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Following its emergence in late 2019, the spread of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)** has been tracked via phylogenetic analysis of viral
genome sequences in unprecedented detail>>. While the virus spread globally in early
2020 before borders closed, intercontinental travel has since been greatly reduced.
However, within Europe travel resumed in the summer of 2020. Here we reportona
novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and
subsequently spread across Europe. We find no evidence of increased transmissibility,
butinstead demonstrate how rising incidence in Spain, resumption of travel, and lack
of effective screening and containment may explain the variant’s success. Despite
travel restrictions, we estimate 20E (EU1) was introduced hundreds of times to
European countries by summertime travelers, likely undermining local efforts to keep
SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become
dominant evenin absence of a substantial transmission advantage in favorable
epidemiological settings. Genomic surveillance s critical to understanding how
travel canimpact SARS-CoV-2 transmission, and thus for informing future
containment strategies as travel resumes.

Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is the
first pandemic where the spread of a viral pathogen has been globally
tracked in near real-time using phylogenetic analysis of viral genome
sequences®>.SARS-CoV-2 genomes continue tobegenerated atarate
far greater than for any other pathogen and more than 950,000 full
genomes are available on GISAID as of April 2021°.

Inaddition to tracking the viral spread, these sequences have been
used to monitor mutations which might change the transmission,
pathogenesis, or antigenic properties of the virus. One mutation in
particular, D614G in the spike protein (Nextstrain clade 20A and its
descendants), seededlarge outbreaksin Europein early 2020 and sub-
sequently dominated the outbreaks in the Americas, thereby largely
replacing previously circulating lineages. This rapid rise led to the
suggestion that this variant is more transmissible, which has since
been corroborated by phylogenetic”® and experimental evidence®™.
Subsequently, three variants of concern (VoCs), 501Y.V1/B.1.1.7"%2,
501Y.V2/B.1.351* and 501Y.V3/P.1* with increased transmissibil-
ity and/or partial neutralization escape, were identified at the end
0f2020.

Following the global dissemination of SARS-CoV-2 in early 2020°,
intercontinental travel dropped dramatically. Within Europe, however,
travel and in particular holiday travel resumed in summer. Here we
report on a SARS-CoV-2 variant 20E (EU1) (S:A222V) that emerged in
early summer 2020, presumably in Spain, and subsequently spread
to multiple locations in Europe, rising in frequency in parallel. As we
report here, this variant, 20E (EU1), and asecond variant 20A.EU2 with
mutation S477N in the spike protein accounted for the majority of
sequences in Europe in the autumn of 2020.

Europeanvariantsin Summer 2020

Figure 1shows atimescaled phylogeny of sequences sampledin Europe
throughthe end of November and their global context, highlighting the
variants discussed here. A cluster of sequencesin clade 20A has anaddi-
tional mutation S:A222V colored in orange. We designate this cluster as
20E (EU1) (this cluster consists of lineage B.1.177 and its sublineages'®).

In addition to 20E (EU1), a variant (20A.EU2; blue in Fig. 1) with sev-
eralamino acid substitutions, including S:5S477N, became commonin
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some European countries, particularly France (Fig. ED1). The S:S477N
substitution has arisen multiple times independently, for example
in clade 20F that dominated the outbreak in Oceania during the
southern-hemisphere winter. Residue S477 is close to the receptor
bindingsite (Fig ED2) and part of the epitope recognized by the S2E12
and C102 neutralizing antibodies"',

Several other smaller clusters defined by the spike mutations D80Y,
S98F, N439K are also seen in multiple countries (see Table ED I and
Fig. ED1). While none of these have reached the prevalence of 20E (EU1)
or20A.EU2, some have attracted attention in their own right: S:N439K
is presentintwolarger clusters found across Europe and arose several
times independently. Updated phylogenies and further analyses for
these and other variants are available at CoVariants.org.

Characterization of S:A222V

Our analysis here focuses on the variant 20E (EU1) with substitution
S:A222V in the spike protein’s domain A (Fig. ED2) also referred to as
the N-terminal domain (NTD)'#?%*,S:A222Vis not known to play a direct
roleinreceptor binding or membrane fusion for SARS-CoV-2. However,
mutations can sometimes mediate long-range effects on protein con-
formation or stability.

To evaluate if the A222V mutation affects the conformation of the
SARS-CoV-2spike glycoprotein, we probed binding of the benchmark
COVID-19 convalescent patient plasma from the National Institute for
Biologicals Standards and Control, and neutralizing monoclonal anti-
bodies recognizing the RBD (S2E12 and $309'¥%*?%) and NTD (4A8)*. The
dose-response curves were indistinguishable for the SARS-CoV-2 2PS
andthe SARS-CoV-22P A222VD614G S ectodomain trimers (observed
by ELISA, Fig. ED3a-d), aligning with results fromarecent study®. Col-
lectively, these dataindicate that the A222V substitution does not affect
the SARS-CoV-2 S antigenicity appreciably.

Totest whether the A222V mutation had an obvious functional effect
onspike’s ability to mediate viral entry, we produced lentiviral particles
pseudotyped with spike either containing or lacking the A222V muta-
tioninthebackground of the D614G mutation and deletion of the end of
spike’s cytoplasmictail. Lentiviral particles with the A222V mutant spike
had slightly higher titers than those without (mean1.3-fold higher),
although the difference was not statistically significant after normali-
zation by p24 concentration (Fig. ED3e-h). Therefore, A222V does not
lead to the same large increases in the titers of spike-pseudotyped
lentivirus that has been observed for the D614G mutation™ However,
this small effect must be interpreted cautiously, as the effects of muta-
tionson actual viral transmission in humans are not always paralleled
by measurements made in simplified experimental systems.

In addition to S:A222V, 20E (EU1) has the amino acid mutations
ORFIO:V30L, N:A220V and ORFI4:L67F. However, there is little evi-
dence of the functional relevance of ORF10 and ORF14*¢7. Different
mutations between positions 180 and 220 in Nare observed in almost
every major lineage and we are not aware of any evidence suggest-
ing that these mutations have important phenotypic consequence.
Therefore, we examined epidemiological and phylogenetic evidence
to explainthe spread of 20E (EU1).

Early observations of 20E (EU1)

The earliest sequences were sampled on the 20th of June, (7 Spanish
and 1Dutch sequence). By the end of August, 20E (EU1) also included
sequences from Belgium, Switzerland, France, Denmark, the UK,
Germany, Latvia, Sweden, Norway and Italy. Sequences from Hong
Kong, Australia, New Zealand, and Singapore, presumably exports from
Europe, were first detected between mid-August and mid-October (see
Supplementary Tablel).

The proportion of sequences from several countries which fall
into 20E (EU1), by ISO week, is plotted in Fig. 2. 20E (EU1) first rose in
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frequency in Spain, jumping to around 50% prevalence withinamonth
of thefirst sequence being detected before rising to 80%. In many Euro-
pean countries, we observe a gradual rise starting in mid-July before
settling at alevel between 15 and 80% in September or October.

Expansion and spread across Europe

To quantify the spread of EU1 across Europe, we constructed a phy-
logeny (Fig. ED4a) based on datafrom samples collected before 2020-
09-30 and available on GISAID inJan 2021, as described in Methods.
The phylogeny is collapsed to group diversity possibly stemming
from within-country transmission into sectors of the pie-charts (see
Fig. ED4b-d) for selected countries. The tree indicates that 20E (EU1)
harbors substantial diversity and most major genotypes have been
observed in many European countries. Since it is unlikely that phylo-
genetic patterns sampled in multiple countries arose independently,
itis reasonable to assume that the majority of mutations observed in
thetree arose once and were carried (possibly multiple times) between
countries. Throughout July and August 2020, Spain had a higher per
capitaincidence than most other European countries (see FigED5) and
20E (EU1) was much more prevalentin Spainthen elsewhere, suggesting
Spain aslikely origin of most 20E (EU1) introductions to other countries.

Epidemiological datafrom Spainindicatestheearliest sequencesin
the cluster are associated with two known outbreaksin the north-east
of the country. The variant seems to have initially spread among agri-
cultural workersin Aragon and Catalonia, then moved into the local
population, where it was able to travel to the Valencia Region and on
to therest of the country.

Most basal genotypes have been observed bothin Spainand alarge
number of other countries, suggesting repeated exports. However,
the 795 sequences from Spain contributing to Fig. ED4a likely do not
represent the full diversity. Variants found only outside of Spain may
reflect diversity that arose in secondary countries, or may represent
diversity present but not sampledin Spain (particularly as some Euro-
pean countries like the UK and Denmark sequence a high proportion
of cases). Despite limitationsin sampling, Fig. ED4a clearly shows that
most major genotypes inthis cluster were distributed to multiple coun-
tries, suggesting thatidentical genotypes were introduced into many
countries. This is consistent with the large number of introductions
estimated from travel data, discussed below. Whileinitialintroductions
of the variant likely originated from Spain, 20E (EU1) cases outside of
Spainsurpassed thosein Spaininlate September and later cross-border
transmissions likely originated in other countries (see Fig ED5 B). (See
supplementary text for a discussion of travel restrictions in selected
European countries and the associated patterns of 20E (EU1) intro-
ductions.)

Fig. ED4e shows the distribution of sequence clusters compatible
with onward transmission within countries outside of Spain, highlight-
ing two different patterns. Norway and Iceland, for example, seem to
have only asmallnumber of introductions over the summer thatled to
substantial further spread. In Fig. ED4a, the majority of sequences from
these countries fallinto one sector, the remainder are singletons or very
small clusters that have not spread. However, later sequences in Norway
or Iceland often cluster more closely with diversity in non-Spanish
European countries, which may suggest further introductions came
from third countries (see 20E (EU1) Nextstrain build online).

In contrast, countries like Switzerland, the Netherlands, or the United
Kingdom have sampled sequences that correspond to a large num-
ber ofindependentintroductions thatinclude most major genotypes
observed in Spain.

No evidence for transmission advantage

Duringadynamic outbreak, itis particularly difficult to unambiguously
tell whether a particular variant is increasing in frequency because it



has an intrinsic advantage, or because of epidemiological factors®.
In fact, itis a tautology that every novel big cluster must have grown
recently and multiple lines of independent evidence are required in
support of anintrinsically elevated transmission potential.

20E (EU1) was dispersed across Europe initially mainly by travelers
toand from Spain. Many EU and Schengen-area countries opened their
borders to other countries in the bloc on 15th June. Travel resumed
quickly and peaked duringJuly and August, see Fig. 3. The number of
confirmed SARS-CoV-2 cases in Spain rose from around 10 cases per
100k inhabitants per week in early July to 100 in late August, while
case numbers remained low in most of Europe during this time. To
explore whether repeated imports are sufficient to explain the rapid
risein frequency and the displacement of other variants, we first esti-
mated the number of expected introductions of 20E (EU1) based on the
number of visitors from a particular country to different provinces of
Spainand the SARS-CoV-2incidence inthe provinces. Taking reported
incidence in the provinces at face value and assuming that returning
tourists have a similar incidence, we expect 380 introductions of 20E
(EU1) into the UK over the summer (6 July-27 Sept, see Supplementary
Tablelland Fig. 3 for tourism summaries® and departure statistics®’).
Similarly, for Germany and Switzerland we would expect around 320
and 90 introductions of 20E (EU1), respectively. We then create asim-
ple model that also incorporates the incidence in the country where
travelers are returning to and onward spread of imported 20E (EU1)
casesto estimate the frequency of 20E (EU1) in countries across Europe
over time (see Fig. 3). This model assumes that 20E (EU1) spread at
the same rate as other variants in the resident countries and predicts
that the frequencies of 20E (EU1) would start rising in July, continue
to rise through August, and be stable thereafter in concordance with
observations in many countries (see Fig. 3 B).

While the shape of the expected frequency trajectories fromimports
in Fig. 3 B is consistent with observations, this naive import model
underestimates the final observed frequency of 20E (EU1) by between
1-and 12-fold depending on the country, see Fig. ED6. This discrepancy
mightbe dueto either intrinsically faster transmission of 20E (EU1) or
due to underestimation of introductions. Underestimates might be
due to country-specific reporting such as the relative ascertainment
rate in source and destination populations and the fact that risk of
exposure and onward transmission are likely increased by travel-related
activitiesboth abroad, enroute, and athome. Furthermore, SARS-CoV-2
incidence in holiday destinations may not be well-represented by the
provincial averages used in the model. For example, during the first
waveinspring 2020, some skiresorts had exceptionally highincidence
and contributed disproportionately to dispersal of SARS-CoV-23"%,
The fact that the rapid increase of the frequency of 20E (EU1) slowed
or stopped inmost countries after the summer travel period and didn’t
fully replace other variantsis consistent withimport driven dynamics
with little or no competitive advantage.

The notion that an underestimated incidence in travel returnees
rather thanfaster spread of 20E (EU1) is the major contributor to above
discrepancy is supported by the fact that German authorities report
about 2.2 times as many cases with suspected infection in Spain than
the model predicts (982 reported vs 452 estimated from 6 July-13 Sept
regardless of variant), see Fig. ED7 A. Switzerland reported 131 infec-
tionsintravel returnees, while the model predicts 130. After adjusting
imports for the 37% of Swiss case reports without exposure informa-
tion, themodel underestimates introductions 1.6-fold. Countries with
small(1-4 fold) and large (8-12 fold) discrepancies tend to visit distinct
destinations in Spain, see Figs. ED6 and ED7(c-e), further suggesting
that underestimation of incidence in travel returnees is determined
by destination and behavior.

Toinvestigate the possibility of faster growth of 20E (EU1) introduc-
tions, we identified 20E (EU1) and non-20E (EU1) introductions into
Switzerland and their downstream Swiss transmission chains. These
data suggest 34 or 291 introductions of 20E (EU1) depending on the

criterion used to assign sequences to putative transmission chains
(see Methods). Phylodynamic estimates of the effective reproduc-
tive number (R,) through time for introductions of 20E (EU1) and for
othervariants (see Fig. ED8) suggest atendency for 20E (EU1) introduc-
tions to transiently grow faster. This transient signal of faster growth,
however, is more readily explained with behavioral differences and
increased travel-associated transmission thanintrinsic differences to
the virus. We repeated the phylodynamic analysis with a pan-European
set of putative introductions showing similar patterns as observed for
Switzerland.

These patterns are further consistent with the fact that Swiss cases
with likely exposure in Spain tended to be in younger individuals
(median 30 years, IQR 23-42.25 years) than cases acquired in Switzer-
land (median 35 years, IQR 24-51years). These younger individuals tend
to have more contacts than older age groups®?*. Such association with
particular demographics will decay rapidly and with it any associated
increased transmission inferred by phylodynamics.

Most 20E (EU1) introductions are expected to have occurred towards
the end of summer whenincidence inSpain wasrising and return travel
volume peaked. Comparatively high incidence of non-20E (EU1) vari-
antsatthis time and hence arelatively lowimpact ofimported variants
(e.g.Belgium, see Fig. ED5) might explain why 20E (EU1) remains at low
frequencies in some countries despite high-volume travel to Spain.

Casenumbersacross Europe started torise rapidly around the same
time the 20E (EU1) variant started to become prevalent in multiple
countries (Fig. ED5). However, countries where 20E (EU1) was rare
(Belgium, France, Czech Republic, Fig. ED1) have seen similarly rapid
increases, suggesting that this rise was not driven by any particular
lineage and that 20E (EU1) has no substantial difference in transmis-
sibility. Furthermore, we observe in Switzerland that R, increased in fall
by acomparable amount for the 20E (EU1) and non-20E (EU1) variants
(see (Fig. ED8). While we cannot rule out that 20E (EU1) has a slight
transmission advantage compared to other variants circulating at the
time, most of its spread is explained by epidemiological factors., The
arrival of fall and seasonal factors are amore plausible explanation for
the resurgence of cases™.

Discussion

Therapid spread of 20E (EU1) and other variants underscores the impor-
tance of a coordinated and systematic sequencing effort to detect,
track, and analyze emerging SARSCoV-2 variants. This becomes even
more urgent with the recent detection of several VoCs" ™", It is only
through multi-country genomic surveillance thatit hasbeen possible
to detect and track 20E (EU1) and other variants.

When a new variant is observed, policy makers need a rapid assess-
ment of whether the new variant increases the transmissibility of the
virus, evades pre-existing immunity or has different clinical properties®.
In case of 20E (EUI) none of these seem to have changed substantially,
making it an important example of how travel combined with large
regional differences in prevalence can lead to substantial rapid shifts
inthevariant distributionwithoutadramatic transmission advantage.
Such shifts that are driven predominantly by epidemiological factors
aremorelikelyinalowincidence setting, where alarge fraction of cases
canbeduetointroductions.In contrast, the VoC 501Y.V1/B.1.1.7 spread
across Europeinlate 2020 while most countries, including the UK, where
itfirstroseto prominence, reported highincidence.Insuchahighinci-
dencesetting, travel alone cannot explain arapidrise in frequency and
the dynamics points to a bona fide transmission advantage. In depth
characterization of aspectrum of such dynamics (no substantial advan-
tage in case of 20E (EU1), moderate advantage in case of D614G®, and a
strong transmission advantage of 501Y.V1/B.1.1.7"">and 501Y.V2") will
facilitate assessment of emerging variants in the future.

Finally, our analysis highlights that countries should carefully con-
sider theirapproachto travel whenlarge-scale inter-country movement
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resumes across Europe. We show that holiday travel in summer 2020
resulted in unexpectedly high levels of introductions and onward
spread across Europe. Whether the 20E (EU1) variant described here
hasrapidly spread due to atransmission advantage or due to epidemio-
logical factors alone, its repeated introduction and rise in prevalence
in multiple countries implies that the summer travel guidelines and
restrictions were generally not sufficient to prevent onward transmis-
sionof introductions. Travel precautions such as quarantine shouldin
principle have prevented spread of SARS-CoV-2 infections acquired
abroad, butinpractice failed to have the desired effect. While long-term
travel restrictions and border closures are not tenable or desirable,
identifying better waystoreduce therisk of introducing variants, and
ensuringthat those which areintroduced do not go onto spread widely,
will help countries maintain often hard-won low levels of SARS-CoV-2
transmission.
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Methods

Phylogenetic analysis

We use the Nextstrain pipeline for our phylogenetic analyses https://
github.com/ nextstrain/ncov/ *. Briefly, we align sequences using
mafft¥, subsample sequences (see below), add sequences from the
rest of the world for phylogenetic context based on genomic prox-
imity, reconstruct a phylogeny using IQTree® and infer a time scaled
phylogeny using TreeTime*. For computational feasibility, ease of
interpretation, and to balance disparate sampling efforts between
countries, the Nextstrain-maintained runs sub-sample the available
genomes across time and geography, resulting in final builds of ~5,000
genomes each. After sub-sampling, the 20E (EU1) cluster within the
Nextstrain build contains 5,145 sequences, 3,369 of which are unique
(accounting for Ns).

Sequences were downloaded from GISAID at the end of January
and analyzed using the nextstrain/ncov workflow, using a cutoff date
of the 30 Sept (Fig S4a) or 30 Nov (all other analyses). These dates
were chosen to focus first on the introductions over the summer
(for 30 Sept) and then to highlight ongoing circulation through the
autumn (30 Nov) prior to the spread of the variants of concernidenti-
fied in December 2020 and January 2021. A table acknowledging the
invaluable contributions by many labs is available as a supplement.
The Swiss SARS-CoV-2 sequencing efforts are described in Nadeau
etal.*® and Stange et al.*.. The majority of Swiss sequences used here
are from the Nadeau et al.** data set, the remainder are available
on GISAID.

Defining the 20E (EU1) Cluster

Thecluster wasinitially identified asamonophyletic group of sequences
stemming from the larger 20A clade with amino acid substitutions
at positions S:A222V, ORF10:V30L, and N:A220V or ORF14:L67F
(overlappingreading frame with N), corresponding to nucleotide muta-
tions C22227T, C28932T, and G29645T. In addition, sequences in 20E
(EU1) differ from their ancestors by the synonymous mutations T445C,
C6286T,and C26801G.

The sub-sampling of the standard Nextstrain analysis means that we
are not able to visualize the true size or phylogenetic structure of the
clusterin question. To specifically analyze this clusterusing almost all
available sequences, we designed a specialized build which focuses on
cluster-associated sequences and their mostgenetically similar neigh-
bors. For computational reasons, we limit the number of samples to
900 per country per month. As only the UK has more sequences than
thisintherelevanttime period, this resultsinarandom downsampling
of sequences from the UK for the months of August, September, and
October. Further, we excluded several problematic sequences due to
highintra-sample variation, wrongdates, and over-divergence (diver-
gence values are implausible given the provided dates). A full list of
the sequences excluded (and the reason why) is given on github in
“bad_sequences.py.”

Weidentify sequencesinthe cluster based on the presence of nucleo-
tide substitutions at positions 22227,28932, and 29645 and use this set
as a ‘focal’ sample in the nextstrain/ncov pipeline. This selection will
excludeany sequences with no coverage or reversions at these posi-
tions, but the similarity-based sampling during the Nextstrain run will
identify these, as well as any other nearby sequences, and incorporate
themintothe dataset. We used these three mutations as they included
thelargest number of sequences that are distinct to the cluster. By this
criterion, there are currently 60,316 sequencesin the cluster sampled
before 30 November 2020.

To visualize the changing prevalence of the cluster over time, we
plotted the proportion of sequences identified by the four substitu-
tions described above as a fraction of the total number of sequences
submitted, per ISO week. Frequencies of other clusters are identified
inan analogous way.

Phylogeny and Geographic Distribution
Thesize of the cluster and number of unique mutations among individ-
ual sequences means thatinterpreting overall patterns and connections
between countriesis not straightforward. We aimed to create a simpli-
fied version of the tree that focuses on connections between countries
and de-emphasizes onward transmissions within a country. As our
focal build contains ‘background’ sequences that do not fall within
the cluster, we used only the monophyletic clade containing the four
amino-acid changes and three synonymous nucleotide changes that
identify the cluster. Then, subtrees that only contain sequences from
one country were collapsed into the parent node. The resulting phylog-
eny contains only mixed-country nodes and single-country nodes that
have mixed-country nodes as children. (Anillustrative example of this
collapsing can be seenin Fig. ED4(b-d).) Nodes inthis tree thus repre-
sent ancestral genotypes of subtrees: sequences represented withina
node may have further diversified within their country, but shareaset
of common mutations. We count all sequences in the subtrees towards
the geographic distribution represented inthe pie-chartsin Fig. ED4a.
This tree allows us to infer lowerbounds for the number of introduc-
tions to each country, and to identify plausible origins of those intro-
ductions. Itisimportant to remember that, particularly for countries
otherthanthe UK, the full circulating diversity of the variant is probably
not being captured, thusintermediate transmissions cannot be ruled
out.Inparticular, the closest relative of a particular sequence will often
have been sampled in the UK simply because sequencing effortsin the
UK exceed mostother countries by orders of magnitude. Itis, however,
not our goal toidentify allintroductions but to investigate large scale
patterns of spreadin Europe.

Travel volume and destination

Mobile phone roaming datawere used to estimate the number of visi-
tors fromagiven country departing fromagiven province for each cal-
endar week. The mobile phone record data set contains approximately
13 million devices, with over 2.6 million roamers. A visitor is considered
to be departing the country during a given week if they are not seen
in the data set for the next eight weeks. The nationality of a visitor is
inferred from the Mobile Country Code (MCC). The total number of
unique visitors is aggregated for each province and each week in the
period of study; these totals are then scaled using official statistics as
reference to account for the partial coverage of data set.

Estimation of contributions from imports

To estimate how the frequency of 20E (EU1) is expected to change
in country X due to travel, we consider the following simple model:
A fraction a; of the population of X returns from Spain every week i
(estimated from roaming data, see above) and is infected with 20E
(EU1) with a probability p; given by its per capita weekly incidence in
Spain. Incidence is the weighted average over incidence in Spanish
provinces by the distribution of visitors across the provinces. The
week-over-week fold change of the epidemic within X'is calculated
as g;= (c;—a;p)/c..,, Where ¢;is the per capita incidence in week i in
X. This fold-change captures the local growth of the epidemic in
country X. The total number of 20E (EU1) cases v;in week i is hence
v;= gV, + pa;, while the total number of non-20E (EU1) casesis r;=
gir'i;- Running this recursion from mid-June to November results in
the frequency trajectories in Fig. 3.

From1June 2020 to 30 September 2020, the Swiss Federal Office of
Public Health (FOPH) reported 23,199 confirmed SARS-CoV-2 cases.
14,583 (62.9%) cases provided information about their likely place of
exposure and country of infection in a clinical registration form. Of
these, 3,304 (22.7%) reported an exposure abroad and 136 (0.9%) named
Spainasthe country of infection. The Robert-Koch-Institute reported
statistics on likely country of infection by calendar week in their daily
situation reports*.
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Phylodynamic analysis of Swiss transmission chains

We identified introductions into Switzerland and downstream
Swiss transmission chains by considering a tree of all available Swiss
sequences combined with foreign sequences with high similarity to
Swiss sequences (full procedure described in Nadeau et al. (2020)*°.
Putative transmission chains were defined as majority Swiss clades
allowing for at most 3 “exports” to third countries. Identification of
transmission chains is complicated by polytomies in SARS-CoV-2
phylogenies and we bounded the resulting uncertainty by either (i)
considering all subtrees descending from the polytomy as separate
introductions (called ‘max’ in Fig ED8) and (ii) aggregating all into a
single introduction (called ‘min’), see Nadeau et al. (2020) for details.
We further extended this analysis to include a pan-European dataset
consisting of putative transmission chains defined via the collapsed
phylogenies discussed earlier in the methods. Specifically, each sec-
tionof apie graph, which corresponds to a country-specific collection
of sequences, was taken as a single introduction. Non-20E (EU1) R,
estimates were obtained from case data and the estimated frequency
of 20E (EU1) in different countries.

The phylodynamic analysis of the transmission chains was performed
using BEAST2 with a birth-death-model tree prior****. 20E (EU1) and
non-20E (EU1) variants share a sampling probability and logR, has an
Ornstein-Uhlenbeck prior, see Nadeau et al. (2020)* for details (but
note a different smoothing prior is used there).

Enzyme-linked immunosorbent assay (ELISA)

384-well Maxisorp plates (Thermo Fisher) were coated overnight at
room temperature with 3 ug/mL in 20mM Tris pH 8 and 150mM NacCl
of SARS-CoV-2 S2P* or SARS-CoV-2 A222V-D614G S2P, produced as
previously described in Walls et al. (2020). Briefly, Expi293F cells were
transiently transcribed with a plasmid containing the spike protein
and supernatant was clarified six days later prior to Ni Sepharose resin
purification and flash freezing. Gibco (Fisher) Expi293F Cells were
used for protein productionand have not been authenticated or tested
for mycoplasma contamination. They are not in the database of com-
monly misidentified cell lines. Plates were slapped dry and blocked
with Blocker Caseinin TBS (ThermoFisher) for one hour at 37 °C. Plates
were slapped dry and S2E12"® or S$309* antibodies were serially diluted
1:3 with a starting concentration of 1000nM in TBST or NIBSC human
plasma(20/130 https://www.nibsc.org/documents/ifu/20-130.pdf) was
serially diluted 1:3 starting at 1:4 of original concentrationin TBST and
added to the plate for one hour at 37 °C. Plates were washed 4x with
TBST using a405 TS Microplate Washer (BioTek) followed by addition
0f1:5,000 goat anti-human FcIgG-HRP (Thermo Fisher) for one hour at
37 °C.Plates were washed 4x and TMB Microwell Peroxidase (Seracare)
was added. The reaction was quenched after 1-2 minutes with 1N HCI
and the A450 of each well was read using a Varioskan Lux plate reader
(Thermo Fisher).

Pseudotyped Lentivirus Production and Titering
The S:A222V mutation was introduced into the protein-expression
plasmid HDM-Spiked21-D614G, which encodes a codon-optimized
spike from Wuhan-Hu-1 (Genbank NC 045512) with a 21-amino acid
cytoplasmictaildeletion and the D614G mutation (Greaney et al.,2020).
This plasmidis also available on AddGene (plasmid 158762). We made
two different versions of the A222V mutant that differed only in which
codonwas used tointroduce the valine mutation (either GTT or GTC).
The sequences of these plasmids (HDM Spike-d21D614G-A222V-GTT
and HDM Spike-d21-D614G-A222V-GTC) are available as supplement
files at github.com/emmahodcroft/cluster_scripts/plasma_data.
Spike-pseudotyped lentiviruses were produced as described
in*¢. Two separate plasmid preps of the A222V (GTT) spike and one
plasmid prep of the A222V (GTC) spike were each used in duplicate
to produce six replicates of A222V spike-pseudotyped lentiviruses.

Three plasmid preps of the initial D614G spike plasmid (with the
21-amino acid cytoplasmic tail truncation) were each used once used
tomake three replicates of D614G spike-pseudotyped lentiviruses. All
viruses were titered in duplicate.

Lentiviruses were produced withboth Luciferase IRES ZsGreenand
ZsGreenonly lentiviral backbones*, and thentitered using luciferase
signal or percentage of fluorescent cells, respectively. All viruses were
titered in 293T-ACE2 cells (BEI NR-52511) as described in*é, with the
following modifications. Viruses containing luciferase were titered
starting at a 1:10 dilution followed by 5 serial 2-fold dilutions. The
Promega BrightGlo luciferase system was used to measure relative
luciferase units (RLUs) ~65 hours post-infectionand RLUs per mL were
calculated at each dilution then averaged across all dilutions for each
virus. Viruses containing only ZsGreen were titered starting ata1:3 dilu-
tion followed by 4 serial 5-fold dilutions. The 1:375 dilution was visually
determined to be ~1% positive about 65 hours post-infection and was
used to calculate the percent ofinfected cellsusing flow cytometry (BD
FACSCelesta cell analyzer). Viral titers were then calculated using the
percentage of green cells via the Poisson formula. To normalize viral
titers by lentiviral particle production, p24 concentration (in pg/mL)
was quantified by ELISA according to kit instructions (Advanced Biosci-
ence Laboratories Cat. #5421). All viral supernatants were measured
intechnical duplicate ata1:100,000 dilution.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Code used for the above analyses is available at github.com/neher-
lab/2020_EU1_paper. The code used to run the cluster builds is avail-
able at github.com/emmahodcroft/ncov_cluster. Sequence data
were obtained from GISAID and tables listing all accession numbers
of sequences are available as supplementary information.
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Extended DataFig. 3| The substitution A222Vinspike has no substantial
effectonantigenic properties (a-d) and replication of pseudotyped
lentiviruses (e-h). (a) Binding of a serial dilution of NIBSC convalescent plasma
toimmobilized SARSCoV-22PS (blue) or SARS-CoV-22P A222VD614GS (red).
(b-¢), Binding of serially diluted concentrations of the human neutralizing
antibodies S309 (b) and S2E12 (c) toimmobilized SARSCoV-2 2P S (blue) or
SARS-CoV-22P A222VD614GS (red). (d) Binding of serially diluted
concentrations of the human neutralizing antibody 4A8 toimmobilized SARS-
CoV-22PS (blue) or SARS-CoV-22P A222VD614GS (red). n=2 experiments
performed withindependent protein preparations (eachin duplicate).

Each data point consists of atechnical duplicate of each antibody or plasma
dilution, and the error bars show standard deviations. The experiment shown

isrepresentative of twoindependent experiments. (e) Titers of lentiviral
particles carrying luciferase in the viral genome. The horizontal line indicates
the meantiter. (f) Titers of lentiviral particles carrying the fluorescent protein
ZsGreenintheviral genome. The horizontal line indicates the mean titer.
Inbothcases, titers with the A222V mutation are on average higher by afactor
1.3.(g) Titers of lentiviral particles carrying luciferasein the viral genome
normalized by the p24 concentration (pg/mL) of each viral supernatant. After
p24 normalization, thetiter difference shrinks fom1.28 to 1.14 fold, increasing
the p-valueto 0.16. (h) Titers of lentiviral particles carrying ZsGreen in the viral
genome normalized by the p24 concentration (pg/mL) of each viral
supernatant. All p-values calculated using a two-sided t-test.
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Extended Data Table 1| Representative mutations of 20E (EU1) (the focus of this study) and other notable variants

Variant |Lineage | Representative

20E (EU1) |B.1.177 |C22227T, C28932T, G29645T
20A.EUZ |B.1.160 | C4543T, G5629T, G22992A
S:S98F B.1.221 |C21855T, A25505G, G25996T
S:D80Y B.1.367 | C3099T, G21800T, G27632T
S:N439K |B.1.258 | T7767C, C8047T, C22879A

When a lineage definition matches the variant definition, it is given in column 2 (Rambaut et al., 2020°).

A222V
S477N
S98F
D80Y
N439K
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https://github.com/nextstrain/ncov/blob/master/defaults/exclude.txt
We also exclude all samples without a complete date.
We outline a few more specific exclusions within the manuscript.

Replication All replications were successful; please see manuscript for details of replicates.

Randomization  N/A

Blinding N/A

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
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Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) 293T-ACE2 cells (BEI NR-52511)

Authentication The 293T-ACE?2 cells are the original source for those available as BEI Resources NR-52515 (https://www.beiresources.org/
Catalog/cellBanks/NR-52511.aspx). ACE2 expression was validated by flow cytometry.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.
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Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)
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