69, 0.3%) and those with
missing data for civil status (n = 31, 0.1%), occupation (n = 164, 0.7%), educational attain-
ment (n = 279, 1.1%), nationality (n = 92, 0.4%), Na and K intakes (n = 1, 0.004%), and neigh-
borhood median household income (n = 332, 1.4%). We also excluded 1544 participants
with extreme dietary intake (<850 kcal or >4500 kcal per day) [42]. A total of 22,495
individuals remained and were used for the analyses.

2.7. Regression Modelling
2.7.1. Ordinary Least Squares Regression Modelling

We first estimated ordinary least squares (OLS) models of Na:K ratio, Na intake. and
K intake in relation to neighborhood environment and socio-demographics characteristics.
Three models were estimated for each outcome variable: (i) model 1 included neighborhood
food environment variables, model 2 included individual-level socio-demographic charac-
teristics and the neighborhood median household income, and model 3 included model 1 +
model 2. All models were adjusted for total energy intake and year of participation.

2.7.2. Geographically Weighted Regression Modelling

Our goal was to investigate associations with socioeconomic and residential food
environment factors and analyze how the intensity and significance of these associations
varied over the study area. In the state of Geneva, socio-demographic factors [43] and access
to food outlets vary greatly across neighborhoods and municipalities (Figure S1). OLS may
be inappropriate when observations are not spatially independent, which can be assessed
by the presence of statistically significant spatial autocorrelation in the residuals [44].
Therefore, we used a geographically weighted regression (GWR), which accounts for
spatial dependence in the observations. Indeed, this method performs a separate local
regression model at each location, borrowing information from surrounding locations
(i.e., the neighbors of any participant) [45]. This technique has been shown to improve
model fit and reduce spatial autocorrelation in the residuals compared to OLS regression
models [46,47].

We used the Python package PySAL [46,48] for the GWR model implementation.
In this model, a circular kernel function is used to calculate a local regression at each
location. We used a fixed Gaussian kernel function and an Akaike information criterion
(AICc) optimized bandwidth. This kernel function allows to place more weight on nearby
observations. Finally, spatial autocorrelation in the residuals was evaluated for both OLS
and GWR models using the PySAL package in Python, where neighbors were defined based
on a fixed-distance band of 800 m for Na:K ratio and Na intake and a fixed-distance band
of 400 m for K intake based on the spatial scale determination (See Section 3.3.1). Given
the high number of results outputted by GWR analyses, we only presented visualization
of parameters estimates and t-values for the Na:K ratio adjusted with GWR model 3
(Figure S3).

www.ge.ch/statistique
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2.8. Spatial Analysis
2.8.1. Global Spatial Autocorrelation

Using the Python spatial analysis library PySAL 2.3, we assessed global spatial au-
tocorrelation in Na and K intakes with the Global Moran’s I (GMI) statistic [49]. For the
GMI calculations, we specified a fixed distance band spatial weights matrix: individuals
within the distance band are given the same weight, while those outside the distance
band are given a weight of zero [50]. The spatial weights matrix was row-standardized;
this technique is used particularly with binary weighting strategies to create proportional
weights in cases where individuals have an unequal number of neighbors [49]. The sta-
tistical significance was assessed with a Monte Carlo procedure, using a sample of 999
permutations [51]. The null hypothesis was that the variable is distributed randomly.
Moran’s I values range between −1 and 1: a GMI close to −1 indicates spatial dispersion,
while a GMI close to 1 indicates spatial clustering. A Moran’s I value near 0 indicates an
absence of spatial dependence. To determine the distance corresponding to the maximum
spatial autocorrelation in each outcome variable, subsequent GMI statistics were calculated
at incremental fixed distance bands of 200 m, 400 m, 600 m, 800 m, and 1000 m. We selected
the distance at which the statistically significant z-score peaked (i.e., the distance at which
the spatial processes promoting clustering are the most pronounced) [52,53].

2.8.2. Local Spatial Autocorrelation

Global measures of spatial dependence allow identifying whether spatial autocorre-
lation takes place in the study area but are unable to detect local clusters of high or low
values that may exist. Additionally, spatial processes occurring in only parts of the study
area can be missed [26]. We used the univariate Local Moran’s I statistic [51], a widely used
method for evaluating local spatial autocorrelation and identifying local spatial clusters of
both high and low Na:K ratio, Na, and K intakes. When calculating this statistic, we used
the same row-standardized fixed distance band weight matrix used for the global spatial
autocorrelation analysis. A significant positive local Moran’s I indicates that the individual
under study has a similarly high or low value as its neighbors, forming two classes: the
high-high class, with individuals showing a high value surrounded by neighbors with
high values, and the low-low class, with individuals showing low values surrounded by
neighbors with low values [51].

A significant negative local Moran’s I indicates outliers (i.e., individuals that differ
from their neighbors), forming two additional classes: the high-low class (individuals with
high value and low value neighbors) and the low-high class (individuals with low value
and high value neighbors). Statistical significance was evaluated using a Monte-Carlo
procedure, using a sample of 999 permutations. Values with a p-value below the 0.05
threshold were considered statistically significant.

Socio-demographic and food environment characteristics may be significant deter-
minants of Na and K intakes and may potentially explain the presence of local clustering
over the study area. Therefore, the Local Moran’s I statistic was calculated and mapped
for each unadjusted outcome variable and for the residuals of models 1, 2, and 3 of each
outcome variable. Local clusters persisting in the residuals correspond to spatial clustering
not explained by the included covariates [26]. Finally, we compared socio-demographic
and food environment characteristics of the high-high and low-low individuals using
radar plots.

3. Results
3.1. Descriptive Statistics
3.1.1. Sample Characteristics

After excluding participants for missing data, 22,495 (92.2%) participants were re-
tained. The mean age of the participants in the Bus Santé study (1993–2018) was 50.1 years
(SD ± 12.1 years); women and men were equally represented. Socio-demographic and
food environment characteristics of all included participants are presented in Table 1.
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Table 1. Individual and neighborhood characteristics of the Bus Santé study participants 1993–2018
(N = 22,495).

Value

Age, mean (SD) 50.1 (12)

Gender, n (%)
Woman 11,237 (50)

Man 11,258 (50)

Civil status, n (%)
Married/Cohabiting 16,192 (72)

Not married/cohabiting 6303 (28)

Occupation, n (%)
Low 9530 (42)

Medium 7587 (34)
High 4478 (20)

Not working 900 (4)

Education, n (%)
Primary 3296 (15)

Secondary 10,252 (45)
Tertiary 8947 (40)

Nationality, n (%)
Switzerland 15,624 (70)

Other 6871 (30)

Neighborhood median household
income (CHF), mean (SD) 128,831.4 (40,884.1)

Sodium and Potassium intake,
mean (SD)

Na Intake (g/day) 3.7 (1.6)
K Intake (g/day) 2.7 (1.0)

Na:K Ratio 1.4 (0.5)

Food environment, mean (SD)
Convenience store density

(800 m) 2.1 (2.8)

Grocery store density (800 m) 0.8 (1.4)
Supermarket density (800 m) 0.3 (0.5)

SD, standard deviation

3.1.2. Dietary Sources of Sodium and Potassium Intake

The main sources of Na were breads and cereals (31%), dairy products (20%), veg-
etables and vegetable dishes (13%), processed meat (9%), and fish (7%) (Figure S2A). The
main sources of K were vegetables and vegetable dishes (18%), fruit and fruit juices (17%),
breads and cereals (17%), dairy products (13%), meat (8%), and fish (5%) (Figure S2B).

3.2. Regression Analyses

Results from global models (OLS) and local models (GWR) are presented in Tables S2
and S3. GWR models outperformed the global OLS models (i.e., lower Akaike information
criterion) and reduced spatial autocorrelation in standardized residuals. Model evaluation
using the Akaike information criterion (AICc), which estimates the quality of the model,
considering both the goodness of fit and complexity, showed that GWR models 2 and 3
performed better than model 1 in all cases. The AICc of model 3 was similar to model 2 for
the three outcomes variables.

Considering socio-demographic characteristics, global OLS models adjusted for total
energy and year of survey showed that age, gender, and nationality were significantly
associated with each outcome variable. Older age and being a woman were associated with
lower Na:K ratio and showed a strong positive relationship with K intake and, to a smaller
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extent, with Na intake. Swiss nationality was associated with higher Na:K ratio, lower Na
intake, and K intake. Tertiary education was negatively associated with Na:K ratio and
positively with K intake; medium-skilled occupation was negatively associated with Na
intake and being married/cohabiting was associated with a slightly lower K intake. The
year of survey was positively associated with K intake and negatively associated with Na
intake (Table S2).

For food environment characteristics, the supermarket density was positively as-
sociated with K intake and negatively associated with Na:K ratio. However, no food
environment characteristics were significantly associated with Na intake (Table S2).

Furthermore, the associations between the explanatory variable and outcome variables
displayed clear spatial variability (Table S3). Several predictor variables were significant
over the entire study area, while others were only significant in some areas and few were
not statistically significant across the entire study area. Supermarket density was significant
only in the more isolated parts of the state of Geneva (Figure S3).

3.3. Spatial Analyses
3.3.1. Global Spatial Autocorrelation

The global spatial autocorrelation analysis using GMI statistics calculated at incre-
mental fixed distance bands showed that the Na:K ratio exhibited the strongest spatial
autocorrelation at a fixed distance band of 800 m (z-score = 1.747, p = 0.047). K intake
showed the strongest global spatial autocorrelation at 400 m (z-score = 1.929, p = 0.036)
(Table S4). Na intake showed no statistically significant global spatial autocorrelation at
any evaluated distance and was thus evaluated at the same distance as the Na:K ratio
(800 m) (Table S4).

3.3.2. Local Spatial Autocorrelation

Significant local spatial clusters were detected for both unadjusted and adjusted Na:K
ratio, Na, and K intakes.

For the unadjusted Na:K ratio, the low-low class regrouped 8% (n = 1804) of the
participants, mainly located in the urban parts of the state of Geneva and the high-high
class grouped 1.5% (n = 331) of the participants, dispersed in small clusters in the rural areas
(Figure 1A). After the full adjustment for both socio-demographic and food environment
characteristics (GWR Model 3), spatial clusters were reduced, with 4.3% (n = 973) of the
participants left in the low-low class and 0.9% (n = 204) of the participants in the high-high
class (Figure 1B).

Na intake showed similar patterns, with three large low-low class clusters in urban
areas grouping 5.5% (n = 1229) and several small high-high clusters (n = 203) (Figure S4A).
After full adjustment (GWR Model 3), Na intake low-low class mainly disappeared, with
only 1.1% (n = 255) of the participants remaining, while the high-high class clusters were
only slightly reduced and displaced (0.9%, n = 196) (Figure S4B).

Finally, unadjusted K intake did not show an urban-rural divide with either low-low
(4.8%, n = 1084) or high-high class clusters (2.1%, n = 481) found in urban and rural areas
(Figure S5A). After full adjustment (GWR Model 3), the low-low class was thinned down
to 1.9% of the participants (n = 433), while the high-high class almost doubled in size
(3.2%, n = 721), with new clusters appearing and others slightly geographically displaced
(Figure S5B).
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Figure 1. Local spatial clustering of Na:K ratio. Local Moran’s I spatial clusters of the Na:K ratio
(A) unadjusted and (B) adjusted for socio-demographic and food environment characteristics using a
geographically weighted regression (GWR model 3). The dark red markers (1 High-High) correspond to
the individuals with a high Na:K ratio surrounded by individuals with a high Na:K ratio. The light blue
markers (2 Low-High) correspond to individuals with a low Na:K ratio surrounded by individuals with
a high Na:K ratio. The dark blue markers (3 Low-Low) correspond to individuals with a low Na:K ratio
surrounded by individuals with a low Na:K ratio. The light red markers (4 High-Low) correspond to
individuals with a high Na:K ratio surrounded by individuals with a low Na:K ratio. Grey markers are
not significant at α = 0.05. White lines correspond to municipality delimitations.

Maps of the Na:K ratio, Na, and intakes adjusted for food environment characteristics
(GWR Model 1) and socio-demographic characteristics (GWR Model 2) are presented in the
Supplementary Materials (Figures S6–S8). Overall, adjustment for food environment char-
acteristics (GWR Model 1) only slightly attenuated the spatial clusters, while the adjustment
for socio-demographic factors (GWR Model 2) greatly influenced the spatial clustering.
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3.3.3. Socio-Demographic and Food Environment Differences between High-High and
Low-Low Class Clusters of Unadjusted Na:K Ratio, Na, and K Intakes

We found statistically significant differences in socio-demographic and food environ-
ment characteristics for the three outcome variables, which can be visualized with radar
plots (Figure 2A–C).

Figure 2. Characterization of local spatial clusters. Radar plot of standardized socio-demographic
and food environment characteristics in high-high and low-low spatial clusters for (A) Na:K ratio,
(B) Na intake, and (C) K intake. The mean (SD) is provided under each characteristic. High-high
class (HH); low-low class (LL). The statistical significance was evaluated using Welch’s t-tests for
continuous variables and Fisher’s exact tests for binary variables. * p-value < 0.05.



Nutrients 2021, 13, 1798 10 of 16

For Na:K ratio clusters (Figure 2A), individuals in the high-high class had a Na:K ratio
of 1.8 (SD ± 0.36), a Na intake of 4.5 g (SD ± 1.52), and a K intake of 2.5 g (SD ± 0.75 g),
while individuals in the low-low class had a Na:K ratio of 1.1 (SD ± 0.24), a Na intake of
3.0 g (SD ± 1.18 g), and a K intake of 2.9 g (SD ± 1.09 g). The proportions of highly skilled
occupation individuals and neighborhood median household income were higher in the
high-high class. However, the proportion of individuals with a tertiary education was
lower, while the proportion of individuals with a primary education was higher, suggesting
a relationship with educational attainment rather than occupation level and neighborhood
median household income. The proportion of married or cohabiting individuals and the
proportion of individuals of Swiss nationality were significantly higher in the high-high
class. Concerning food environment characteristics, individuals in the low-low class had a
significantly higher walking-distance density of the three categories of food outlets, which
could be explained by the urban-rural divide previously identified (Figure 1).

For Na intake clusters (Figure 2B), individuals in the high-high class had an estimated
daily Na intake of 5.1 g (SD ± 1.36 g), a Na:K ratio of 1.7 (SD ± 0.47), and a K intake of
3.2 g (SD ± 1.07 g), while those in the low-low class had an estimated daily Na intake of
2.4 g (SD ± 0.65), a Na:K ratio of 1.2 (SD ± 0.39), and a K intake of 2.4 g (SD ± 0.8 g). The
proportion of individuals married or cohabiting, having a high-skilled occupation, and
with a neighborhood median household income was significantly higher for the high-high
class. Individuals in the low-low class had a significantly higher walking-distance density
of food outlets.

Finally, the comparison of differences in the spatial clusters of K intake (Figure 2C)
showed that individuals in the high-high class had an estimated daily K intake of 3.6 g
(SD ± 0.81), a Na:K ratio of 1.3 (SD ± 0.45), and a Na intake of 4.6 g (SD ± 1.69 g), while
those in the low-low class had a daily intake of 2.1 g (SD ± 0.42), a Na:K ratio of 1.5
(SD ± 0.52), and a Na intake of 3.2 g (SD ± 1.22 g). The proportion of individuals married
or cohabiting, having a tertiary education, and older age was significantly higher for
the high-high class. Again, individuals in the low-low class had a significantly higher
walking-distance density of food outlets.

4. Discussion

This study reveals statistically significant local spatial clusters of both unadjusted and
adjusted Na:K ratio, Na, and K intakes in a large population-based study, representative of
the state of Geneva, Switzerland (population around 500,000). In unadjusted Na:K ratio
spatial clusters, Na:K ratio was slightly above the recommendation of 1.0 in the low-low
class, while it was almost double the recommendation in the high-high class. Na intake
was more than twice the amount recommended by the WHO guidelines of <2 g/day,
while K intake was under the WHO recommendations of >3.5 g/day for individuals in
the high-high class. Individuals in the low-low class of Na:K ratio, Na, and K had dietary
intakes closer to the WHO recommendations, yet remained inadequate. This highlights
that, despite improvements in recent decades, population-wide interventions aimed at
reducing Na intake and increasing K intake remain essential [18]. Our analyses have
also shown that the Na:K ratio, Na, and K intakes are associated with location-specific
socio-demographic and food environment characteristics.

To the best of our knowledge, this is the first study to examine Na:K ratio, Na, and
K intakes simultaneously using a fine-scale geospatial approach. Other studies have
considered geographical variations of Na and K intakes but at much broader scales [20–22].
Spatial analysts are increasingly recognizing the importance of using small units of analysis.
By using individual points, thus considering space as a continuum, we avoid the bias
resulting from the modifiable areal unit problem (MAUP), which affects results when
point-based measures are aggregated [54].

Our fine-scale geospatial approach adds an important level of detail by using lo-
cal spatial modelling. Unlike global regression, which provides a global estimate of the
relationships among explanatory and dependent variables, local models, such as GWR,
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account for the possible spatial variations in these relationships. In line with previous
studies, local regression modelling (GWR) outperformed global models (OLS) (i.e., lower
AICc and reduction of the spatial autocorrelation in the residuals) [55,56]. Recent publica-
tions have demonstrated the analytical utility of GWR for investigating a variety of health
risk factors [57–60]. The results of GWR show that, even within a relatively small region
(282.5 km2), relations between explanatory and dependent variables may have opposite
directions, further highlighting the interest of a fine-scale approach.

The adjustment for socio-demographic and food environment characteristics in sepa-
rate models allowed us to evaluate how these factors may explain the presence of spatial
clustering. Overall, the model adjusting socio-demographic characteristics drastically
modified the spatial clusters, suggesting that the identified relationships (age, gender,
nationality, tertiary education, medium-skilled occupation) may explain a major part of the
unadjusted spatial clusters. Inversely, the model adjusting for food environment charac-
teristics only very slightly modified the spatial clusters, suggesting that the relationships
between walking distance density (800 m) of the three categories of food outlets and the
outcome variables contributed very little to the initial unadjusted spatial clusters. These
findings are in agreement with previous studies that examined spatial variations in Na and
K intakes in Italy and the UK [20–22]. These studies found that variations in Na intake
were explained by a social gradient in consumption, with less advantaged groups having a
significantly higher Na intake [20–22].

We found that higher education attainment is associated with a lower Na:K ratio.
The consideration of different indicators of socioeconomic status (SES) (i.e., educational
attainment, occupation, and income) allowed to precisely assess the mechanisms, linking
socioeconomic exposures to dietary intakes of Na and K [61]. The identified relationship
between higher education and lower Na:K ratio is in alignment with the results of a recent
meta-analysis of the association between SES and Na and K intakes [62]. The median
neighborhood-level household income was not significantly associated with any outcome;
this could be because individual-level indicators of SES accounted for most of the variation
in Na and K intakes. However, neighborhood income was significantly different between
individuals in the high-high and low-low class of Na:K ratio, which could be explained by
the urban-rural divide identified through the local spatial clustering analysis.

Higher supermarket density was significantly associated with lower Na:K ratio and
higher K intake. Associations between diet quality and supermarket access have been
previously noted in other studies [63]. The persistence of spatial clusters after adjustment
for socio-demographic and food environment characteristics suggests that other explana-
tory variables promote the clustering of the outcome variables. For example, we only
considered geographical accessibility to food outlets in the vicinity of homes and did not
include measures of nonresidential accessibility or factors shaping the spatial scales of indi-
viduals (e.g., car ownership, walkability, public transports) [45]. Future studies should also
consider including measures of economic accessibility, known to be associated with overall
diet quality, Na, and K intakes [64,65]. Additionally, individual-level income may not have
been adequately captured by using the aggregated area-level median household income.

The health benefits of reducing the Na:K ratio have been established [6]. Despite
a decreasing trend in salt consumption in recent decades, the presence of a poor Na:K
ratio in both high and low spatial clusters of Na:K calls for a continued effort to optimize
the Na:K ratio in the general population. The reduction of the consumption of food
groups found to be associated with higher Na:K could be achieved by improving food
labeling [66]. Furthermore, the salt content of processed and prepared foods should be
gradually reduced [19,67]. To complement these population-wide strategies, the precise
identification of populations and areas presenting particularly high Na:K ratio and their
detailed characterization could enable decision-makers to prioritize resource allocation
and deploy improved and targeted local Na:K reduction strategies.
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Strengths and Limitations

First, we based our spatial analyses on widely used spatial statistics and the global
and the local Moran’s I, which have been shown to be valid and robust indicators of spatial
autocorrelation. Second, the evolution of the food environment and neighborhood income
during the study period was considered using historical data. Third, we determined the
spatial scales of our study based on objective measures of global spatial autocorrelation,
measured at incremental distances. Finally, our study benefited from the use of a large
population-based study, with a homogenous and dense geographical distribution across
the study area.

Several limitations of the present study should be noted. First, the cross-sectional
nature of our data does not permit to draw conclusions concerning causal relationships. Sec-
ond, we estimated Na and K intake based on a FFQ, which is designed to rank individuals
according to their Na and K intake. This could have resulted in an under- or overestimation
of the actual consumption. However, we used a calibrated equation based on a validation
study, with 24-h urine collection among Swiss adults to compensate for incorrect estimated
Na intake. A recent study using the same FFQ and calibrated Na intake, alongside spot
urine samples, saw similar intake levels [30]. Third, despite recruitment methods aimed at
collecting information on a representative sample of the general population, a participation
bias cannot be excluded. Still, to reduce participation bias, the Bus Santé study randomly
selects residents of the canton of Geneva, offers no monetary incentives, sends multiple
reminders to selected citizens, and facilitates disadvantaged populations’ participation
with a mobile medical unit that covers multiple areas of the canton [27].

5. Conclusions

International and national programs and interventions to reduce Na intake and pro-
mote healthy food options high in K remain essential. Our findings suggest that more
progress may be achieved by complementing these population-wide strategies with local
place-based interventions tailored to at-risk populations.

This study provides a fine-scale identification of at-risk populations and adds to the
limited knowledge on the spatial variation of the Na:K ratio, Na, and K intakes and their
determinants. We identified statistically significant spatial clustering of the Na:K ratio,
Na, and K intakes in a large population-based study representative of the state of Geneva,
Switzerland. The GWR analyses show that spatial variations in the determinants of Na:K
ratio, Na, and K intakes exist. Older age, being a woman, higher education, and having
a higher access to supermarkets are associated with lower Na:K ratio, while the opposite
is seen for Swiss nationality. Our findings can be used to facilitate and inform prioritized
place-based interventions tailored to identified populations, which may help reduce the
prevalence of hypertension-related diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13061798/s1. Figure S1: Density of food outlets for each Bus Santé participant calculated
within a 800 m street network distance and using a linear decay function to account for decreasing
attractivity as the distance increases. Categories specified using a natural breaks classification. (A)
Conveniences stores, (B) grocery stores and (C) supermarkets. Figure S2: Main sources of estimated
dietary Na (A) and K (B) intakes in the 1992–2018 Bus Santé (n = 22,495) study. Figure S3: Composite
maps of significant and insignificant (grey) parameter estimates with correction for multiple depen-
dent hypothesis tests for the explanatory variables of the geographically weighted regression model
adjusting Na:K ratio for both socio-demographic and food environment characteristics (GWR Model
3). Categories specified using a natural breaks classification. (A) Intercept, (B) Total energy intake,
(C) Year of survey, (D) Age, (E), Gender, (F) Nationality, (G) High skilled occupation, (H) Medium
skilled occupation, (I) Low skilled occupation, (J) Tertiary education, (K) Secondary education, (L)
Neighborhood median income, (M) Married-cohabiting, (N) Convenience store density (800m), (O)
Grocery store density (800m) and (P) Supermarket density (800m). Figure S4: Local spatial clustering
of Na intake. Local Moran’s I spatial clusters of Na intake (A) unadjusted and (B) adjusted for
socio-demographic and food environment characteristics using a geographically weighted regression

https://www.mdpi.com/article/10.3390/nu13061798/s1
https://www.mdpi.com/article/10.3390/nu13061798/s1
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(GWR model 3). The dark red markers (1 High-High) correspond to the individuals with a high
Na intake surrounded by individuals with a high Na intake. The light blue markers (2 Low-High)
correspond to individuals with a low Na intake surrounded by individuals with a high Na intake.
The dark blue markers (3 Low-Low) correspond to individuals with a low Na intake surrounded by
individuals with a low Na intake. The light red markers (4 High-Low) correspond to individuals
with a high Na intake surrounded by individuals with a low Na intake. Grey markers are not
significant at α = 0.05. White lines correspond to municipality delimitations. Figure S5: Local spatial
clustering of K intake. Local Moran’s I spatial clusters of K intake (A) unadjusted and (B) adjusted for
socio-demographic and food environment characteristics using a geographically weighted regression
(GWR model 3). The dark red markers (1 High-High) correspond to the individuals with a high
K intake surrounded by individuals with a high K intake. The light blue markers (2 Low-High)
correspond to individuals with a low K intake surrounded by individuals with a high K intake.
The dark blue markers (3 Low-Low) correspond to individuals with a low K intake surrounded by
individuals with a low K intake. The light red markers (4 High-Low) correspond to individuals with
a high K intake surrounded by individuals with a low K intake. Grey markers are not significant at
α = 0.05. White lines correspond to municipality delimitations. Figure S6: Local Moran’s I spatial
clusters of Na:K ratio (A) adjusted for food environment characteristics (GWR model 1) and (B) socio-
demographic characteristics (GWR model 2) using a geographically weighted regression (GWR). The
dark red markers (1 High-High) correspond to the individuals with a high Na:K ratio surrounded by
individuals with a high Na:K ratio. The light blue markers (2 Low-High) correspond to individuals
with a low Na:K ratio surrounded by individuals with a high Na:K ratio. The dark blue markers (3
Low-Low) correspond to individuals with a low Na:K ratio surrounded by individuals with a low
Na:K ratio. The light red markers (4 High-Low) correspond to individuals with a high Na:K ratio
surrounded by individuals with a low Na:K ratio. Grey markers are not significant at α = 0.05. White
lines correspond to municipality delimitations. Figure S7: Local Moran’s I spatial clusters of Na
intake (A) adjusted for food environment characteristics (GWR model 1) and (B) socio-demographic
characteristics (GWR model 2) using a geographically weighted regression (GWR). The dark red
markers (1 High-High) correspond to the individuals with a high Na intake surrounded by individu-
als with a high Na intake. The light blue markers (2 Low-High) correspond to individuals with a low
Na intake surrounded by individuals with a high Na intake. The dark blue markers (3 Low-Low)
correspond to individuals with a low Na intake surrounded by individuals with a low Na intake.
The light red markers (4 High-Low) correspond to individuals with a high Na intake surrounded by
individuals with a low Na intake. Grey markers are not significant at α = 0.05. Black lines correspond
to municipality delimitations. Figure S8: Local Moran’s I spatial clusters of K intake (A) adjusted for
food environment characteristics (GWR model 1) and (B) socio-demographic characteristics (GWR
model 2) using a geographically weighted regression (GWR). The dark red markers (1 High-High)
correspond to the individuals with a high K intake surrounded by individuals with a high K intake.
The light blue markers (2 Low-High) correspond to individuals with a low K intake surrounded by
individuals with a high K intake. The dark blue markers (3 Low-Low) correspond to individuals with
a low K intake surrounded by individuals with a low K intake. The light red markers (4 High-Low)
correspond to individuals with a high K intake surrounded by individuals with a low K intake. White
markers are not significant at α = 0.05. Black lines correspond to municipality delimitations. Table S1.
Number of food outlets by period and food outlet category. The periods of participation to the Bus
Santé study of each participant are matched to the closest year available in the food outlet dataset. Ta-
ble S2. Global modeling (OLS) of the associations between socio-demographic and food environment
characteristics, and Na:K ratio, Na and K intakes (n = 22,495), Bus santé study, Geneva, Switzerland,
1993-2018. Table S3. Local modeling (GWR) of the associations between socio-demographic and
food environment characteristics, and Na:K ratio, Na and K intakes (n = 22,495), Bus santé study,
Geneva, Switzerland, 1993-2018. Table S4. Global Moran’s I statistics, z-scores and p-values calculated
incrementally at a fixed distance band of 200 m, 400 m, 600 m, 800 m and 1000 m.
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