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Abstract

In many instances, imposing a constraint on the shape of a density is a reasonable and flexible
assumption. It offers an alternative to parametric models, which can be too rigid, and to other
nonparametric methods, which require the choice of tuning parameters. The nonparametric es-
timation of log-concave or log-convex density ratios is treated by means of active set algorithms
in a unified framework. In the setting of log-concave densities, the new algorithm is similar to,
but substantially faster than, previously considered active set methods. Log-convexity, on the
other hand, is a less common shape-constraint, described by some authors as “tail inflation”.
The active set method proposed here is novel in this context. As a by-product, new goodness-
of-fit tests of single hypotheses are formulated and are shown to be more powerful than higher
criticism tests in a simulation study.

1. Introduction
Suppose we observe independent random variables X1, X2,… , Xn with unknown distributions P1, P2,… , Pn on

the real line. This paper discusses the estimation of the marginal (average) distribution P ∶= n−1
∑n
i=1 Pi under certain

shape-constraints. Of course, this framework includes the case of i.i.d. observations from a single distribution P .
Within the broad field of nonparametric statistics, inference about P under shape-constraints is a well-established

alternative to the assumption of quantitative smoothness properties, e.g. certain bounds on the maximum modulus of
some higher order derivative of the density of P (w.r.t. Lebesgue measure). While estimation under smoothness as-
sumptions typically involves tuning parameters, such as bandwidths of kernel density estimators, maximum likelihood
estimation under shape-constraints is often possible without any further specifications. For a thorough discussion on
the benefits of shape-constraints, we refer to Groeneboom and Jongbloed (2014).

One particular example of a shape-constraint is log-concavity of the density of P . A broad overview of statistical
methods with such densities, including the multivariate case, is given by Samworth (2018). A second example of a
shape-constraint is convexity of the density of P on the positive half-line (see Groeneboom et al. (2001)). In the present
paper, we reconsider the estimation of log-concave densities, and also examine a less familiar setting which is related
to the estimation of convex densities:

Setting 1: Log-concave densities. We assume thatP has a log-concave density f with respect to Lebesguemeasure.
That is, log f ∶ ℝ → [−∞,∞) is concave.

Setting 2: Tail inflation. For a given continuous reference distribution Po on ℝ, we assume that P has a log-convex
density f with respect to Po. That is, log f ∶ ℝ → ℝ is convex.

The notion of tail inflation has been introduced by McCullagh and Polson (2012, 2017) to investigate statistical
sparsity. They consider the case where the observations Xi > 0, the reference distribution Po is the chi-squared
distribution with one degree of freedom, and log f is convex and isotonic (non-decreasing). However, Setting 2 is also
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related other secenarios. For example, in multiple hypothesis testing the X1, X2,… , Xn could represent test statistics
for given null hypotheses H1,H2,… ,Hn, where Xi has distribution Po whenever Hi is true. In image analysis, the
random variables Xi could be measured intensities at different pixels of a digital image, with Po describing pure
background noise or measurement errors.

The primary goals in these settings are to estimate P , or to test the null hypothesis that all Pi are equal to Po.
The assumption of log-convexity of f = dP∕dPo may seem a bit arbitrary at first sight, but note, for instance, that
the testing problems considered by Donoho and Jin (2004) may be viewed as a special case of Setting 2, with Po the
standard Gaussian distribution  (0, 1). Indeed, the latter authors considered i.i.d. observations with distribution P a
mixture (1 − ") (0, 1) + " (�, 1) with unknown parameters " ∈ [0, 1] and � ≥ 0. As shown later, if each Pi is a
mixture of Gaussian distributions with standard deviation at least 1, then each Pi, as well as the marginal distribution
P , has a log-convex density with respect to Po. Consequently, if we estimate the log-density � ∶= log f of P , this
gives rise to a new likelihood ratio test statistic for the null hypothesis that all Pi are equal to Po.

Outline of the paper. Our main goals are to establish existence and uniqueness of the nonparametric maximum like-
lihood estimator �̂ of � ∶= logf in Setting 2 and to devise explicit algorithms for its computation. Since Settings 1 and
2 are closely related, it is worthwhile to treat both of them simultaneously, highlighting similarities and differences. In
Section 2, the specific estimation problems are described in more detail, and it is shown that under certain assumptions,
the maximizer �̂ exists and is unique.

In Section 3, we describe a general active set method for the computation of �̂. The starting point is the active set
method described by Dümbgen et al. (2007/2011) and Dümbgen and Rufibach (2011), which is similar to the support
reduction algorithm of Groeneboom et al. (2008). The new version is more efficient in that all single Newton steps take
shape-constraints on � into account. We also adopt the proposal of Liu and Wang (2018) to occasionally deactivate
more than one constraint in one step, but in contrast to the latter authors, we do not resort to quadratic programming
routines within the algorithm. In Setting 2, we explore the full infinite-dimensional parameter space rather than using
ad hoc finite-dimensional approximations.

Numerical examples illustrating the estimation method are given in Section 4. For Setting 1, we demonstrate
the benefits of the new method in a small simulation study. We also show that our estimator for Setting 2 leads to
a promising goodness-of-fit test, and simulations indicate that the power of this test can exceed the power of higher
criticism methods proposed by Donoho and Jin (2004) and Gontscharuk et al. (2016).

Section 5 provides proofs for the existence, uniqueness and special properties of �̂, while Appendix A provides
technical details for specific applications, as well as a proof of convergence that generalises and simplifies a previous
proof of Sommer-Simpson (2019). The algorithms have been implemented in the statistical langage R (R Core Team,
2016) and are publicly available.

2. General considerations, existence and uniqueness
In what follows, we consider an arbitrary discrete distribution

P̂ ∶=
n
∑

i=1
wi�xi

with n ≥ 2 probability weights w1,… , wn > 0 and real support points x1 <⋯ < xn. In Settings 1 and 2, these points
x1,… , xn are the order statistics of the observations X1,… , Xn while wi = n−1. The general form of P̂ also covers
the situation ofN ≥ n raw observations from P that are recorded with rounding errors: In this case, x1,… , xn are the
different recorded values, and wi is the relative frequency of xi in the sample.

2.1. Parameter spaces and target functional
In general, we assume that P̂ estimates an unknown distribution P that has a density f with respect to a given

continuous measureM on ℝ. Precisely,

f (x) = f�(x) ∶= e�(x)
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with an unknown function parameter � ∶ ℝ → [−∞,∞) in a given family Θ reflecting the particular shape-constraints
to be specified later. Then � is estimated by a function �̂ ∈ Θ maximizing the normalized log-likelihood

l(�) ∶= ∫ � dP̂ =
n
∑

i=1
wi�(xi)

under the constraint that ∫ e� dM = 1.
In the specific settings we have in mind, all functions � ∈ Θ satisfy 0 < ∫ e� dM ≤ ∞ and � + c ∈ Θ for arbitrary

real constants c. Thus we may apply the Lagrange trick of Silverman (1982) and rewrite �̂ as

�̂ = argmax
�∈Θ

L(�)

with

L(�) ∶= ∫ � dP̂ − ∫ e� dM + 1 ∈ [−∞,∞).

Indeed, for � ∈ Θ with L(�) > −∞ and c ∈ ℝ, the derivative )L(� + c)∕)c equals 1 − ec ∫ e� dM . Hence, a function
�̂ ∈ Θ with L(�̂) > −∞ maximizes L(�) over all � ∈ Θ if and only if it maximises l(�) under the constraint that
∫ e� dM = 1. Note also that L(�) = l(�) if and only if ∫ e� dM = 1.

Setting 1. M is Lebesgue measure on ℝ, and the parameter space Θ consists of all concave, upper semicontinuous
functions � ∶ ℝ → [−∞,∞) such that ∫ e� dM > 0.

For Setting 2 in the introduction, we distinguish between two versions, where the second covers the framework of
McCullagh and Polson (2012).

Setting 2A. M stands for the reference distribution Po. We assume that Po is continuous with Po(B) > 0 for any
non-degenerate interval B ⊂ ℝ, and

{

� ∈ ℝ ∶ ∫ e�x Po(dx) <∞
}

=
(

�l(Po), �r(Po)
)

for certain numbers −∞ ≤ �l(Po) < 0 < �r(Po) ≤ ∞. The extended parameter space Θ consists of all convex
functions � ∶ ℝ → ℝ.

Example 2.1 (Gaussian mixtures). Let Po =  (0, 1). Suppose that P is a mixture of Gaussian distributions with
standard deviation at least 1, i.e. P = ∫  (�, �2)Q(d�, d�) for some probability distribution Q on ℝ × [1,∞). Then
� ∶= log dP∕dPo is given by

�(x) = log∫ e�(x,�,�)Q(d�, d�)

with

�(x, �, �) ∶= log
d (�, �2)
d (0, 1)

(x) = − log � +
(�2 − 1)x2 + 2�x − �2

2�2
.

Obviously, �(⋅, �, �) is a convex function for arbitrary � ∈ ℝ and � ≥ 1, so the log-mixture density � is convex too.
This can be deduced from Hölder’s inequality or Artin’s theorem (see Section D.4 of Marshall and Olkin (1979)).

Example 2.2 (Student distributions). Let Po =  (0, �2) and P = tk with �, k > 0. Tedious but elementary calcula-
tions show that � = log(dP∕dPo) is convex if and only if �2 ≤ k∕(k + 1).

Example 2.3 (Logistic distributions). Let Po =  (0, 1), and let P be the logistic distribution with scale parameter
� > 0, i.e. with Lebesgue density p(x) = �−1(ex∕� +e−x∕� +2)−1. Here one can show that � = log(dP∕dPo) is convex
if and only if � ≥ 2−1∕2.
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Setting 2B. M stands for the reference distribution Po. We assume that Po is continuous with Po((−∞, 0]) = 0,
Po(B) > 0 for any non-degenerate interval B ⊂ (0,∞), and

{

� ∈ ℝ ∶ ∫ e�x Po(dx) <∞
}

=
(

−∞, �r(Po)
)

for some number �r(Po) ∈ (0,∞]. Now the extended parameter space Θ consists of all convex functions � ∶ ℝ → ℝ
such that � ≡ �(0) on (−∞, 0]. In particular, all � ∈ Θ are isotonic.

Example 2.4 (Scale mixtures of Gamma distributions). Let Po = Gamma(�, �), the gamma distribution with given
shape parameter � > 0 and rate parameter � > 0. Suppose that P is a scale mixture of gamma distributions with
the same shape parameter, i.e. P = ∫ Gamma(�, �∕s)Q(ds) for some probability measure Q on (0,∞). Then � ∶=
log dP∕dPo is given by

�(x) = log∫ e�(x,s)Q(ds)

with �(x, s) ∶= �(1 − 1∕s)x − � log s. The latter expression is linear in x, whence � is convex. If Q([1,∞)) = 1, then
� is also isotonic.

A special instance of this setting are raw observations X̃i = SiGi, 1 ≤ i ≤ n, with independent random variables
S1,… , Sn ≥ 1 and G1,… , Gn ∼  (0, 1). With Po ∶= �21 = Gamma(1∕2, 1∕2), the marginal distribution P of the
observations Xi ∶= X̃2

i has the log-density � = log ∫ e
�(⋅,s)Q(ds) with respect to Po, where Q ∶= n−1

∑n
i=1 (Si).

2.2. Existence and uniqueness of the estimator
In Settings 1 and 2A-B, the target functional L is strictly concave on the convex set {� ∈ Θ ∶ L(�) > −∞}. This

follows easily from strict convexity of the exponential function. Precisely, there exists a unique maximizer �̂ ∈ Θ of L
which is piecewise linear and satisfies further properties summarized in the following three lemmas. The first lemma
has been proved by Walther (2002), see also Dümbgen et al. (2007/2011) or Cule et al. (2010):

Lemma 2.5. In Setting 1, there exists a unique maximizer �̂ of L over Θ. Precisely, there exist m ≥ 2 points �1 <
⋯ < �m in {x1, x2,… , xn} with �1 = x1, �m = xn, with the following properties:

�̂

{

is linear on [�j , �j+1], 1 ≤ j < m,
equals −∞ on ℝ ⧵ [x1, xn],

and the slope �̂′(�j +) =
(

�̂(�j+1) − �̂(�j)
)

∕(�j+1 − �j) is strictly decreasing in j ∈ {1,… , m − 1}.

Lemma 2.6. In Setting 2A, there exists a unique maximizer �̂ of L over Θ. Precisely, either �̂ is linear, or there exist
m ∈ {1,… , n − 1} points �1 <⋯ < �m in [x1, xn] ⧵ {x1,… , xn} with the following properties:

�̂ is linear on

⎧

⎪

⎨

⎪

⎩

0 ∶= (−∞, �1],
j ∶= [�j , �j+1], 1 ≤ j < m,
m ∶= [�m,∞),

and the sequence of slopes of �̂ on these m + 1 intervals is strictly increasing. Furthermore, each interval (xi, xi+1),
1 ≤ i < n, contains at most one point �j .

Lemma 2.7. In Setting 2B, there exists a unique maximizer �̂ of L over Θ. Precisely, either �̂ ≡ 0, or there exist
m ∈ {1,… , n − 1} points �1 <⋯ < �m in {0} ∪ [x1, xn] ⧵ {x1,… , xn} with the following properties:

�̂ is

⎧

⎪

⎨

⎪

⎩

constant on (−∞, �1],
linear on j ∶= [�j , �j+1], 1 ≤ j < m − 1,
linear on m ∶= [�m,∞),

and the slope �̂′(�j +) is strictly positive and strictly increasing in j ∈ {1,… , m}. Furthermore, each interval (xi, xi+1),
1 ≤ i < n, contains at most one point �j .

Note that the number m in Lemma 2.7 could be 1, meaning that �̂ is constant on [0, �1] and linear on [�1,∞) with
slope �̂′(�1 +) ∈ (0, �r(Po)).
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3. A general active set strategy
3.1. The space of relevant functions

In view of Lemmas 2.5, 2.6 and 2.7, it suffices to consider continuous, piecewise linear functions � on

 ∶=

⎧

⎪

⎨

⎪

⎩

[x1, xn] in Setting 1
ℝ in Setting 2A
[0,∞) in Setting 2B

with changes of slope only in

 ∶=

⎧

⎪

⎨

⎪

⎩

{xi ∶ 1 < i < n} in Setting 1,
(x1, xn) in Setting 2A,
{0} ∪ (x1, xn) in Setting 2B.

In Setting 2B, a change of slope at 0 means that �′(0 +) ≠ 0. The linear space of all such functions � is denoted by V .
One particular basis is given by the functions

x ↦ 1,
x ↦ x (in Settings 1 and 2A)

and

x ↦ V� (x) ∶= �(x − �)+, � ∈ ,

where

� ∶=

{

−1 in Setting 1,
+1 in Settings 2A-B.

This means that dim(V ) equals n in Setting 1 and∞ in Settings 2A-B. Any � ∈ V may be written as

�(x) =

⎧

⎪

⎨

⎪

⎩

�0
+ �1x (in Settings 1 and 2A)
+

∑

�∈
��V� (x)

⎫

⎪

⎬

⎪

⎭

(1)

with real coefficients �0, �1, �� such that �� ≠ 0 for at most finitely many � ∈ . Note that ��� is equal to the change
of slope, �′(� +) − �′(� −), whence

� ∈ Θ if and only if �� ≥ 0 for all � ∈ .

3.2. Properties of L
On the set V , the functional L is continuous with respect to the norm

‖�‖ ∶=

{

maxx∈[x1,xn] |�(x)| in Setting 1,
maxx∈[x1,xn] |�(x)| + |�′(x1)| + |�′(xn)| in Settings 2A-B.

(2)

For Setting 1, ‖ ⋅ ‖ quantifies uniform convergence on  . For Settings 2A-B, convergence with respect to ‖ ⋅ ‖ is
equivalent to uniform convergence on arbitrary bounded subsets of . Moreover, in Setting 1,L is real-valued, whereas
in Settings 2A-B it follows from our assumptions on Po that

{� ∈ V ∶ L(�) > −∞} =

{

{� ∈ V ∶ �′(x1) > �l(Po) and �′(xn) < �r(Po)} in Setting 2A,
{� ∈ V ∶ �′(xn) < �r(Po)} in Setting 2B.
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Finally, on the set {� ∈ V ∶ L(�) > −∞}, the functionalL is strictly concave. Precisely, for �, v ∈ V withL(�) > −∞,

DL(�, v) ∶= d
dt
|

|

|t=0
L(� + tv) = ∫ v dP̂ − ∫

ve� dM,

H(�, v) ∶= − d
2

dt2
|

|

|t=0
L(� + tv) = ∫

v2e� dM.

These derivatives DL(�, v) and H(�, v) are well-defined, because ∫ e
�(x)+"|x|M(dx) < ∞ for sufficiently small

" > 0. Note thatH(�, v) > 0 unless ‖v‖ = 0.

3.3. Characterizing �̂
The properties of L imply that a function � ∈ V ∩ Θ with L(�) > −∞ equals �̂ if and only if

DL(�, v) ≤ 0 for any v ∈ V such that � + tv ∈ Θ for some t > 0. (3)

Representing � as in (1) and v analogously, one can easily verify that (3) is equivalent to the following four conditions:

∫
e� dM = 1, (4)

∫
xe�(x)M(dx) = �̂ (in Settings 1 and 2A), (5)

∫
V�e

� dM = ∫ V� dP̂ whenever �� > 0, (6)

∫
V�e

� dM ≥ ∫ V� dP̂ whenever �� = 0, (7)

where �̂ denotes the empirical mean �̂ ∶= ∫ x P̂ (dx) =
∑n
i=1wixi.

Local optimality. Requirements (4–6) can be interpreted as follows: For � ∈ V let D(�) ⊂  be the finite set of its
“deactivated (equality) constraints”. That means,

D(�) ∶=
{

� ∈  ∶ �′(� −) ≠ �′(� +)
}

.

For an arbitrary finite set D ⊂  we define

VD ∶=
{

� ∈ V ∶ D(�) ⊂ D
}

.

This is a linear subspace of V with dimension 2 + #D (in Settings 1 and 2A) or 1 + #D (in Setting 2B). Requirements
(4–6) are then equivalent to saying that ∫ ve

� dM = ∫ v dP̂ for all v ∈ VD(�). That is,

DL(�, v) = 0 for all v ∈ VD(�). (8)

In other words, � is “locally optimal” in the sense that

� = argmax
�∈VD(�)

L(�).

Checking global optimality. Requirement (7) is equivalent to

ℎ�(�) ∶= DL(�, V� ) ≤ 0 for all � ∈  ⧵D(�). (9)

Thus, a function � ∈ V ∩ Θ with L(�) > −∞ is equal to �̂ if and only if it is locally optimal in the sense of (8), and
it satisfies (9). As explained in Section A.1, for computational efficiency and numerical accuracy, it is advisable to
replace the simple kink functions V� with localised versions V�,� = V� − ��,� , where ��,� ∈ VD(�), though the general
description of our methods is easier in terms of the V� .
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3.4. Basic procedures
Our active set method involves a candidate � ∈ Θ ∩ V for the function �̂ such that f� defines a probability density

w.r.t.M and a finite set D ⊂  such that D(�) ⊂ D.

Basic step 1: Obtaining a proposal �new via Newton’s method
Recall that the functional L is continuous and concave on the finite-dimensional space VD. Moreover, on {� ∈

VD ∶ L(�) > −∞} it is twice continuously differentiable with negative definite Hessian operator. Thus we may
perform a standard Newton step to obtain a function �new ∈ VD such that

� ∶= DL(�, �new − �) ≥ 0

with equality if and only if

� = �new = argmax
�∈VD

L(�).

Even in the case where � > 0, it may happen that L(�new) ≤ L(�). To guarantee a real improvement, we apply
a standard Armijo–Goldstein step size correction and replace �new with � + 2−n(�new − �), where n is the smallest
nonnegative integer such that

L(� + 2−n(�new − �)) − L(�) ≥ 2−nDL(�, �new − �)∕3.

(A theoretical justification of this step size correction can be found, for instance, in Dümbgen (2017).) In algorithmic
language, as long as L(�new) < L(�) + �∕3, we replace (�new, �) with the pair

(

(�+ �new)∕2, �∕2
)

. After finitely many
steps, the new pair (�new, �) will satisfy L(�new) ≥ L(�) + �∕3 and � = DL(�, �new − �) > 0. In the pseudocode
provided later, this Newton–Armijo–Goldstein step is abbreviated as “(�new, �)← Newton(�,D)”.

Basic step 2: Modification of � or reduction of D
Having computed a new proposal �new as in basic step 1, where � = DL(�, �new − �) > 0, we first check whether

it belongs to Θ or at least satisfies

(1 − t)� + t�new ∈ Θ for some t > 0.

If we represent � and �new as in (1) with coefficients �0, �1, �� for � and �0,new, �1,new, ��,new for �new, then the latter
requirement is satisfied if

��,new > 0 whenever � ∈ D ⧵D(�). (10)

If (10) is violated, we leave � unchanged, but we replace D with D ⧵ {�o}, where �o is an index in D ⧵D(�) such that
��o,new is minimal. If (10) is satisfied, we perform a second step size correction and replace � with (1 − to)� + to�new,
where to ∈ (0, 1] is the largest number such that the latter convex combination belongs to Θ. An explicit expression
for to is given by

to ∶= max
{

t ∈ (0, 1] ∶ (1 − t)� + t�new ∈ Θ
}

= min
(

{1} ∪
{ ��
�� − ��,new

∶ � ∈ D(�), ��,new < 0
})

.

In addition, we then replace � with � − c for some constant c such that f� defines a probability density. Finally, we
replace D with D(�) for the modified candidate �. Note that L(�) increases strictly, and in case of to < 1, the new set
D is a proper subset of the previous set D.

All in all, we obtain a new pair (�,D) such that L(�) has increased strictly or D is a proper subset of the for-
mer set D. Moreover, the new � differs from the previous one if and only if the new value L(�) is strictly larger
than the previous one. In the pseudocode provided later, this whole modification of (�,D) is written as “(�,D) ←
StepForward(�,D, �new)”.
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Local search
If we start from a pair (�,D) with � ∈ Θ ∩ V , L(�) > −∞ and D ⊃ D(�), a local search means to iterate basic

steps 1 and 2 with a certain threshold �Newton ≥ 0 as follows:

(�new, �) ← Newton(�,D)
while � > �Newton do
(�,D)← StepForward(�,D, �new)
(�new, �)← Newton(�,D, �new)

end while

Imagine for the moment that �Newton = 0. After finitely many iterations, the set D would remain unchanged and be
equal to D(�), while the first assignment within the while-loop would amount to � ← �new. That means, eventually, a
local search leads to a standard Newton procedure and a locally optimal function �.

Note also that after finitely many steps, L(�) is strictly larger than the original value unless the starting point �
was already locally optimal while the set D ⊋ D(�) has been chosen poorly in the sense that basic step 2 leaves �
unchanged and results in a stepwise reduction of D until D = D(�) again.

In practice, of course, we run a local seach with a small threshold �Newton > 0. The resulting � is called almost
locally optimal.

Basic step 3: Deactivating constraints
Suppose that � ∈ Θ∩V is (almost) locally optimal, but (9) is violated. More precisely, suppose thatmax�∈ ℎ�(�)

is strictly larger than a given threshold �Knot ≥ 0. Then we choose a nonempty finite set Do ⊂  ⧵D(�) such that

ℎ�(�o) > �Knot for all �o ∈ Do. (11)

Thereafter we start a new local search with D = D(�) ∪Do.
The obvious question is whether such a choice of D is reasonable. It may happen that during the first iterations of

the local search, � remains unchanged while elements of the set Do are removed again. But eventually, at least one of
its elements will be retained and � will be modified. To prove this claim, we write �new = � + v +

∑

�o∈Do ��o,newV�o
with some function v ∈ VD(�). Then it follows from (8) that

0 < DL(�, �new − �) = DL(�, v) +
∑

�o∈Do

��o,newDL(�, V�o ) =
∑

�o∈Do

��o,newℎ�(�o),

and because of (11), at least one coefficient ��o,new, �o ∈ Do, has to be strictly positive. Consequently, starting a local
search with this choice of D yields a strict improvement of L(�) after at most #Do iterations.

Our explicit construction of Do depends on the current set D(�) and essentially follows the proposal of Liu and
Wang (2018). Suppose first that D(�) = ∅. Then we choose Do = {�o} with a point � ∈  such that ℎ�(�o) =
max�∈ ℎ�(�). Otherwise, let �1 <⋯ < �m be them ≥ 1 different elements ofD(�). With �0 ∶= −∞ and �m+1 ∶= ∞,
we setj ∶= ∩(�j , �j+1). For each 0 ≤ j ≤ mwithj ≠ ∅, we determine a point �o ∈ argmax�∈j

ℎ�(�). If ℎ�(�o)
is greater than both �Knot and 10−3max�∈ ℎ�(�), then �o is added to Do. The latter condition on ℎ�(�o) prevents us
from deactivating too many constraints early on, which would increase the dimensionality unnecessarily.

All in all, basic step 3 amounts to a procedure “(ℎo, Do)← NewKnots(�)”. It returns ℎo ∶= max�∈ ℎ�(�) and, in
case of ℎo > �Knot , a nonempty finite set Do ⊂  such that DL(�, V�o ) > max(10

−3ℎo, �Knot) for all �o ∈ Do.

Explicit maximisation of ℎ�
In Setting 1, maximizing ℎ� over subsets of  is straightforward, because  is finite. In Settings 2A-B, suppose

that � ∈ Θ∩ V is (almost) locally optimal, and that P�(dx) ∶= e�(x) Po(dx) defines a probability measure on  . Here,

ℎ�(�) = ∫ V� d(P̂ − P�) = ∫ (x − �)+ (P̂ − P�)(dx).

Note that for any probability measure Q on ℝ with ∫ |x|Q(dx) < ∞ and � ∈ ℝ,

HQ(�) ∶= ∫ (x − �)+Q(dx)
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defines a convex and non-increasing functionHQ ∶ ℝ → [0,∞) with derivatives

H ′
Q(� −) = −Q([�,∞)) = Q((−∞, �)) − 1,

H ′
Q(� +) = −Q((�,∞)) = Q((−∞, �]) − 1.

Hence ℎ� = HP̂ −HP� is a Lipschitz-continuous function on ℝ with derivatives

ℎ′�(� ±) = F̂ (� ±) − F�(�),

where F̂ and F� denote the cumulative distribution functions of P̂ and P� , respectively. Note that F̂ is constant on
the intervals (−∞, x1), [x1, x2), . . . , [xn−1, xn), [xn,∞) whereas F� is continuous on ℝ and strictly increasing on  .
Consequently,
(i) ℎ� is strictly concave on each interval [xi, xi+1], 1 ≤ i < n,
(ii) ℎ� is concave and non-increasing on (−∞, x1],
(iii) ℎ� is concave and non-decreasing on [xn,∞) with lim�→∞ ℎ�(�) = 0 > ℎ�(xn).
The limit in (iii) follows from dominated convergence together with the fact that (x − xn)+ ≥ (x − �)+ → 0 as
xn ≤ � → ∞. The strict inequality for ℎ�(xn) follows from P̂ ((xn,∞)) = 0 < P�((xn,∞)). Hence any � with
ℎ�(�) > 0 has to satisfy � < xn.

In Setting 2A one may even conclude from local optimality of � that
(ii’) ℎ� is concave and non-increasing on (−∞, x1] with limit lim�→−∞ ℎ�(�) = 0 > ℎ�(x1),
because ∫ (x− �) (P̂ − P�)(dx) = 0, so the equality (x− �)+ = x− � + (� − x)+ leads to the alternative representation
ℎ�(�) = ∫ (� − x)+ (P̂ − P�)(dx). Consequently, it suffices to search for local maximizers of ℎ� on (x1, xn).

In Setting 2B, (ii) implies that the maximizer of ℎ� on [0, x1] is 0. Hence it suffices to search for local maximizers
of ℎ� on {0} ∪ (x1, xn).

If we want to maximize ℎ = ℎ� on an interval [a, b] = [xi, xi+1] for some 1 ≤ i < n, we could first check whether
ℎ′(a+) ≤ 0 or ℎ′(b−) ≥ 0. In these cases, ℎ(a) = max�∈[a,b] ℎ(�) or ℎ(b) = max�∈[a,b] ℎ(�), respectively. In case
of ℎ′(a+) > 0 > ℎ′(b−), we determine the unique point � ∈ (a, b) satisfying ℎ′�(�) = 0. In general, this leads to a
numerical approximation of �, but in our specific examples for Settings 2A-B, � may be computed explicitly by means
of the standard Gaussian or gamma quantile functions (see Sections A.3 and A.4).

Finding a starting point �
One possibility to determine a starting point � is to activate all constraints initially and find an optimal function

in V∅ ⊂ Θ. In Setting 2A, we are then looking for a function �(x) = �̂x − c(�̂) with c(�) ∶= log ∫ e
�x Po(dx), and

�̂ ∈ ℝ is the unique real number such that c′(�̂) = �̂. Specifically, if Po = (0, 1), then c(�) = �2∕2, whence �̂ = �̂.
In Setting 2B, activating all constraints would lead to the trivial space V∅ = {0}. Alternatively, one could determine

an optimal function in V{0}∩Θ. With �̂ as before, i.e. c′(�̂) = �̂, the optimal function � is given by �(x) = �̂+x−c(�̂+).
Specifically, if Po = Gamma(�, �), then c(�) = −� log((1 − �∕�)+), so that �̂ = � − �∕�̂.

All in all, for Settings 2A-Bwe obtain a starting point � ∈ Θ that is locally optimal and depends only on �̂, indicated
as “� ← Start(�̂)”.

In Setting 1, finding an optimal function in V∅ would amount to solving a nonlinear equation numerically. Alter-
natively, we start with the MLE � of a Gaussian log-density up to an additive constant, i.e.

�0(x) ∶= −(x − �̂)2∕(2�̂2)

with �̂ =
∑n
i=1wixi and �̂

2 ∶=
∑n
i=1wi(xi− �̂)

2. Next, we fix a nonempty setD0 ⊂  and replace �0 with the unique
linear spline � ∈ VD0 such that � ≡ �0 on D0 ∪ {x1, xn}, before normalizing it via � ← � − log

(

∫ xnx1 e
�(x) dx

)

. All of
these operations are hidden behind “� ← Start(�̂, �̂, D0)” in the subsequent pseudocode. Note that this starting point
� is not locally optimal in general.
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3.5. Complete algorithms
In Settings 2A-B, where a locally optimal starting point is easily found, our complete algorithm works as follows:

� ← Start(�̂)
(ℎo, Do)← NewKnots(�)
while ℎo > �Knot do
D ← D(�) ∪Do
# Local search:
(�new, �)← Newton(�,D)
while � > �Newton do
(�,D)← StepForward(�,D, �new)
(�new, �)← Newton(�,D)

end while
# Check global optimality:
(ℎo, Do)← NewKnots(�)

end while

In Setting 1, our algorithm has a slightly different beginning, because the starting point � is not locally optimal:

� ← Start(�̂, �̂, D0)
(Do, ℎo)← (∅,∞)
while ℎo > �Knot do
…

end while

Note that in Setting 1, an affine transformation x ↦ a + bx of our data with b > 0 would result in new direc-
tional derivatives DL(�, V�o ) that differ from the original values by this factor b. By way of contrast, the output �
of Newton(�,D) is invariant under such transformations. Hence it is advisable to distinguish the stopping thresholds
�Newton and �Knots, where �Knot > 0 is chosen to be a small constant times �̂. In Settings 2A-B the parameter �Knot
should reflect the spread of the reference distribution Po.

3.6. Convergence
After circulating a first version of the present paper, Sommer-Simpson (2019) provided a proof of convergence of

our algorithm in Setting 2B. Lemma 3.1 below implies that in all three settings, the output of our algorithm is arbitrarily
close to �̂ if �Knot and �Newton are sufficiently small. Our proof of this generalizes and simplifies the arguments of
Sommer-Simpson (2019).

To formulate the result, let � ∈ Θ ∩ V with L(�) > −∞. To check local optimality of �, we perform a Newton
step for L on the parameter space VD(�). This yields a function �new ∈ VD(�) maximizing a second order Taylor
approximation of L on VD(�), and the directional derivative

�Newton(�) ∶= DL(�, �new − �).

In our algorithm, � is viewed as approximately locally optimal if �Newton(�) is smaller than a given number �Newton. If
that is the case, we check whether

�Knot(�) ∶= max
�∈

DL(�, V�,�)

is smaller than a given number �Knot . Note also that during our algorithm, the value L(�) never decreases.

Lemma 3.1. In all Settings and for any constant Lo ∈ (−∞, L(�̂)), there exist constants CNewton and CKnot such that
for all � ∈ Θ ∩ V with L(�) ≥ Lo,

L(�̂) − L(�) ≤ CNewton
√

�Newton(�) + CKnot�Knot(�).

Remark 3.2. For � ∈ Θ ∩ V , it follows from L(�)→ L(�̂) that ‖� − �̂‖ → 0, where ‖ ⋅ ‖ is the norm in (2).
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Sample size 100 200 500 103 104 105
Rel. efficiency 2.003 1.988 2.467 2.749 3.615 6.067
Running time (s) 4.425 ⋅ 10−3 6.310 ⋅ 10−3 8.450 ⋅ 10−3 0.0115 0.1029 1.4805

Table 1
Mean relative efficiencies and running times of the new algorithm for Setting 1 with Gaussian samples.

4. Numerical examples, simulations and an application
4.1. Comparisons in Setting 1

An obvious question is how much better the new algorithm for Setting 1 is in comparison to the active set method
of Dümbgen and Rufibach (2011). To enable a fair comparison, we implemented the latter method as follows:

� ← Start(�̂, �̂, D0)
ℎo ←∞
D ← D0
while ℎo > �Knot do
(�new, �)← Newton(�,D)
while � > �Newton do
�new ← Newton(�,D)
�new ← Normalize(�new)

end while
if �new ∈ Θ then
� ← �new
(ℎo, �o)← NewKnot(�)
D ← D(�) ∪ {�o}

else
(�,D)← StepForward(�,D, �new)

end if
end while

Here � ← Normalize(�) stands for replacing � with � − c such that f� defines a probability density. And “(ℎo, �o) ←
NewKnot(�)” returns only one point �o ∈ with maximal directional derivative ℎo = DL(�, �o). This is the first main
difference between the old and the new algorithm. The second main difference is that a full Newton procedure is run
on VD without checking and enforcing the shape-constraint that � ∈ Θ. An advantage of omitting the shape-constraint
is that the Newton search runs a bit faster. A disadvantage is that we sometimes iterate and optimize in a region far
from Θ, whereas in the subsequent StepForward(�,D, �new), only a rather small step is performed.

Concerning D0, extensive numerical experiments showed that the choice D0 = {xj(1), xj(2), xj(3)} with approxi-
mately equispaced indices 1 < j(1) < j(2) < j(3) < n is a good choice for a broad range of sample sizes n. With
this choice, we simulated a random sample of size n from the standard Gaussian distribution 200 times and fitted a
log-concave density with the old and the newmethod. Figure 1 shows boxplots of the running time with the old method
divided by the running time with the new method. One sees clearly that the improvement is substantial, particularly
for large sample sizes. It is similar in magnitude to the improvements reported by Wang (2018) for the algorithm of
Liu and Wang (2018). Table 1 reports the means of these relative efficiencies as well as the mean absolute running
times. The methods have been implemented in pure R code, and the simulations have been performed on a MacBook
Pro (2.6 GHz 6-Core Intel Core i7), the stopping thresholds being �Newton = 10−7∕n and �Knot = 10−7�̂∕n.

4.2. Numerical examples for Settings 2A-B
Setting 2A. Inspired by the testing problem described in Section 4.3, we simulated n = 400 independent observations
Xi with distribution Pi =  (0, 1) for i > 20 and Pi =  (1.5, 1) for i ≤ 20. With the reference distribution
Po = (0, 1), the corresponding log-density ratio equals

�(x) = log dP
dPo

(x) = log(0.95 + 0.05 e1.5x−1.125).
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Figure 1: Relative efficiencies of the new algorithm for Setting 1 with Gaussian samples.

The resulting estimator �̂ had m = 5 knots, and Figure 2 depicts the function

t ↦ ℎ(t) = DL(�̂, Vt),

where the knots of �̂ are indicated by vertical lines. As predicted by theory, ℎ(t) ≤ 0 for all t, with equality when
t ∈ D(�̂). Figure 3 depicts the true and estimated tail inflation functions � and �̂. Figure 4 shows the corresponding
densities po = �, p = e�po and p̂ = e�̂po. Note that the estimator p̂ captures the heavier right tail of p in comparison to
po. Applying the goodness-of-fit test described in Section 4.3 to this particular data set yielded a Monte-Carlo p-value
smaller than 10−3 (with 105 − 1 simulations) for the null hypothesis that all 400 observations are standard Gaussian.

Setting 2B. We simulated n = 1000 independent observations Xi such that Xi ∼ �21 for i > 200, Xi∕1.4 ∼ �21 for
100 < i ≤ 200 and Xi∕2 ∼ �21 for i ≤ 100. With the reference distribution Po = �21 , the corresponding log-density
ratio equals

�(x) = log
(

8 + 1.4−1∕2ex∕7 + 2−1∕2ex∕4
)

− log 10.

The estimator �̂ in this case hadm = 6 knots, and Figures 5 and 6 are analogous to the displays for Setting 2A, showing
the directional derivatives ℎ(�) = DL(�̂, V� ) and the log-density ratios �, �̂, respectively. Applying the goodness-of-fit
test described in Section 4.3 to this particular data set yielded aMonte-Carlo p-value of 10−5 (with 105−1 simulations)
for the null hypothesis that all 400 observations have distribution �21 .

4.3. Data-driven goodness-of-fit tests
With the estimator �̂ at hand, one may use the likelihood ratio statistic

TLR(X1,… , Xn) ∶=
n
∑

i=1
�̂(Xi)

to test the null hypothesis that all distributions Pi are equal to Po versus the alternative hypothesis that the marginal
P has a convex log-density � ≢ 0 with respect to Po. Large values of TLR indicate a violation of the null hypothesis.
The distribution of this test statistic under the null hypothesis is unknown but can be easily estimated via Monte Carlo
simulations.
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Figure 2: Directional derivatives ℎ(t) = DL(�̂, Vt) for data example in Setting 2A.
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Figure 3: True (green, dashed) and estimated (black) tail inflation functions � and �̂ for data example in Setting 2A.

Specifically, consider Setting 2A with Po =  (0, 1). As mentioned before, if each distribution Pi, and thus the
marginal P , is a mixture of Gaussian distributions with standard deviation at least 1, then � = log(dP∕dPo) is convex.
This renders TLR an interesting alternative to higher criticism statistics as introduced by Donoho and Jin (2004) and
Gontscharuk et al. (2016). In the subsequent power simulations, we focus on a particular union-intersection test similar
to those considered by the latter authors: With the order statistics X(1) < ⋯ < X(n) of the Xi, note that underHo, the
random variablesΦ(X(1)),… ,Φ(X(n)) are distributed like the order statistics of a sample from the uniform distribution
on [0, 1]. In particular,Φ(X(i)) follows the beta distribution with parameters i and n+1−i. Denoting the corresponding
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Figure 4: Lebesgue densities po (magenta), p = e�po (green, dashed) and p̂ = e�̂po (black) for data example in Setting 2A.
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Figure 5: Directional derivatives ℎ(t) = DL(�̂, Vt) for data example in Setting 2B.

distribution function with Bi,n+1−i, a union-intersection test statistic ofHo is given by

TUI (X1,… , Xn) ∶= min
(

min
i<(n+1)∕2

Bi,n+1−i(Φ(X(i))), min
i>(n+1)∕2

(

1 − Bi,n+1−i(Φ(X(i)))
)

)

= min
(

min
i<(n+1)∕2

Bi,n+1−i(Φ(X(i))), min
i>(n+1)∕2

Bn+1−i,i(Φ(−X(i)))
)

,

with small values indicating a violation of Ho. The rationale behind this test statistic is as follows: If Ho is violated
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Figure 6: True (green, dashed) and estimated (black) tail inflation functions � and �̂ for data example in Setting 2B.

and � is convex, then the left tail of P is heavier than that of Po, leading to smaller order statisticsX(1), X(2),…, or the
right tail of P is heavier than that of Po, leading to larger order statistics X(n), X(n−1),…. For numerical reasons, we
also use the identity 1 − Bi,n+1−i(Φ(x)) = Bn+1−i,i(Φ(−x)).

In a large simulation study involving different sample sizes n, we estimated the (1−�)-quantile of the null distribu-
tion of TLR(X1,… , Xn) and the �-quantile of TUI (X1,… , Xn) in 105−1Monte Carlo simulations, where � = 1%, 5%.
With these critical values, we estimated the power of the two tests at level � under the following distribution of the
sample: For a fixed distribution P∗ on the real line and a subset J ⊂ {1, 2,… , n}with k ≥ 0 elements, the distributions
Pi of the random variables Xi are given by

Pi =

{

P∗ if i ∈ J ,
Po otherwise.

Specifically, we used P∗ =  (1.5, 1) and P∗ =  (0, 3). This setting is similar to that of Donoho and Jin (2004)
with Pi = (1 − k∕n)Po + (k∕n)P∗ for all i. The latter setting corresponds to a random set J with #J having binomial
distribution Bin(n, k∕n).

For these two choices of P∗, Figures 7, 8 and 9 show the power IP(rejectHo at level �) of both tests as a function of
k = #J . Clearly, the test based on TLR has higher power than that based on TUI . The difference when P∗ =  (0, 3)
is stronger than in the case of the simple shift altervative P∗ = (1.5, 1).

Section A.6 contains further information about the null distribution of TLR for different sample sizes and Po =
 (0, 1) or Po = �21 . Note that the test described here, when implemented as a Monte-Carlo test, has exact test level
� for any sample size n. Its (asymptotic) power properties are beyond the scope of this paper and a potential topic for
future research.

5. Proofs
An essential ingredient for the proof of Lemmas 2.5, 2.6 and 2.7 is the following coercivity result.

Lemma 5.1. LetM be a measure onℝ, and let L(�) ∶= ∫ � dP̂ −∫ e� dM +1 for measurable functions � ∶ ℝ → ℝ.
(a) Suppose thatM(B) = Leb(B ∩ [x1, xn]). Then for concave functions � ∶ ℝ → ℝ,

L(�) → −∞ as max
x∈[x1,xn]

|�(x)| → ∞.
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Figure 7: Power of goodness-of-fit tests based on TLR (blue, solid) and TUI (red, dashed) as a function of k for two
distributions P∗ and sample size n = 100. The test levels � are 5% and 1%.
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Figure 8: Power comparison for sample size n = 400.

(b) Suppose that the three numbersM((−∞, x1)),M([x1, xn]) andM((xn,∞)) are strictly positive. Then for convex
functions �,

L(�) → −∞ as max
x∈[x1,xn]

|�(x)| + max
{

−�′(x1 −), �′(xn +)
}

→ ∞.

Part (a) is known fromDümbgen et al. (2007/2011), but for the reader’s convenience and later reference, a simplified
argument is also given here.

Proof of Lemma 5.1. Let i(�) ∶= minx∈[x1,xn] �(x), s(�) ∶= maxx∈[x1,xn] �(x) and r(�) ∶= s(�) − i(�).
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Figure 9: Power comparison for sample size n = 1000.

As to part (a), note first that

L(�) ≤ s(�) − ei(�)(xn − x1) + 1 = i(�) − ei(�)(xn − x1) + r(�) + 1.

The right-hand side converges to −∞ if either s(�) → −∞ or i(�) → ∞ while r(�) stays bounded. Thus it suffices
to show that L(�) → −∞ as r(�) → ∞. By concavity of �, the difference � − i(�) is bounded from below on
[x1, xn] by a piecewise linear function with values in [0, r(�)], and the value 0 is attained at x1 or at xn. Hence, with
wmin ∶= min(w1, wn), we may conclude that

L(�) ≤ i(�) + (1 −wmin)r(�) − ei(�) ∫

xn

x1
e�(x)−i(�) dx + 1

≤ i(�) + (1 −wmin)r(�) − ei(�)(xn − x1)∫

1

0
er(�)t dt + 1

≤ i(�) + (1 −wmin)r(�) − ei(�)(xn − x1)(er(�) − 1)∕r(�) + 1.

For fixed r(�), the maximum of the latter bound with respect to i(�) equals

− log(xn − x1) − log(1 − e−r(�)) + log r(�) −wminr(�),

and this converges to −∞ as r(�)→∞.
As to part (b), convexity of � implies that either

s(�) = �(x1) > �(xn), −�′(x1 −) ≥ r(�)
xn − x1

and �(x) ≥ s(�) + �′(x1 −)(x − x1) for x ≤ x1, (12)

or

s(�) = �(xn) ≥ �(x1), �′(xn +) ≥ r(�)
xn − x1

and �(x) ≥ s(�) + �′(xn +)(x − xn) for x ≥ xn. (13)

Hence with l ∶= (−∞, x1) and r ∶= (xn,∞),

L(�) ≤ s(�) − es(�)min
{

M(l),M(r)
}

+ 1 → −∞ as |s(�)| → ∞,
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becauseM(l),M(r) > 0. Moreover,

L(�) ≤ s(�) − es(�) ∫ e�−s(�) dM + 1 ≤ sup
s∈ℝ

(

s − es ∫ e�−s(�) dM
)

+ 1 = − log∫ e�−s(�) dM,

and the right-hand side is not larger than

⎧

⎪

⎨

⎪

⎩

− log∫l
e�

′(x1 −)(x−x1) dM − 1 in case of (12)

− log∫r
e�

′(xn +)(x−xn) dM − 1 in case of (13)

≤ −min
{

log∫l
e−r(�)(x−x1)∕(xn−x1) dM, log∫r

er(�)(x−xn)∕(xn−x1) dM
}

− 1.

Hence these inequalities show that

L(�) → −∞ as r(�) + max
{

−�′(x1 −), �′(xn +)
}

→ ∞.

Proof of Lemmas 2.6 and 2.7. We first consider Setting 2A. For an arbitrary function � ∈ Θ let

�̃(x) ∶=

⎧

⎪

⎨

⎪

⎩

�(x1) + (x − x1)�′(x1 +) if x ≤ x1,
�(x) if x ∈ [x1, xn],
�(xn) + (x − xn)�′(xn −) if x ≥ xn.

Then �̃ ≤ �, �̃ ≡ � on [x1, xn], and L(�̃) ≥ L(�) with equality if, and only if �̃ ≡ �. Thus we may restrict our attention
to convex functions � such that �′ ≡ �′(x1 +) on (−∞, x1] and �′ ≡ �′(xn −) on [xn,∞).

Let (�k)k be a sequence of such functions such that limk→∞ L(�k) = sup�∈Θ L(�). By Lemma 5.1,

sup
k

(

sup
x∈[x1,xn]

|�k(x)| + max
{

−�′k(x1), �
′
k(xn)

}

)

< ∞.

Consequently, the sequence (�k)k is uniformly bounded on [x1, xn] and uniformly Lipschitz continuous on ℝ. Hence
we may apply the theorem of Arzela–Ascoli and replace (�k)k with a subsequence, if necessary, such that �k → � ∈ Θ
pointwise and uniformly on any compact set as k→∞. By Fatou’s lemma, L(�) ≥ limk→∞ L(�k), so � is a maximizer
of L over Θ.

One can easily deduce from strict convexity of exp(⋅) that L is strictly concave on Θ. Hence there exists a unique
maximizer �̂ of L over Θ.

Let

�̌(x) ∶= max
i=1,…,n

(

�̂(xi) + �̂′(xi)(x − xi)
)

with �̂′(xi −) ≤ �̂′(xi) ≤ �̂′(xi +) for 2 ≤ i < n. This defines another function �̌ ∈ Θ such that (�̌(xi))ni=1 = (�̂(xi))
n
i=1

and �̌ ≤ �̂. Thus we may conclude that �̂ ≡ �̌, a function with at most n − 1 changes of slope, all of which are within
(x1, xn).

Suppose that �̂ changes slope at two points �1 < �2 but (�1, �2) contains no observation xi. Then we could redefine

�̂(x) ∶= max
(

�̂(�1) + �̂′(�1 −)(x − �1), �̂(�2) + �̂′(�2 +)(x − �2)
)

for x ∈ (�1, �2). This modification would not change (�̂(xi))ni=1 but decrease strictly the integral ∫ e�̂(x) Po(dx), a
contradiction to optimality of �̂. Hence any interval [xi, xi+1], 1 ≤ i < n, contains at most one point � such that
�̂′(� −) < �̂′(� +).

Finally, as argued in Section 3.3, �̂ satisfies the (in)equalities

ℎ(�) ∶= ∫ (x − �)+ (P̂ − P�̂)(dx)

{

≤ 0 for all � ∈ (x1, xn),
= 0 if �̂′(� −) < �̂′(� +).
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But ℎ(⋅) itself is continuous with one-sided derivatives

ℎ′(� ±) = F̂ (� ±) − F�̂(�),

where F̂ and F�̂ are the distribution functions of P̂ and P�̂ , respectively. If �̂ changes slope at some point �, then it
follows from ℎ ≤ 0 = ℎ(�) that ℎ′(� −) ≥ 0 ≥ ℎ′(� +), so

0 ≥ ℎ′(� +) − ℎ′(� −) = P̂ ({�}).

Hence � cannot be an observation xi.
These arguments prove Lemma 2.6. The same arguments apply to Setting 2B without essential changes, because

the functions �̃, �̌ and � = limk→∞ �k above are automatically isotonic. The only difference, merely notational, is that
in case of �̂′(0 +) > 0 we interpret 0 as a first knot �1. Hence Lemma 2.7 is also true.

Proof of Lemma 3.1. We prove the lemma for Setting 2A. The arguments for Setting 2B and Setting 1 are very similar,
see Section A.5. Let Θo be the set of all functions � ∈ Θ ∩ V such that L(�) ≥ Lo. Obviously, the target function �̂
belongs to Θo. It follows from Lemma 5.1 that

Co ∶= sup
�∈Θo

sup
x∈[x1,xn]

|�(x)| < ∞,

and

Cl ∶= inf
�∈Θo

�′(x1 −) > �l(Po), Cr ∶= sup
�∈Θo

�′(xn +) < �r(Po).

For arbitrary � ∈ Θo, let �new ∈ VD(�) be the subsequent Newton proposal. Precisely, �new − � maximizes the
second order Taylor approximation

L(�) +DL(�, v) − 2−1H(�, v)

of L(� + v) over all v ∈ VD(�), and elementary considerations show that

DL(�, �new − �) = max
v∈VD(�)⧵{0}

DL(�, v)2

H(�, v)
.

Now let  be the set of basis functions v0(x) ∶= 1, v1(x) ∶= x−x1 and V� (x) = (x− �)+, � ∈ . Then for any v ∈  ,

H(�, v) = ∫ v2e� dPo ≤ CN ∶= ∫ vmax(x)2e�max(x) Po(dx) < ∞,

where vmax(x) ∶= max(1, |x−x1|) is an upper bound for |v(x)|, v ∈  , and �max(x) ∶= Co−Cl(x−x1)−+Cr(x−xn)+ is
an upper bound for �(x), � ∈ Θo. That CN is finite follows from the fact that ∫ e�max(x)+"|x| Po(dx) < ∞ for sufficiently
small " > 0. Consequently,

DL(�, v) ≤
√

CN�Newton(�) for all v ∈  ∩ VD(�).

After these preparations, let us compare � with �̂. By concavity of L(⋅),

L(�̂) − L(�) ≤ DL(�, �̂ − �).

Now we write �̂ − � = �0v0 + �1v1 +
∑

�∈ ��V� with parameters satisfying

|�0| =
|

|

|

�̂(x1) − �(x1)
|

|

|

≤ 2Co,

|�1| =
|

|

|

�̂′(x1) − �′(x1)
|

|

|

≤ Cr − Cl and
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�� = �̂′(� +) − �̂′(� −) −
(

�′(� +) − �′(� −)
)

{

≤ �̂′(� +) − �̂′(� −),
≥ −

(

�′(� +) − �′(� −)
)

.

In particular,
∑

�∈
�+� ≤ �̂′(xn) − �̂′(x1) ≤ Cr − Cl ,

∑

�∈
�−� ≤ �′(xn) − �′(x1) ≤ Cr − Cl .

If �−� > 0, then � ∈ D(�). And if � ∈ D(�), then V� ∈ VD(�) and |DL(�, V� )| ≤
√

CN�Newton(�). For � ∈  ⧵D(�),
we know that �� = �+� and

DL(�, V� ) = DL(�, V�,�) +DL(�, ��,�) ≤ �Knot(�) + (1 + xn − x1)
√

CN�Newton(�).

Here V�,� = V� − ��,� is the localised kink function with ��,� ∈ VD(�) as described in Section A.1. The explicit
construction of ��,� shows that it is a linear combination of at most two basis functions in  ∩ VD(�) with coefficients
whose absolute values sum to less than 1 + xn − x1. This explains the upper bound (1 + xn − x1)

√

CN�Newton(�) for
DL(�, ��,�). Consequently,

DL(�, �̂ − �) ≤ �0DL(�, v0) + �1DL(�, v1) +
∑

�∈
�+� DL(�, V� )

+ +
∑

�∈
�−� DL(�, V� )

−

≤ 2Co
√

CN�Newton(�) + (Cr − Cl)
√

CN�Newton(�)

+ (Cr − Cl)
(

�Knot(�) + (1 + xn − x1)
√

CN�Newton(�)
)

+ (Cr − Cl)
√

CN�Newton(�),

so the assertion is true with CNewton =
(

2Co + (Cr − Cl)(3 + xn − x1)
)√

CN and CKnot = Cr − Cl .
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Supplementary material for
Active Set Algorithms for Estimating Shape-Constrained Density Ratios
Lutz Dümbgen, Alexandre Mösching, Christof Strähl

A. Technical details
A.1. Localised kink functions

As mentioned at the end of Section 3.3, working with the kink functions V� (x) = �(x−�)+ may be computationally
inefficient and numerically problematic. For instance, by means of local search we obtain functions � satisfying (8)
approximately, but not perfectly. As a result it may happen that DL(�, V� ) > 0 for some � ∈ D(�) although this
contradicts (8). Furthermore, the support of V� may contain several points � ∈ D(�), so the evaluation of DL(�, V� )
would involve several integrals of an affine function times a log-affine function with respect to Po. Hence we propose
to replace the simple kink functions V� in (9) with localised kink functions V�,� = V� − ��,� for some ��,� ∈ VD(�) such
that
(i) � is affine on {x ∈  ∶ V�,�(x) ≠ 0},
(ii) � ↦ V�,�(x) is Lipschitz-continuous with constant 1 for any x ∈  ,
(iii) V�,� ≡ 0 if � ∈ D(�).
Then we redefine the auxiliary function ℎ� and replace (9) with

ℎ�(�) ∶= DL(�, V�,�) ≤ 0 for all � ∈  ⧵D(�). (14)

Note that in case of (8), the two requirements (9) and (14) are equivalent, because then DL(�, V�,�) = DL(�, V� ). We
do assume that P� is a probability measure, even if (8) is not satisfied perfectly.

To simplify subsequent explicit formulae, let us introduce the following auxiliary functions: For real numbers
a < b let

j10(x; a, b) ∶= 1[a<x≤b]
b − x
b − a

and j01(x; a, b) ∶= 1[a<x≤b]
x − a
b − a

,

so j10(x; a, b) + j01(x; a, b) = 1[a<x≤b]. In addition we set j01(x; a, a) ∶= j10(x; a, a) ∶= 0.
In Setting 1 let D(�) ∪ {x1, xn} = {�1,… , �m} with m ≥ 2 points �1 < ⋯ < �m in {x1,… , xn}. Then for

�j ≤ � ≤ �j+1 with 1 ≤ j < m,

V�,�(x) ∶= V� (x) −
�j+1 − �
�j+1 − �j

V�j (x) −
� − �j
�j+1 − �j

V�j+1 (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 for x ∉ [�j , �j+1]

(x − �j)(�j+1 − �)
�j+1 − �j

for x ∈ [�j , �]

(� − �j)(�j+1 − x)
�j+1 − �j

for x ∈ [�, �j+1]

=
(� − �j)(�j+1 − �)

�j+1 − �j

(

j01(x; �j , �) + j10(x; �, �j+1)
)

.

Figure 10 illustrates these localised kink functions V�,� .
Now we consider Settings 2A-B. IfD(�) = ∅, we set V�,� ∶= V� = (⋅− �)+ and note that )V� (x)∕)� = −1[x>�] for

x ≠ �. Otherwise, let D(�) = {�1,… , �m} with m ≥ 1 points �1 < ⋯ < �m < xn, where �1 > x1 in Setting 2A and
�1 ∈ {0} ∪ (x1, xn) in Setting 2B. For � ≤ �1 we define

V�,�(x) ∶= V� (x) − (�1 − �) − V�1 (x) =

⎧

⎪

⎨

⎪

⎩

� − �1 for x ≤ �
x − �1 for x ∈ [�, �1]
0 for x ≥ �1
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Figure 10: Localised kink functions in Setting 1: For D(�) ∪ {x1, xn} = {0, 1, 3, 6} one sees V�,� for three different values of
�.

= (� − �1)
(

1[x≤�] + j10(x; �, �1)
)

(15)

and note that

)V�,�(x)∕)� = 1[x≤�] for x ≠ �. (16)

For �j ≤ � ≤ �j+1 with 1 ≤ j < m we set

V�,�(x) ∶= V� (x) −
�j+1 − �
�j+1 − �j

V�j (x) −
� − �j
�j+1 − �j

V�j+1 (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 for x ∉ [�j , �j+1]

−
(x − �j)(�j+1 − �)

�j+1 − �j
for x ∈ [�j , �]

−
(� − �j)(�j+1 − x)

�j+1 − �j
for x ∈ [�, �j+1]

= (� − �j)
(

1[�j<x≤�] − j10(x; �j , �j+1) − j01(x; �j , �)
)

. (17)

and note that

)V�,�(x)∕)� = 1[�j<x≤�] − j10(x; �j , �j+1) for x ≠ �, (18)

because 1[�j<x≤�] and (� − �j)j01(x; �j , �) = 1[�j<x≤�](x − �j) are locally constant in � ≠ x. Finally, for � > �m we
define

V�,�(x) ∶= V� (x) − V�m (x) =

⎧

⎪

⎨

⎪

⎩

0 for x ≤ �m
�m − x for x ∈ [�m, �]
�m − � for x ≥ �

= (� − �m)
(

− 1[x>�] − j01(x; �m, �)
)

(19)

and note that

)V�,�(x) = −1[x>�] for x ≠ �. (20)
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Figure 11: Localised kink functions in Settings 2A-B: For D(�) = {1, 4} one sees V�,� for three different values of �.

Figure 11 illustrates these localised kink functions V�,� .
When searching for local maxima of ℎ�(�) ∶= DL(�, V�,�) in case of D(�) = {�1,… , �m} as above, one should

treat the m + 1 intervals (−∞, �1], [�j , �j+1] with 1 ≤ j < m and [�m,∞) separately, because ℎ� equals 0 but could
be non-differentiable at points in D(�). Hence one should look for maximizers of ℎ� on the ñ − 1 intervals [ti, ti+1],
1 ≤ i < ñ, where t1 < ⋯ < tñ are the different elements of {x1,… , xn} ∪ {�1,… , �m}.

Now we provide explicit formulae for ℎ� and its one-sided derivatives. One can easily derive from (15) and (16)
that for � < �1,

ℎ′�(� +) = (F̂ − F�)(�) and

ℎ�(�) = (� − �1)
(

ℎ′�(� +) + ∫ j10(x; �, �1) (P̂ − P�)(dx)
)

.

For 1 ≤ j < m and �j ≤ � < �j+1, equations (17) and (18) lead to

ℎ′�(� +) = (P̂ − P�)((�j , �]) − ∫ j10(x; �j , �j+1) (P̂ − P�)(dx) and

ℎ�(�) = (� − �j)
(

ℎ′�(� +) − ∫ j01(x; �j , �) (P̂ − P�)(dx)
)

.

Finally, for � ≥ �m, it follows from (19) and (20) that

ℎ′�(� +) = (F̂ − F�)(�) = −(P̂ − P�)((�,∞)) and

ℎ�(�) = (� − �m)
(

ℎ′�(� +) − ∫ j01(x; �m, �) (P̂ − P�)(dx)
)

.

The representation of ℎ�(�) in terms of ℎ′�(� +) is particularly convenient, because ℎ� is evaluated only at its local
maximizers, i.e. zeros of ℎ′� .

A.2. Details for Setting 1
Auxiliary functions. For real numbers x1 < x2 and a linear function � on [x1, x2],

∫

x2

x1
e�(x) dx = (x2 − x1)J

(

�(x1), �(x2)
)
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with

J (r, s) ∶= ∫

1

0
e(1−v)r+vs dv =

{es − er
s − r

if r ≠ s,

es if r = s.
(21)

In general, for integers a, b ≥ 0,

Jab(r, s) ∶=
)a+b

)ra)sb
J (r, s) = ∫

1

0
(1 − v)avbe(1−v)r+vs dv.

Let m ∶= (r + s)∕2 and � ∶= (s − r)∕2, so r = m − �, s = m + � and s − r = 2�. In case of � ≠ 0 we may write

J (r, s) = em sinh(�)∕�.

Moreover, with Δ ∶= s − r = 2�, partial integration leads to the formulae

J10(r, s) = er ∫

1

0
(1 − v)eΔv dv = er

(

− 1
Δ
+ eΔ − 1

Δ2
)

= em
(

sinh(�) − �e−�
)

∕(2�2),

J20(r, s) = er ∫

1

0
(1 − v)2eΔv dv = er

(

− 1
Δ
− 2
Δ2

+
2(eΔ − 1)
Δ3

)

= em
(

sinh(�)∕� − (1 + �)e−�
)

∕(2�2),

J11(r, s) = er ∫

1

0
(1 − v)veΔv dv = er

(eΔ + 1
Δ2

−
2(eΔ − 1)
Δ3

)

= em
(

cosh(�) − sinh(�)∕�
)

∕(2�2).

If |�| is close to 0, the formulae above get problematic. Here is a reasonable approximation for small values of
|�|: For integers a, b ≥ 0 let Bab ∶= ∫ 10 u

a(1 − u)b du = a!b!∕(a + b + 1)!, and let Uab be a random variable with
distribution Beta(a + 1, b + 1), so

�ab ∶= IEUab =
a + 1

a + b + 2
,

�2ab ∶= Var(Uab) =
(a + 1)(b + 1)

(a + b + 2)2(a + b + 3)
,


ab ∶= IE
(

(Uab − �ab)3
)

=
2(a + 1)(b + 1)(b − a)

(a + b + 2)3(a + b + 3)(a + b + 4)
.

Then

Jab(r, s) = Bab IE exp
(

Uabr + (1 − Uab)s
)

= Bab exp
(

�abr + (1 − �ab)s
)

IE exp
(

(Uab − �ab)(r − s)
)

,

and

log IE exp
(

(Uab − �ab)(r − s)
)

=
�2ab(r − s)

2

2
+

ab(r − s)3

6
+ O(|r − s|4)

as |r − s| → 0. Hence

Jab(r, s) =
a!b!

(a + b)!(a + b + 1)
⋅ exp

( (a + 1)r + (b + 1)s
a + b + 2

+
(a + 1)(b + 1)(r − s)2

2(a + b + 2)2(a + b + 3)
+

(a + 1)(b + 1)(b − a)(r − s)3

3(a + b + 2)3(a + b + 3)(a + b + 4)

)

⋅
(

1 + O(|r − s|4)
)

as |r − s| → 0. Specifically,

J (r, s) ≈ exp
(

(r + s)∕2 + (r − s)2∕24
)

,

J10(r, s) ≈ 2−1 exp
(

(2r + s)∕3 + (r − s)2∕36 − (r − s)3∕810
)

,

J20(r, s) ≈ 3−1 exp
(

(3r + s)∕4 + 3(r − s)2∕160 − (r − s)3∕960
)

,

J11(r, s) ≈ 6−1 exp
(

(r + s)∕2 + (r − s)2∕40
)

.

Numerical experiments show that the relative error of these approximations is less than 10−10 for |r − s| ≤ 0.01.
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Local parametrizations. Let us fix arbitrary points �1 < ⋯ < �m in {x1,… , xn} with �1 = x1 and �m = xn. Any
function � ∶ ℝ → [−∞,∞) which is linear on each interval [�j , �j+1], 1 ≤ j < m, and satisfies � ≡ −∞ of ℝ ⧵ [�1, �m]
is uniquely determined by the vector � = (�j)mj=1 ∶= (�(�j))

m
j=1 ∈ ℝm. Then L(�) = L(� ,�) with L(� , ⋅) ∶ ℝm → ℝ

given by

L(� ,�) ∶=
n
∑

i=1
wi�(xi) −

m−1
∑

j=1
(�j+1 − �j)J (�j , �j+1) + 1 =

m
∑

j=1
w̃j�j −

m−1
∑

j=1
(�j+1 − �j)J (�j , �j+1) + 1 (22)

with the auxiliary function J (⋅, ⋅) defined in (21) and the weights

w̃j ∶= 1[j=1]w1 +
n
∑

i=1

(

1[j>1, xi≤�j ]
(xi − �j−1)+

�j − �j−1
+ 1[j<m, xi>�j ]

(�j+1 − xi)+

�j+1 − �j

)

wi.

The function L(� , ⋅) on ℝm is twice continuously differentiable with negative definite Hessian matrix, see the next
paragraph.

Gradient vector and Hessian matrix of L(� ,�) in (22). For fixed � and as a function of � ∈ ℝm, L(� ,�) has
gradient vector ∇L(� ,�) =∶ g(� ,�) with components

gj(� ,�) = w̃j − 1[j<m](�j+1 − �j)J10(�j , �j+1) − 1[j>1](�j − �j−1)J10(�j , �j−1)

and negative Hessian matrix −D2L(� ,�) =∶ H(� ,�) with components

Hjj(� ,�) = 1[j<m](�j+1 − �j)J20(�j , �j+1) + 1[j>1](�j − �j−1)J20(�j , �j−1),
Hj,j+1(� ,�) = Hj+1,j(� ,�) = (�j+1 − �j)J11(�j , �j+1),

Hjk(� ,�) = 0 if |k − j| ≥ 2.

Note also that

g(� ,�)⊤� = ∫[x1,xn]
�(x) (P̂ (dx) − e�(x) dx) and �⊤H(� ,�)� = ∫[x1,xn]

�(x)2e�(x) dx,

the last equality showing positive definiteness ofH(� ,�).

Evaluating the directional derivative DL(�, V�,�). If � ∈ V with {x1, xn} ∪D(�) having elements �1 < ⋯ < �m,
then for 1 ≤ j < m and �j ≤ � ≤ �j+1,

DL(�, V�,�) =
n
∑

i=1
V�,�(xi)wi −

(� − �j)(�j+1 − �)
�j+1 − �j ∫

�j+1

�j

(

j01(x; �j , �) + j10(x; �, �j+1)
)

e�(x) dx

=
n
∑

i=1
V�,�(xi)wi −

(� − �j)(�j+1 − �)
�j+1 − �j

(

(� − �j)J10(�∗, �j) + (�j+1 − �)J10(�∗, �j+1)
)

with

�∗ ∶= �(�) =
(�j+1 − �)�j + (� − �j)�j+1

�j+1 − �j
.

Activating one constraint. Suppose that m ≥ 3 in (22). If we activate the constraint at �jo , where 1 < jo < m, this
amounts to replacing (w̃jo−1, w̃jo , w̃jo+1) with

(

w̃jo−1 +
�jo+1 − �jo
�jo+1 − �jo−1

w̃jo , 0, w̃jo+1 +
�jo − �jo−1
�jo+1 − �jo−1

w̃jo
)

and then removing the jo-th components of � and (w̃j)mj=1.
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A.3. Details for Setting 2A
Weprovide explicit formulae for the special case ofPo = (0, 1)with Lebesgue density� and distribution function

Φ.

Auxiliary functions. The subsequent formulae follow from tedious but elementary algebra, the essential ingredients
being

e�x�(x) = e�
2∕2�(x − �) for x, � ∈ ℝ

and

∫ �(z) dz = C + Φ(z),

∫ z�(z) dz = C − �(z),

∫ z2�(z) dz = C − z�(z) + Φ(z).

On the one hand, for a fixed number a ∈ ℝ let

K(�0, �1) = K(�0, �1; a) ∶= ∫

∞

a
e�0+�1(x−a)�(x) dx. (23)

Then

K(�0, �1) = e�0−�1a+�
2
1∕2Φ(�1 − a) =

)K(�0, �1)
)�0

,

and explicit expressions for

Kl(�0, �1) ∶=
)lK(�0, �1)

)�l1
= ∫

∞

a
(x − a)le�0+�1(x−a)�(x) dx

are given by

K1(�0, �1) = e�0−�1a+�
2
1∕2

(

(�1 − a)Φ(�1 − a) + �(�1 − a)
)

,

K2(�0, �1) = e�0−�1a+�
2
1∕2

(

(

1 + (�1 − a)2
)

Φ(�1 − a) + (�1 − a)�(�1 − a)
)

.

Moreover,

∫

a

−∞
e�0+�1(x−a)�(x) dx = K(�0,−�1; −a).

On the other hand, for fixed real numbers a < b let

J (�0, �1) = J (�0, �1; a, b) ∶= ∫

b

a
exp

(b − x
b − a

�0 +
x − a
b − a

�1
)

�(x) dx. (24)

With

�̃0 ∶=
b�0 − a�1
b − a

, �̃1 ∶=
�1 − �0
b − a

and b̃ ∶= b − �̃1, ã ∶= a − �̃1

we may write

J (�0, �1) = e�̃0+�̃
2
1∕2

(

Φ(b̃) − Φ(ã)
)

.
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Furthermore, explicit expressions for

Jlm(�0, �1) ∶=
)l+mJ (�0, �1)
)�l0 )�

m
1

= ∫

b

a

(b − x)l(x − a)m

(b − a)l+m
exp

(b − x
b − a

�0 +
x − a
b − a

�1
)

�(x) dx

for l, m ∈ {0, 1, 2} with 1 ≤ l + m ≤ 2 are given by

J10(�0, �1) = e�̃0+�̃
2
1∕2

b̃
(

Φ(b̃) − Φ(ã)
)

+ �(b̃) − �(ã)
b − a

,

J01(�0, �1) = J10(�1, �0; −b,−a),

J20(�0, �1) = e�̃0+�̃
2
1∕2

(1 + b̃2)
(

Φ(b̃) − Φ(ã)
)

+ (ã − 2b̃)�(ã) + b̃�(b̃)
(b − a)2

,

J11(�0, �1) = e�̃0+�̃
2
1∕2

−(1 + ãb̃)
(

Φ(b̃) − Φ(ã)
)

+ b̃�(ã) − ã�(b̃)
(b − a)2

,

J02(�0, �1) = e�̃0+�̃
2
1∕2

(1 + ã2)
(

Φ(b̃) − Φ(ã)
)

+ (2ã − b̃)�(b̃) − ã�(ã)
(b − a)2

.

In case of ã > 0, the right hand side of the equation

Φ(b̃) − Φ(ã) = Φ(−ã) − Φ(−b̃)

is numerically more accurate than its left-hand side. In connection with J (�0, �1) we also use the the lower bound

log(Φ(b̃) − Φ(ã)) = − m̃
2

2
+ log∫

d̃

−d̃
exp(m̃z)�(z) dz ≥ − m̃

2

2
+ log

(

Φ(d̃) − Φ(−d̃)
)

with m̃ ∶= (ã + b̃)∕2 and d̃ ∶= (b̃ − ã)∕2. The bound follows from exp(m̃z) ≥ 1 + m̃z.

Local parametrizations. Let us fix any vector � with m ≥ 1 components �1 < ⋯ < �m in (x1, xn). Any function �
which is linear on the intervals 0,1,… ,m specified in Lemma 2.6 is uniquely determined by the vector

� = (�j)m+1j=0 ∶=
(

�′(�1 −), �(�1),… , �(�m), �′(�m +)
)⊤ ∈ ℝm+2.

Then L(�) is given by

L(� ,�) ∶=
n
∑

i=1
wi�(xi) − ∫0

e�(x) Po(dx) −
m
∑

j=1
∫j

e�(x) Po(dx) + 1

=
m+1
∑

j=0
w̃j�j −K(�1,−�0; −�1) −

∑

1≤j<m
J (�j , �j+1; �j , �j+1) −K(�m, �m+1; �m) + 1. (25)

with the auxiliary functions K(⋅, ⋅; ⋅) and J (⋅, ⋅; ⋅, ⋅) introduced in (23) and (24) and the ‘weights’

w̃0 ∶= −
n
∑

i=1
(�1 − xi)+wi,

w̃1 ∶=
n
∑

i=1
min

(

1,
(�2 − xi)+

�2 − �1

)

wi,

w̃j ∶=
n
∑

i=1

(

1[xi≤�j ]
(xi − �j−1)+

�j − �j−1
+ 1[xi>�j ]

(�j+1 − xi)+

�j+1 − �j

)

wi for 1 < j < m,

w̃m ∶=
n
∑

i=1
min

(

1,
(xi − �m−1)+

�m − �m−1

)

wi,
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w̃m+1 ∶=
n
∑

i=1
(xi − �m)+wi.

In case of m = 1, the weight w̃1 is just given by w̃1 = 1.
The function L(� , ⋅) ∶ ℝm+2 → ℝ is twice continuously differentiable with negative definite Hessian matrix, see

the next paragraph.

Gradient vector and Hessian matrix for L(� , ⋅) in (25). In case of m ≥ 2, the gradient g(� ,�) =
(

gj(� ,�)
)m+1
j=0

of L(� , ⋅) equals

gj(� ,�) = w̃j −

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−K1(�1,−�0; −�1) if j = 0,
K(�1,−�0; −�1) + J10(�1, �2; �1, �2) if j = 1,
J01(�j−1, �j ; �j−1, �j) + J10(�j , �j+1; �j , �j+1) if 2 < j < m,
J01(�m−1, �m; �m−1, �m) +K(�m, �m+1; �m) if j = m,
K1(�m, �m+1; �m) if j = m + 1,

while its negative Hessian matrixH(� ,�) =
(

Hjk(� ,�)
)m+1
j,k=0 is given by

H00(� ,�) = K2(�1,−�0; −�1),
H01(� ,�) = H10(� ,�) = −K1(�1,−�0; −�1),

H11(� ,�) = K(�1,−�0; −�1) + J20(�1, �2; �1, �2),
Hj,j+1(� ,�) = Hj+1,j(� ,�) = J11(�j , �j+1; �j , �j+1) for 1 ≤ j < m,

Hjj(� ,�) = J02(�j−1, �j ; �j−1, �j) + J20(�j , �j+1; �j , �j+1) for 1 < j < m,
Hmm(� ,�) = J02(�m−1, �m; �m−1, �m) +K(�m, �m+1; �m)

Hm,m+1(� ,�) = Hm+1,m(� ,�) = K1(�m, �m+1; �m),
Hm+1,m+1(� ,�) = K2(�m, �m+1; �m),

Hjk(� ,�) = 0 if |j − k| ≥ 2.

In case of m = 1 we get the simplified formulae

L(� ,�) =
2
∑

j=0
w̃j�j −K(�1,−�0; −�1) −K(�1, �2; �1) + 1,

gj(� ,�) = w̃j −

⎧

⎪

⎨

⎪

⎩

−K1(�1,−�0; −�1) if j = 0,
K(�1,−�0; −�1) +K(�1, �2; �1) if j = 1,
K1(�1, �2; �1) if j = 2,

and

H00(� ,�) = K2(�1,−�0; −�1),
H01(� ,�) = H10(� ,�) = −K1(�1,−�0; −�1),

H11(� ,�) = K(�1,−�0; −�1) +K(�1, �2; �2)
H12(� ,�) = H21(� ,�) = K1(�1, �2; �1),

H22(� ,�) = K2(�1, �2; �1).

Evaluating ℎ�(�) ∶= DL(�, V�,�) and ℎ′�(� +). Suppose first that �(x) = �̂x − �̂2∕2, so P� =  (�̂, 1) and
D(�) = ∅. Then one can show that

ℎ′�(� +) = F̂ (�) − Φ(� − �̂),
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ℎ�(�) = �ℎ′�(� +) − ∫(−∞,�]
x P̂ (dx) + �̂Φ(� − �̂) − �(� − �̂).

Now suppose that � is given by a vector � of m ≥ 1 points �1 <⋯ < �m and a vector � = (�j)m+1j=0 as in (25). Then
for � < �1,

ℎ′�(� +) = F̂ (�) −K(�∗,−�0; −�),

ℎ�(�) = (� − �1)
(

ℎ′�(� +) − J10(�∗, �1; �, �1)
)

− ∫ 1[�<x≤�1](�1 − x)P̂ (dx),

where �∗ ∶= �(�) = �1 + (� − �1)�0. For 1 ≤ j < m and � ∈ [�j , �j+1),

ℎ′�(� +) = P̂ ((�j , �]) − J (�j , �∗; �j , �) − ∫ j10(x; �j , �j+1) P̂ (dx) + J10(�j , �j+1; �j , �j+1),

ℎ�(�) = (� − �j)
(

ℎ′�(� +) + J01(�j , �∗; �j , �)
)

− ∫ 1[�j<x≤�](x − �j) P̂ (dx),

where �∗ ∶= �(�) = (�j+1 − �j)−1
(

(�j+1 − �)�j + (� − �j)�j+1
)

= �j + (� − �j)�′j . Finally, for � > �m,

ℎ′�(� +) = K(�∗, �m+1; �) − P̂ ((�,∞)),

ℎ�(�) = (� − �m)
(

ℎ′�(� +) + J01(�m, �∗; �m, �)
)

− ∫ 1[�m<x≤�](x − �m)P̂ (dx),

where �∗ ∶= �m + (� − �m)�m+1.
If � is restricted to some interval I not containing any observations xi or knots �j , the latter expressions for ℎ′�(� +)

are constant in � except for one term K(�∗,−�0; −�), J (�j , �∗; �j , �) or K(�∗, �m+1; �). Hence finding � such that
ℎ′�(� +) = 0 leads to equations of the following type: For given real numbers �0, �1, �0 and c, find � ∈ ℝ such that

K
(

�0 + �1(� − �0),±�1; ±�
)

= c, (26)
J
(

�0, �0 + �1(� − �0); �0, �
)

= c, (27)

and check whether � ∈ I . Since K
(

�0 + �1(� − �0),±�1; ±�
)

equals e�0−�1�0+�
2
1∕2Φ(∓(� − �1)), the unique solution

of (26) is given by

� = �1 ∓ Φ−1(e
−�0+�1�0−�21∕2c),

provided that c > 0 and ce−�0+�1�0−�
2
1∕2 < 1; otherwise no solution exists. Likewise, since J

(

�0, �0+�1(�− �0); �0, �
)

equals e�0−�1�0+�
2
1∕2

(

Φ(� − �1) − Φ(�0 − �1)
)

, the unique solution of (27) is given by

� = �1 + Φ−1
(

Φ(�0 − �1) + e
−�0+�1�0−�21∕2c

)

,

provided that 0 < Φ(�0 − �1) + ce
−�0+�1�0−�21∕2 < 1; otherwise no solution exists.

Activating one constraint. Suppose that m ≥ 2 in (25). If even m ≥ 3, and if we activate the constraint at �jo , where
1 < jo < m, the update of � and (w̃j)m+1j=0 is essentially the same as in Setting 1. If we activate the constraint at �1, this
amounts to replacing (�1, �2) and (w̃0, w̃1, w̃jo+1) with

(�2) and
(

w̃0 − (�2 − �1)w̃1, w̃1 + w̃2
)

,

respectively. Similary, activating the constraint at �m amounts to replacing (�m−1, �m) with

(�m−1) and
(

w̃m−1 + w̃m, w̃m+1 + (�m − �m−1)w̃m
)

,

respectively.
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A.4. Details for Setting 2B
We provide explicit formulae for the special case of Po being a gamma distribution with shape parameter � > 0

and rate parameter � = 1, i.e. Po has density

po(x) = Γ(�)−1x�−1e−x, x > 0.

Note that the case of a gamma distribution with rate parameter � ≠ 1may be reduced to the case � = 1 by multiplying
all observations with �, then estimating the function � by �̂temp and finally setting �̂(x) ∶= �̂temp(x∕�).

Auxiliary functions. For s > 0, the c.d.f. of a gamma distribution with shape s and rate 1 is the function Gs ∶
[0,∞]→ [0, 1] defined by

Gs(x) ∶= Γ(s)−1 ∫

x

0
zs−1e−z dz,

and, for 0 ≤ a < b ≤ ∞, we define the partial integral

Gs(a, b) ∶= Γ(s)−1 ∫

b

a
zs−1e−z dz = Gs(b) − Gs(a).

On the one hand, for a fixed number c ∈ ℝ let

K(�0, �1) = K(�0, �1; c) ∶= ∫

∞

c
e�0+�1(x−c)po(x) dx.

This is equal to∞ in case of �1 ≥ 1. Otherwise, when �1 < 1, let c̃ ∶= (1 − �1)c. Then

K(�0, �1) =
e�0−�1c

(1 − �1)�
G�(c̃,∞) =

)K(�0, �1)
)�0

,

and explicit expressions for

Kl(�0, �1) ∶=
)lK(�0, �1)

)�l1
= ∫

∞

c
(x − c)le�0+�1(x−c)po(x) dx

are given by

K1(�0, �1) =
e�0−�1c

(1 − �1)�+1
(

�G�+1(c̃,∞) − c̃G�(c̃,∞)
)

,

K2(�0, �1) =
e�0−�1c

(1 − �1)�+2
(

�(� + 1)G�+2(c̃,∞) − 2�ãG�+1(c̃,∞) + c̃2G�(c̃,∞)
)

.

On the other hand, for fixed numbers 0 ≤ a < b < ∞ let

J (�0, �1) = J (�0, �1; a, b) = ∫

b

a
exp

(b − x
b − a

�0 +
x − a
b − a

�1
)

po(x) dx = e�̃0
Γ(�) ∫

b

a
e(�̃1−1)xx�−1 dx,

where

�̃0 ∶=
b�0 − a�1
b − a

and �̃1 ∶=
�1 − �0
b − a

.

With ã ∶= (1 − �̃1)a and b̃ ∶= (1 − �̃1)b we may write

J (�0, �1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e�̃0G�(ã, b̃)
(1 − �̃1)�

if �̃ < 1,

e�̃0 (b� − a�)
Γ(� + 1)

if �̃ = 1.
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Note that in our specific applications the slope parameter �̃1 corresponds to the difference ratio
(

�(b) − �(a)
)

∕(b − a)
of a function � ∈ V . Thus it will be strictly smaller than 1 as soon as � ∈ Θ and L(�) > −∞. During a Newton step
the latter conditions may be violated temporarily, so in case of �̃1 > 1 we use the simple bound

J (�0, �1) ≤ e�̃0+(�̃1−1)b(b� − a�)
Γ(� + 1)

.

In case of �̃1 < 1, explicit expressions for

Jlm(�0, �1) ∶=
)l+mJ (�0, �1)
)�l0 )�

m
1

= ∫

b

a

(b − x)l(x − a)m

(b − a)l+m
exp

(b − x
b − a

�0 +
x − a
b − a

�1
)

po(x) dx

are given by

J10(�0, �1) =
e�̃0

(1 − �̃1)�+1
b̃G�(ã, b̃) − �G�+1(ã, b̃)

b − a
,

J01(�0, �1) =
e�̃0

(1 − �̃1)�+1
−ãG�(ã, b̃) + �G�+1(ã, b̃)

b − a
,

J20(�0, �1) =
e�̃0

(1 − �̃1)�+2
b̃2G�(ã, b̃) − 2�b̃G�+1(ã, b̃) + �(� + 1)G�+2(ã, b̃)

(b − a)2
,

J11(�0, �1) =
e�̃0

(1 − �̃1)�+2
−ãb̃G�(ã, b̃) + �(ã + b̃)G�+1(ã, b̃) − �(� + 1)G�+2(ã, b̃)

(b − a)2
,

J02(�0, �1) =
e�̃0

(1 − �̃1)�+2
ã2G�(ã, b̃) − 2�ãG�+1(ã, b̃) + �(� + 1)G�+2(ã, b̃)

(b − a)2
.

Local parametrizations. Let us fix an arbitrary vector � with m ≥ 1 components 0 ≤ �1 < ⋯ < �m < xn. Any
function � ∶ [0,∞)→ ℝ which is constant on [0, �1] and linear on the intervals 1,… ,m specified in Lemma 2.7 is
uniquely determined by the vector � = (�j)m+1j=1 ∶=

(

�(�1),… , �(�m), �′(�m +)
)⊤ ∈ ℝm+1. Then L(�) is given by

L(� ,�) ∶=
n
∑

i=1
wi�(xi) − e�1F0(�1) −

m
∑

j=1
∫j

e�j+�
′
j (x−�j ) Po(dx) + 1

=
m+1
∑

j=1
w̃j�j − e�1G�(�1) −

∑

1≤j<m
J (�j , �j+1; �j , �j+1) −K(�m, �m+1; �m) + 1 (28)

with the auxiliary functions G�(⋅), J (⋅, ⋅; ⋅, ⋅) and K(⋅, ⋅; ⋅) introduced before and the weights

w̃1 ∶=
n
∑

i=1
min

(

1,
(�2 − xi)+

�2 − �1

)

wi,

w̃j ∶=
n
∑

i=1

(

1[xi≤�j ]
(xi − �j−1)+

�j − �j−1
+ 1[xi>�j ]

(�j+1 − xi)+

�j+1 − �j

)

wi for 1 < j < m,

w̃m ∶=
n
∑

i=1
min

(

1,
(xi − �m−1)+

�m − �m−1

)

wi,

w̃m+1 ∶=
n
∑

i=1
(xi − �m)+wi.

In case of m = 1, the weight w̃1 is just given by w̃1 = 1.
The function L(� , ⋅) ∶ ℝm+1 → [−∞,∞) is continuous and concave. On the open set

{

� ∈ ℝm+1 ∶ L(� ,�) >
−∞

}

=
{

� ∈ ℝm+1 ∶ �m+1 < 1
}

it is twice continuously differentiable with negative definite Hessian matrix, see the
next paragraph.
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Gradient vector and Hessian matrix for L(� , ⋅) in (28). Let �m+1 < 1. In case of m ≥ 2, the gradient g(� ,�) =
(

gj(� ,�)
)m+1
j=1 of L(� , ⋅) equals

gj(� ,�) = w̃j −

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e�1G�(�1) + J10(�1, �2; �1, �2) if j = 1,
J01(�j−1, �j ; �j−1, �j) + J10(�j , �j+1; �j , �j+1) if 1 < j < m,
J01(�m−1, �m; �m−1, �m) +K(�m, �m+1; �m) if j = m,
K1(�m, �m+1; �m) if j = m + 1,

while its negative Hessian matrixH(� ,�) =
(

Hjk(� ,�)
)m+1
j,k=1 is given by

H11(� ,�) = e�1G�(�1) + J20(�1, �2; �1, �2),
Hj,j+1(� ,�) = Hj+1,j(� ,�) = J11(�j , �j+1; �j , �j+1) for 1 ≤ j < m,

Hjj(� ,�) = J02(�j−1, �j ; �j−1, �j) + J20(�j , �j+1; �j , �j+1) for 1 < j < m,
Hmm(� ,�) = J02(�m−1, �m; �m−1, �m) +K(�m, �m+1; �m),

Hm,m+1(� ,�) = Hm+1,m(� ,�) = K1(�m, �m+1; �m),
Hm+1,m+1(� ,�) = K2(�m, �m+1; �m),

Hjk(� ,�) = 0 if |j − k| > 1.

In case of m = 1 we get the simplified formulae

L(� ,�) =
2
∑

j=1
w̃j�j − e�1G�(�1) −K(�1, �2; �1) + 1,

gj(� ,�) = w̃j −

{

e�1G�(�1) +K(�1, �2; �1) if j = 1,
K1(�1, �2; �1) if j = 2,

and

H11(� ,�) = e�1G�(�1) +K(�1, �2; �1),
H12(� ,�) = H21(� ,�) = K1(�1, �2; �1),

H22(� ,�) = K2(�1, �2; �1).

Evaluating ℎ�(�) ∶= DL(�, V�,�) and ℎ′�(�+). Suppose first that � ≡ 0, so D(�) = ∅. Then one can show that

ℎ′�(� +) = (F̂ − G�)(�),

ℎ�(�) = �ℎ′�(� +) + �̂ − ∫[0,�]
x P̂ (dx) − � + �G�+1(�).

Now suppose that � is given by a vector � of m ≥ 1 points �1 < ⋯ < �m and a vector � = (�j)m+1j=1 as in (28). Then

ℎ�(0) = −�1
(

F̂ (�1) − e�1G�(�1)
)

+ ∫ 1[x≤�1]x P̂ (dx) − e
�1�G�+1(�1),

while for 0 ≤ � < �1

ℎ′�(� +) = F̂ (�) − e�1G�(�),

ℎ�(�) = ℎ�(0) + �ℎ′�(� +) − ∫ 1[x≤�]x P̂ (dx) + e�1�G�+1(�).
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For 1 ≤ j < m and � ∈ [�j , �j+1),

ℎ′�(� +) = P̂ ((�j , �]) − J (�j , �∗; �j , �) − ∫ j10(x; �j , �j+1) P̂ (dx) + J10(�j , �j+1; �j , �j+1),

ℎ�(�) = (� − �j)
(

ℎ′�(�+) + J01(�j , �∗; �j , �)
)

− ∫ 1[�j<x≤�](x − �j) P̂ (dx),

where �∗ ∶= �(�) = (�j+1 − �j)−1
(

(�j+1 − �)�j + (� − �j)�j+1
)

= �j + (� − �j)�′j . Finally, for � > �m,

ℎ′�(� +) = K(�∗, �m+1; �) − P̂ ((�,∞)),

ℎ�(�) = (� − �m)
(

ℎ′�(�+) + J01(�m, �∗; �m, �)
)

− ∫ 1[�m<x≤�](x − �m) P̂ (dx),

where �∗ ∶= �m + (� − �m)�m+1.
If � is restricted to some interval I not containing any observations xi or knots �j , the expressions for ℎ′�(�+) are

constant in � except for one term e�1G�(�), J (�j , �∗; �j , �) or K(�∗, �m+1; �). Hence finding � such that ℎ′�(�+) = 0
leads to equations of the following type: For given real numbers �0, �1, �0 and c, find � ∈ [0,∞) such that

e�0G�(�) = c, (29)
J (�0, �0 + �1(� − �0); �0, �) = c, (30)
K(�0 + �1(� − �0), �1; �) = c, (31)

and check whether � ∈ I . The unique solution of (29) is given by

� = G−1� (ce
−�0 )

with the quantile function G−1� ∶ [0, 1)→ [0,∞) of Gamma(�, 1), provided that 0 ≤ ce−�0 < 1; otherwise no solution
exists. It follows from J (�0, �0 + �1(� − �0); �0, �) = (1 − �1)−�e�0−�1�0

(

G�((1 − �1)�) − G�((1 − �1)�0)
)

that the
unique solution of (30) is given by

� = (1 − �1)−1G−1�
(

c(1 − �1)�e�1�0−�0 + G�((1 − �1)�0)
)

,

provided that 0 ≤ �1 < 1 and 0 ≤ c(1 − �1)�e�1�0−�0 + G�
(

(1 − �1)�0
)

< 1; otherwise no solution exists. Likewise
it follows from K(�0 + �1(� − �0), �1; �) = (1 − �1)−�e�0−�1�0

(

1 − G�((1 − �1)�)
)

that the unique solution of (31) is
given by

� = (1 − �1)−1G−1�
(

1 − c(1 − �1)�e�1�0−�0
)

,

provided that 0 ≤ �1 < 1 and 0 < c(1 − �1)�e�1�0−�0 ≤ 1; otherwise no solution exists.

Activating one constraint. The activation of one constraint is identical to Setting 2A, except that here is no weight
w̃0.

Data Simulation. Let Po = Gamma(�, �), and let � ∈ Θ such that 
 = 
(�) ∶= limx→∞ �′(x+) < � and ∫ f� dPo =
1with f� ∶= e� . To simulate data from the density f� ∶= e� with respect to Po, we use the acceptance rejectionmethod
of von Neumann (1951). We simulate independent random variables Y ∼ Gamma(�, � − 
) and U ∼ Unif[0, 1]. Note
that Y has density ℎ(x) ∶= (1 − 
∕�)−�e
x with respect to Po and that

(f�∕ℎ)(x) = (f�∕ℎ)(0) exp
(

�(x) − �(0) − 
x
)

is monotone decreasing in x ≥ 0. Hence the conditional distribution of Y , given that U ≤ exp(�(Y ) − �(0) − 
Y
)

is
equal to the desired distribution P� . This leads to the following pseudocode for generating an independent sample X
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of size n from f�:

i← 0
while i < n do
simulate Y ∼ Gamma(�, � − 
)
simulate U ∼ Unif([0, 1])
if U ≤ exp

(

�(Y ) − �(0) − 
Y
)

then
i ← i + 1
Xi ← Y

end if
end while

A.5. Further proofs
Continuity of L on (V , ‖ ⋅ ‖) (Section 3.2). In Setting 1, the assertion is obvious, so we prove it for Settings 2A-B.
Recall that a sequence (�k)k in V converges to a function � ∈ V with respect to ‖ ⋅ ‖ if and only if it converges
uniformly on any bounded subset of  . Assuming this from now on, we want to show that L(�k) → L(�) as k → ∞.
If L(�) = −∞, then it follows from Fatou’s lemma that

lim sup
k→∞

L(�k) = ∫ � dP̂ − lim inf
k→∞ ∫ e�k dPo + 1 ≤ L(�) = −∞.

If L(�) > −∞, then ∫ exp
(

�(x) + "(1 + |x|)
)

Po(dx) < ∞ for sufficiently small " > 0, and for sufficiently large
k, �k(x) ≤ �(x) + "(1 + |x|) for all x ∈ ℝ. Hence, it follows from dominated convergence that L(�k) → L(�) as
k→∞.

Proof of Remark 3.2. Let (�k)k be a sequence in Θ∩V such that L(�k)→ L(�̂) but �k ̸→ �̂ pointwise as k→ ∞. As
in the proof of Lemmas 2.6 and 2.7, we may replace this sequence by a subsequence, if necessary, such that it converges
to some function �∗ ∈ Θ⧵ {�̂} with respect to ‖ ⋅‖. Since L is continuous, this implies that L(�k)→ L(�∗) as k→∞,
whence L(�∗) = L(�̂). Now, uniqueness of the maximizer of L on Θ leads to the contradiction that �∗ = �̂.

Proof of Lemma 3.1 for Setting 2B and Setting 1. We only indicate the main changes in the proof for Setting 2A.
In Setting 2B, the constant Cl may be replaced with 0, and the set  of basis functions consists of v0 ≡ 1 and V� ,

� ∈ . This leads to vmax(x) = max(1, x), and �max(x) = Co +Cr(x− xn)+. Moreover, �̂ − � = �0 +
∑

�∈ ��V� with
|�0| =

|

|

|

�̂(0) − �(0)||
|

≤ 2Co, and
∑

�∈
�+� ≤ �̂′(xn) ≤ Cr,

∑

�∈
�−� ≤ �′(xn) ≤ Cr.

Here |DL(�, ��,�)| ≤ (1 + xn)
√

CN�Newton(�), and this leads to obvious changes in the upper bound for DL(�, �̂ − �).
In Setting 1, the main changes are as follows. We do not need the constants Cl , Cr, and integrals ∫ ⋯ Po(dx) have

to be replaced with integrals ∫ xnx1 ⋯ dx. Here vmax(x) = max(1, x − x1), and �max ≡ Co. The difference �̂ − � equals
�0v0 + �1v1 +

∑

�∈ ��V� with

|�0| =
|

|

|

�̂(x1) − �(x1)
|

|

|

≤ 2Co,

|�1| =
|

|

|

�̂′(x1 +) − �′(x1 +)
|

|

|

≤ 4Co∕(x2 − x1),

�� = �̂′(� −) − �̂′(� +) −
(

�′(� −) − �′(� +)
)

{

≤ �̂′(� −) − �̂′(� +),
≥ −

(

�′(� −) − �′(� +)
)

.

In particular,
∑

�∈
�+� ≤ �̂′(x1 +) − �̂′(xn −)

∑

�∈
�−� ≤ �′(x1 +) − �′(xn −)

⎫

⎪

⎬

⎪

⎭

≤ 2Co∕min{x2 − x1, xn − xn−1}.
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Setting 2A
n �̂n,0.10 �̂n,0.05 �̂n,0.01 time (ms)
100 2.923 3.763 5.653 3.087
400 3.298 4.179 6.133 4.282
1000 3.531 4.434 6.473 5.880
2000 3.682 4.613 6.678 8.355

Setting 2B
n �̂n,0.10 �̂n,0.05 �̂n,0.01 time (ms)
100 1.228 1.863 3.378 1.795
400 1.481 2.160 3.751 2.736
1000 1.622 2.317 3.879 4.228
2000 1.736 2.418 4.128 6.676

Table 2
Some estimated critical values for goodness-of-fit tests and mean running time per sample from Po.

n 0 1 2 3 4 5 > 5
100 0.164 0.324 0.296 0.154 0.050 0.011 0.002
400 0.100 0.258 0.301 0.208 0.095 0.030 0.008
1000 0.075 0.217 0.290 0.231 0.123 0.047 0.017
2000 0.059 0.187 0.277 0.245 0.146 0.062 0.025

Table 3
Estimators of P (M = m), 0 ≤ m ≤ 5, and P (M > 5) in Setting 2A.

n 0 1 2 3 4 > 4
100 0.360 0.445 0.165 0.028 0.002 0.000

(0.000) (0.069) (0.029) (0.006) (0.000) (0.000)
400 0.292 0.432 0.216 0.053 0.007 0.001

(0.000) (0.050) (0.030) (0.010) (0.001) (0.000)
1000 0.252 0.419 0.244 0.072 0.012 0.001

(0.000) (0.040) (0.031) (0.010) (0.002) (0.000)
2000 0.229 0.403 0.263 0.086 0.017 0.002

(0.000) (0.034) (0.030) (0.011) (0.002) (0.000)

Table 4
Estimators of P (M = m), 0 ≤ m ≤ 4, and P (M > 4) in Setting 2B. In brackets are the estimators of P (J = 1,M…).

Here we utilized the fact that v′(xi +) = v′(xi+1 −) =
(

v(xi+1) − v(xi)
)

∕(xi+1 − xi) for v ∈ V and 1 ≤ i < n. Finally,
|DL(�, ��,�)| ≤

√

CN�Newton(�), because ��,� is always a convex combination of two basis functions in  ∩VD(�).

A.6. On the distribution of TLR under the null hypothesis
For the goodness-of-fit tests with a given sample size n, we simulated 105 − 1 times a sample X1,… , Xn from

Po and recorded the test statistic TLR = TLR(X1,… , Xn) as well as the numberM = M(X1,… , Xn) of kinks of the
estimator �̂ = �̂(⋅ |X1,… , Xn). The reference distribution Po was  (0, 1) in Setting 2A and �21 in Setting 2B. In the
latter setting, we also recorded the indicator J = J (X1,… , Xn) that �̂ has a kink at 0, i.e. �̂′(0 +) > 0.

Table 2 contains critical values �̂n,� for different sample sizes n and different test levels �. Tables 3 and 4 contain
the estimated distribution of the random numberM in Settings 2A and 2B, respectively. In the latter setting, Monte
Carlo estimators of probabilities P (J = 1,M⋯) are listed as well.
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