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Abstract: We present a method to determine the leading-order (LO) contact term con-
tributing to the nn→ ppe−e− amplitude through the exchange of light Majorana neutrinos.
Our approach is based on the representation of the amplitude as the momentum integral
of a known kernel (proportional to the neutrino propagator) times the generalized forward
Compton scattering amplitude n(p1)n(p2)W+(k) → p(p′1)p(p′2)W−(k), in analogy to the
Cottingham formula for the electromagnetic contribution to hadron masses. We construct
model-independent representations of the integrand in the low- and high-momentum re-
gions, through chiral EFT and the operator product expansion, respectively. We then
construct a model for the full amplitude by interpolating between these two regions, us-
ing appropriate nucleon factors for the weak currents and information on nucleon-nucleon
(NN) scattering in the 1S0 channel away from threshold. By matching the amplitude ob-
tained in this way to the LO chiral EFT amplitude we obtain the relevant LO contact
term and discuss various sources of uncertainty. We validate the approach by computing
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the analog I = 2 NN contact term and by reproducing, within uncertainties, the charge-
independence-breaking contribution to the 1S0 NN scattering lengths. While our analysis is
performed in the MS scheme, we express our final result in terms of the scheme-independent
renormalized amplitude Aν(|p|, |p′|) at a set of kinematic points near threshold. We illus-
trate for two cutoff schemes how, using our synthetic data for Aν , one can determine the
contact-term contribution in any regularization scheme, in particular the ones employed in
nuclear-structure calculations for isotopes of experimental interest.

Keywords: Chiral Lagrangians, Neutrino Physics

ArXiv ePrint: 2102.03371

https://arxiv.org/abs/2102.03371


J
H
E
P
0
5
(
2
0
2
1
)
2
8
9

Contents

1 Introduction 1

2 Integral representation and matching strategy 3
2.1 Generalities 3
2.2 Matching strategy 5
2.3 Spectral representation 7

3 Chiral EFT result to leading order 10

4 Full theory parameterization 13
4.1 Low- and intermediate-momentum region: A< 13
4.2 High-momentum region: A> 18

5 Matching and extraction of C1 21
5.1 Results 21
5.2 Discussion of uncertainties 23

6 Vector-vector amplitude and C1 + C2 25
6.1 Effective Lagrangians 25
6.2 Pion two-point function and the low-energy constant Z 27
6.3 nn→ pp vector-like amplitude in chiral EFT and full theory 28

6.3.1 AV V in chiral EFT 29
6.3.2 AV V in the full theory 30

6.4 Matching 34
6.5 Charge-independence-breaking contribution to NN scattering 36

7 Synthetic data for nn → pp near threshold 37

8 Conclusions 41

A Half-off-shell T matrix 43
A.1 The half-off-shell form factor in pionless EFT 43

A.1.1 Half-off-shell T matrix in pionless EFT at NLO 43
A.1.2 Behavior of fS and I<C (|k|) under field redefinitions 44
A.1.3 Impact of fS on I<C (|k|) 44

A.2 Half-off-shell effects in chiral EFT at NLO 46
A.3 Half-off-shell effects in NN potential models 48

B Left-right correlator 49

C Estimating inelastic effects 51

– i –



J
H
E
P
0
5
(
2
0
2
1
)
2
8
9

D Evaluation of Z< 52

E Details on CIB in NN scattering near threshold 53
E.1 Low-energy NN scattering in the presence of Coulomb interactions 53
E.2 Low-energy NN amplitudes in chiral EFT with isospin breaking 54
E.3 Fitting the couplings 56
E.4 Predicting the CIB combination of scattering lengths 56

1 Introduction

Neutrinoless double β decay (0νββ) is the process in which two neutrons in a nucleus
convert into two protons by emitting two electrons and no neutrinos [1]. This process
is by far the most sensitive laboratory probe of lepton number violation (LNV) and its
observation would prove that neutrinos are Majorana fermions [2], constrain neutrino mass
parameters, and provide experimental validation for leptogenesis scenarios [3, 4]. If 0νββ
decay is caused by the exchange of light Majorana neutrinos, as we assume throughout
this paper, the amplitude is proportional to the effective neutrino mass mββ =

∑
i U

2
eimi,

where the sum runs over light neutrino masses mi and Uei are elements of the neutrino
mixing matrix. 0νββ decay is a complicated process encompassing aspects from particle,
nuclear, and atomic physics, with the interpretation of current experimental limits [5–10]
and of potential future discoveries limited by substantial uncertainties in the calculation of
hadronic and nuclear matrix elements [11–19].

It has been realized in recent years that chiral effective field theory (EFT) [20–25] can
play a central role in addressing these uncertainties. Nuclear structure, ab-initio calcu-
lations based on chiral-EFT interactions [26–28] have recently become available for some
phenomenologically relevant nuclei [29–31]. In addition, the issue of gA quenching in sin-
gle β decays has been demonstrated to arise from the combination of two-nucleon weak
currents and strong correlations in the nucleus [32–34], and the few-nucleon amplitudes
used as input in nuclear structure calculations have been scrutinized in chiral EFT for
various sources of LNV [35–44]. In the context of light-Majorana-neutrino exchange, using
naive dimensional counting, the leading contribution in the chiral-EFT expansion arises
from a neutrino-exchange diagram, in which the LNV arises from insertion of the ∆L = 2
effective neutrino mass mββ . When considering the 1S0 channel, in analogy to the nucleon-
nucleon (NN) potential itself [23–25] and external currents [45], this conclusion no longer
holds when demanding manifest renormalizability of the amplitude. In fact, it has been
shown that renormalization requires the promotion of an nn→ ppe−e− contact operator to
LO [40, 43], which encodes the exchange of neutrinos with energy/momentum greater than
the nuclear scale and thus cannot be resolved in chiral EFT. As discussed in greater detail
in refs. [43, 46], the new coupling encodes a non-factorizable two-nucleon effect, beyond
the factorizable one-nucleon corrections captured by the radii of weak form factors, which
also give a short-range neutrino potential. Moreover, the new short-range coupling is not
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captured by the so-called short-range correlations [47–50], as it is needed even when one
works with fully correlated wave functions, i.e., exact solutions of the Schrödinger equa-
tion with the appropriate strong potential. The situation is analogous to single β decay,
where two-nucleon weak currents and short-range correlations are both present, and the
combination of both leads to the apparent quenching of gA [33, 34].

To leading order in chiral EFT, a contact interaction is needed only in the 1S0 channel
and not in higher partial waves [43]. However, it is worth emphasizing that the effect of the
contact term in the 1S0 channel is amplified in nuclear matrix elements by the cancellation
between the contribution of NN pairs in the 1S0 channel and in states with higher total
angular momentum. This is seen quite dramatically in the matrix element densities for
light nuclear transitions studied in refs. [40, 43]. These ab-initio results in light nuclei
are in qualitative agreement with the behavior observed in heavy nuclei, first discussed in
ref. [51]. A complete discussion of the nn → pp transition operator in chiral EFT can be
found in ref. [43] (leading order) and refs. [38, 41] (higher orders).

The value of the short-range coupling in the 1S0 channel then has to be either extracted
from other processes related by chiral symmetry or calculated from first principles in lattice
QCD [46, 52–57] (see ref. [58] for a large-Nc analysis). Currently, however, the size of this
contact operator is unknown, leading to substantial uncertainties in the interpretation of
0νββ decays besides the nuclear-structure ones, especially given that its impact is enhanced
in ∆I = 2 nuclear transitions due to a node in the matrix element density [40, 43]. In this
work we present in some detail the method used to obtain a first estimate of the complete
nn→ ppe−e− amplitude including this contact-term contribution [59].

The hadronic component of the light-Majorana-neutrino-exchange amplitude has
the structure

Aν ∝
∫

d4k

(2π)4
gαβ

k2 + iε

∫
d4x eik·x〈pp|T{jαw(x)jβw(0)}|nn〉 , (1.1)

and is controlled by the two-nucleon matrix element of the time-ordered product
T{jαw(x)jβw(0)} of two weak currents. Such matrix elements with the weak current re-
placed by the electromagnetic current jαem(x) appear in the electromagnetic contributions
to hadron masses or scattering processes, in which case a relation exists between the forward
Compton scattering amplitude and its contraction with a massless propagator, as given in
eq. (1.1). The relation, known as the Cottingham formula [60, 61], has been used to esti-
mate the electromagnetic contributions to the masses of pions [62–66] and nucleons [67–74].
Since the matrix elements in these cases have precisely the same structure as required for
the light-Majorana-neutrino-exchange contribution to the 0νββ decay nn → ppe−e−, our
method aims to constrain the corresponding amplitude by generalizing the Cottingham
approach to the two-nucleon system, and then determine the contact-term contribution by
matching to chiral EFT.

The application of the Cottingham approach to the pion and nucleon mass difference
has a long history and in both cases the by far dominant contribution arises from elastic
intermediate states. The pion-pole contribution gives more than 80% of the pion mass dif-
ference [62–66] and, similarly, the nucleon pole provides the bulk of the electromagnetic part
of the proton-neutron mass difference mel

p−n = 0.75(2)MeV. Despite the tension between
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the estimate of the inelastic contributions in lattice QCD, minel
p−n = 0.28(11)MeV [75–77],

and from nucleon structure functions, minel
p−n = −0.17(16)MeV [67, 72–74], also in this case

the elastic estimate is accurate at the 30% level. The main complication in the generaliza-
tion to 0νββ decay arises from the two-particle nature of initial and final states. First, due
to the proliferation of kinematic variables and scalar functions in a Lorentz decomposition
of the general amplitude, it becomes extremely cumbersome to try and set up a strict
derivation of the elastic contribution via dispersion relations. Second, the NN scattering
amplitude itself gives rise to an additional source of momentum dependence that adds to
the physics included in terms of pion and nucleon form factors in the standard Cottingham
approach. Accordingly, we do not attempt a comprehensive analysis of all scalar functions
describing the full two-particle problem, but instead include the most important interme-
diate states in terms of the respective form factors — in close analogy to the elastic results
for the pion and nucleon Cottingham formula — as well as the momentum dependence of
the NN scattering amplitude. To validate this approach, we also consider the two-nucleon
matrix element with two electromagnetic currents, which can be accessed experimentally
in terms of charge independence breaking (CIB) in the NN scattering lengths. Comparison
with data then allows us to confirm the expectation of an accuracy around 30% if only elas-
tic contributions are kept, as suggested by the Cottingham result for the proton-neutron
mass difference. A determination at this level already has a valuable impact in bounding
the size of the contact-term contribution to 0νββ decay.

The derivation is organized as follows: in section 2 we present the general integral
representation of the amplitude and our matching strategy. In section 3 we recast the LO
chiral EFT amplitude in a form suitable for matching purposes. In section 4 we present
our construction of our full nn → pp amplitude, followed by matching to the EFT result
and extraction of the contact term in section 5. In section 6 we present the analysis for the
two-nucleon I = 2 electromagnetic amplitude and the validation of the method through
comparison with the experimental data on CIB in the NN scattering lengths. This section
is fairly technical and can be omitted by readers primarily interested in 0νββ decay. In
section 7 we return to the LNV amplitude nn→ pp and present synthetic data at kinematic
points near threshold, illustrating how these can be used to extract the contact term in any
regularization and renormalization scheme. We present our concluding remarks in section 8.
Details on the half-off-shell behavior of the NN scattering amplitude (appendix A), the
operator product expansion (OPE) (appendix B), the size of typical inelastic contributions
(appendix C), the electromagnetic pion mass splitting (appendix D), and the CIB NN

scattering lengths (appendix E) are provided in the appendices.

2 Integral representation and matching strategy

2.1 Generalities

Including the effect of LNV from the dimension-five Weinberg operator [78], the low-energy
effective Lagrangian at scale µ & Λχ ∼ 1GeV is given by

Leff = LQCD −
{

2
√

2GFVud ūLγµdL ēLγµνeL + 1
2m
∗
ββ ν

T
eLCνeL − CLOL + h.c.

}
.

(2.1)

– 3 –
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The second term in eq. (2.1) represents the Fermi charged-current weak interaction. The
last two terms encode LNV through the neutrino Majorana mass, given by mββ =

∑
i U

2
eimi

in terms of mass eigenstates and elements of the neutrino mixing matrix,1 and a dimension-
nine ∆L = 2 operator generated at the electroweak threshold:

OL = ēLe
c
L ūLγµdL ūLγ

µdL ≡ ēLecL O1 , (2.2)

with ecL = CēTL. Since CL = (8V 2
udG

2
Fmββ)/M2

W × (1 + O(αs/π)), the effect of the latter
term on the 0νββ amplitude is suppressed by (kF /MW )2 (where kF ∼ O(100)MeV is the
typical Fermi momentum of nucleons in a nucleus) compared to light-neutrino exchange
and can be safely neglected at this stage. However, the isotensor four-quark local operator
O1 itself will play an important role in the following analysis.

The interactions of eq. (2.1) induce ∆L = 2 transitions (such as π−π− → e−e−,
nn → ppe−e−, 76Ge → 76Se e−e−, 136Xe → 136Ba e−e−, . . . ) through the non-local
effective action obtained by contracting the neutrino fields in the two weak vertices,

S∆L=2
eff = 8G2

FV
2
udmββ

2!

∫
d4xd4y S(x− y)× ēL(x)γµγνecL(y)

×T
(
ūLγµdL(x) ūLγνdL(y)

)
, (2.3)

where
S(r) =

∫
d4k

(2π)4
e−ik·r

k2 + iε
(2.4)

is the scalar massless propagator, a remnant of the neutrino propagator. Computing matrix
elements of S∆L=2

eff in hadronic and nuclear states is a notoriously difficult task. The
multi-scale nature of the problem can be seen more explicitly by going to the Fourier
representation2

〈e1e2hf |S∆L=2
eff |hi〉 = 8G2

FV
2
udmββ

2!

∫
d4x 〈e1e2|ēL(x)ecL(x)|0〉

∫
d4k

(2π)4
gµνTµν(k, pext, x)

k2 + iε
,

(2.5)
where

Tµν(k, pext, x) = 〈hf (pf )| Π̂LL
µν (k, x) |hi(pi)〉 ,

Π̂LL
µν (k, x) =

∫
d4r eik·r T

{
JLµ (x+ r/2) JLν (x− r/2)

}
, JLµ = ūLγµdL , (2.6)

and pext denotes generically the hadronic external momenta pf and pi. Using translational
invariance one has

Tµν(k, pext, x) = 〈hf (pf )| eix·P Π̂LL
µν (k, 0) e−ix·P |hi(pi)〉

= eix·(pf−pi)〈hf (pf )| Π̂LL
µν (k, 0) |hi(pi)〉

= eix·(pf−pi) Tµν(k, pext, 0) . (2.7)
1The effective mass probed in 0νββ decay is often defined as mββ =

∣∣∑
i
U2
eimi

∣∣, but to simplify the
notation at the Lagrangian level we formally keep its phase.

2In deriving eq. (2.5) from eq. (2.3) we approximate ēL(x)γµγνecL(y) ' ēL(x)γµγνecL(x) =
gµν ēL(x)ecL(x), which amounts to neglecting the difference in electron momenta, a safe assumption given
that |pe1 − pe2|/kF � 1.

– 4 –
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Therefore, defining3

Tµν(k, pext) ≡ Tµν(k, pext, 0) = 〈hf (pf )| Π̂LL
µν (k, 0) |hi(pi)〉 , (2.8)

one arrives at

〈e1e2hf |S∆L=2
eff |hi〉 = (2π)4 δ(4)(pe1 + pe2 + pf − pi)

(
4G2

FV
2
udmββ ūL(p1)ucL(p2)

)
×Aν ,

Aν = 2
∫

d4k

(2π)4
T (k, pext)
k2 + iε

, T (k, pext) ≡ gµνTµν(k, pext) . (2.9)

The hadronic amplitude Aν in eq. (2.9) receives contributions from neutrino virtualities
k2 ranging from the weak scale all the way down to the infrared (IR) scale of nuclear
bound states.

To estimate the LO contact term arising in chiral EFT, we will employ the representa-
tion (2.9) to obtain the amplitude in the “full theory,” and then match to the appropriate
EFT expression. Since the contact term arises in the 1S0 channel, we will take as external
states nn and pp in the 1S0 state and Tµν(k, pext) will be thought of as the generalized
forward Compton amplitude

n(p1) n(p2) W+(k) → p(p′1) p(p′2) W−(k) . (2.10)

Since the low-energy constants (LECs) do not depend on the IR details, we will perform
the matching calculation at the simplest kinematic point, in which the two electrons are
emitted with zero three-momentum in the center-of-mass frame of the incoming neutron
pair [40, 43]. Explicitly we have

p1µ = (E,p) , p2µ = (E,−p) , E =
√

p2 +m2
n ,

p′1µ = (E′,p′) , p′2µ = (E′,−p′) , E′ =
√

p′2 +m2
p , (2.11)

where 2E = 2E′+2me. Free two-nucleon states with vanishing total three-momentum and
individual three-momenta given by ±q will be denoted by |q〉 [23], so for example for the
initial and final state we will have |i0〉 = |p〉 and |f0〉 = |p′〉, respectively.

2.2 Matching strategy

The amplitude for the process nn→ pp is given in eq. (2.9) as the integral of the product of
a massless propagator (remnant of the Majorana neutrino propagator) with the contracted
hadronic tensor T (k, pext) = gµνT

µν . The neutrino four-momentum regions relevant for the
integration over d4k are schematically depicted in figure 1. Denoting the Euclidean four-
momentum squared by k2

E ≡ (k0)2 + k2, one can introduce hard (k2
E > Λ2), intermediate

(Λ2
χ < k2

E < Λ2), and low-energy (k2
E < Λ2

χ) regions, separated by Λχ (the breakdown scale
of the low-energy hadronic EFT) and Λ (scale at which the OPE becomes reliable). The
low-energy region further includes the soft (|k0| ∼ |k| ∼ kF ), potential (|k0| ∼ k2

F /mN ,
3In what follows we will suppress the space-time label in the correlator: Π̂LL

µν (k, 0)→ Π̂LL
µν (k).

– 5 –
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Hard

Intermediate

Soft

USoft

Contours of fixed

Potential

Figure 1. Schematic representation of the regions of neutrino virtuality contributing to the ampli-
tude in eq. (2.9). The boundaries between various regions are given by kF ∼ 100MeV, Λχ . 1GeV,
and Λ & 1.5GeV.

|k| ∼ kF ), and ultrasoft (|k0| ∼ |k| � kF ) regions, essential to reproduce the IR behavior
of the amplitude.

The basic idea behind our approach is that model-independent representations of the
integrand in eq. (2.9) can be constructed in the low-energy region (via pionless and chi-
ral EFT) and in the hard region (via the OPE). Given this, a model for the full ampli-
tude can be constructed by interpolating between these two regions. This approach uses
model-dependent input for the intermediate momentum region, which we anchor to known
constraints from QCD at low and high momenta.

In practice, given the non-relativistic nature of the process of interest, we will not
use k2

E as matching variable. Instead, we decompose d4k = dk0d3k, first perform the k0

integral in the appropriate regions via Cauchy’s theorem, and then carry out the angular
integrations in d3k to reduce the amplitude to an integral over d|k|. To LO in the expansion
in external momenta |p|, |p′| ∼ Q (we denote by µχ ∼ Q the soft scale in the EFT), we
write the full amplitude as an integral over the internal neutrino three-momentum k, which
we split into a low- plus intermediate-momentum region and a high-momentum region

Afull
ν =

∫ ∞
0

d|k| afull(|k|) = A< +A> ,

A< =
∫ Λ

0
d|k| a<(|k|) ,

A> =
∫ ∞

Λ
d|k| a>(|k|) , (2.12)

separated by the scale Λ that represents the onset of the asymptotic behavior for the
current-current correlator, controlled by the OPE. This representation introduces model
dependence through: (i) The choices made to extend the model-independent integrand
aχ(|k|) dictated by chiral EFT in the region |k| < Λχ to the function a<(|k|) valid up
to |k| ∼ Λ. We will provide a simple parameterization of a<(|k|) that reduces to aχ(|k|)

– 6 –
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for |k| < Mπ and incorporates phenomenological input such as nucleon form factors of
the weak current and resonance contributions to the strong-interaction potential. (ii) The
choice of Λ that determines the boundary of integration regions in the variable |k|. Once a
representation for Afull

ν is obtained, along with an estimate of the associated uncertainties,
we will estimate the LEC appearing in AχEFT

ν by enforcing the matching condition

AχEFT
ν = A< +A> . (2.13)

In the following sections, we will describe the construction of A<,> and the matching to
AχEFT
ν , starting with the spectral representation in section 2.3.

2.3 Spectral representation

In this section we provide a spectral representation for the nn→ pp amplitude, which will
prove very useful in identifying and organizing the various intermediate-state contributions
to A< and carrying out the analysis in analogy to the Cottingham formula [60, 61].

We begin by recalling some elements of the formal theory of scattering that we will
use in various parts of the discussion. We denote by Ĥ = Ĥ0 + V̂ the total Hamiltonian,
split into a free and interaction term (V̂ , not to be confused with the potential). Retarded
and advanced Green’s functions in the interacting theory are given by

Ĝ±(E) = 1
E − Ĥ ± iε

=
∫
dt eiEtĜ±(t) , Ĝ±(t) = ∓iθ(±t) e−iĤt , (2.14)

with analogous definitions for the free-theory ones, denoted by Ĝ(0)
± (E), with the replace-

ment Ĥ → Ĥ0. The scattering operator T̂ (E) is formally given by

T̂ (E) = V̂
(
I − Ĝ(0)

+ (E) V̂
)−1

(2.15)

and satisfies Ĝ+(E)V̂ = Ĝ
(0)
+ (E)T̂ (E). The scattering states 〈f−| and |i+〉 are related to

the free states 〈f0| and |i0〉 by

|i+〉 =
(
I + Ĝ

(0)
+ (E) T̂ (E)

)
|i0〉 ,

〈f−| = 〈f0|
(
T̂ (E′)Ĝ(0)

+ (E′) + I
)
. (2.16)

In terms of the scattering states, the amplitude for nn→ pp can be written as

Aν =
∫

d3k
(2π)3 〈f−| Ô

LL(k) |i+〉 , (2.17)

with the weak transition operator

ÔLL(k) ≡ 2
∫
dk0

2π
gµνΠ̂LL

µν (k)
k2 + iε

. (2.18)

From the definition of the correlator in eq. (2.6) one obtains the following representation
for Π̂LL

µν (k) in terms of Green’s functions:

gµνΠ̂LL
µν (k) = i(2π)3 JLµ (0)

[
Ĝ+(k0

+) δ(3)(P̂− k+) + Ĝ+(k0
−) δ(3)(P̂− k−)

]
JLµ(0) , (2.19)

– 7 –
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where P̂ is the total three-momentum operator and we have introduced the four-vectors

kµ± = p̃µ ± kµ , p̃µ = 1
2(pi + pf )µ = (Ẽ, p̃) . (2.20)

The labels in pµi,f refer to the initial and final states between which Π̂LL
µν (k) is evaluated.

Since we are considering two-nucleon external states with vanishing total three-momentum
(and total momentum is conserved at each vertex) we have p̃ = 0 and hence k± = ±k.
In eq. (2.19) the dependence on k0 is very simple, as k0 appears only through the energy
denominators of Ĝ+(k0

±). Performing the integration over k0 in eq. (2.18) with Cauchy’s
theorem,4 one arrives at

ÔLL(k) = 1
|k| J

L
µ (0) Ĝ+(Ẽ − |k|) (2π)3

[
δ(3)(P̂− k+) + δ(3)(P̂− k−)

]
JLµ(0) . (2.21)

Further inserting a complete set of states between the current operators in eq. (2.21) leads
to the spectral representation for the amplitude5

Aν = −
∑
n

∫
d3k

(2π)3
1
|k|

[
〈f−|JLµ |n(k+)〉〈n(k+)|JLµ|i+〉
|k|+ (En(k+)− Ẽ)− iε

+
〈f−|JLµ |n(k−)〉〈n(k−)|JLµ|i+〉
|k|+ (En(k−)− Ẽ)− iε

]
. (2.22)

The representations (2.17) and (2.22) are quite general. The asymptotic behavior of
the integrand in eq. (2.22) at large |k| is dictated by the OPE for Π̂LL

µν (k) or, equivalently,
ÔLL(k). An explicit calculation to be described below shows the behavior d3k/|k|5, so the
amplitude in the full theory is finite. Moreover, eq. (2.22) shows that once |k| > kF , so that
k2/mN is above the typical nuclear binding energies, one expects (En(k±)−Ẽ) > 0 even for
bound intermediate states (such as the deuteron), and therefore the energy denominators
in eq. (2.22) will not lead to any singular behavior in the variable |k|. The matrix elements
in the numerator are also expected to have a smooth behavior in |k|, dictated by single-
and multi-hadron form factors, as shown by explicit EFT calculations. Based on these
considerations, we conclude that a smooth interpolation between the calculable regimes of
|k| . Λχ and |k| & Λ is adequate.

In order to make the integrand in eqs. (2.17) and (2.22) more explicit, we use the
expression for the scattering states (2.16) in eq. (2.17) and arrive at

Aν =
∫

d3k
(2π)3 〈f0|

(
T̂ (E′)Ĝ(0)

+ (E′) + I
)
ÔLL(k)

(
I + Ĝ

(0)
+ (E) T̂ (E)

)
|i0〉 (2.23)

4For each term in eq. (2.19), one can close the contour in the upper or lower k0 plane so that the integral
is given by the residue at the k0 pole from the neutrino propagator in eq. (2.18).

5The summation is over intermediate states |n(k±)〉 of total three-momentum k±, enforced by the δ-
functions in eq. (2.21). Therefore, for an N -particle intermediate state

∑
n
involves phase space integrals

over the N − 1 internal momenta (the total momentum being fixed to k±) and carries non-zero mass
dimension. For example, for two-nucleon intermediate states, using non-relativistic normalizations for the
states 〈pn|p′n〉 = (2π)3δ(3)(pn − p′n) one has

∑
n
→
∫
d3pn/(2π)3, where pn is the relative momentum of

the two-nucleon pair. In general the summation
∑

n
|n(k±)〉〈n(k±)| carries mass dimension −3.
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=
∫

d3k
(2π)3

{
〈f0| ÔLL(k) |i0〉

+
∑
m

〈f0|T̂ (E′)|m〉
[
G

(0)
+ (E′)

]
m
〈m| ÔLL(k) |i0〉

+
∑
m

〈f0| ÔLL(k) |m〉
[
G

(0)
+ (E)

]
m
〈m|T̂ (E)|i0〉

+
∑
m,m′

〈f0|T̂ (E′)|m′〉
[
G

(0)
+ (E′)

]
m′
〈m′| ÔLL(k) |m〉

[
G

(0)
+ (E)

]
m
〈m| T̂ (E) |i0〉

}
,

where [
G

(0)
+ (E)

]
m

= 1
E − E(0)

m + iε
, (2.24)

E
(0)
m denotes the energy associated with the free Hamiltonian Ĥ0, and

〈a| ÔLL(k) |b〉 = −
∑
n

1
|k|

[
〈a|JLµ |n(k)〉〈n(k)|JLµ|b〉
|k|+ (En(k)− Ẽab)− iε

+
〈a|JLµ |n(−k)〉〈n(−k)|JLµ|b〉
|k|+ (En(−k)− Ẽab)− iε

]
,

(2.25)
with Ẽab = (Ea+Eb)/2. In general the sum over hadronic intermediate states in eqs. (2.23)
and (2.25) involves |m〉, |m′〉, |n〉, ∈ {NN,NNπ, . . .}, i.e., both elastic |NN〉 contributions
and inelastic contributions |m〉, |m′〉, |n〉 6= |NN〉. Equations (2.23)–(2.25) make it explicit
which dynamical input is needed for the evaluation of the nn→ pp amplitude:

1. One needs the matrix elements of the current-current operator ÔLL(k) among two-
nucleon and possibly other intermediate states, namely 〈m′|ÔLL(k)|m〉, that can be
further decomposed according to eq. (2.25).

2. One needs the T -matrix elements 〈m|T̂ (E)|i0〉 and 〈f0|T̂ (E′)|m′〉 involving arbi-
trary intermediate states 〈m|, |m′〉 and on-shell two-nucleon states |i0〉 = |p〉 (with
E = p2/mN ) and 〈f0| = 〈p′| (with E′ = p′2/mN ). When considering the elastic
contributions, these reduce to the so-called half-off-shell (HOS) T -matrix elements
〈pm|T̂ (E)|p〉 and 〈p′|T̂ (E′)|pm′〉, involving loop momenta pm and pm′ . While it is
well known that the HOS T -matrix elements by themselves are not physical quanti-
ties (see for example the discussion in ref. [79]), they enter eq. (2.23) in such a way
that the full physical amplitude Aν is free of off-shell ambiguities (see appendix A
for an explicit check of this point).

To LO in chiral EFT the amplitude Aν is saturated by elastic contributions, with all
inputs in eqs. (2.23)–(2.25) given to leading chiral order. The LO chiral input provides
a good representation of the low-momentum part of the integrand but misrepresents the
high-momentum component. In this language, the ultraviolet (UV) divergence and the
need for a LO contact term arises from the 1/|k| behavior of the integrand, as discussed in
section 3.

On the other hand, in our estimate of the full amplitude to be described in section 4, we
will start from eqs. (2.23)–(2.25) and use representations of 〈m′|ÔLL(k)|m〉, 〈pm|T̂ (E)|p〉,
and 〈p′|T̂ (E′)|pm′〉 that go beyond leading chiral order to construct a UV convergent
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integrand. Motivated by the leading chiral EFT analysis and the analogy with the Cot-
tingham approach to the pion and nucleon electromagnetic mass splitting, we expect the
elastic two-nucleon intermediate state to provide the dominant contribution. While we will
mostly focus on the elastic channel, we will also estimate the effect of the leading NNπ
inelastic channel as we expect this to be one of the dominant sources of uncertainty in our
final result.

3 Chiral EFT result to leading order

In this section we briefly revisit the chiral EFT result of refs. [40, 43] in light of the
representation given in eq. (2.23). This will serve two purposes: setting up the notation
and pointing to a useful way of organizing the integrand in the full theory amplitude.

The power counting for Aν in chiral EFT is described in refs. [40, 43] and we recall
here some of its elements as needed. Denoting by µχ ∼ Q the soft scale in the EFT, to
LO in chiral counting, i.e., 1/Q2, only elastic NN intermediate states are relevant. The
corresponding diagrams are reported in figure 2. For concreteness, we regulate all the
integrals dimensionally and perform MS subtraction of the divergences when needed. The
LO chiral EFT results correspond to replacing in eq. (2.23) the LO form for the ÔLL(k) and
T̂ (E) operators, denoted by ÔLLχ (k) and T̂χ(E), respectively, and using the non-relativistic
form of the free two-nucleon Green’s function, [G(0)

+ (E)]n = 1/(E − p2
n/mN + iε).

The current-current correlator to LO in chiral EFT is given by

1S0〈p
′|ÔLLχ (k)|p〉1S0 = −

1 + 2g2
A + g2

AM
4
π

(k2+M2
π)2

k2
(2π)3

2
[
δ(3)(k + p− p′) + δ(3)(k− p + p′)

]
.

(3.1)
The T̂ operator is determined by the LO interaction Hamiltonian V̂ = V̂π + V̂S , which
contains the one-pion-exchange and a short-range contribution, parameterized to LO by
the LEC C:

〈p′|V̂ |p〉 = VS(p′,p) + Vπ(p′,p) ,

VS(p′,p) = C ,

Vπ(p′,p) = − 4παπ
(p− p′)2 +M2

π

, απ = g2
AM

2
π

16πF 2
π

. (3.2)

Here Fπ is the pion decay constant andMπ denotes the pion mass. The LO 1S0 NN contact
coupling C contains contributions from one-pion exchange as well as a contact interaction
and scales as C ∼ 4π/(mNQ). The split V̂ = V̂π + V̂S implies that the T̂ operator can be
similarly separated into a pion-range and short-range contribution as follows [80]

T̂ (E) = T̂π(E) + T̂S(E) ,

T̂π(E) = V̂π
(
I + Ĝ

(π)
+ (E) V̂π

)
= V̂π

(
I − Ĝ(0)

+ (E) V̂π
)−1

,

T̂S(E) =
(
I + V̂πĜ

(π)
+ (E)

) [
V̂S

(
I − Ĝ(π)

+ (E) V̂S
)−1

] (
I + Ĝ

(π)
+ (E) V̂π

)
, (3.3)
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where Ĝ(π)
+ (E) = 1/(E − Ĥ0 − V̂π + iε) is the Green’s function associated with the pion-

exchange interaction.
Using eq. (2.23) and separating out the contributions with zero, one, and two insertions

of T̂χS , the LO chiral EFT amplitude can be written as

AχEFT
ν =Mχ

A +Mχ

B+B̄ +Mχ
C , (3.4)

with

Mχ
A =

∫
d3k

(2π)3 〈f0|
(
T̂χπ (E′)Ĝ(0)

+ (E′) + I
)
ÔLLχ (k)

(
I + Ĝ

(0)
+ (E) T̂χπ (E)

)
|i0〉 ,

Mχ

B+B̄ =
∫

d3k
(2π)3 〈f0|

(
T̂χS (E′) Ĝ(0)

+ (E′)
)
ÔLLχ (k)

(
I + Ĝ

(0)
+ (E) T̂χπ (E)

)
|i0〉

+
∫

d3k
(2π)3 〈f0|

(
I + T̂χπ (E′)Ĝ(0)

+ (E)
)
ÔLLχ (k)

(
Ĝ

(0)
+ (E)T̂χS (E)

)
|i0〉 ,

Mχ
C =

∫
d3k

(2π)3 〈f0|
(
T̂χS (E′)Ĝ(0)

+ (E′)
)
ÔLLχ (k)

(
Ĝ

(0)
+ (E) T̂χS (E)

)
|i0〉 . (3.5)

Diagrammatically, Mχ
A, M

χ

B+B̄, and M
χ
C correspond to the first, second, and third row

in figure 2. Using the definition of T̂S in eq. (3.3) and the fact that to LO V̂S is a
momentum-independent contact interaction, in dimensional regularization one can show
that the rescattering factors KE ,KE′

KE = C

1− CG+
E(0,0)

, G±E(r, r′) =
∫

d3q
(2π)3

∫
d3q′
(2π)3 e

iq·re−iq
′·r′〈q|Ĝ(π)

± (E)|q′〉 ,

(3.6)
and Yukawa wave functions at the origin χ+

p (0), χ+
p′(0)

χ±p (r) =
∫

d3q
(2π)3 e

ik·r〈k|(1 + Ĝ
(π)
± (E) V̂π)|p〉 , (3.7)

can be factored out of the d3k integrals in Mχ

B+B̄, and M
χ
C , thus reproducing the chiral

EFT results of refs. [40, 43]

Mχ
A = AA ,

Mχ

B+B̄ = ĀBKE χ
+
p (0) + χ+

p′(0)KE′ AB ,

Mχ
C = χ+

p′(0)KE′ AC KE χ
+
p (0) . (3.8)

The divergence in G+
E(0,0) is absorbed by C−1, so that KE is well defined and independent

of the chosen scheme and scale [23].
The reduced amplitudes AA,B,C correspond to the left-most diagram in the first, sec-

ond, and third rows of figure 2 respectively (without the Yukawa iteration in the outer
legs after the V̂S insertion). Neglecting Yukawa interactions (απ → 0), i.e., in the pion-
less EFT (/πEFT), AA,B,C have simple expressions [40, 43]. In general, however, they are
non-perturbative objects that involve the sum of infinitely many Feynman diagrams. The
amplitude AC in eqs. (3.5) and (3.8) contains a UV-divergent term at the two-loop level,
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Figure 2. Diagrammatic representation of LO contributions to nn→ ppee in chiral EFT. Double,
dashed, and plain lines denote nucleons, pions, and leptons, respectively. The blue ellipse represents
iteration of V̂π. Gray circles denote the nucleon axial and vector currents. In the first three lines
the black square represents an insertion of mββ , while in the fourth line it represents an insertion
of C1 = gNNν . The ellipses in the second to fourth lines denote diagrams with an arbitrary number
of NN bubble insertions.

which we denote by Asing
C , as well as UV-finite terms induced by pion exchange, which we

denote by δAC , leading to the decomposition:

AC = Asing
C + δAC . (3.9)

The UV-convergent term δAC arises from (i) the iteration of the pion-induced potential
(see figure 2 and eq. (3.5), as well as eq. (3.3) for the definition of T̂χS ); (ii) the term
proportional to g2

AM
4
π in ÔLLχ (k), see eq. (3.1), which is one of two manifestations of the

induced pseudoscalar form factor of the axial current (the other is the change 3g2
A → 2g2

A).
Using dimensional regularization with scale µχ and the MS scheme for renormalization, we
thus identify the singular (UV-divergent) term with

Asing
C (µχ) = −m2

N µ4−d
χ

∫
dd−1k

(2π)d−1
1 + 2g2

A

k2 − iε
IC(k2,p2,p′2) , (3.10)

where

IC(k2,p2,p′2) =
∫

d3q
(2π)3

1
p′2 − (q + k)2 + iε

1
p2 − q2 + iε

,

IC(k2,p2,p2) = 1
8|k| θ(|k| − 2|p|) + i

8π|k| log

∣∣∣∣∣∣
1 + 2 |p||k|
1− 2 |p||k|

∣∣∣∣∣∣ . (3.11)

In case of p = p′ the resulting expression becomes

Asing
C (µχ) = −(1 + 2g2

A)
2

m2
N

(4π)2

[
log

µ2
χ

−4|p|2 − iε + 1
]
. (3.12)
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It will prove useful to write the real part of this result in an integral representation

ReAsing
C (µχ) = −(1 + 2g2

A)
2

m2
N

(4π)2

[
1 + 2

∫ µχ

0

d|k|
|k| θ(|k| − 2|p|)

]
. (3.13)

The UV divergence is removed by introducing a new contact term

LNN|∆L|=2 =
(
2G2

FV
2
ud

)
mββ C1 × ēLecL N̄τ+N N̄τ+N , (3.14)

with a LNV coupling proportional to mββ denoted by C1 [43], to be identified with gNNν
also used in the recent literature, i.e., C1 ≡ gNNν . A chiral-covariant form of the contact
operator in eq. (3.14) will be given in section 6.

Including the contact term, the finite, renormalized amplitude is given by

AχEFT
ν =AA + χ+

p′(0)KE′ AB + ĀBKE χ
+
p (0)

+ χ+
p′(0)KE′

(
Asing
C (µχ) + 2 C1(µχ)

C2 + δAC
)
KE χ

+
p (0) . (3.15)

The matching analysis will provide a representation for the combination Asing
C (µχ) +

2 C1(µχ)/C2.

4 Full theory parameterization

The starting point for parameterizing the full-theory amplitude is provided by eq. (2.23),
in which we split the integral into a low- plus intermediate-momentum region and high-
momentum region, according to eq. (2.12). In order to mimic the structure of the chiral
EFT amplitude and facilitate matching, it is also convenient to separate the full theory
T matrix into a term induced by one-pion exchange and a short-range contribution, i.e.,
T̂ = T̂π + T̂S , as done in eq. (3.3).

4.1 Low- and intermediate-momentum region: A<

Following eqs. (2.23) and (3.4), we write

A< =M<
A +M<

B+B̄ +M<
C , (4.1)

with

M<
A =

∫
d3k

(2π)3 〈f0|
(
T̂<π (E′)Ĝ(0)

+ (E′) + I
)
ÔLL< (k)

(
I + Ĝ

(0)
+ (E) T̂<π (E)

)
|i0〉 ,

M<
B+B̄ =

∫
d3k

(2π)3 〈f0|
(
T̂<S (E′) Ĝ(0)

+ (E′)
)
ÔLL< (k)

(
I + Ĝ

(0)
+ (E) T̂<π (E)

)
|i0〉

+
∫

d3k
(2π)3 〈f0|

(
I + T̂<π (E′)Ĝ(0)

+ (E)
)
ÔLL< (k)

(
Ĝ

(0)
+ (E)T̂<S (E)

)
|i0〉 ,

M<
C =

∫
d3k

(2π)3 〈f0|
(
T̂<S (E′)Ĝ(0)

+ (E′)
)
ÔLL< (k)

(
Ĝ

(0)
+ (E) T̂<S (E)

)
|i0〉 . (4.2)
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Figure 3. Diagrammatic representation of the forward Compton amplitude corresponding to the
integrand of Asing

C in eq. (3.10) and A<,sing
C in eq. (4.18). Solid lines represent nucleons and wavy

lines the currents. Blue circles represent short-range NN interactions and red circles represent
single-nucleon weak form factors.

We wish to provide a representation of the integrand inM<
A,B,C that is valid up to a scale

|k| ∼ Λ. We build the integrand starting from the low-momentum region. For |k| ∼ Q

the integrand is controlled by chiral EFT. Using the LO chiral representation for the two-
current operator (ÔLL< = ÔLLχ ) and the T matrix (T̂<π,S = T̂χπ,S) in MA and MB+B̄ leads
to convergent integrals, and one recovers the chiral EFT results of eqs. (3.5), up to terms
of O(Q/Λ) that are irrelevant at LO

M<
A =Mχ

A ×
(

1 +O
(
Q

Λ

))
, M<

B+B̄ =Mχ

B+B̄ ×
(

1 +O
(
Q

Λ

))
. (4.3)

We will also show that M>
A,B+B̄ does not contribute to the amplitude at LO. Therefore,

MA andMB+B̄ drop out of the LO matching condition (2.13), which will therefore only
involve M<

C . In order to have a representation of the integrand valid up to momenta
|k| ∼ Λ, in eq. (4.2) we need to model both ÔLL(k) and T̂S beyond the LO chiral EFT
expressions. We will do so by introducing appropriate single-nucleon weak form factors
and HOS form factors, represented by the red and blue circles in figure 3, respectively.

For the current-current operator we make the replacement ÔLLχ (k) → ÔLL< (k), by
introducing single-nucleon form factors in the weak current vertices,

1S0〈p
′|ÔLL< (k)|p〉1S0 = −g

2
V (k2) + 3hLLGT (k2)

k2
(2π)3

2
[
δ(3)(k + p− p′) + δ(3)(k− p + p′)

]
,

(4.4)
where

hLLGT (k2) = g2
A(k2) + k4g2

P (k2)
12m2

N

+ k2gA(k2)gP (k2)
3mN

+ k2g2
M (k2)

6m2
N

. (4.5)

In our baseline analysis, we will use the simple dipole parameterization for the vector,
magnetic, and axial-vector form factors

gV (k2) = 1(
1 + k2

Λ2
V

)2 , gM (k2) = (1 + κ1) gV (k2) , κ1 ' 3.7 ,

gA(k2) = gA(
1 + k2

Λ2
A

)2 , gP (k2) = −2mN gA(k2)
k2 +M2

π

, (4.6)
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with ΛV = 0.84GeV and ΛA = 1.0GeV. While we expect this to be a good first approx-
imation, we have explored the dependence of the contact term on the form factor input.
In the case of the axial-vector form factor, we have taken the range ΛA ∈ [0.8, 1.2]GeV,
which corresponds to an axial radius of 0.47(19) fm2, in good agreement with the result
0.46(16) fm2 quoted in ref. [81]. For the vector form factor, we have explored the continued
fraction expansion of ref. [82]. Since input on the form factors turns out to induce a by far
subdominant uncertainty in the matching result (see discussion below), we will not perform
a more sophisticated error analysis based on state-of-the-art information on the nucleon
form factors [81, 83–85].

The parameterization of ÔLL< (k) in terms of the weak nucleon form factors then leads to

M<
C = −

∫
d3k

(2π)3

[
g2
V (k2) + 3hLLGT (k2)

k2

]
(4.7)

×
∫

d3q
(2π)3 TS(p′,q + k) 1

E′ − (q + k)2/mN + iε

1
E − q2/mN + iε

TS(q,p) ,

where the notation for the HOS T̂S-matrix elements is6

TS(q,p) = 〈q|T̂S(E)|p〉 , E = p2

mN
,

TS(p′,q) = 〈p′|T̂S(E′)|q〉 , E′ = p′2
mN

. (4.8)

We further write the HOS T̂S-matrix element as the product of the on-shell T̂S-matrix
element times the HOS factors f̃S(q,p) [86]

TS(q,p) ≡ TS(p,p)× f̃S(q,p) . (4.9)

Using the LO on-shell result [23], see eq. (3.3),

TS(p,p) =
(
χ+

p (0)
)2

KE (4.10)

and defining

f̄S(q,p) ≡ f̃S(q,p) χ+
p (0) = TS(q,p)

TS(p,p) χ
+
p (0) , (4.11)

we arrive at

M<
C = χ+

p′(0)KE′

[
A<C

]
KE χ

+
p (0) , (4.12)

A<C = −
∫

d3k
(2π)3

[
g2
V (k2) + 3hLLGT (k2)

k2

]
× Ĩ<C (|k|) , (4.13)

Ĩ<C (|k|) =
∫

d3q
(2π)3 f̄S(p′,q + k) 1

E′ − (q + k)2/mN + iε

1
E − q2/mN + iε

f̄S(q,p) .

(4.14)

6These are S-wave projected matrix elements and depend only on |p| and |q|.
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Equation (4.12) shows thatM<
C has the correct IR behavior to LO in the external momenta

p and p′ and that the quantity A<C corresponds to the amplitude AC in chiral EFT.
As argued in section 3, AC contains a singular UV-divergent term (Asing

C ) and UV-finite
contributions induced by pion exchange (δAC). In analogy to eq. (3.9) we can write

A<C = A<,sing
C + δA<C , (4.15)

where δA<C denotes the convergent pion-exchange contributions to A<C , satisfying

δA<C − δAC ∼ AC ×O
(
Q

Λχ

)
. (4.16)

Therefore, these finite contributions drop out of the matching relation (2.13) to LO and
for the purpose of matching one only needs to identify the singular component A<C .
A<,sing
C is obtained from eq. (4.13) by systematically removing the convergent pion

contributions. This requires:

1. Discarding the convergent terms due to the induced pseudoscalar form factor in
hLLGT (k2). In practice this means replacing 3hLLGT (k2)→ 2gA(k2) + k2g2

M (k2)
2m2

N
.

2. Setting απ → 0 in the evaluation of f̄S(q,p) in eq. (4.14), which implies

f̄S(q,p)
∣∣∣∣
απ=0

= TS(q,p)
TS(p,p)

∣∣∣∣
απ=0

≡ fS(q,p) . (4.17)

The quantity fS(q,p) is real-valued and can be interpreted as a form factor. In light
of this, from eqs. (4.12)–(4.14) we arrive at

A<,sing
C = −m2

N

∫
d3k

(2π)3

[
g2
V (k2) + 2g2

A(k2) + (k2g2
M (k2))/(2m2

N )
k2

]
× I<C (|k|) ,

I<C (|k|) =
∫

d3q
(2π)3 fS(p′,q + k) 1

p′2 − (q + k)2 + iε

1
p2 − q2 + iε

fS(q,p) .

(4.18)

In the end, the difference between Asing
C (µχ) andA<,sing

C is quite intuitive. As illustrated
in figure 3, the integrand of Asing

C in eq. (3.10) contains the LO nucleon weak current vertices
and the leading contact NN interaction. On the other hand, the full-theory integrand in
A<,sing
C contains appropriate form factors in the nucleon weak current vertices and in the

NN vertices (fS(q,p)). The latter parameterizes the off-shell behavior of the short-range
component of the NN amplitude and amounts to changing the LO chiral EFT function
IC(|k|) defined in eq. (3.11) to I<C (|k|) given in eq. (4.18), valid for a larger range of
momenta |k| compared to the LO result. It will prove convenient to present results in
terms of the ratio

r(|k|) ≡ Re I<C (|k|)
Re IC(|k|) . (4.19)
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Figure 4. Ratio r(|k|) defined in eq. (4.19). The various lines correspond to the NLO /πEFT result
(blue), the NLO chiral EFT result (red), and the three-Yukawa potential from ref. [87] (green),
compared to the LO chiral EFT result r(|k|) = 1.

We now describe our construction of I<C (|k|) and r(|k|), based on the first two orders
in chiral EFT and then extended to larger values of |k| using models for the short-range
NN interaction in the 1S0 channel. For concreteness we work at the kinematic point
|p| = |p′| = 1MeV.

1. At LO in chiral EFT one has fS(q,p) = 1 and the integrals simplify to

Re I<C (|k|)→ Re IC(|k|) = θ(|k| − 2|p|)/(8|k|) .

2. For |k| ≤ Mπ and |k| ≤ Λχ we can evaluate the corrections to Re I<C (|k|) in /πEFT
and chiral EFT, respectively, using VS(p,p′) = C + (C2/2)(p2 + p′2). As discussed
in appendix A, the results at next-to-leading order (NLO) in chiral EFT and /πEFT
are formally identical

fS(q,p) = 1− C2
2C (p2 − q2) ,

fS(p′,q + k) = 1− C2
2C

[
p′ 2 − (q + k)2

]
, (4.20)

with the identifications C = C0 in /πEFT and C = C0 + g2
A/(4F 2

π ) in chiral EFT.
Note that these HOS form factors are different depending on whether they involve the
initial- or final-state on-shell momenta, so that fS(p′,q) cannot be obtained from the
expression of fS(q,p) by interchanging q ↔ p and subsequently replacing p → p′.
This leads to (see appendix A for details)

Re I<C (|k|) = 1
8|k| −

C2
mNC2 . (4.21)

In terms of the ratio r(|k|) introduced in eq. (4.19) the NLO analysis gives

rNLO(|k|) = 1− 8C2
mNC2 |k| . (4.22)
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In both EFTs the ratio C2/C
2 is renormalization-scale independent. In /πEFT

C2/C
2 = mNr0/(8π) is linked to the effective range, leading to

rNLO
/π (|k|) = 1− r0

π
|k| . (4.23)

Since r0 ' 1/(72MeV) (corresponding to C2/C
2 ' 0.52), this produces sizable frac-

tional deviations in Re I<C (|k|) already for |k| ≤ Mπ. In chiral EFT one finds a
slightly reduced suppression C2/C

2 ' 0.38 [23], as part of the effective range is al-
ready captured by the pion-exchange contribution. In summary, the NLO analysis
shows that there is a sizable suppression of the LO result already for relatively low
|k|, linked to the large effective range in the 1S0 channel.

3. To extend I<C (|k|) or equivalently r(|k|) to higher values of |k|, we have computed
fS(q,p) using models of VS , i.e., the short-range NN interaction in the 1S0 channel.
We have used the three-Yukawa potential from refs. [87, 88] and the AV18 poten-
tial [89], all of which reproduce the 1S0 phase shifts for |p| up to several hundred
MeV. Using the Kaplan-Steel three-Yukawa potential [87] as our baseline model, we
have solved numerically the Lippmann-Schwinger (LS) equation to obtain fS(q,p),
which was then used to evaluate I<C (|k|) (see appendix A for details). Reassuringly,
as illustrated in figure 4, the behavior of rVS (|k|) in the model calculation very closely
tracks the NLO chiral EFT result for |k| < 200MeV, i.e., the region in which NLO
chiral EFT is expected to provide model-independent and accurate results. Using
other NN potentials [88, 89] does not change the qualitative picture, but induces
small changes in the slope of r(|k|) for |k| < 400MeV as well as the location and
depth of the minimum for |k| ∼ 600MeV. This makes it clear that using rVS (|k|)
all the way to |k| ∼ Λ ∼ 1GeV introduces model dependence. However, in the inte-
gral (4.18) the region in which rVS (|k|) has the largest model dependence is weighted
considerably less than the model-independent low-|k| region, because the integration
kernel involves 1/|k| and the nucleon form factors, both rapidly decreasing functions
of |k|. In section 5 we will quantify how this model dependence affects the extraction
of the effective coupling.

4.2 High-momentum region: A>

At large Euclidean virtualities (k2
E � Λ2

QCD) the time-ordered product of currents Π̂LL
µν (k, 0)

defined in eq. (2.6) admits an OPE. An analysis of the leading diagrams, depicted in figure 5,
shows that

Π̂LL
µν (k, 0) = − 4ig2

s

(k2 + iε)3 ×
[
(kµkν − k2gµν)gαβ Ôαβ(0) + gµνkαkβÔ

αβ(0)

+ k2Ôνµ(0)− kνkα Ôαµ(0)− kµkα Ôνα(0)
]
, (4.24)

where
Ôαβ(0) = ūL(0)γαT adL(0) ūL(0)γβT adL(0) = Ôβα(0) , (4.25)

and T a are SU(3) color generators.
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Figure 5. Quark-level diagrams that determine the asymptotic behavior of Π̂LL
µν . Solid lines

represent quarks, curly lines represent gluons, and the black dots represent insertions of the cur-
rent ūLγµdL.

In the actual matching calculation, since we contract Tµν with gµν , we need

gµν Π̂LL
µν (k, 0) = − 4ig2

s

(k2 + iε)3

(
− 2k2Ôαα + 2kαkβÔαβ

)
→ 8ig2

s

(k2 + iε)2
3
4 Ô

α
α , (4.26)

where the last step holds under symmetric integration (kαkβ → k2gαβ/4). Finally, we note
that by using Fierz identities in color and then in flavor one obtains

Ôαβ = 1
3 ūLγαdL ūLγβdL → Ôαα = 1

3O1 , (4.27)

where O1 is defined in eq. (2.2).
Performing the k0 integration in order to go from gµν Π̂LL

µν (k, 0) to ÔLL(k) we obtain

ÔLL> (k) = 3g2
s

4
1
|k|5 O1(0) , (4.28)

which is the expression to be used to evaluate the A> component in eq. (2.23), to obtain

A> = 3αs
2π 〈f−|O1(0) |i+〉

∫ ∞
Λ

d|k| 1
|k|3 . (4.29)

This result shows a factorization of the hard and soft contributions. The final step requires
the evaluation of 〈f−|O1(0) |i+〉, which can be done in chiral EFT to LO.

As discussed in refs. [35, 42] the four-quark local operator O1 admits a low-energy
realization consistent with chiral symmetry and its breaking. To LO (and neglecting higher
powers of the pion fields) one has

O1 → gNN1 p̄np̄n + 5
6g

ππ
1 F 2

π ∂µπ
−∂µπ− +

√
2gAgπN1 Fπ p̄(Sµ∂µπ−)n+ . . . (4.30)

The scaling of the non-perturbative parameters is gNN1 , gπN1 ∼ O(1), while a precise lat-
tice calculation gives gππ1 = 0.36(2) at the renormalization scale µ = 2GeV in the MS
scheme [90].7 The ππ and πN couplings induce a pion-range transition operator, while the

7See refs. [91, 92] for a determination of gππ1 based on chiral SU(3), consistent with the direct lattice
result. We have suppressed the dependence of the short-distance couplings on the QCD renormalization
scale µ, needed to cancel the scale dependence in αs(µ).
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NN couplings gives a short-range transition operator. The final result is given by

〈f−|O1(0) |i+〉 = ÃA + χ+
p′(0)KE′ ÃB + ÃB̄KE χ

+
p (0)

+χ+
p′(0)KE′

(
ÃC + 2ĝNN1

C2

)
KE χ

+
p (0) , (4.31)

where
ĝNN1 = gNN1 + g2

A

2

(5
6g

ππ
1 − gπN1

)
(4.32)

and ÃA,B,C have the same formal expression as AA,B,C [43] with the replacement [42]8

V
1S0
ν L (q) → V

1S0
O1

(q) = g2
A

[
5gππ1

6
M2
π q2

(q2 +M2
π)2 −

(
gπN1 − 5gππ1

6

)
M2
π

q2 +M2
π

]
. (4.33)

These relations allow us to write A> in a form very useful for the matching to chiral
EFT:

A> = A>A + χ+
p′(0)KE′ A>B +A>

B̄
KE χ

+
p (0) + χ+

p′(0)KE′ A>C KE χ
+
p (0) , (4.34)

with

A>
A,B,B̄

= 3αs
2π

∫ ∞
Λ

d|k| 1
|k|3 ÃA,B,B̄ ,

A>C = 3αs
2π

∫ ∞
Λ

d|k| 1
|k|3

(
2ĝNN1
C2 + ÃC

)
. (4.35)

The quantities A>
A,B,B̄

are sub-leading compared to their finite chiral EFT counterparts
AA,B,B̄, e.g., A>A/AA ∼ Q2/Λ2 and similarly for AB. Therefore, as anticipated in the
previous section, these quantities do not enter the LO matching relation.

On the other hand, A>C has to be retained because its integrand provides the QCD
asymptotic behavior to which the integrand in A<,sing

C given in eq. (4.18) has to tend for
large |k|. Given our limited knowledge of gNN,πN1 and the fact that the terms involving
gNN1 , gπN1 , and gππ1 contribute at the same order to 〈f−|O1(0) |i+〉, we will retain for
simplicity only the term proportional to gNN1 . For convenience, in the matching analysis
we express gNN1 as follows

gNN1 =
(
mN

4π C
)2

F 2
π ḡ

NN
1 , ḡNN1 ∼ O(1) . (4.36)

In numerical estimates we will allow for ḡNN1 as large as O(10), given that the ππ short-
distance coupling ḡππLR = 8.23 [90] relevant for the vector-vector correlator by far exceeds
its O(1) expectation. However, the numerical impact of these poorly known short-distance
parameters on the overall analysis is very minor, as the main role of A>C is to enforce the
UV finiteness of the nn→ pp amplitude.

8Note that the mismatch in dimensions between V
1S0
ν L (q) and V

1S0
O1

(q) is compensated by the additional
powers of 1/|k| in eq. (4.29).
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5 Matching and extraction of C1

5.1 Results

The matching condition (2.13), taking into account the form of AχEFT
ν in eq. (3.15) and

the structure of A< (see eq. (4.1) and following discussion) and A> (see eq. (4.34) and
following discussion) reduces to

A<,sing
C + A>C = Asing

C (µχ) + 2C1(µχ)
C2 . (5.1)

The amplitudes Asing
C (µχ) and A<,sing

C are given in eqs. (3.10) and (4.18), respectively, and
A>C is given in eq. (4.35).

Defining the dimensionless coupling C̃1 via

C1 =
(
mN

4π C
)2
C̃1 (5.2)

and the dimensionless quantities

ĀXC ≡
( 4π
mN

)2
AXC , (5.3)

the matching condition reads

C̃1(µχ) = 1
2
[(
Ā<,sing
C − Āsing

C (µχ)
)

+ Ā>C
]
. (5.4)

Using our previous results, we can write the various quantities entering the matching
condition in terms of the following integrals:

Āsing
C (µχ) = −1 + 2g2

A

2 +
∫ µχ

0
d|k| aχ(|k|) ,

Ā<.sing
C =

∫ Λ

0
d|k| a<(|k|) ,

Ā>C =
∫ ∞

Λ
d|k| a>(|k|) , (5.5)

with9

aχ(|k|) = −(1 + 2g2
A) 1
|k| θ(|k| − 2|p|) ,

a<(|k|) = −
(
g2
V (k2) + 2gA(k2) + k2g2

M (k2)
2m2

N

)
r(|k|)
|k| θ(|k| − 2|p|) ,

a>(|k|) = 3αs
π

ḡNN1
F 2
π

|k|3 , (5.6)

with r(|k|) given in eq. (4.19). Putting all pieces together we can write

2 C̃1(µχ) = 1 + 2g2
A

2 −
∫ µχ

0
d|k| aχ(|k|) +

∫ Λ

0
d|k| a<(|k|) +

∫ ∞
Λ

d|k| a>(|k|) . (5.7)

9For the matching condition only the real part of aχ matters.
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Figure 6. Left panel: aχ(|k|) (yellow), a<(|k|) (blue), and a>(|k|) (green band) assuming ḡNN1 ∈
[−10, 10]. Right panel: same plot for the absolute values in logarithmic scale.
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Figure 7. Left panel: dependence of C̃1(µχ = Mπ) on the matching scale Λ using ḡNN1 = ±10.
Right panel: dependence of C̃1 on the chiral renormalization scale µχ.

By construction the µχ dependence is consistent with the renormalization group equation
(RGE) for the rescaled coupling C̃1(µχ) [43]. This representation shows that up to an
additive constant the LEC C̃1(µχ) can be thought of as the difference between two integrals
in |k|, one in the full theory extending all the way to |k| → ∞, and one in the EFT extending
to |k| = µχ. Therefore, the LEC C̃1(µχ) corresponds to (i) a possible mismatch between the
LO chiral EFT and the full amplitude at |k| < µχ; (ii) the component of the full amplitude
arising from |k| > µχ.

In figure 6 we show aχ(|k|) (yellow), a<(|k|) (blue), and a>(|k|) (green) assuming
ḡNN1 ∈ [−10,+10]. The behavior of the integrand indicates that the LEC is dominated by
the low- and intermediate-momentum regions. In the left panel of figure 7 we show the
dependence of C̃1(µχ = Mπ) on the separation scale Λ, which proves to be relatively mild.
The right panel shows the dependence of C̃1 on the chiral renormalization scale µχ. The
impact of varying ḡNN1 ∈ [−10,+10] is illustrated by the two different curves in the left
panel of figure 7 and is very small.

Overall, the result for the LEC C̃1(µχ = Mπ) ' +1.32 is relatively stable and confirms
the expected scaling of the contact term, i.e., C̃1 ∼ O(1) [40]. This matching analysis
implies that the contribution from C̃1 and the long-range neutrino exchange encoded in
AC interfere destructively, at least when one uses dimensional regularization with minimal
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subtraction. Another way to see this is as follows: the 1S0 long-range neutrino potential
VνL = (1 + 2g2

A)/q2 > 0 has the opposite sign compared to the short-range potential
VνS = −2C1 < 0, since C1(µχ) > 0 for values of µχ appropriate for the chiral EFT analysis
(see the right panel of figure 7 for a quantitative statement).

The origin of the sign can be traced back to the mismatch between the LO chiral EFT
and the full amplitude for |k| < µχ, an effect quite visible in the doubly-logarithmic plot
in the right panel of figure 6. In turn, the sizable deviation of a<(|k|) (blue) from aχ(|k|)
(yellow) at |k| < µχ = Mπ is due to the behavior of r(|k|) (see figure 4 and discussion in
section 4.1), which enters multiplicatively in a<(|k|), as per eq. (5.6), and effectively encodes
higher-order corrections to the forward Compton amplitude. As discussed in section 4.1,
the all-important negative slope of r(|k|) for |k| < 300MeV is controlled by the large 1S0
effective range r0 ' 2.7 fm and is not a model artifact.

While these arguments allow us to understand the origin of the sign of the contact
term at a given scale in the MS scheme, we stress that no general statement is possible,
see section 7 for more details. For instance, in the cutoff schemes discussed there, both
destructive and constructive effects are possible depending on the scale of the regulator.

5.2 Discussion of uncertainties

Our baseline result C̃1(µχ = Mπ) ' +1.32 is obtained using the Kaplan-Steele [87] VS
potential. This result is relatively stable with respect to input parameters in the form
factors, the local matrix element ḡNN1 controlling the high-|k| tail, and the matching scale
Λ, as long as Λ ≥ 1GeV. The coupling ḡNN1 (µ), expected to be O(1), is presently unknown,
but in view of the large value of the similar two-pion matrix element ḡππLR = 8.23 (see
appendix B for details), we take the range ḡNN1 ∈ [−10,+10], with minor impact on
the final result. These parametric uncertainties do not exceed δC̃1 ' ±0.05par and are
dominated by the input ΛA = 1.0(2)GeV.

The main systematics of our approach are due to the following effects:

1. We have effectively truncated the spectral representation (2.22) to keep only the
elastic NN intermediate state. In order to assess the size of the neglected terms,
we provide below a rough estimate of the simplest inelastic channel, namely NNπ,10

see figure 8. As discussed in appendix C, we find contributions to C̃1 from the NNπ
intermediate states on the order of |δC̃1| = 0.1–0.35 and due to this we assign an
uncertainty of δC̃1|inelastic = ±0.5 .

2. Within the NN channel, we have built our integrand in |k| starting from the low-|k|
end. To extend the form of the integrand to |k| ∼ Λ ∼ 1GeV, we have taken two main
steps: (i) We have included nucleon form factors of the weak currents. This is known
to saturate the elastic contribution to the electromagnetic mass difference of both
the nucleon and pion in the Cottingham approach. (ii) We have included HOS form
factors fS(q,p) that encode the higher-momentum behavior of the NN scattering

10In the discussion of higher-order EFT contributions to the nn→ pp amplitude given in ref. [38], these
contributions were called “non-factorizable.”
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amplitude. This effect, parameterized by the ratio r(|k|) defined in eq. (4.19), has
no analog in the Cottingham literature, which usually deals with two electroweak
current insertions on a single hadron. As discussed in section 4.1, we have performed
the modeling of r(|k|) using a three-Yukawa potential and tested against the NLO
chiral EFT analysis. Comparison with the chiral EFT analysis shows that inclusion
of this effect is essential to reproduce the correct Compton amplitude, and hence
the integrand, already at |k| ≤ Mπ. On the other hand, the extension of r(|k|) to
|k| ∼ Λ ∼ 1GeV introduces model dependence. To quantify this model dependence
we have employed both the simple three-resonance model and the AV18 model for
the short-range NN interactions in the 1S0 channel. In both cases the behavior of
r(|k|) shows the same features, see figure 17: a rapid drop controlled by the large
effective range, a zero for |k| between 400 and 500MeV, and then a minimum around
(600–700)MeV. However, the key point is that because of the fall-off of the integrand
multiplying r(|k|), any feature above 500MeV is washed out, and the differences
between AV18 and Kaplan-Steele potentials have little impact on the extracted LEC.
Numerically, compared to our baseline Kaplan-Steele model, we find a variation on
C̃1 of ≈ +0.20 and ≈ −0.20 when using the Reid or AV18 potential, respectively.
This difference correlates with the different slopes of r(|k) for |k| < 300MeV, see
figure 17. Based on this, we will assign an error of δC̃1 of ±0.2 due to the choice of
the short-range potential VS .

3. The above discussion and figure 6 both point to the fact that the bulk of C̃1 is
controlled by the behavior of a<(|k|) for |k| < 300MeV, where our integrand can be
linked to the model-independent chiral EFT behavior. Quantitatively, we find that
the region |k| ∈ [0.4, 1.5]GeV, entailing the largest unknowns, contributes ∆|C̃1| ≤
0.05, which is a reassuring result.

4. Finally, we note that our approach can be used to estimate the combination of LECs
C̃1 + C̃2, which corresponds to two insertions of the electromagnetic current and can
be extracted from data. As discussed in section 6, our matching calculation for
C̃1 + C̃2 compares within uncertainties fairly well with the value extracted from the
CIB combination of NN scattering lengths. This is a non-trivial validation of the
method and gives us confidence that our results provide a realistic estimate of these
couplings and their uncertainties.

In light of the above discussion, we quote the following estimate for the LEC

C̃1(µχ = Mπ) ' 1.32(50)inel(20)VS (5)par = 1.3(6) , (5.8)

which becomes
C̃1(µχ = 4Mπ) = 4.2(6) (5.9)

at a renormalization scale that corresponds more closely to cutoffs used in ab-initio many-
body calculations (albeit in a different scheme and thus not in direct correspondence, see
section 7 for more details).
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Figure 8. Representative inelastic contribution to the generalized forward Compton amplitude.
Solid lines represent nucleons, dashed lines pions, and wavy lines the current insertions.

The final uncertainty is dominated by the missing inelastic contributions and implies
a relative precision of (20–30)% on the renormalized singular amplitude Āsing

C + 2 C̃1 at
|p| ∼ (20–30)MeV — in line with the expectation from the Cottingham analyses of pion
and nucleon masses. Note that this translates into a smaller relative error on the total
amplitude AχEFT

ν , as we will discuss in section 7.

6 Vector-vector amplitude and C1 + C2

In analogy to the matching for the purely left-handed coupling C1 = gNNν , one can determine
the left-right coupling C2 and the vector combination C1+C2. Since C1+C2 can be extracted
from a fit to the I = 2 NN scattering amplitudes, this offers a way to validate the matching
approach through experimental data. The matching calculation is most easily done by
considering the nn→ pp transition in the unphysical theory in which the W boson couples
to both the left-handed quark current ūLγµdL (as in the Standard Model) and the right-
handed current ūRγµdR with equal couplings.

6.1 Effective Lagrangians

Let us briefly recall the basic elements of this extended analysis [40, 43]. The starting point
is the quark-level electromagnetic and weak Lagrangian in the Standard Model

L = q̄Lγ
µ
(
lµ + l̂µ

)
qL + q̄Rγ

µ (rµ + r̂µ) qR , (6.1)

where q denotes the quark doublet q = (u, d)T and we defined

lµ = e

2Aµ τ
3 − 2

√
2GF

[
Vud ēLγµνL τ

+ + h.c.
]
, l̂µ = e

6Aµ ,

rµ = e

2Aµ τ
3 , r̂µ = e

6Aµ , (6.2)

where τ+ = (τ1 + iτ2)/2. We are interested in the isovector components of the interactions,
involving lµ and rµ. We will consider the unphysical theory in which the W boson has
vector-like couplings and hence couples with same strength to both ūLγµdL and ūRγµdR.
This amounts to rµ = lµ, namely

rµ = e

2Aµ τ
3 − 2

√
2GF

[
Vud ēLγµνL τ

+ + h.c.
]
. (6.3)
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Double insertions of the isovector component of eq. (6.1) give rise to 0νββ amplitudes and
I = 2 electromagnetic effects through the effective actions:

SLNV = S++ , SEM,I=2 = S33 , (6.4)

with

Saa = F aa
∫
d4xd4y gµνS(x− y) T

(
JaµL(x) JaνL(y) + JaµR(x) JaνR(y) + 2JaµL(x) JaνR(y)

)
,

(6.5)
and

JaµL(x) = q̄L(x)γµtaqL(x) , JaµR(x) = q̄R(x)γµtaqR(x) . (6.6)

The interaction-specific factors are11

F++ = 8G2
FV

2
udmββ

2! ēLe
c
L , t+ = τ+ = τ1 + iτ2

2 ,

F 33 = e2

2! , t3 = τ3

2 , (6.7)

and S(x − y) is the massless scalar propagator defined in eq. (2.4), which arises from the
neutrino or photon propagator in the 0νββ and I = 2 cases, respectively.

At low energy, the above effective actions manifest themselves through both (i) long-
distance effects with exchange of soft, potential, and ultrasoft neutrinos (photons) between
the pion and nucleon realization of the electroweak currents; (ii) local interactions, which
can be thought of as arising from the exchange of hard neutrino (photon) modes. Since
the amplitudes transform according to the same irreducible representation of the isospin
group, in the isospin symmetry limit the exchange of hard neutrinos leads to identical
contributions as photon exchange, up to the overall factors F++ and F 33.

The above considerations imply the following relations between low-energy chiral La-
grangians. In the nucleon sector we have:

LNNe2 = e2

4
[
C1O

33
1 + C2O

33
2

]
,

LNN|∆L|=2 = 2G2
FV

2
udmββ ēLe

c
L

[
C1O

++
1 + C2O

++
2

]
, (6.8)

with

Oaa1 = N̄QaLN N̄QaLN −
Tr[QaLQaL]

6 N̄τN · N̄τN + {L↔ R} ,

Oaa2 = 2
(
N̄QaLNN̄QaRN −

Tr[QaLQaR]
6 N̄τN · N̄τN

)
, (6.9)

where
QaL = u†tau , QaR = utau† , (6.10)

and u2 = U = exp(iτ · π/Fπ) incorporates the pion fields.
11For simplicity we neglect the electron four-momenta, so we can replace eL(x), eL(y)→ eL(0) and factor

the electron fields out of the convolution integral.
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In the pion sector we have non-derivative LO local operators arising from the LR
current correlator:

Lππe2 = e2ZF 4
π Tr[Q3

LQ3
R] ,

Lππ|∆L|=2 =
(
8G2

FV
2
udmββ ēLe

c
L

)
ZF 4

π Tr[Q+
LQ

+
R] , (6.11)

where, at LO in chiral perturbation theory (ChPT), Z is related to the pion-mass split-
ting by12

Ze2F 2
π = 1

2δM
2
π = 1

2
(
M2
π± −M

2
π0

)
. (6.12)

6.2 Pion two-point function and the low-energy constant Z

Before discussing the nn→ pp amplitude, it is instructive to consider the simpler π− → π+

transition. In complete analogy with eq. (2.6) one can define a vector-vector correlator via
the replacement JLµ = ūLγµdL → Vµ = JLµ + JRµ = ūγµd. The object of interest for our
matching calculation is

T ππµν (k, p) = 〈π+(p)| Π̂V V
µν (k, 0) |π−(p)〉 , T ππ(k, p) ≡ gµνT ππµν (k, p) . (6.13)

T ππ(k, 0) determines the LEC Z defined in eq. (6.11), while T ππ(k, p) (where p is an off-
shell four-momentum with potential scaling) contributes to nn→ pp as discussed below.

In the small p, k regime T ππ(k, p) can be computed reliably in ChPT. At LO one has13

T ππχ (k, p) = 2i
[
2gµν −

(2p+ k)µ(2p+ k)ν
(p+ k)2 −M2

π + iε
− (2p− k)µ(2p− k)ν

(p− k)2 −M2
π + iε

]
gµν , (6.14)

which in the chiral limit and for p→ 0 reduces to

T ππχ (k, 0)
∣∣∣
Mπ=0

= 4i
[
gµν −

kµkν
k2

]
gµν = 4i(d− 1) . (6.15)

The expression for T ππ(k, p) can be extended to the intermediate k momentum region by
using resonance models that work reasonably well in the meson sector [62] and automati-
cally respect the constraints of chiral symmetry beyond the LO amplitude (6.14). We will
not follow this route but we will rather use the following prescription

T ππ< (k, p) = T ππχ (k, p)×
(
F Vπ (k2)

)2
, (6.16)

which captures the full pion-pole contribution to the on-shell Compton amplitude [94–
96] in terms of the pion vector form factor F Vπ (k2), for which we will take the simple
monopole form

F Vπ (k2) = M2
V

M2
V − k2 , (6.17)

12Note that the operator in the first line of eq. (6.11) differs from the usual definition in ChPT [93] by
an inessential constant.

13Up to a proportionality factor due to isospin, this expression agrees with the forward Compton ampli-
tude, see for example ref. [66].
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with MV = Mρ. While the form (6.16) does not capture the contributions form
intermediate-state axial-vector mesons [62–66], the resulting numerical impact on the LEC
Z is below the 20% level [64].

In the large k regime, the form of T ππ(k, p) is dictated by the OPE, see section 4.2
and appendix B. It is given by

T ππ> (k, p) = 4ig2
s

(k2 + iε)2 〈π
+(p)| ÔV V |π−(p)〉 , ÔV V = O1 + 1

2 (O4 − 3O5) . (6.18)

To LO in ChPT, the pion matrix elements are given by

〈π+(p)| ÔV V |π−(p)〉 = F 2
0

[5
3g

ππ
1 p2 + 1

2 (gππ4 − 3gππ5 )
]
, (6.19)

where the LECs gππ1,4,5 are known from lattice QCD [90, 92] and scale as gππ1 ∼ O(1) and
gππ4,5 ∼ O(Λ2

χ). From this scaling it is clear that the dominant contribution to the two-pion
matrix element is proportional to the combination gππLR ≡ (1/2)(gππ4 − 3gππ5 ).

We are now in a position to write down a matching relation for the LEC Z introduced
in eq. (6.11). Writing the pion two-point function at zero momentum in ChPT and in full
QCD, one derives the relation

8ZF 2
0 =

∫
d4k

(2π)4
1

k2 + iε
T ππ(k, 0) . (6.20)

In the spirit of the matching strategy used in this work, we split up the integration over
three-momentum |k| in two regions and by using T ππ< (k, 0) from eq. (6.15) and T ππ> (k, 0)
from eqs. (6.18)–(6.19) we arrive at (see appendix D for details)

Z = Z< + Z> ,

Z< = 6
(4πF0)2

∫ Λ

0
d|k| |k| ×

(
1− |k|

ωV

(
1 + M2

V

2ω2
V

))
,

Z> = 3αs(µ)gππLR(µ)
16π

∫ ∞
Λ

d|k| 1
|k|3 , (6.21)

where ωV =
√

k2 +M2
V and µ is the QCD renormalization scale. The above result is

in agreement with estimates of the pion electromagnetic mass splitting [62–66]. Taking
MV = 775MeV, Fπ = 92.28MeV, and gππLR = 8.23 from lattice QCD [90], the sum of low-
and high-momentum components Z<(Λ) + Z>(Λ) equals 0.63 at Λ = 2GeV and reaches
the asymptotic value Z<(Λ→∞) = 0.67. The deficit compared to the experimental value
Z ' 0.8 is understood in terms of the neglected inelastic contributions from the axial-
vector resonances [62–64], thus providing another estimate of the error due to neglecting
inelastic corrections.

6.3 nn → pp vector-like amplitude in chiral EFT and full theory

Let us now consider the amplitude AV V in the unphysical theory in which theW boson has
vector-like couplings to quarks. Denoting by ALL,LR the nn→ pp amplitudes generated by
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W -exchange between two left-handed quark currents and a left-handed and a right-handed
quark current, respectively (see eqs. (2.6) and (2.9)), we have

AV V = 2ALL + 2ALR . (6.22)

Note that ALL ≡ Aν , i.e., the amplitude in the physical theory, defined in eq. (2.9), and
the factor of 2 in front of ALL arises from the fact that LL and RR products, both present
due to vector-like couplings, give the same result by parity.

6.3.1 AV V in chiral EFT

At LO in chiral EFT, the nn→ pp vector amplitude takes the form

AχEFT
V V = 2ANNLL + 2ANNLR +AππV V , (6.23)

where ANNLL is given in eq. (3.15). ANNLR can be obtained from ANNLL by flipping the sign of
the “A×A” axial contribution, which in practice amounts to setting g2

A → −g2
A everywhere

and replacing C1 → C2 in the counter term amplitude.
In the vector theory, the main new effect compared to the physical amplitude is the

presence of a LO contribution induced by pion exchange, denoted by AππV V in eq. (6.23),
induced by the non-derivative operator in eq. (6.11) with coupling constant Z. The am-
plitude AππV V has the same form of AχEFT

ν in eq. (3.4), except for the fact that in each
diagram the neutrino propagator is replaced by a pion propagator with one insertion of Z
that converts a π− into a π+, see figure 9. This implies that in the computation of AA,B,C
in eqs. (3.8)–(3.15) one needs to make the replacement:

V
1S0
ν L (k) = 1

k2

[
1 + 2g2

A + g2
AM

4
π

(k2 +M2
π)2

]
→ V

1S0
Z (k) = 8Zg2

A

k2

(
1− M2

π

k2 +M2
π

)2

. (6.24)

As discussed in ref. [43], the UV behavior of this potential induces additional divergences
reabsorbed by the coupling C2.

Finally, we note that in complete analogy to the physical LL case, the matching con-
dition for the V V amplitude will involve only the real part of the singular component of
the amplitude AC associated with eq. (6.23). Combining the NN and ππ contributions,
we write it in the following way that will prove useful in the matching procedure:

Asing
C (µχ)

∣∣∣
V V

= −2 m2
N

(4π)2

(
1 + 2Zg2

A

) [
log

µ2
χ

4|p|2 + 1
]

= 2 m2
N

(4π)2

[
−(1 + 2Zg2

A)− 4Zg2
A log µχ

2|p| +
∫ µχ

0
d|k| aV Vχ (|k|)

]
,

aV Vχ (|k|) = −2 1
|k| θ(|k| − 2|p|) . (6.25)
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 ...+ +
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Figure 9. Diagrammatic representation of AππV V , the pion contributions to the LO nn → ppee

amplitude in the vector-like unphysical theory. Double, dashed, and plain lines denote nucleons,
pions, and electrons, respectively. The black square denotes an insertion of the non-derivative
coupling Z, see eq. (6.11). The blue ellipse represents iteration of V̂π, as in figure 2. The ellipses in
the second and third lines denote diagrams with arbitrary numbers of NN bubble insertions.

6.3.2 AV V in the full theory

As before, we split the full amplitude into two terms, capturing the contributions from
small plus intermediate and hard neutrino momenta: Afull

V V = A<V V +A>V V . One can again
organize the full theory calculation of A<V V in close analogy to the EFT expression given in
eq. (6.23). ANN,<LL is discussed in section 4.1 and the corresponding ANN,<LR is obtained by
defining ÔLR(k) in complete analogy to ÔLL(k) in eq. (2.18) and then following through.
In practice, this again amounts to flipping the sign of the axial contribution in ANN,<LL .
As discussed in section 5, for matching purposes one only needs the singular parts of the
amplitude A<C , which can be written as

A<,sing
C

∣∣∣
V V

= 2
(
A<,sing
C

∣∣∣
LL

+A<,sing
C

∣∣∣
LR

)
+Aππ,<,sing

C . (6.26)

A<,sing
C |LL is given in eqs. (4.18), (5.5), and (5.6). A<,sing

C |LR is obtained by flipping the sign
of the axial terms in A<,sing

C |LL, and the sum of the NN intermediate-state contributions is

2
(
A<,sing
C

∣∣∣
LL

+A<,sing
C

∣∣∣
LR

)
= 2 m2

N

(4π)2

∫ Λ

0
d|k| aNN< (|k|) ,

aNN< (|k|) = −
(

2g2
V (k2) + k2g2

M (k2)
m2
N

)
8 I<C (|k|) . (6.27)

In the full theory analysis, the counterpart of the EFT terms proportional to Z (called
AππV V in eq. (6.23)) is due to the insertion of ÔV V (k) ≡ (ÔLL + ÔRR + 2ÔLR)(k) on a
pion exchanged between the two nucleons, as depicted in figure 10. The corresponding
Aππ,<,sing
C is given by

Aππ,<,sing
C = −m2

N

g2
A

F 2
0

∫
d4k

(2π)4
1

k2 + iε

∫
d3q

(2π)3
1

q2 I
<
C (|q|) T ππ< (k, q) . (6.28)
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n

n p

p

π

π

Figure 10. Contribution to AV V due to the insertion of two vector currents on a potential pion
line. In the small |k| region this diagram represents Aππ,<,sing

C . In the large |k| region it represents
Âsing
C . See main text for notation.

The integral in d3q is actually convergent. This can be seen by rewriting T ππ< (k, p) as
follows:

T ππ< (k, q) = 2i
[
2(d− 4)− F+(k, q)− F−(k, q)

]
×
(
F Vπ (k2)

)2
,

F±(k, q) = 4M2
π − 3k2 ∓ 4k · q

(q ± k)2 −M2
π + iε

. (6.29)

Note that terms involving q0 ∼ |q|2/mN are neglected at the order at which we work. Up to
a finite piece coming from the term proportional to d−4 in T ππ< , the integral in eq. (6.28) can
be evaluated as follows: first performing the integration in k0 using the residues’ theorem;
then performing the angular integral in d3q; finally evaluating the integral in d|q|. We will
present our results in order of complexity:

1. First, we will take F Vπ (k2) = 1 and I<C (|q|) = θ(|q| − 2|p|)/(8|q|).

2. Next, we will use the realistic pion electromagnetic form factor F Vπ (k2) from
eq. (6.17).

3. Finally, we will include higher-momentum effects in the NN interactions by writing

I<C (|q|) = θ(|q| − 2|p|)r(|q|)8|q| , (6.30)

with r(|q|) defined in eq. (4.19) and illustrated in figure 4.

Throughout, we work in the chiral limit (Mπ → 0).
The result is quite simple when using F Vπ (k2) = 1 (corresponding to the limit MV →

∞) and I<C (|q|) = θ(|q| − 2|p|)/(8|q|):

Aππ,<,sing
C = − m2

N

(4π)2
16g2

A

(4πF0)2

∫ Λ

0
d|k||k|

(
4 log 2− 2 + 3 log |k|2|p|

)
. (6.31)

This expression can be recast into the following useful form using eq. (6.21)

Aππ,<,sing
C = 2 m2

N

(4π)2

[
− 4g2

AZ
< log νχ

2|p| +
∫ Λ

0
d|k| aππ< (|k|, νχ)

]
,

aππ< (|k|, νχ) = −8g2
A

|k|
(4πF0)2

(
4 log 2− 2 + 3 log |k|

νχ

)
, (6.32)
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where we have extracted a factor of two for later convenience, have introduced the arbitrary
scale νχ, and isolated the dependence on the IR physics (external momentum |p|), which
must reproduce the same dependence in the EFT amplitude (cf. the term in eq. (6.25)
proportional to Z).

For a realistic pion form factor (6.17), the residues from the ρ propagators need to be
added, which changes the bracket in eq. (6.31) to

4 log 2−
(ωV − |k|)

(
2ω2

V − 3|k|ωV − |k|2
)

2ω3
V

+ (ωV − |k|)2(2ωV + |k|)
2ω3

V

(
3 log ωV + |k|

2|p| − 1
)

− 3 log
(

1 + ωV
|k|

)
− log

(
1 + |k|

ωV

)
. (6.33)

In the limit ωV → ∞ this reduces to eq. (6.31), and for |k| → ∞ this expression displays
the 1/|k|4 fall-off that makes the integrand in eq. (6.31) consistent with the OPE behavior
at large |k|. To extract the new form of the integrand, we first express Z<, see eq. (6.21), as

Z< = 3
16π2F 2

0

∫ Λ

0
d|k||k|(ωV − |k|)

2(2ωV + |k|)
ω3
V

. (6.34)

In this way, eq. (6.32) still applies upon the replacement

aππ< (|k|, νχ) = − 4g2
A

|k|
(4πF0)2

{
8 log 2−

(ωV − |k|)
(
2ω2

V − 3|k|ωV − |k|2
)

ω3
V

+ (ωV − |k|)2(2ωV + |k|)
ω3
V

(
3 log ωV + |k|

νχ
− 1

)
− 6 log

(
1 + ωV
|k|

)
− 2 log

(
1 + |k|

ωV

)}
. (6.35)

Finally, we include the HOS form factor effects by rewriting in eq. (6.28)

I<C (|q|) = θ(|q| − 2|p|)×
[ 1

8|q| + r(|q|)− 1
8|q|

]
. (6.36)

The first term gives the analytic result in eqs. (6.32) and (6.35). The second term gives a
correction to aππ< (|k|, νχ), which we denote by δaππ< (|k|),

δaππ< (|k|) = 4g2
A

|k|
(4πF0)2

∫ ∞
2|p|

d|q| 1− r(|q|)
|q| g(|k|, |q|) , (6.37)

where g(|k|, |q|) is given by

g(|k|, |q|) =

g−(|k|, |q|) if |q| < |k|
g+(|k|, |q|) if |q| > |k|

, ω = ωV =
√

k2 +M2
V , (6.38)

g−(|k|, |q|) = ω − |k|
ω2

[(ω+|k|)2(|k|+3ω)
(ω + |k|)2 − |q|2 −

2(|k|2 + 2|k|ω − ω2)
ω

]
− 2|q|
|k| log 2|k|+ |q|

2|k| − |q|

− |k|
4 + 6|q|2ω2 + ω4 − 2|k|2(|q|2 + ω2)

2|q|ω3 log ω + |k| − |q|
ω + |k|+ |q| ,
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g+(|k|, |q|) = ω − |k|
ω2

[(|q| − 2ω)(|k|ω + (|q|+ ω)2)
(ω + |q|)2 − |k|2

− ω|q|(|q| − 6ω) + |k|(ω + |k|)(2|q| − ω)
ω|q|

]
− 2|q|
|k| log 2|k|+ |q|

|q|

− |k|
4 + 6|q|2ω2 + ω4 − 2|k|2(|q|2 + ω2)

2|q|ω3 log ω − |k|+ |q|
ω + |k|+ |q| .

The integration in eq. (6.37) will be done numerically.
Putting together the NN and ππ contributions, the full low- and intermediate-|k|

integrand in A<,sing
C |V V is given by

aV V< (|k|, νχ) = aNN< (|k|) + aππ< (|k|, νχ) + δaππ< (|k|) , (6.39)

where the input functions are given in eqs. (6.27), (6.35), and (6.37).
Concerning A>V V , we use the OPE results given in section 4.2 and appendix B, as-

sembled to produce the vector-vector linear combination, as done in section 6.2. This
leads to

A>,sing
C

∣∣∣
V V

= 3αs
π

∫ ∞
Λ

d|k| 1
|k|3

(
2(gNN1 + gNNLR )(νχ)

C2 + Ãsing
C (νχ) + Âsing

C (νχ)
)
, (6.40)

where ÃC is defined in section 4.2, gNNLR (νχ) and ÂC are defined in appendix B, and νχ is
the chiral EFT renormalization scale used in evaluating 〈pp|ÔV V |nn〉. We chose to keep
νχ 6= µχ for clarity. However, to simplify the analysis of the IR divergences, we use here
the same scale νχ introduced in eq. (6.32) to separate out the log |p| term from the low-
|k| amplitude Aππ,<,sing

C . Given the scaling of the NN couplings and the potentials that
determine ÃC and ÂC , discussed in appendix B, in the above expression we keep only the
leading terms gNNLR and ÂC . The real part of the singular component of ÂC is generated
by pion exchange and is given by

Âsing
C (νχ) = − m2

N

(4π)2
gππLR g

2
A

4

[
log

ν2
χ

4|p|2 + 1
]
, (6.41)

so that we can write14

A>,sing
C

∣∣∣
V V

= 3αs
π

∫ ∞
Λ

d|k| 1
|k|3

(
2gNNLR (νχ)

C2 − m2
N

(4π)2
gππLR g

2
A

4

)

− m2
N

(4π)2 8g2
A

[3αs gππLR
16π

∫ ∞
Λ

d|k| 1
|k|3

]
log νχ

2|p| . (6.42)

In the second line of the above equation, the expression within square brackets is identified
as Z>, cf. eq. (6.21). Moreover, using the definitions (B.14) we can further simplify this

14Here and below the dependence on the QCD short-distance renormalization scale µ in αs, gππLR, and
gNNLR is suppressed for simplicity. Note that, in contrast to gNN1 , gNNLR carries an additional dependence on
the chiral EFT scale νχ.
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expression to obtain:

A>,sing
C

∣∣∣
V V

= 2 m2
N

(4π)2

[
−4g2

A Z> log νχ
2|p| +

∫ ∞
Λ

d|k| aV V> (|k|, νχ)
]
,

aV V> (|k|, νχ) = 3αs
2π

(4πFπ)2

|k|3

(
2 ḡNNLR (νχ)− ḡππLR g

2
A

4

)
. (6.43)

Using the lattice QCD results of ref. [90], we find ḡππLR = 8.23 in the MS scheme at µ =
2GeV. While both ḡππLR and ḡNNLR are expected to be O(1), given the large numerical value
of ḡππLR, for the nucleon coupling we will assume ḡNNLR ∈ [−10,+10].

6.4 Matching

The matching condition for the vector amplitude AV V leads to (compare to eq. (5.1) for
the LL amplitude)

A<,sing
C

∣∣∣
V V

+ A>,sing
C

∣∣∣
V V

= Asing
C (µχ)

∣∣∣
V V

+ 4(C1(µχ) + C2(µχ))
C2 . (6.44)

The input needed in eq. (6.44) can be found in eqs. (6.25), (6.26), (6.27), (6.32), (6.35),
and (6.43). Rescaling the couplings and integrals as in section 5 and using Z = Z< + Z>,
one arrives at

2
(
C̃1(µχ) + C̃2(µχ)

)
= 1 + 2Z g2

A − 4Zg2
A log νχ

µχ
−
∫ µχ

0
d|k| aV Vχ (|k|)

+
∫ Λ

0
d|k| aV V< (|k|, νχ) +

∫ ∞
Λ

d|k| aV V> (|k|, νχ) , (6.45)

with aV V< (|k|, νχ) given in eq. (6.39). Note that the logarithmic IR dependence on the
external momentum |p| has disappeared in the matching relation, providing a strong con-
sistency check on the calculation. Except for δaππ< (|k|), which is given in eq. (6.37) and has
to be obtained via numerical integration, the quantities relevant to evaluate the matching
condition (6.45) are

aV Vχ (|k|) = −2 1
|k| θ(|k| − 2|p|) ,

aNN< (|k|) = −
(

2g2
V (k2) + k2g2

M (k2)
m2
N

)
8 I<C (|k|) ,

aππ< (|k|, νχ) = −4g2
A

|k|
(4πF0)2

{
8 log 2−

(ωV − |k|)
(
2ω2

V − 3|k|ωV − |k|2
)

ω3
V

+ (ωV − |k|)2(2ωV + |k|)
ω3
V

(
3 log ωV + |k|

νχ
− 1

)
− 6 log

(
1 + ωV
|k|

)
− 2 log

(
1 + |k|

ωV

)}
,

aV V> (|k|, νχ) = 3αs
2π

1
|k|3

(
2ḡNNLR (νχ)− ḡππLR g

2
A

4

)
. (6.46)
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Figure 11. Left panel: aV Vχ (|k|) (yellow), aV V< (|k|,Mπ) (blue), and aV V> (|k|,Mπ) (green) assuming
ḡNNLR ∈ [−10, 10] (lower to upper green curves and shaded band). Right panel: same plot for the
absolute values in logarithmic scale.
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Figure 12. aππ< (|k|,Mπ) (blue), δaππ< (|k|) (yellow), and their sum (green).

Without loss of generality, in the numerical results we set νχ = Mπ. The various com-
ponents of the integrand are shown in figures 11 and 12. Figure 11 displays the chiral, low-
and high-|k| components of the integrand, namely aV Vχ (|k|) (yellow), aV V< (|k|,Mπ) (blue),
and aV V> (|k|,Mπ), in both linear scale (left panel) and logarithmic scale (right panel).
Figure 12 shows aππ< (|k|) (blue), δaππ< (|k|) (yellow), and their sum in green. Figure 13
shows the dependence of (C̃1 + C̃2) on the matching scale Λ (left panel) and the chiral
renormalization scale µχ (right panel).

We now discuss the uncertainties associated with our estimate of (C̃1 + C̃2): (i) Con-
cerning the parametric uncertainties, the dependence on the vector form factor parameter-
ization is mild: we find an upward shift of ±0.03 when using the Arrington-Sick fit [82],
compared to our baseline dipole parameterization. On the other hand, the uncertainty due
to the choice of Λ ∈ [2GeV, 4GeV], coupled to the range ḡNNLR | ∈ [−10,+10] (motivated by
the large value of the corresponding two-pion matrix element, see appendix B), is at the
level of ±0.3, larger than in the case of C̃1, see figure 13 (left panel). (ii) To estimate the
systematic uncertainty due to the choice of the short-range NN interaction VS , we repeat
the analysis using the Reid and AV18 potentials, finding shifts in (C̃1 + C̃2) of ≈ +0.25 and
≈ −0.3, respectively. (iii) For the systematic effect due to the neglected inelastic channels
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Figure 13. Left panel: dependence of (C̃1 + C̃2)(µχ = Mπ) on the matching scale Λ using ḡNNLR =
±10. Right panel: dependence of C̃1 + C̃2 on the chiral renormalization scale µχ.

we take a range δ(C̃1 + C̃2) ≈ ±1.1, which leads to a relative error of about 50% in the
singular NN electromagnetic amplitude at |p| ∼ 25MeV, larger than the 30% in the weak
amplitude controlled by C̃1. In addition to the new class of pion-exchange diagrams, this
larger assignment is motivated as follows: in contrast to the C̃1 analysis, the parametric
error is now more sizable, mainly driven by the NN short-distance coupling ḡNNLR . In fact,
reducing Λ to values as low as 1GeV and thus into the energy region where the applicabil-
ity of the OPE becomes questionable and inelastic effects important, leads to a variation
δ(C̃1 + C̃2) ' ±1.0. Since this effect concerns the intermediate-momentum region which is
most uncertain in our analysis, the resulting variation could be either booked as an uncer-
tainty obtained by extrapolating the OPE expression beyond its region of validity, or in
terms of neglected intermediate states. We prefer to keep the OPE scale Λ & 2GeV, and
thus increase the estimate of inelastic contributions accordingly to account for the more
prominent effect of the short-distance coupling for C̃1 + C̃2.

Altogether, our final result is

(C̃1 + C̃2)(µχ = Mπ) ' 2.9(1.1)inel(0.3)VS (0.3)par = 2.9(1.2) . (6.47)

Concerning the central value, the pion contributions (2Zg2
A plus the integral of

aππ< (|k|,Mπ) + δaππ< (|k|)) amount to +2.4. Moreover, the most uncertain intermediate
momentum region |k| ∈ [0.4, 1.5]GeV contributes ∆(C̃1 + C̃2) ' 0.55, safely below our
uncertainty estimate. At the renormalization scale µ = 4Mπ our result becomes

(C̃1 + C̃2)(µχ = 4Mπ) = 7.8(1.2) . (6.48)

6.5 Charge-independence-breaking contribution to NN scattering

The result (6.47) already compares quite well to the phenomenological determination (C̃1 +
C̃2)(µχ = Mπ) = 5.0 from ref. [43]. However, since the contact term is scale and scheme
dependent, it is more appropriate to compare directly observables calculated based on
eq. (6.47). We therefore focus on the CIB contribution to NN scattering. We summarize
here our main findings and report technical details of the analysis in appendix E.
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We first note that within LO chiral EFT the scattering lengths ann, anp, and aCpp (the
latter defined in the modified effective range expansion to account for Coulomb effects [97–
99]) can be mapped onto contact terms for each channel

C̃np = C̃ + e2

3
(
C̃1 + C̃2

)
, C̃nn/pp = C̃ − e2

6
(
C̃1 + C̃2

)
± 1

2 C̃CSB , (6.49)

where C̃ denotes the isospin-symmetric combination, C̃1 + C̃2 the CIB contribution, and
C̃CSB a charge-symmetry-breaking (CSB) term [100]. To test our prediction for C̃1 + C̃2, we
can thus use two observables to determine C̃ and C̃CSB, and then predict the third based on
eq. (6.47). Several choices are possible (see appendix E), of which arguably the simplest is

aCIB =
ann + aCpp

2 − anp = 10.4(2) fm . (6.50)

This combination of scattering lengths would isolate the CIB contribution if NN scattering
were perturbative and Coulomb interactions absent, but in practice depends on all couplings
in a complicated manner. To obtain the numerical result we have used the empirical values
aCpp = −7.817(4) fm [101, 102], anp = −23.74(2) fm [103, 104], ann = −18.9(4) fm [105].
From eq. (6.47) we find aCIB = 15.9+4.5

−4.0 fm, in good agreement with eq. (6.50), given that
additional uncertainties from higher chiral orders could be attached. The comparison to
the phenomenology of CIB in NN scattering thus validates our approach at the level of
(30–50)% and shows that our uncertainty estimates are realistic.

7 Synthetic data for nn → pp near threshold

Having determined the LEC C̃1 in the MS scheme, we can now compute the low-energy
nn→ ppe−e− amplitude Aν . Our matching strategy was based on dimensional regulariza-
tion with minimal subtraction as it provides convenient and factorized expressions for the
amplitude. While dimensional regularization is rarely used by nuclear practitioners, this is
no obstacle to applying our results in nuclear-structure calculations. Observables, such as
Aν , are scheme independent so that the LNV contact term can by obtained in any scheme
through a fit to our synthetic data for the amplitude

Aν(|p|, |p′|) = −〈Ψpp(|p′|)| V
1S0
ν L + V

1S0
ν S |Ψnn(|p|)〉 , (7.1)

where both initial |Ψnn(|p|)〉 and final |Ψpp(|p′|)〉 states are in the 1S0 channel, V
1S0
ν L

denotes the usual long-range neutrino potential, and V
1S0
ν S is the short-range interaction

proportional to C̃1. We denote by E = p2/mn and E′ = p′2/mp the center-of-mass energies
of the incoming neutrons and outgoing protons of masses mn and mp, respectively, and by
p and p′ the corresponding relative momenta. Assuming the outgoing electrons to be at
rest one can determine the maximum momentum carried by the outgoing protons, given
the incoming momentum of the neutrons |p|, via

E′ = E + 2(mn −mp −me) , |p′| =
√

p2 + 2mN (mn −mp −me) , (7.2)
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with me the electron mass and 2mN = mn + mp. If the electrons are not at rest but
carry total zero momentum in the incoming neutrons’ rest frame, the outgoing protons fly
back-to-back with momentum |p′| ranging between zero and the maximum value given in
eq. (7.2).

In ref. [59] we chose the momenta |p| = 25MeV and |p′| = 30MeV, which proved
an advantageous kinematic point for which the LO chiral amplitude provides an accurate
prediction, while staying away form the sizable isospin-breaking effects at threshold. In
practice we compute the amplitude in coordinate space15

Aν(|p|, |p′|) = −
∫
d3rψ−∗p′ (r)

(
V

1S0
ν L (r)− 2 C1 δ

(3)(r)
)
ψ+

p (r) , (7.3)

with the long-range neutrino potential given by

V
1S0
νL (r) = 1 + 2g2

A

4πr + g2
A

4πr

[
1− e−Mπr

(
1 + Mπr

2

)]
, (7.4)

and wave functions for the scattering states ψ+
p (r) obtained by solving the Schrödinger

equation with LO isospin-symmetric chiral potential

V1S0(r) = −απ
e−Mπr

r
+ C δ(3)(r) , απ = g2

AM
2
π

4πF 2
π

, Mπ = Mπ0 + 2Mπ±

3 , (7.5)

with C tuned to reproduce either the np or nn scattering length (the difference being
negligible at the chosen kinematic point). To solve for the wave functions we have used
the methods described in ref. [23], and to compute the amplitude, isolating its singular
component, we have used the approach described in detail in ref. [43].

Our amplitude satisfies Watson’s theorem [106] and at the kinematic point |p| =
25MeV, |p′| = 30MeV we find16

Aν(|p|, |p′|)× e−i(δ1S0
(|p|)+δ1S0

(|p′|)) = −
(
2.271− 0.075 C̃1(4Mπ)

)
× 10−2 MeV−2

= −1.95(5)C̃1 × 10−2 MeV−2 , (7.6)

where in the second line we have used our prediction C̃1(4Mπ) = 4.2(6). At the chosen
kinematic point and chiral renormalization scale we find that the contact-term contribution
interferes destructively with the long-range neutrino exchange and reduces the amplitude
by about 15%. Since, as discussed in refs. [40, 43], the effect of a contact term of natural size
that affects ∆I = 0 transitions such as nn→ pp at the (10–20)% level, becomes amplified
to the level of (50–70)% in ∆I = 2 nuclear transitions due to a node in the matrix element
density, it is possible that a more pronounced effect occurs in nuclei of interest for 0νββ
searches, but we stress that our observation is based on the MS scheme at µ = 4Mπ and
thus need not carry over to other scales and schemes.

We advocate using the synthetic data (7.6) to determine the LEC C̃1 in any reg-
ularization/renormalization scheme applicable in many-body nuclear calculations [26–
28, 107, 108]. As an example, we show here how to perform such a determination for

15The relation between C1 and C̃1 is given in eq. (5.2).
16The amplitude Aν is related to the S-matrix element for the process n(p) n(−p) →

p(p′) p(−p′) e(pe) e(−pe) by Sν = i(2π)4 δ(4)(pf − pi) (4G2
FV

2
udmββ ūL(pe)ucL(−pe))Aν .
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Figure 14. Left: values of C̃1(Λp, n) as function of Λp for 3 choices of the regulator n = 2 (solid),
n = 3 (dashed), and n = 4 (dotted). Right: values of C̃1(RS) as function of the coordinate-space
regulator RS .

often-applied momentum- and coordinate-space regulators. In momentum space, the strong
potential is regulated through an exponential cutoff of the form

Vstrong(p′,p)→ exp
[
−
(

p′ 2
Λ2
p

)n]
Vstrong(p′,p) exp

[
−
(

p2

Λ2
p

)n]
, (7.7)

in terms of a momentum cutoff Λp. The LS equation is solved numerically for different
values of Λp and n and the strong counter term, C(Λp, n) in the 1S0 channel, is determined
from a fit to the NN scattering lengths. We then insert the long- and short-range neutrino
potential between initial- and final-state scattering states and determine C̃1(Λp, n) by fitting
to eq. (7.6). An analogous procedure is followed in coordinate space. In this case, contact
interactions are regulated by a local Gaussian regulator

δ(3)(r)→ 1
(
√
πRS)3 exp

(
− r2

R2
S

)
. (7.8)

The pp and nn wave functions obtained for a fixed value of RS are then used to compute
the amplitude (7.3).

In figure 14 we depict the values of the counter term C̃1 in the two schemes. In the
left panel, we show C̃1(Λp, n) for a wide range of Λp and three choices of n, showing a clear
logarithmic dependence of Λp and a mild dependence on n. In the right panel, we show the
same plot in the RS scheme, which again exhibits a logarithmic dependence on RS , with
power corrections becoming important at small R−1

S .
The relative importance of the short-distance contribution depends on the regulator

and on the kinematics. In figure 15 we show the amplitude Aν for |p| = 25MeV, while
varying |p′| between 26 and 46MeV. The region includes the fitting point |p′| = 30MeV,
and at these small momenta the LO chiral wave functions provide a good description of
the 1S0 phase shift. The plots in the top panel use the momentum-space regulator Λp,
while the bottom plots use the coordinate-space RS scheme. In the top-left panel, we have
chosen two specific regulators Λp = 2 fm−1 (blue) and Λp = 20 fm−1 (red) and kept n = 2
as the dependence on n is mild. We show individually the long-distance (dashed), short-
distance (dotted), and sum (solid) contributions. The sum does not depend on Λp, but
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Figure 15. Top left: long-distance (dashed), short-distance (dotted), and total (solid) contributions
to Aν(|p| = 25MeV, |p′|) for Λp = 2 fm−1 (blue) and Λp = 20 fm−1 (red) (the total contribution
is shown in black, as it is identical for the two cutoffs). Top right: ratio of short-to-long-distance
contributions for Λp = 2 fm−1 (blue), Λp = 5 fm−1 (green, dotted), and Λp = 20 fm−1 (red, dashed).
Bottom: same as top, but with the coordinate space regulator RS , with R−1

S = 1.25 fm−1 (blue),
R−1
S = 2 fm−1 (green), and R−1

S = 20 fm−1 (red).

the counter term goes from constructive (+15%) to destructive (−20%) between the two
choices of the regulators. This is shown more clearly in the right panel of figure 15, where
the ratio of short-to-long-distance contributions is given for three choices of regulators
Λp = {2, 5, 20} fm−1 in blue, green, and red respectively. This confirms explicitly that the
separation of long- and short-distance contributions is not physical.

The bottom panel shows the same plots in the RS scheme, using R−1
S = 1.25 fm−1

(green), R−1
S = 2 fm−1 (blue), and R−1

S = 20 fm−1 (red). Also in this case, the interference
goes from destructive at large cutoff to constructive at small cutoff, with the short-range
amplitude being approximately zero at 2 fm−1. Of course, the total amplitude agrees
between the Λp and RS regularization schemes as it should. These plots show that, as
already emphasized above, we cannot say whether the new short-distance contribution will
add constructively or destructively in ab-initio calculations of nuclear transitions. This
question can only be answered within a specific regularization scheme and choice for the
strong NN potential.
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8 Conclusions

In this work we have presented the details of the new method developed in ref. [59] to
estimate the LO contact-term contribution to the amplitude nn → ppe−e− through the
exchange of light Majorana neutrinos. This is currently the missing ingredient in order
to construct complete LO nn → pp transition operators in chiral EFT, to be used in ab-
initio nuclear-structure calculations of matrix elements in nuclei of experimental interest
for 0νββ searches.

Our approach to estimate the contact term is based on a representation of the nn →
ppe−e− amplitude as the momentum integral of the neutrino propagator (1/k2) times the
generalized forward Compton scattering amplitude n(p1)n(p2)W+(k)→ p(p′1)p(p′2)W−(k),
in close analogy to the Cottingham formula for the electromagnetic mass splittings of
pions and nucleons. To extract the contact term from this integral representation, we
have constructed model-independent descriptions of the integrand in the low-momentum
region, using chiral EFT, and in the high-momentum region, using the OPE. In the low-
and intermediate-momentum region we have kept only the elastic contribution, i.e., the
effect of two-nucleon intermediate states, with the most important momentum dependence
generated by single-nucleon form factors as well as the NN amplitude itself. While we do
not have a strict dispersive derivation as in the case of hadron mass splittings, this approach
has the potential to match the (20–30)% accuracy of the elastic approximation observed
there, an expectation that we verified by studying CIB in low-energy NN scattering within
the same framework and reproducing, within uncertainties, the CIB contribution to the
1S0 NN scattering lengths. This phenomenological success gives us confidence that our
method is sound and the uncertainty estimate realistic.

The phenomenological validation is particularly important given that our method does
introduce model-dependent input in the intermediate-momentum region, albeit anchored to
known constraints from QCD at low and high momenta. The extraction of the LO contact
term, in a given scheme, then proceeds by matching the full amplitude obtained in this way
to the LO chiral EFT amplitude. We considered several sources of uncertainty, chief among
them the missing contributions from inelastic intermediate states, such as NNπ. The in-
termediate steps of our analysis have been performed in dimensional regularization with
the MS scheme, while the final result can be expressed in terms of the scheme-independent
renormalized amplitude Aν(|p|, |p′|) at a set of kinematic points near threshold, where
LO chiral EFT is expected to give an excellent approximation. Using our synthetic data,
as discussed in section 7, one can then determine the contact term in any regularization
and renormalization scheme, in particular the ones employed in nuclear-structure calcula-
tions for isotopes of experimental interest for 0νββ searches. This application is timely in
view of the remarkable progress in ab-initio calculations of 0νββ decay rates of light and
intermediate-mass nuclei [29–31, 43, 109], ranging from 6He to 48Ca and 76Ge, starting
from microscopic nuclear forces obtained from chiral EFT. So far these decay rates include
the long-distance neutrino-exchange contributions while omitting the contact term, which
can now be remedied using our synthetic data for nn → ppe−e−, allowing, for the first
time, for complete LO calculations of nuclear 0νββ decay rates. For heavier nuclei such
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as 136Xe, which are still beyond the capabilities of ab-initio techniques, the impact of the
short-range term could be studied indirectly, e.g., by matching ab-initio results and nuclear
models for nuclei accessible to both approaches (this strategy was used in ref. [110] for the
axial-vector current).

As a benchmark point, we find for the amplitude Aν in the MS scheme at µχ = 4Mπ,
with initial- and final-state nucleon momenta |p| = 25MeV and |p′| = 30MeV, that the
contact-term contribution adds destructively to the neutrino exchange at the 15% level.
However, as discussed in detail in section 7, this statement depends on the renormalization
scheme and scale, e.g., the two cutoff schemes studied there can lead to both constructive
and destructive effects depending on the choice of scale. This illustrates that the separation
into short- and long-distance contributions is unphysical, see figure 15 for the decomposition
in the Λp and RS schemes as a function of the final-state momentum and the cutoff scales.
Further, as discussed in refs. [40, 43], while a contact term of natural size affects ∆I = 0
transitions such as nn→ ppe−e− at the (10–20)% level, its effect is amplified to the level of
(50–70)% in ∆I = 2 nuclear transitions due to a node in the matrix element density. The
size of the effect in realistic 0νββ nuclear transitions can now be addressed, greatly reducing
a crucial uncertainty in the interpretation of future experimental searches [111–117].

Improving the accuracy of the results presented here would require at least a thorough
study of the inelastic NNπ channel, but at the same time a more systematic connection
to the Cottingham formula would likely become necessary as well: while the identification
of the leading elastic effects is rather intuitive, the extension to subleading corrections is
not. Additional experimental input could, in principle, separate C1 from C2, e.g., via CIB
in nuclei, but such an extraction also requires the development of a suitable theoretical
framework. While our results allow for first phenomenological estimates of the impact of
the contact term on 0νββ decay rates, they thus also define a benchmark for future lattice-
QCD calculations [46, 52–57]. In addition to comparing the final result for Aν , there
could also be aspects of the matching strategy and spectral representation, as described
in section 2, that might prove synergistic between the two approaches. Finally, having
concentrated on the LO contact term for light Majorana exchange in this paper, we remark
that contact-term contributions arise at LO for other operators mediating 0νββ decay as
well, both at dimension 7 and dimension 9 [37], or through exchange of massive sterile
neutrinos [44], and generalizations of the strategies presented here could help constrain the
contact terms in these mechanisms.

Acknowledgments

We thank Jon Engel, Evgeny Epelbaum, Michael Graesser, Bira van Kolck, and André
Walker-Loud for discussions at various stages of this work. The work of VC and EM is
supported by the US Department of Energy through the Los Alamos National Laboratory.
Los Alamos National Laboratory is operated by Triad National Security, LLC, for the
National Nuclear Security Administration of U.S. Department of Energy (Contract No.
89233218CNA000001). WD is supported by U.S. Department of Energy Office of Science,
under contract DE-SC0009919. MH is supported by an Eccellenza Grant (Project No.

– 42 –



J
H
E
P
0
5
(
2
0
2
1
)
2
8
9

PCEFP2_181117) of the Swiss National Science Foundation. JdV is supported by the
RHIC Physics Fellow Program of the RIKEN BNL Research Center. The DOE DBD
Topical Nuclear Theory Collaboration inspired this work and partially supported some of
us during its genesis. MH thanks the T-2 group at LANL for their hospitality and support
during a visit when this project was initiated.

A Half-off-shell T matrix

In this appendix we describe the calculation of the HOS T -matrix elements defined in
eq. (4.8) and the associated form factors in eq. (4.17). These quantities affect the nn→ pp

amplitude through the ratio r(|k|), introduced in eq. (4.19), parameterizing the higher-
order corrections to the forward Compton amplitude. We present the calculations in order
of increasing difficulty, starting from /πEFT, in which analytic results can be obtained, mov-
ing to chiral EFT, and finally using NN interactions from potential models that successfully
fit the NN scattering data.

A.1 The half-off-shell form factor in pionless EFT

In this appendix we discuss the HOS form factors in the framework of /πEFT. Since analytic
results are readily available, the /πEFT analysis will provide several insights on the general
problem at hand.

A.1.1 Half-off-shell T matrix in pionless EFT at NLO
Working in dimensional regularization with power divergence subtraction [25], the resum-
mation of bubble diagrams with NN vertices involving C0 and C2 leads to (E = p2/mN ,
q2 6= p2)

〈q|T̂S(E)|p〉 =
C̃(E) + C2

2 (q2 − p2)
1− C̃(E)I0

, C̃(E) = C0 + C2 p2 , (A.1)

where we used the definitions (3.3) with V̂π → 0 and

I0 (E) =
(
µ

2

)4−d ∫ dd−1q

(2π)d−1
mN

p2 − q2 + iε
= −mN

4π (µ+ i|p|) . (A.2)

This leads to

fS(q,p) = 1 + C2
2C0

q2 − p2

1 + (C2/C0)p2 ' 1 + C2
2C0

(
q2 − p2) . (A.3)

As mentioned before, these HOS form factors are different depending on whether they
involve the initial- or final-state on-shell momenta, cf. eq. (4.20). By themselves these form
factors are clearly not physical. First, one notes that they depend on the renormalization
scale µ, as C2/C0 is µ-dependent. The form factors vary significantly with µ, while having
the expected qualitative features at small |k|. Second, as shown below, fS can be changed
by performing field redefinitions, as expected for any off-shell quantity. However, in the
actual application insertions of fS combine into a physical contribution to the nnW+(k)→
ppW−(k) amplitude, or equivalently to the integrand in the sum of M<

B+B̄ and M<
C in

eq. (4.2). In the end, the net effect is a modification of the function I<C (|k|) and hence a
change in r(|k|).
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Figure 16. Group of diagrams contributing to nnW+(k)→ ppW−(k) in which the effects of field
redefinitions cancels out. The red circles denote vertices proportional to η, as given in eq. (A.5).
The left-most legs denote on-shell protons. The right-most legs denote off-shell neutrons. The wavy
lines denote weak current insertions.

A.1.2 Behavior of fS and I<C (|k|) under field redefinitions
We consider the non-linear field redefinition given in ref. [79], namely

N → N + ηN(N †N) , (A.4)

where η is an arbitrary parameter of mass dimension −3. This transformation induces a
derivative NN interaction from the kinetic term as well as a two-nucleon current operator,
schematically

L → L + η (N †N)N †
(
i∂0 + ∂2

2mN

)
N + η N †

(
i∂0 + ∂2

2mN

) [
N (N †N)

]
,

N †Jµτ
+N → N †Jµτ

+N + 2η N †Jµτ+N (N †N) . (A.5)

The resulting η-dependent four-nucleon vertex is [79]

〈N1′N2′ |iL|N1N2〉 = iη

[(
ω1 −

p2
1

2mN

)
+
(
ω2 −

p2
2

2mN

)
+
(
ω1′ −

p2
1′

2mN

)
+
(
ω2′ −

p2
2′

2mN

)]
. (A.6)

This modifies the HOS form factors (A.3) as follows

fS(q,p) ' 1 + C2 + 2(η/mN )
2C0

(
q2 − p2) . (A.7)

These η-dependent HOS form factors combine with new contributions to the current
matrix element in such a way to leave no η-dependent term in the amplitude nnW+(k)→
ppW−(k) itself. It is simple to verify that cancellations happen through groups of diagrams
represented in figure 16. Therefore, the integrands in the amplitudes M<

B+B̄ and M<
C in

eq. (4.2) (and hence I<C (|k|) via eqs. (4.7) and (4.18)) are individually invariant under the
field redefinition considered here, i.e., they do not depend on η. We have used this simple
field redefinition of ref. [79] to illustrate a more generally valid point.

A.1.3 Impact of fS on I<C (|k|)
Inserting the form factor (A.3) into eq. (4.18) one obtains (using |p′| = |p|)

I<C (|k|) = 1
8|k| θ(|k| − 2|p|) + i

8π|k| log

∣∣∣∣∣∣
1 + 2 |p||k|
1− 2 |p||k|

∣∣∣∣∣∣+ 1
4π

C2
C0

(
µ+ i|p|

)
+O(C2

2 ) . (A.8)
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For the real part of I<C (|k|), relevant for the matching, this implies

Re I<C (|k|) = 1
8|k|

[
1 + |k|

π

(2µC2
C0

)]
≈ 1

8|k|

[
1− |k|r0

π

]
. (A.9)

In the last step we have used the /πEFT expressions of C0,2(µ) and taken µ ∼ Mπ � 1/a.
The size of the effective range r0 = 2.73 fm = 1/(72MeV) implies sizable deviations from
the leading 1/(8|k|) behavior already at |k| ≤Mπ.

While the analysis above is promising, there are two unsatisfactory aspects: (i) Even
though it does not enter the matching, the imaginary part of I<C (|k|) depends on the scale
µ through the ratio C2/C0. (ii) The real part of I<C (|k|) is only approximately independent
of µ, as we have neglected 1/(µa)� 1 in the expression

µC2
C0

= −r0
2

1
1− 1

µa

. (A.10)

Both issues can be addressed by studying how fS impacts all components of the generalized
Compton amplitude, i.e., the integrand of M<

B+B̄ and M<
C in eq. (4.2), and not just the

integrand ofM<
C as done above. The final result is very simple: the contributions combine

to give a real-valued and scale-independent shift to I<C (|k|) equal to δI<C (|k|) = −r0/(8π),
which agrees with the result in the second line of eq. (A.9).

The argument proceeds as follows. Omitting a common factor proportional to the weak
current insertions, namely −(1 + 3g2

A)/k2, the integrand corresponding to M<
B+B̄ +M<

C

in eq. (4.2) has the following structure:

mN

(
T (E′) fS(p′,k + p)

p′2 − (k + p)2 + iε
+ fS(k + p′,p)

p2 − (k + p′)2 + iε
T (E)

+ T (E′)mN

∫
dd−1q

(2π)d−1
fS(p′,k + q)

p′2 − (k + q)2 + iε

fS(q,p)
p2 − q2 + iε

T (E)
)
, (A.11)

where T (E) denotes the LO on-shell NN T matrix in the 1S0 channel. Substituting the
form factors (A.3), one obtains

−mN

(
C2
2C0

(
T (E′)+T (E)

)
+ C2

2C2
0

[
T (E′) C0I0(E)T (E) + T (E′)C0I0(E′) T (E)

])
, (A.12)

where I0(E) is given in eq. (A.2) and T (E) = C0/(1− C0I0(E)). Using the relation

T (E)− C0 = C0I0(E)T (E) , (A.13)

one sees that the terms proportional to C2/C0 in eq. (A.12) cancel and one is left with the
scale-independent quantity T (E′) (−C2/C

2
0 ) T (E). Upon matching the overall factors of

mN , this leads to
δI<C (|k|) = − C2

mNC2
0

= − r0
8π . (A.14)

To conclude, we discuss several lessons that can be abstracted from the /πEFT anal-
ysis: first, the large fractional correction in I<C (|k|) (and hence a<(|k|)) at relatively low
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|k| ∼ Mπ (in /πEFT) is due to the large effective range in the 1S0 channel. Second, in
/πEFT, the inclusion of HOS form factor effects from M<

B+B̄ was needed to cancel a sub-
leading O(1/(µa)) scale dependence in the integrand corresponding to M<

C , proportional
to I<C (|k|). In practice one gets the leading corrections by just including the HOS form
factors in theM<

C integrand. This is consistent with the previous result thatM<
B+B̄ drops

out of the LO matching formula and the expectation that the HOS form factor makes the
integrand inM<

B+B̄ even more convergent. Accordingly, this suggests that the inclusion of
the HOS form factors in the integrand of M<

C captures the bulk of the physical suppres-
sion of the nnW+(k)→ ppW−(k) amplitude at small |k|, while the inclusion of HOS form
factors inM<

B+B̄ would lead to effects that are below the current level of accuracy.

A.2 Half-off-shell effects in chiral EFT at NLO

In this appendix we extend the analysis to chiral EFT, thus keeping pion-exchange effects.
To take into account off-shell effects in T̂S , we start from eq. (3.3),

T̂χS = (1 + V̂πĜ
(π)
+ (E))V̂S(1− Ĝ(π)

+ (E)V̂S)−1(1 + Ĝ
(π)
+ (E)V̂π) , (A.15)

where 〈q|V̂S |p〉 = C + C2
q2+p2

2 is the NLO short-range potential, so that we can write

V̂S = (1 +mNEC2/C) V̂ (C)− mNC2
2C

{
V̂ (C),

(
Ĝ

(0)
+ (E)

)−1
}
. (A.16)

Here V̂ (C) is the LO part of the short-distance potential and the last term gives rise to
off-shell effects proportional to C2. Expanding T̂χS to first order in C2 we have

〈q|T̂χS |k〉 = χ+
q (0)χ+

k (0)
[
K

(0)
E +K

(1)
E

]
− C2
C
K

(0)
E

[
χ+

q (0)p2 − k2

2 + χ+
k (0)p2 − q2

2

]
,

K
(0)
E = C

1− CG(π)
E (0, 0)

, K
(1)
E =

(
K

(0)
E

)2 C2
C2

[
p2 −mN

(µ
2
)4−d ∫ dd−1q

(2π)d−1Vπ(q)
]
,

(A.17)

with p2 = mNE. The scale-dependent term inK(1)
E can be absorbed into an NLO correction

to C → C+C(1), after which K(0,1)
E become scale independent and the NLO on-shell matrix

element of T̂χS takes the form TχS (p,p) =
(
χ+

p (0)
)2 [

K
(0)
E +K

(1)
E

]
.

Inserting the above off-shell matrix elements 〈q|T̂χS |k〉 into eq. (4.2) we can write the
low-momentum component of theMC amplitude as

M<
C =

∫
d3k

(2π)3 〈p
′|
(
T̂χS (E′)Ĝ(0)

+ (E′)
)
ÔLLχ (k)

(
Ĝ

(0)
+ (E) T̂χS (E)

)
|p〉

=
∫

d3k
(2π)3 f(k)χ+

p (0)χ+
p′(0)

×
{[
K

(0)
E′ +K(1)

E′

] [
K

(0)
E +K(1)

E

] ∫ d3q
(2π)3

χ+
q (0)

E′ − q2/mN + iε

χ+
q+k(0)

E − (q + k)2/mN + iε

− mNC2
2C K

(0)
E K

(0)
E′

(
G

(π)
E (0, 0) +G

(π)
E′ (0, 0)

)}
, (A.18)
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where 〈q|ÔLLχ (k)|q′〉 = (2π)3δ3(q − q′ + k)f(k), with f(k) = −g2
V (k)+3hGT (k)

k2 . The first
term in curly brackets contributes to the most singular part ofMC (the parts that diverge
when integrating over k). In particular, the terms with χ+

q,q+k(0) → 1 give rise to the
part of IC in eq. (4.18), with fS → 1. In other words, these pieces are responsible for the
contributions involving the on-shell TS matrix. Instead, the contributions from the terms
proportional to 1− χ+

q,q+k(0) correspond to diagrams involving pion exchanges within the
bubble, which are convergent.

The last line in eq. (A.18) arises from the off-shell piece of T̂S , the second term in
eq. (A.17), and also contributes to the most divergent parts of MC . As in pionless EFT,
these terms are µ dependent by themselves and have to be combined with pieces from the
MB diagrams in order to obtain a µ-independent answer. This part of the amplitude can
be written as

M<
B+B̄ =

∫
d3k

(2π)3

[
〈p′|

(
T̂χS (E′) Ĝ(0)

+ (E′)
)
ÔLLχ (k)

(
I + Ĝ

(0)
+ (E) T̂χπ (E)

)
|p〉

+ 〈p′|
(
I + T̂χπ (E′)Ĝ(0)

+ (E)
)
ÔLLχ (k)

(
Ĝ

(0)
+ (E)T̂χS (E)

)
|p〉
]

=
∫

d3k
(2π)3 f(k)

{
d3q

(2π)3

[ 〈χp′ |q〉χ+
q+k(0)

E − (q + k)2/mN + iε
χ+

p (0)
(
K

(0)
E +K

(1)
E

)
+
(
K

(0)
E′ +K

(1)
E′

)
χ+

p′(0)
χ+

q (0)〈q + k|χp〉
E′ − q2/mN + iε

]
− mNC2

2C χ+
p′(0)χ+

p (0)
(
K

(0)
E +K

(0)
E′

)}
, (A.19)

where the terms within square brackets are finite, while the last line comes from the off-
shell part of T̂χS , which is again µ dependent. Combining the terms that have explicit C2
dependence with those inMC , we obtain

M<
B+B̄ +M<

C

∣∣∣
C2

= −mNC2
2C χ+

p′(0)χ+
p (0)

×
∫

d3k
(2π)3 f(k)

[
K

(0)
E +K

(0)
E′ +K

(0)
E K

(0)
E′

(
G

(π)
E (0, 0) +G

(π)
E′ (0, 0)

)]
= −mNC2

C2 χ+
p′(0)χ+

p (0)K(0)
E K

(0)
E′

∫
d3k

(2π)3 f(k) , (A.20)

which is now µ independent and has the factors of χ+
p (0)KE we expect for the MC-type

diagrams. Using

M<
C = χ+

p′(0)K(0)
E′

[
m2
N

∫
d3k

(2π)3 f(k)IC

]
χ+

p (0)K(0)
E , (A.21)

the terms in eq. (A.20) provide a shift to I<C equal to δI<C = −C2/(mNC
2), which is the

same as in /πEFT, up to the fact that C2/C
2 cannot simply be expressed in terms of the

effective range parameter r0.
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Figure 17. Left panel: HOS form factor fS(q,p) at |p| = 1MeV for Kaplan-Steele (blue), Reid
(green, dotted), and AV18 (red, dashed) potential. Right panel: r(|k|) computed at |p| = |p′| =
1MeV for Kaplan-Steele (blue), Reid (green, dotted), and AV18 (red, dashed) potential.

A.3 Half-off-shell effects in NN potential models

Finally, in this appendix we describe the calculation of the HOS form factor and the ratio
r(|k|) in potential models. As a benchmark resonance model for the 1S0 channel interaction
we will use the three-Yukawa potential, known as the Reid potential [88], which has also
been studied in the context of analyzing the convergence of the NN EFT [87]. This is a
simplified version of the general resonance saturation model for NN interactions [118]. In
coordinate space the potential takes the form

V = Vπ + VS , Vπ(r) = −απ
e−Mπr

r
, VS(r) = −ασ

e−Mσr

r
+ αρ

e−Mρr

r
, (A.22)

with the short-range term modeled through the attractive σ-meson and repulsive ρ-meson
contributions. Once the mass parameters are fixed (Mσ = 4Mπ, Mρ = 7Mπ in ref. [88] and
Mσ = 500MeV, Mρ = 770MeV in ref. [87]), the couplings ασ,ρ are tuned to reproduce the
1S0 phase shift or the scattering length and effective range [87], producing an overall good
representation of the data.

In this class of models it is relatively simple to compute the HOS T -matrix elements
defined in eq. (4.8) and the associated form factors in eq. (4.17): one needs to solve the LS
equation or alternatively the Schrödinger equation using VS in eq. (A.22). We have per-
formed the calculation in both methods, LS equation in momentum space and Schrödinger
equation in coordinate space. Useful cross-checks in the calculation are provided by the
property that the HOS T matrix has the same phase-shift dependence as the on-shell T
matrix T (p,p) [86]

T (q,p) = |T (q,p)| eδ(|p|) . (A.23)

We have also performed the calculation of T (q,p) and fS(q,p) with the AV18 po-
tential [89], after subtracting the one-pion exchange. This is a representative of the class
of high-quality potentials that reproduce the NN scattering data for |p| out to several
hundred MeV.

Representative results from this analysis are summarized in figure 17. In the left
panel we show fS(q,p) versus |q| at |p| = 1MeV for the three potentials considered here,
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Kaplan-Steele, Reid, and AV18. In the right panel we report the ratio r(|k|), see eq. (4.19),
relevant for the calculation of A<,sing

C . The difference in r(|k|) provides some indication of
the level of model dependence in our matching calculation. While locally the differences
can be large, the fall-off of the A<,sing

C integrand multiplying r(|k|) dilutes the impact of
any feature in r(|k|) above 500MeV, so that ultimately the impact on the extracted LEC
is relatively minor. We expect this conclusion to hold in general, beyond the limited set of
potential models explored here.

B Left-right correlator

In the main text we defined the “left-left” correlator, which naturally appears when dealing
with the weak currents. In the case of electromagnetic currents and for matching purposes,
we also need the “left-right” correlator. We define

Π̂LL
µν (k, 0) =

∫
d4r eik·r T

(
ūLγµdL(r/2) ūLγµdL(−r/2)

)
,

Π̂LR
µν (k, 0) =

∫
d4r eik·r T

(
ūLγµdL(r/2) ūRγµdR(−r/2)

)
, (B.1)

and

ÔLLαβ (0) = Ôαβ(0) = ūL(0)γαT adL(0) ūL(0)γβT adL(0) ,
ÔLRαβ (0) = ūL(0)γαT adL(0) ūR(0)γβT adR(0) . (B.2)

With these definitions, the time-ordered products at large k2 can be written as, see
eq. (4.24),

Π̂LL
µν (k, 0) = − 4ig2

s

(k2 + iε)3 ×
[
(kµkν − k2gµν)gαβ ÔLLαβ (0)

+ gµνk
αkβÔLLαβ (0) + k2ÔLLνµ (0)− kνkα ÔLLαµ (0)− kµkα ÔLLνα (0)

]
,

Π̂LR
µν (k, 0) = 4ig2

s

(k2 + iε)3 ×
[
(kµkν − k2gµν)gαβ ÔLRαβ (0)

+ gµνk
αkβÔLRαβ (0) + k2ÔLRνµ (0)− kνkα ÔLRαµ (0)− kµkα ÔLRνα (0)

]
. (B.3)

Similarly, we obtain:

gµν Π̂LL
µν (k, 0) = −4ig2

s

(k2 + iε)3

(
− 2k2(ÔLL)αα + 2kαkβÔLLαβ

)
→ 6ig2

s

(k2 + iε)2 (ÔLL)αα ,

gµν Π̂LR
µν (k, 0) = 4ig2

s

(k2 + iε)3

(
− 2k2(ÔLR)αα + 2kαkβÔLRαβ

)
→ −6ig2

s

(k2 + iε)2 (ÔLR)αα , (B.4)

where the respective last step holds under symmetric integration. Finally, using Fierz
identities we can express (ÔLL)αα and (ÔLR)αα in terms of the four-quark scalar operator
basis used in ref. [42], obtaining

gµν Π̂LL
µν (k, 0) = ig2

s

(k2 + iε)2 2O1 ,

gµν Π̂LR
µν (k, 0) = ig2

s

(k2 + iε)2 2ŌLR , ŌLR = 1
2 (O4 − 3O5) . (B.5)
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These results lead to:

ÔLL> (k) = 3g2
s

4
1
|k|5 O1 , ÔLR> (k) = 3g2

s

4
1
|k|5

1
2 (O4 − 3O5) . (B.6)

As discussed in ref. [42], the four-quark local operators O1,4.5 can be treated at low
energy in chiral EFT. The discussion of O1 is given in section 4.2 and we focus here on
O4,5. At LO only non-derivative four-nucleon and pion-pion vertices appear,

O4,5 → gNN4,5 p̄np̄n + 1
2g

ππ
4,5 F

2
π π
−π− + . . . (B.7)

The ππ couplings induce a pion-range transition operator, while the NN couplings give
a short-range transition operator. The leading chiral expression for the nn → pp matrix
element of ŌLR is given by

〈f−| ŌLR |i+〉 = ÂA + χ+
p′(0)KE′ ÂB + ÂB̄KE χ

+
p (0)

+χ+
p′(0)KE′

(
ÂC + 2gNNLR

C2

)
KE χ

+
p (0) , (B.8)

where ÂA,B,C have the same formal expression as AA,B,C [43] with the replacement [42]

V
1S0
ν L (q) → V

1S0
ŌLR

(q) = 1
2 g

2
A g

ππ
LR

q2

(q2 +M2
π)2 , (B.9)

where [42]

gNNLR = 1
2
(
gNN4 − 3gNN5

)
∼ O((4π)2) , gππLR = 1

2 (gππ4 − 3gππ5 ) ∼ O((4πFπ)2) . (B.10)

The scaling of the pion couplings follows from naive dimensional analysis and is confirmed
by a lattice QCD calculation [90]. On the other hand, the scaling of the NN couplings
follows from the RGE in chiral EFT [42], which we report here for completeness in terms
of the rescaled couplings g̃NN4,5 defined by gNN4,5 = (mNC/(4π))2 g̃NN4,5 :

d g̃NN4,5
d log νχ

= g2
A

4 gππ4,5 . (B.11)

The scaling for the nucleon couplings follows from the above RGE and the scaling
mNC/(4π) ∼ 1/Q. As a consequence of the above discussion, the coupling gNNLR depends
on both the short-distance QCD renormalization scale µ and on the chiral renormalization
scale νχ.

Using the above relations we arrive at

M>
LR = A>A + χ+

p′(0)KE′ A>B +A>
B̄
KE χ

+
p (0) + χ+

p′(0)KE′ A>C KE χ
+
p (0) , (B.12)

with

A>
A,B,B̄

= 3αs
2π

∫ ∞
Λ

d|k| 1
|k|3 ÂA,B,B̄ ,

A>C = 3αs
2π

∫ ∞
Λ

d|k| 1
|k|3

(
2gNNLR
C2 + ÂC

)
. (B.13)
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For matching purposes only A>C matters. In the numerical estimates we will retain only
the term proportional to gNNLR and the singular part of ÂC , proportional to gππLR. Further,
for convenience in the matching analysis we express the couplings gNNLR and gππLR in terms
of dimensionless quantities as follows

gNNLR =
(
mN

4π C
)2

(4πFπ)2 ḡNNLR , ḡNNLR ∼ O(1) ,

gππLR = (4πFπ)2 ḡππLR , ḡππLR ∼ O(1) . (B.14)

In numerical estimates we will use ḡππLR = 8.23 (in the MS scheme at µ = 2GeV, based on
the lattice QCD results of ref. [90]) and assume the range ḡNNLR ∈ [−10,+10].

C Estimating inelastic effects

As a representative of inelastic effects, we estimate the contribution from the diagram in
figure 8.17 The contribution to the generalized Compton amplitude in eq. (2.9) is already
a two-loop diagram, which with appropriate momentum routing can be written as

δT (k, pext) = iC2 (1 + 3g2
A)m2

N

16F 2
π

×
∫

d3q
(2π)3

∫
d3q′
(2π)3

1
p2−q2+iε

1
p′2−q′2+iε

1
−(k0)2 + (q−q′+k)2 +M2

π

.

(C.1)

Upon changing variables to q and l = q − q′ one has

δT (k, pext) = iC2 (1 + 3g2
A)m2

N

16F 2
π

∫
d3l

(2π)3
1

−(k0)2 + (l + k)2 +M2
π − iε

IC(l2,p2,p′2) .

(C.2)
Recalling that IC → 1/(8|l|) for p = p′ → 0, one obtains

δT (k, pext) = iC2 (1 + 3g2
A)m2

N

128F 2
π

∫
d3l

(2π)3
1

−(k0)2 + (l + k)2 +M2
π − iε

1
|l| . (C.3)

The integral is logarithmically divergent and we regulate the divergence with a cutoff scale
ν ∼ Λχ. We will mimic the effect of the associated (and unknown) counter term by varying
the scale ν in order to obtain a rough estimate of the corresponding inelastic effect.

The inelastic contribution to A<C is given by

δA<C = 2
∫

d4k

(2π)4
δT (k, pext)
k2 + iε

. (C.4)

We reduce this integral by first integrating over k0 via the residues at the pion and neutrino
poles, and second performing the angular integral in d3l, obtaining

δA<C = m2
N

(4π)2
1

(4πFπ)2
1
4

∫
d|k| (1 + 3g2

A)
∫ ν

0
d|l| log

[
|k|+

√
(|k|+ |l|)2 +M2

π

|k|+
√

(|k| − |l|)2 +M2
π

]
. (C.5)

17This corresponds to diagram (G) in figure 3 of ref. [38].
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The integral in d|l| can be done analytically, leading to

δA<C = m2
N

(4π)2

∫
d|k| δa<(|k|) ,

δa<(|k|) = 1 + 3g2
A

2(4πFπ)2

[
|k|
(

1 + log ν Mπ

(|k|+
√

k2 +M2
π)2

)
+MπF

( |k|
Mπ

)]
,

F (x) =
√

1− x2

[
arctan

(
x2

√
1− x4

)
− arctan

(
x√

1− x2

)]
. (C.6)

In the Mπ → 0 limit the integrand becomes

δa<(|k|) = 1 + 3g2
A

2(4πFπ)2 |k|
(

1 + log ν

4|k|

)
. (C.7)

The logarithmic divergence signals that there must be, at this order, a counter term for
the generalized Compton amplitude (the divergence arose at that level, before integrating
over d3k). Naive dimensional analysis suggests that this counter term should be of the
same order of the coefficient of log ν. To obtain a numerical estimate we vary the scale
within ν ∼ (0.5–1.0)GeV. The new contribution to the integrand is clearly suppressed by
two chiral orders compared to the leading terms, as long as |k| � Λχ, as one is comparing
the LO 1/|k| to |k|/(4πFπ)2. However, this leads to a badly divergent integral in |k|. In
order to estimate the contribution to the integral, and therefore to the LEC,

δC̃1 = 1
2 δĀ<C , (C.8)

we explore two options: first, one may use the chiral EFT form of the integrand and cut
it off at Λχ ∼ 1GeV, or, second, one may replace 1 + 3g2

A → g2
V (k2) + 3g2

A(k2) in eq. (C.6)
and integrate up to Λ. Numerically, the second option leads to |δC̃1| = 0.15, while the first
option leads to |δC̃1| = 0.35 (the largest absolute value is obtained for ν = 0.5GeV). Based
on these observations, we will take into account the effects of inelastic channels by adding
a ±0.5 uncertainty to our estimate of C̃1(µχ).

D Evaluation of Z<

Using T ππ< (k, 0) from eqs. (6.15), (6.16), and (6.17) we obtain

Z< = 3i
2F 2

∫
d4k

(2π)4
1

k2 + iε

(
M2
V

M2
V − k2

)2

. (D.1)

We evaluate this integral in two ways. First, performing the usual Wick rotation and
introducing the variable k2

E = (k0)2 + k2 to reduce the integral to18

Z< = 3
2

1
(4πF )2

∫ ∞
0

dk2
E

(
M2
V

M2
V + k2

E

)2

= 3
2

M2
V

(4πF )2

∫ ∞
0

dx

( 1
1 + x

)2
= 3

2
M2
V

(4πF )2 .

(D.2)
18One could also perform the integrals in analogy to the derivation of the Cottingham formula and would

obtain the same result in this case, because after the change of variables the integrand does not depend on
k0 and

∫ +kE

−kE
dk0
√
k2
E − (k0)2 = (πk2

E)/2.
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Since the integral is convergent, we have taken the integration limit in k2
E to +∞. Note

that the overall normalization of the integral above agrees with the literature on the pion
mass difference, see, e.g., ref. [63].

Next, we perform the integral (D.1) by first carrying out the k0 integration via the
residues’ theorem, which allows us to identify the integrand in the variable |k| in eq. (6.21).
The integrand has single poles at k0 = ±(|k| − iε) and double poles at k0 = ±(ωV − iε),
where ωV =

√
k2 +M2

V . The integration gives:

Z< = 3
4F 2

∫
d3k

(2π)3
1
|k|

(
1− |k|

ωV

(
1 + M2

V

2ω2
V

))

= 3
2

1
(4πF )2 4

∫ Λ

0
d|k||k|

(
1− |k|

ωV

(
1 + M2

V

2ω2
V

))
, (D.3)

which is the result used in eq. (6.21). As a check, we perform the integration up to Λ→∞,
obtaining

Z<(Λ→∞) = 3
2

M2
V

(4πF )2 4
∫ ∞

0
dxx

(
1− x

2
3 + 2x2

(1 + x2)3/2

)
= 3

2
M2
V

(4πF )2 . (D.4)

In the last step we used the fact that the integral in the x variable evaluates to 1/4.
This result is consistent with eq. (D.2), obtained with the more commonly used integration
variable k2

E . The advantage of the standard approach is that the result directly applies to an
arbitrary pion vector form factor, while collecting the residues in the k0 integration assumes
the form dictated by vector meson dominance. For our application this approximation
is completely sufficient, but could be improved by using a dispersive representation of
F Vπ (k2) [119, 120] and treating the Cauchy kernel along the same lines.

E Details on CIB in NN scattering near threshold

E.1 Low-energy NN scattering in the presence of Coulomb interactions

We begin by recalling some results on the Coulomb-modified effective range expansion
for pp scattering [97–99]. We specialize to the S-wave and indicate the pure Coulomb
phase shift by σ and the full phase shift by σ + ν. Further, we denote the total scattering
amplitude by T , the purely Coulomb component by TC , and the Coulomb-modified strong
amplitude by TSC

T = TC + TSC = 4π
mp

e2i(σ(k)+ν(k)) − 1
2ik ,

TC = 4π
mp

e2iσ(k) − 1
2ik ,

TSC = 4π
mp

ei2σ(k)

(
e2iν(k) − 1

)
2ik = 4π

mp
ei2σ(k) 1

k (cot(ν(k))− i) . (E.1)

The phase shift ν(k) obeys a modified effective range expansion [97–99]
1

k (cot(ν(k))− i) = C2
0 (η)

− 1
aC
− r0

k2

2 − αmph(η) + . . .
, (E.2)
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Figure 18. ãCIB(k) defined in eq. (E.5) versus k, using experimental input from eq. (E.7).

where
η = αmp

2k , C2
0 (η) = 2πη

e2πη − 1 , h(η) = Re
(Γ′(iη)

Γ(iη)

)
− log η . (E.3)

The standard effective range expansion is recovered formally by setting α→ 0, which also
implies C2

0 (η)→ 1. For α 6= 0, the function h(η) goes smoothly to zero for k → 0, so that
aC can be interpreted as a scattering length. However, the Sommerfeld factor C2

0 (η) —
the square of the Coulomb wave function at the origin — goes to zero for k → 0 due to
Coulomb repulsion and this prevents the usual threshold analysis of the amplitude. It will
prove useful to work with the momentum-dependent quantity

ãpp(k) = C2
0 (η)

1
aC

+ αmph(η)
, (E.4)

which is a proxy for the very low-energy Coulomb-subtracted pp scattering amplitude.
For the CIB analysis we will consider the quantities

ãCIB(k) = ann + ãpp(k)
2 − anp (E.5)

as well as
aCIB =

ann + aCpp
2 − anp , (E.6)

and we will use the following values for the scattering lengths determined from NN

data [101–105]:

anp = −23.74(2) fm , ann = −18.9(4) fm , aCpp = −7.817(4) fm . (E.7)

In figure 18 we show ãCIB(k) using the input from eq. (E.7).

E.2 Low-energy NN amplitudes in chiral EFT with isospin breaking

Using the techniques of ref. [23], we extract the phase shift ν(k) from the asymptotic be-
havior of the solution to the Schrödinger equation with inclusion of Coulomb potential and
the LO chiral potential. The 1S0 chiral potential includes the LO channel-dependent con-
tact interaction (denoted by Cnn,pp,np in the following), as well as the channel-dependent
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Yukawa potential with the electromagnetically induced pion mass splitting. By including
these effects in the Schrödinger equation we effectively iterate the isospin-breaking cor-
rections to all orders. This is mandatory for the Coulomb potential, while for the other
terms a perturbative treatment should be numerically close to our analysis, see ref. [43] for
additional details.

The phase shift ν(k) is related to the complex coefficients ypp(k) and zpp(k) controlling
the large-r behavior of the regular and irregular solutions of the Schrödinger equation with
Coulomb and Yukawa potentials

ψreg(r)→ ypp(k) ei(kr−η log(2kr)+σ(k))

kr
+ c.c. ,

ψirr(r)→ zpp(k) ei(kr−η log(2kr)+σ(k))

kr
+ c.c. (E.8)

By matching the low-energy form of the amplitude obtained in EFT to the (modified)
effective range form, one obtains

anp = aπnp +G(Cnp, ynp, znp) ,

ann = aπnn +G(Cnn, ynn, znn) ,

ãpp(k) = aπpp +G(Cpp, ypp, zpp) ,

G(Cij , yij , zij) = mij

16πy∗2ij
1

− 1
Cij(µ) + ∆ij

(µ
λ

)
+ z∗(λ)

y∗

. (E.9)

In the above relations aπij is the Yukawa-induced scattering length (obtained in terms of the
phase of yij(k) at small k). mij is the appropriate channel-dependent mass for the nucleon
system (mnn = mn, mpp = mp, mnp = 2mnmp/(mn +mp)). The quantities zij depend on
the regulator λ introduced when imposing boundary conditions for the irregular solution of
the Schrödinger equation [23]. The results quoted below are obtained with 1/λ = 0.001 fm
and we have checked stability in the range 1/λ = 0.001 → 0.05 fm. The dependence on λ
is canceled by the matching factors ∆ij(µ/λ), to connect to the MS scheme, in which the
contact couplings Cij(µ) are defined. The explicit form of these scheme-changing factors is

∆nn = −απ
m2
nn

8π

(
log µ

2

λ2 + 2γE − 1
)
, απ =

g2
AM

2
π0

16πF 2
π

,

∆np = −απ
(

1 + 2
M2
π± −M

2
π0

M2
π0

)
m2
np

8π

(
log µ

2

λ2 + 2γE − 1
)
,

∆pp = −(απ − α)
m2
pp

8π

(
log µ

2

λ2 + 2γE − 1
)
. (E.10)

In the presence of isospin breaking, the short-range 1S0 NN couplings can be decom-
posed as follows

Cnp = C + e2

3 (C1 + C2) ,

Cnn = C − e2

6 (C1 + C2) + 1
2CCSB , Cpp = C − e2

6 (C1 + C2)− 1
2CCSB , (E.11)
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where the CIB combination C1+C2 arises form I = 2 interactions, while the CSB term CCSB
stems from I = 1 interactions. The latter term can originate from strong isospin-breaking
∝ (mu −md) or electromagnetic interactions. For the CIB coupling, renormalization ar-
guments (cancellation of divergences) enforces the LO scaling ∼ e2/Q2 [40, 43, 100]. For
the CSB coupling, the Coulomb potential also induces a UV divergence that requires it to
scale as ∼ e2/Q2.

E.3 Fitting the couplings

Equation (E.9) can be used to extract the three contact couplings Cnp,nn,pp (or equivalently
C, C1 + C2, CCSB). The output is very stable when using momenta near threshold, in the
range k ∈ [1MeV, 10MeV]. For definiteness, we quote results for k = 1MeV. Using the
reference scale µ = Mπ ≡ (Mπ0 + 2Mπ±)/3, this analysis leads to

Cij(µ) = − 1
(Λij(µ))2 , Λnn,pp,np(Mπ) = (95.4, 88.7, 98.9)MeV ,

C(µ) = − 1
(ΛC(µ))2 , ΛC(Mπ) = 94.4MeV ,

e2

2 (C1 + C2)(µ) = 1
(ΛCIB(µ))2 , ΛCIB(Mπ) = 247MeV , (C̃1 + C̃2)(Mπ) = 5.1 ,

CCSB(µ) = 1
(ΛCSB(µ))2 , ΛCSB(Mπ) = 254MeV . (E.12)

The result indicates that both CIB and CSB effects provide corrections to the isosymmetric
coupling C at the (10–15)% level.

E.4 Predicting the CIB combination of scattering lengths

Alternatively, we can use eq. (E.9) to validate our calculation of (C1 + C2)(µ) as follows:

1. We use one linear combination of eq. (E.9) to extract the isospin-conserving cou-
pling C.

2. We construct the CIB combinations ãCIB(k) and aCIB. The theoretical expressions
constructed from the right-hand side of eq. (E.9) depend in general on C, (C1+C2), and
CCSB. We will fix C to the fit value (see previous step) and consider the dependence
of the theoretical expressions ãth

CIB(k) and ath
CIB on the I = 2 coupling (C1 + C2)(µ).

Using our range for (C1 + C2)(µ) we can predict ãCIB(k) and aCIB, and compare to
the experimental value.

3. Working to first order in isospin-breaking quantities, the observable ãth
CIB(k) should be

insensitive to the I = 1 coupling CCSB. However, in eq. (E.9) we are effectively iterat-
ing the insertions of electromagnetic isospin-breaking sources to all orders (including
CCSB), since we are iterating the full couplings Cij . As indicated by CCSB/C ∼ 15%,
second-order effects due to two insertions of CCSB might not be negligible. To quan-
tify the impact of this on our CIB analysis, in figure 19 we show for k0 = 1MeV,
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Figure 19. ãth(1)
CIB (lower curve) and ã

th(2)
CIB (upper curve), both defined in eq. (E.13), versus the

dimensionless coupling C̃1 + C̃2. The curves are evaluated at k0 = 1MeV for µ = Mπ (left panel) and
µ = 2Mπ (right panel). The horizontal line represents the experimental value aCIB(k = 1MeV) =
14.25 fm. For reference, our theoretical ranges for the CIB LEC are (C̃1 + C̃2)(Mπ) = 2.9(1.2) and
(C̃1 + C̃2)(2Mπ) = 5.4(1.2).

µ = Mπ (left panel), and µ = 2Mπ (right panel) the two functions

ã
th(1)
CIB (C̃1 + C̃2) = ãth

CIB(k = k0)
∣∣∣
C=Cfit, CCSB=0

,

ã
th(2)
CIB (C̃1 + C̃2) = ãth

CIB(k = k0)
∣∣∣
C=Cfit, CCSB=CCSB, fit

, (E.13)

where in both diagrams the horizontal line represents the experimental value of
ãCIB(k = 1MeV) = 14.25 fm.

4. A few comments are in order: (i) The plots clearly show the need for a LO CIB
coupling. Not including (C̃1 + C̃2) would lead to a scale-dependent prediction for
ãCIB(k). Moreover, at µ = Mπ the theory would predict ãCIB(k = 1MeV) ∼ 30 fm,
more than a factor of two larger than the experimental value. (ii) The two choices
of treating CCSB lead to a shift ∆ãCIB ∼ 2.5 fm at µ = Mπ (growing to ∼ 4 fm
at µ = 2Mπ), subdominant but not negligible. (iii) One could use the intercept of
the curves in figure 19 with the horizontal experimental constraint to perform an
alternative extraction of (C̃1 + C̃2). Due to the missing CSB contribution, using ãth(1)

CIB
implies a value of (C̃1+C̃2)(Mπ) ∼ 3.7, to be contrasted with the 5.1 from the previous
analysis. (iv) Finally, we note that using ãth(2)

CIB produces results that are more stable
under variation of µ (see below).

5. Our theoretical ranges for the CIB LEC are (C̃1 + C̃2)(Mπ) = 2.9(1.2) and (C̃1 +
C̃2)(2Mπ) = 5.4(1.2). These values can be used in conjunction with ath(1,2)

CIB (C̃1 + C̃2)
to predict aCIB. Using ãth(1)

CIB we find

ãCIB(k = 1MeV) = 17+5
−4 fm µ = Mπ ,

ãCIB(k = 1MeV) = 15.3+5
−4 fm µ = 2Mπ , (E.14)

while the second variant ãth(2)
CIB gives

ãCIB(k = 1MeV) = 19.6+4.5
−4 fm µ = Mπ ,

ãCIB(k = 1MeV) = 19.0+4.5
−4 fm µ = 2Mπ . (E.15)

– 57 –



J
H
E
P
0
5
(
2
0
2
1
)
2
8
9

� � � � �
�

�

��

��

��

��

��

(� �+�

�) (Mπ )

a C
IB

[f
m
]

� � � � ��
�

�

��

��

��

��

��

(� �+�

�) (2Mπ )

a C
IB

[f
m
]

Figure 20. ath(1)
CIB (lower curve) and ath(2)

CIB (upper curve) versus the dimensionless coupling C̃1 + C̃2.
The curves are evaluated at µ = Mπ (left panel) and µ = 2Mπ (right panel). The horizontal line
represents the experimental value aCIB = 10.35 fm. For reference, our theoretical ranges for the
CIB LEC are (C̃1 + C̃2)(Mπ) = 2.9(1.2) and (C̃1 + C̃2)(2Mπ) = 5.4(1.2).

These values compare well with ãexp
CIB(k = 1MeV) = 14.25 fm. Using k = 10MeV, the

experimental value decreases to 13.0 fm and the prediction is also reduced by slightly
over 1 fm.

6. We can repeat the same analysis using the momentum-independent combination of
scattering lengths

aCIB =
ann + aCpp

2 − anp ≈ 10.4 fm , (E.16)

by constructing theoretical quantities in complete analogy to eq. (E.13). The results
are illustrated in figure 20. Using ath(1)

CIB we find

aCIB = 13.5+5
−4 fm µ = Mπ ,

aCIB = 12+5
−4 fm µ = 2Mπ , (E.17)

and for ath(2)
CIB

aCIB = 16.0+4.5
−4 fm µ = Mπ ,

aCIB = 15.4+4.5
−4 fm µ = 2Mπ . (E.18)

In summary, we have derived a prediction of the CIB scattering length that overshoots
the experimental value by about 35% and has a comparable uncertainty, thus comparing
well with data. This is a significant phenomenological success of our theoretical approach
and supports the validity of our uncertainty estimates.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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