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Abstract 

Pre-existing faults in the mechanical basement are believed to play an important role in controlling 

deformation of the thin-skinned Jura Mountains fold-and-thrust belt, which constitutes the 

northernmost extension of the European Alps. We use brittle-viscous analogue models to investigate 

the influence of frontal and oblique basement steps on the subsequent evolution of structures during 

thin-skinned shortening. Vertical offset between two rigid baseplates (simulating the mechanical 

basement) causes the formation of reverse faults and grabens in the overlying brittle layers that are 

not reactivated during subsequent thin-skinned shortening. However, baseplate steps localise 

deformation, causing a temporary frontward propagation of deformation in an early stage and 

inhibiting propagation afterwards. Downward baseplate steps induce very strong deformation 

localisation and foster the formation of fault-bend folds. Models featuring upward steps develop step-

controlled pop-up structures with imbricated fronts and viscous ramps that shorten dynamically with 

progressive contraction. We find that deformation localisation increases both with higher step-throws 

and lower obliquity (α) of the strike of the step (e.g. frontal step α = 0°). With increasing step-throws, α 

= 30° and α = 45° oblique upward-steps lead to a characteristic imbrication of the brittle cover with 

laterally confined thrust-slices and step-parallel oblique-thrusts, which rotate up to 15° about a vertical 

axis over time. Step-controlled backthrusts preceding the formation of thrust-slices do not show 

notable rotation and hence constitute excellent indicators for the orientation of oblique upward-steps. 

The topographic patterns of oblique-step models resemble individual thin-skinned structures of the 

Internal Jura (i.e. Pontarlier and Vuache fault zones, the nappe system SE of Oyonnax and the 

Chasseral anticline), strongly suggesting that pre-existing NNE-SSW and NW-SE striking oblique 

upward-steps in the basement controlled deformation in the overlying cover. Our model results may be 

applied to other thin-skinned fold-and-thrust belts worldwide that formed above pre-existing basement 

structures. 

 

Keywords 

Jura Mountains fold-and-thrust belt; analogue modelling; lineament; oblique ramp; basement-cover 

interaction; localization of deformation at basement fault 
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1 Introduction 

The Jura Mountains fold-and-thrust belt (JFTB) forms the outermost front of the Central and Western 

European Alps that became detached in Triassic evaporites during Middle Miocene (Serravallian) to 

Pliocene times (Buxtorf, 1907; Laubscher, 1961). The thin-skinned JFTB evolved above a pre-

structured basement, which affected the deformation style of the Mesozoic and Cenozoic sedimentary 

cover (Homberg et al., 2002; Laubscher, 1986, 1961; Malz et al., 2019; Philippe et al., 1996; Tschanz, 

1990). Pre-existing basement structures frequently controlled the formation of cover structures that are 

oblique to the JFTB transport directions (Laubscher, 1961). Although obscuring most underlying 

basement structures, the JFTB is full of inherited strike directions, which highly motivated us to study 

the formation of complex fold and thrust arrangements. 

The aim of this study is to understand the kinematic and mechanic conditions of basement-controlled 

structures in the detached cover of the JFTB. First, we present brittle-viscous sandbox analogue-

models that explore the spatial and kinematic evolution of a brittle sand cover above a viscous 

detachment, migrating across oblique and frontal basement steps associated with the reactivation of 

inherited faults. Thereafter we compare structures observed in our analogue models with natural 

examples from the JFTB. Although we study the case of the thin-skinned JFTB in the first place, our 

model results may be applied to other fold-and-thrust belts worldwide that deformed above pre-

existing basement structures. Some examples amongst others, where inherited structures are 

proposed to have exerted an important structural control, are the Taiwan orogen (Yang et al., 2006, 

1996), the Apennines (Coward et al., 1999; Tavarnelli, 1997), the Zagros Mountains (Berberian, 1995) 

and the Prebaetic System of the Baetic Cordillera in Spain (Peper and Cloetingh, 1992). 

2 Regional setting 

2.1 Jura Mountains fold-and-thrust belt 

The Jura Mountains are an arc-shaped mountain range of ~300 km width and a transect length of ~75 

km at its centre (Fig. 1a). The Mesozoic and Cenozoic cover of the Jura Mountains and the western 

Molasse Basin (Fig. 1a, b) was detached in Triassic evaporites and transported north-westwards, 

which was proposed by Buxtorf (1907, 1916) and Schardt (1908) based on observations in railway 

tunnels and because no rocks exposed in the JFTB pre-date a Triassic age. Several decades later, 

boreholes and seismic lines within the detached Molasse Basin and the Jura Mountains confirmed the 

existence of a regional basal décollement in Triassic evaporites (Burkhard, 1990; Jordan, 1992; 

Jordan and Nuesch, 1989; Laubscher, 1961; Lienhardt, 1962; Michel et al., 1953; Sommaruga, 1997). 

The basal detachment of the JFTB is very probably connected with the Alpine sole thrust in the south-

east, that roots beneath the External Crystalline Massifs (ECMs) of the Alps (Burkhard, 1990; 

Bellahsen et al., 2014, Fig. 1b), namely the Belledonne, Aiguilles-Rouges, Mont-Blanc, Aar and 

Gotthard Massifs (Fig. 1a). Therefore, the evolution of the JFTB and the exhumation of the ECMs 

were coupled and contemporaneous (Becker, 2000; Burkhard, 1990; Laubscher, 1986). From 

structural relations of Tertiary sediments across the Jura Mountains, the main folding and thrusting of 

the JFTB occurred between about 12 and 4 Ma (Becker, 2000 and references therein), which we 

consider the thin-skinned main formation stage of the JFTB. However, the basal décollement of the 
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JFTB and Molasse Basin was active before (Deville et al., 1994; Leloup et al., 2005; Looser et al., 

2020). From the thermal and structural evolution of the ECMs, Leloup et al. (2005) concludes that the 

Alpine sole thrust (see Fig. 1b) prolonged into the Triassic evaporites beneath the Molasse Basin by 

~15 Ma at the latest. This is supported by recent U-Pb dating of calcite veins in the Schafisheim-1 

borehole situated in the Molasse Basin west of Zürich (see position in Fig. 1a) that shows activity of 

the basal décollement at 14.3 ± 0.5 Ma (Looser et al., 2020). 

 

Fig. 1 a) Tectonic map of the Jura Mountains and surroundings, based on existing maps (Chauve and Perriaux, 1974; 

Sommaruga et al., 2017; Trümpy, 1980) and new observations. b) Regional cross-section modified from Sommaruga et al. 

(2017). AA: Aar Massif, AI: Aiguilles Rouges Massif, BEL: Belledonne Massif, GM: Gotthard Massif, IC: Ile Crémieu, LSH: La 

Serre Horst, MB: Mont Blanc Massif, RBTZ: Rhine-Bresse Transfer Zone, VZ: Vorfaltenzone. Indicated boreholes are BL: 

Bonlieu-1, CH: Châtelblanc-1, ESS: Essavilly-101, ORS: Orsans-1, RX: Risoux-1, SCH: Schafisheim-1 and TRE: 

Treycovagnes-1. 

The JFTB is classically divided into a highly deformed internal tectonic domain and a considerable less 

deformed external part (Chauve and Perriaux, 1974; Trümpy, 1980, Fig. 1a). The strongly deformed 

Internal Jura or High Jura (Fig. 1) shows maximum northwest displacements of about 30 km (Affolter, 

2004; Laubscher, 1965; Philippe et al., 1996), featuring well-developed ramps and fault-propagation 
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folds that partially led to kilometric duplication of the Mesozoic cover (Fig. 1b, Winnock, 1961; Aubert, 

1971; Sommaruga, 1997). The less deformed External Jura is subdivided into narrow zones of 

localised deformation called “faisceaux” (meaning “bundles” in English) and scarcely folded and intact 

plateaus (Fig. 1a). These plateaus are blocks of Mesozoic carbonates, each several hundred square 

kilometres large, embedded within the faisceaux (Fig. 1a). 

The front of the JFTB is controlled by rift segments of the European Cenozoic Rift System (ECRIS, 

Dèzes et al., 2004; Lacombe and Bellahsen, 2016; Madritsch et al., 2008; Malz et al., 2016; 

Ustaszewski and Schmid, 2006; Ziegler, 1992), i.e. the Bresse Graben (BG) to the west and the Upper 

Rhine Graben (URG) to the north, connected by the Rhine-Bresse Transfer Zone (RBTZ, Fig. 1a). 

Therefore, faisceaux at the front of the JFTB follow extensional structures of the ECRIS (Bièvre and 

Mercier, 2010; Chauve and Perriaux, 1974; Glangeaud, 1951; Lienhardt, 1962; Martin and Mercier, 

1996; Michel et al., 1953; Philippe et al., 1996). 

2.2 Mechanical stratigraphy 

The mechanical basement of the JFTB (footwall) encompasses the geological units beneath the basal 

décollement in Triassic evaporites. Apart from the crystalline basement, this includes Permian and 

Carboniferous continental sediments deposited within troughs in the crystalline basement as well as 

the Triassic series beneath the basal décollement (Fig. 2). The evaporite décollement of the JFTB 

concentrated predominantly in halite-bearing layers (Deville, 2021; Sommaruga et al., 2017), 

deposited in shallow basins on an epicontinental platform (Lienhardt et al., 1984; Philippe et al., 1996). 

Salt occurs mainly in Upper Triassic evaporites (Keuper group) in the Central and Southern Jura and 

mostly in Middle Triassic series (Muschelkalk group) in the Eastern Jura (Debrand-Passard et al., 

1984; Guellec et al., 1990; Jordan, 1992; Laubscher, 1986, 1961; Philippe et al., 1996; Sommaruga et 

al., 2017). 

The stratigraphy in Fig. 2 is representative of the Central Jura, where the décollement is localised in 

Upper Triassic evaporites (Laubscher, 1961; Philippe et al., 1996). We estimate a décollement/cover 

thickness ratio of about 1/8, assuming the Upper Triassic salt system to be the basal décollement (Fig. 

2). However, anhydrite layers present throughout the Triassic series were at least partially involved in 

the décollement (Jordan, 1992; Müller et al., 1981), leading to a décollement/cover thickness ratio of 

ca. 1/5 (Fig. 2). This ratio increases even more towards the front of the JFTB, where the detached 

Mesozoic cover is extensively eroded due to Eocene to Oligocene rift-shoulder uplift associated with 

the formation of the ECRIS (Illies, 1972; Michon, 2000) and forebulging of the peripheral Alpine 

foreland basin (Burkhard and Sommaruga, 1998; Laubscher, 1992). Although detachments in the 

overlying Jurassic and Cretaceous series can occur locally (Malz et al., 2019; Noack, 1995; Nussbaum 

et al., 2017; Philippe et al., 1996; Schori et al., 2015, see Fig. 2), we focus on the role of the main 

basal Triassic décollement in this study. 
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Fig. 2 Representative stratigraphy of the Central Jura Mountains based on borehole Essavilly-101 (Delmas, 1965). The top of 

the mechanical basement of the JFTB (footwall) lies near the bottom of the Upper Triassic series. The Upper Triassic anhydrite 

system at least partially contributed to the basal décollement zone, next to the Upper Triassic salt system. Note that local upper 

detachments occur in the Jurassic series. 

2.3 Inherited basement faults  

In the URG and Vorfaltenzone (Fig. 1a), numerous studies of seismic lines, boreholes and gravimetry 

provide well-constrained insights into faults affecting the basement, with structural orientations being 

frequently associated with the Variscan orogeny and post-Variscan collapse (Egli et al., 2016; Hauber, 

1993; Illies, 1972; Larroque and Laurent, 1988; Laubscher, 1982; Madritsch et al., 2018, 2009, 2008; 

Madritsch and Deplazes, 2014; Philippe, 1995; Rat, 1974; Rotstein et al., 2005; Ustaszewski, 2004). 

There are three main Palaeozoic trends present (Illies, 1962; Reisdorf and Wetzel, 2018; Schumacher, 

2002), which originate from NNE-SSW (“Rhenish”, N010°-N020°) striking Variscan sinistral shear 

zones, NW-SE (“Hercynian”, N120°-N130°) striking Variscan dextral shear zones and ENE-WSW 

(“Erzgebirgian”, N070°-N080°) striking Variscan dislocation zones (Fig. 3a). Some of these Palaeozoic 

fault zones were transpressionally or transtensionally reactivated during the Mesozoic opening of the 
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Alpine Tethys, as well as during the evolution of the ECRIS and the Alpine flexural foreland basin 

system in Cenozoic times (Illies, 1962; Laubscher, 1986; Madritsch et al., 2009; Meier, 2010; Reisdorf 

and Wetzel, 2018; Schumacher, 2002; Wetzel et al., 2003; Ziegler, 1988a; Ziegler and Dèzes, 2007). 

This led to: (1) depositional differences of Mesozoic and Cenozoic sediments along fault zones, (2) 

mechanical heterogeneities in the deformed sedimentary cover and (3) substantial vertical offsets of 

the basement and the cover. In this paper, we test the influence of the latter two predispositions on the 

evolution of the JFTB. 

2.4 Lineaments in the Jura Mountains 

In the Eastern Jura, folds frequently deviate from ideal cylindrical geometries, being bow-shaped, 

sigmoidal shaped or simply oblique to the transport direction of the JFTB in map view (Allenbach and 

Wetzel, 2006; Laubscher, 2008a; Meier, 2010). Such anomalous fold axes connect to lineaments with 

a rough NNE-SSW (Rhenish) orientation (Fig. 3a, b). The existence and implications of Rhenish 

lineaments in the Eastern Jura have been debated for more than a century (Laubscher, 2008a; 

Steinmann, 1892). Nowadays, anomalous fold orientations in the Eastern Jura are interpreted as thin-

skinned structures pre-conditioned by NNE-SSW striking normal faults in the basement, that are 

southward continuations of Eo-Oligocene URG faults (Allenbach and Wetzel, 2006; Boigk and 

Schöneich, 1974; Laubscher, 2008a, 2008b; Meier, 2010; Steinmann, 1902), forming preferentially 

along Palaeozoic Rhenish structural trends. 

Also in the central External Jura, the Mesozoic cover deformed along lineaments (see Fig. 3c), which 

are oblique to the general northwest-directed tectonic transport of the JFTB. In Fig. 3c, lineaments 

strike NE-SW, NNE-SSW (Rhenish) and ENE-WSW (Erzgebirgian). Along these lineaments, we 

observe alignments of short, dissected folds (Fig. 3c). Analogous to the situation in the Eastern Jura 

(Fig. 3b), we propose that lineaments in Fig. 3c are the consequence of aforementioned pre-existing 

basement steps, which controlled deformation of the detached cover during formation of the JFTB. 
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Fig. 3 Examples of lineaments in the JFTB. See overview map (Fig. 1a) for locations. a) Scheme of main Palaeozoic trends in 

the area of the URG, illustrating strike variations due to Riedel shear structures (R and P) for shear zones. b) Folds in the 

Eastern Jura tend to be bow-shaped, laterally confined or reveal a sigmoidal geometry (e.g. Graitery Anticline). Lineaments with 

a NNE Rhenish orientation were proposed for this region (Allenbach and Wetzel, 2006; Laubscher, 2008b; Meier, 2010; 

Steinmann, 1902). The Schwarzwald Line (SL) and Vicques Line (ViL) are drawn according to Laubscher (2008b). c) Area in the 

External Jura showing lineaments composed of short, dissected folds that align along connected topographical elevations. JFTB 

transport directions are after Philippe et al. (1996). Note that lineaments are oblique to the local JFTB transport direction. 

3 Examples of basement-fault related structures 

3.1 Basement-fault controlled frontal faisceau 

The Ferrette Zone is a faisceau at the front of the Eastern Jura (see Fig. 1a for location). Thrusts at 

the front of the Ferrette Zone strike NNE-SSW and abruptly turn into a rough E-W direction (Fig. 4a). 

Structural analysis (Ustaszewski and Schmid, 2006 and references therein) reveals two intersecting 

fault systems in the basement, which are oriented NNE-SSW and E-W (Fig. 4a). Both systems formed 

during Eo-Oligocene rifting related to the formation of the URG and provided downward steps during 

formation of the JFTB, localising deformation in the Mesozoic cover (Fig. 4b). Note that downward 

steps in the Pre-Mesozoic basement controlled the formation of the two anticlines in Fig. 4b. 
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Fig. 4 Structural overview of the Ferrette Zone. a) Structural overview sketch, indicating the relation between NNE-SSW and E-

W striking basement faults and thin-skinned structures (Ustaszewski and Schmid, 2006). See Fig. 1a for location. b) Cross-

section across the Ferrette Zone (Ustaszewski and Schmid, 2006). 

3.2 Basement-fault induced cover structures 

To the west of the JFTB, in the autochthonous Bresse Graben close to Cormoz (Fig. 1a), Bergerat et 

al. (1989) interpreted an ECORS seismic line, showing a relatively steep normal fault of 75° in the 

crystalline basement, above which a reverse fault disrupts the Mesozoic cover (Fig. 5a). There is also 

a minor extensional collapse in the Jurassic series, above the higher western basement block. The 

Triassic salt system accommodates offsets in the basement (Fig. 5a). Normal faults in the basement 

that induce reverse faults in the cover are also documented in the URG (Ustaszewski et al., 2005), 

north of Ferrette (Fig. 5b, for location see Fig. 1a). Note that the cross-sections in Fig. 5 show 

extensional systems in connection with graben formation of the ECRIS, but the dominant structures in 

the Mesozoic cover are reverse faults (Fig. 5). We also like to point out that basement faults in Fig. 5a 

do not continue as a single fault into the cover. The salts in Fig. 5a distribute basement induced 

deformation, i.e. decoupling (e.g. Withjack and Callaway, 2000), causing different structures in the 

cover than in the basement. 

 

Fig. 5 Basement induced structures in the Bresse Graben (BG) and Upper Rhine Graben (URG). a) Seismic line interpretation 

across the Cormoz High in the BG, adapted from Bergerat et al. (1989). b) Seismic line interpretation across the URG, adapted 

from Ustaszewski et al. (2005). Profile traces are indicated in the tectonic overview map in Fig. 1a. 

4 Working hypothesis 

Our working hypothesis states that during JFTB formation, deformation of the Mesozoic cover was 

influenced by offsets along pre-existing basement faults resulting in thrust ramps. Since basement 

faults were inherited, they were usually oblique to the JFTB transport direction and a variety of oblique, 

lateral and frontal ramps resulted from the interaction of the cover with basement faults (Fig. 6a). 

Furthermore, depending on the relative vertical offset of basement faults, the décollement had to ramp 
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upwards (Fig. 6b) or downwards (Fig. 6c) to compensate for higher or lower basement positions 

respectively. 

In order to test the influence of basement faults on the structures in the JFTB, we performed a series 

of analogue model experiments, in particular testing different throws and strikes of basement faults. 

 

Fig. 6 Sketches illustrating different ramp types of a regional décollement above pre-existing vertical steps in the basement. a) 

Schematic drawing showing different types of upward ramps (after Apotria et al., 1992) above corresponding basement steps. 

The angle α specifies the angular deviation of an oblique step from a frontal step and therefore, the angle α is 0° for a frontal 

step and 90° for a lateral step. Transport directions are indicated with white arrows. b) A low-angle thrust-ramp accommodates a 

vertical upward step. c) A frontal downward ramp covers a vertical downward step in the basement. 

5 Material and methods 

5.1 Material properties in analogue models 

We apply a 1:20,000 model-to-nature scaling ratio for our brittle-viscous models, so that 70 mm thick 

dry quartz sand simulates ca. 1400 m of uniform brittle Mesozoic cover. One model tested a reduced 

cover of 40 mm (corresponding to 800 m in nature). The sand has a homogeneous density (ρ) of ca. 

1560 kg/m
3
 when sieved from 30 cm height (Klinkmüller et al., 2016), its grain size (ø) ranges between 

60-250 µm and its angle of internal friction is 36.1° (Zwaan et al., 2016, 2018a, see Table 1). The sand 

surface is flattened with a scraper at every centimetre during model preparation. One model is 

scanned using X-Ray Computed Tomography (CT), for which we create a layering visible on CT-

imagery by adding a very thin corundum layer (< 1 mm) on top of the sand pack after each scraping. 

The corundum sand has a density (ρ) of 1890 kg/ m
3
, grain sizes (ø) between 88-125 µm and an 

angle of internal friction of 37° (Panien et al., 2006). A viscous layer of about 13 mm thickness 

represents a 260 m thick basal décollement zone of weak Triassic salt layers (Fig. 2). The viscous 

material consists of Polydimethylsiloxane (PDMS, type Dow Corning SGM-36) and corundum sand, 

mixed in a one-to-one weight ratio. The mixture density (ρ) is ca. 1600 kg/m
3
, close to the density of 

the quartz sand (Table 1), and has a near-Newtonian rheology with a viscosity (η) of 1.5·10
5
 Pa·s 

given our model strain rates (Zwaan et al., 2018b). This way, the density profiles of the models 

correspond to conditions in the Jura Mountains, where Upper Triassic salt systems are usually 

associated with various contents of clay, anhydrite and gypsum, and relatively dense compared to 
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pure halite (Bergerat et al., 1990, see Table 2). The density profile of our models also prevents 

diapirism, taking account of the general absence of salt diapirs in the JFTB. 

Table 1 Material properties after Panien et al. (2006) and Zwaan et al. (2016, 2018a, b). 

Granular materials Quartz sand Corundum sand 

Grain size range (ø) 60-250 µm 88-175 µm 

Bulk density (sieved, ρ) 1560 kg/m
3
 1890 kg/m

3
 

Angle of internal friction 36.1° 37° 

Angle of dynamic-stable friction 31.4° 32° 

Cohesion (C) 9 ± 98 Pa 39 ± 10 Pa 

Viscous material PDMS/corundum-sand mixture  

Weight ratio PDMS/corundum 1/1  

Mixture density (ρ) Ca. 1600 kg/m
3
  

Viscosity (η)*  Ca. 1.5·10
5
 Pa·s  

Rheology (with sensitivity to strain) Near-Newtonian (n = 1.05 to 1.10)  

* Valid for model strain rates < 10
-4 

s
-1
  

5.2 Model scaling 

Analogue models are scaled with the equation  (Eq. 1, Hubbert, 1937; Ramberg, 1981) 

where σ
*
, ρ

*
, g

*
 and L

*
 represent the ratios of stress, density, gravity and length between the model 

and the natural example. The gravity ratio is g
*
 = 1 and the density ratio ρ

* 
corresponds to ca. 0.6 

(Table 2), so that , where L
* 
is set to 1/20,000. The viscometric function  (Eq. 2, 

Weijermars and Schmeling, 1986) is used to calculate the strain rate ratio (𝜀̇ 
*
), where η

* 
is the viscosity 

ratio and the equation  (Eq. 3) provides the velocity ratio (v
*
). 

In nature, the viscosity of pure dry halite is around 10
18

 Pa·s, whereas the effective viscosity of halite 

with small grain sizes at high temperatures is 10
17

 Pa·s, ranging up to 10
20

 Pa·s for large grain sizes at 

low temperatures (van Keken et al., 1993). Present-day maximum overburden of the basal 

décollement level in the Jura Mountains hardly exceeds  2.3 km (e.g. borehole Treycovagnes-1 in 

Sommaruga, 1997; Sommaruga et al., 2012), which at a temperature gradient of 35°C / km calculates 

to relatively low maximum temperatures of about 80°C. In addition, the Triassic salt systems of the 

Jura Mountains commonly contain various amounts of clay, anhydrite and gypsum, which further 

increases the viscosity of the salt. We therefore aim to simulate a rock salt décollement with an 

elevated viscosity (> 10
18

 Pa·s). 

The maximum displacement of the central Jura Mountains is about 30 km (Affolter, 2004; Laubscher, 

1965; Philippe et al., 1996). Since the main Jura formation stage lasted roughly 8 Ma (Becker, 2000), 

we estimate an average natural displacement velocity of 3.75 mm per year. We adjust the model 

velocity accordingly to 10 cm/h to obtain a velocity ratio (v
*
) of 2.34·10

5 
(Table 2). This translates to a 

strain rate ratio (
*
, see Eq. 3) of 4.67·10

9
, which in turn yields an appropriately high viscosity (η) of 

2.34·10
19

 Pa·s for the simulated salt system (Eq. 2). The time ratio is calculated with  so that 

one model hour corresponds to 533 kyr in nature (Table 2). 
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Table 2 Parameters used for model scaling. Densities for the Jura Mountains are deduced from density logs of boreholes 

Bonlieu-1 and Châtelblanc-1 (Bergerat et al., 1990, see positions in Fig. 1a). The densities given for the décollement (ρd) and 

cover (ρc) in the Jura correspond to densities of the Upper Triassic salt system and Jurassic limestone-marl layers, respectively.. 

Parameter Model Jura Mountains Ratio 

Density of décollement (ρd) 1600 kg/m
3
 2500 kg/m

3
 0.6 

Density of cover (ρc) 1560 kg/m
3
 2530 kg/m

3
 0.6 

Gravitational acc. (g) 9.81 m/s
2
 9.81 m/s

2
 1 

Length (L) 1 cm 200 m 5·10
-5
 

Velocity (v) 10 cm/h 3.75 mm/yr 2.34·10
5
 

Strain rate ( )   4.67·10
9
 

Stress (σ) 
 

 3·10
-5
 

Viscosity (η) ca. 1.5·10
5
 Pa·s 2.34·10

19
 Pa·s 6.42·10

-15
 

Time (t) 1 h 533 kyr 2.14·10
-10

 

5.3 Experimental set-up 

The experimental apparatus is 117 cm long for frontal step experiments and 113 cm long for oblique 

steps and flat-base models, at a constant width of 50 cm (Fig. 7a). The sandbox frame consists of 2.1 

cm thick rigid pine-plywood with two mobile parts: a horizontal mobile frontal baseplate and a vertical 

mobile backstop (Fig. 7b). The bottom of the apparatus includes two baseplates (Fig. 7a, b). The 

baseplate underneath the backstop remains fixed whereas the horizontal mobile baseplate to the front 

can be moved vertically with maximum offsets of 20 mm (400 m in nature) upwards or downwards. An 

upward offset of the frontal baseplate constitutes an upward step in the direction of transport, whereas 

a downward offset produces a downward step (Fig. 6b, c). By using different baseplate configurations, 

the orientation of the plate contact is varied, specified as angle α that gives the deviation from a frontal 

step (Fig. 7a). This allows the simulation of abrupt frontal steps (α = 0°) or oblique steps (α = 30˚ and 

45˚), analogous to steps in the basement that pre-date JFTB tectonics (Fig. 6). 

The mobile backstop can be moved horizontally towards the front of the apparatus, with a maximum 

displacement (Dmax) of 39 cm (Fig. 7a, b), corresponding to a shortening of 7800 m in nature. Models 

featuring frontal steps (except model U10 with a 10 mm upward step, Table 3) are terminated at D = 

35 cm. Note that we define the left and right hand side of the model apparatus with regard to the 

displacement direction of the backstop (Fig. 7a). The backstop is installed 1.3 cm above the fixed 

baseplate, so that only the sand is compressed without actively squeezing the PDMS/corundum-sand 

mixture (Fig. 7b). 

The sidewalls, front wall, backstop and baseplates are covered with a PVC foil (formerly “Alkor” foil 

120010, now available as “Gekkofix 282 11325”, Klinkmüller et al., 2016) that reduces boundary 

friction. The angle of dynamic stable friction between sand and foil is about 16.5° ± 0.3° (Schreurs et 

al., 2006). Computer-steered motors ensure precise motion of the backstop and mobile plates. The 

velocity of the backstop and the mobile baseplate is 10 cm/h for all experiments. 
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Fig. 7 Schematic representations of the model apparatus. a) Bird’s-eye perspective illustrating the 45° oblique baseplate setting. 

b) Cross-section through the centre of the box, with viscous layer and quartz sand filling. The frontal mobile plate is illustrated 

with a 20 mm uplift. c) Perspective view without front and sidewalls, illustrating the filling at the start of an experiment and d) 

perspective view showing movable parts of the apparatus. α: angle of obliquity of the plate contact, with 0° perpendicular to the 

regional direction of transport (frontal step). 

With this experimental set-up, we focus on testing discrete oblique and frontal steps. It is beyond the 

scope of this study to model the evolution of the whole Jura arc above a fractured basement, or to test 

local variations of the cover and basal décollement (e.g. thickness or rheological changes). The 

granular material simulating the Mesozoic cover of the JFTB does not allow for modelling overturned 

forelimbs of anticlines, since the sand collapses at slopes higher than ~35°. Our models do not include 

redistribution of granular material by erosion and sedimentation, which can affect the tectonic evolution 

of structures (e.g. Bonnet et al., 2008; Caër et al., 2018). 

5.4 Modelling procedure 

Every experimental run starts with a flat baseplate setting. The PDMS/corundum-sand mixture is filled 

in and a minimum of two days of resting time ensures an even distribution of the viscous layer. The 

sand layers are sieved in afterwards. A 4 x 4 cm grid of dark corundum sand (Table 1) is added to the 

final sand surface, which allows tracking surface displacements and rotations (Fig. 7c). 

Models that contain a step are conducted in two phases: first, the mobile plate is moved upwards or 

downwards (max. 20 mm, Fig. 7d). In the second phase (or first and only phase for models without a 

step), the backstop pushes the sand across the produced step (Fig. 7d). There was no resting time 

between the two phases. A total of 19 models were completed (Table 3). The models are classified 

into a downward-step (D), flat-base (F) and an upward-step (U) series (Table 3). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



13 
 

 

Table 3 List of experiments. A negative throw implies downward steps and a positive throw upward steps. The value α gives the 

obliquity of the strike of the step with respect to a frontal step (α= 0°). The thickness of the viscous and brittle layers are given in 

columns five and six respectively. Note that model names indicate the type of a step, specifying throw (for step models) and 

step obliquity angle α (for oblique steps). A complete overview of all models is shown in Fig. A.1 and Fig. A.2. Abbreviations in 

model names are D: downward step, F: flat base, U: upward step, CT: computed tomography, RC: reduced cover. 

 
Model 

name  

Throw 

[mm] 
α 

Viscous 

[mm] 

Brittle 

[mm] 

1 D05 -5 0° 14 70 

2 D10 -10 0° 13 70 

3 D10-30° -10 30

° 

13 70 

4 D20 -20 0° 12 70 

5 F1 0 - 14 70 

6 F2 0 - 15 70 

7 U05 5 0° 14 70 

8 U05-30° 5 30

° 

13 70 

9 U05-45° 5 45

° 

13 70 

10 U10 10 0° 13 70 

11 U10-30° 10 30

° 

13 70 

12 U10-45° 10 45

° 

13 70 

13 U15-30° 15 30

° 

15 70 

14 U15-45° 15 45

° 

13 70 

15

* 

U20 20 0° 13 70 

16 U20-30° 20 30

° 

14 70 

17 U20-45° 20 45

° 

13 70 

18 U20-45°-CT 20 45

° 

13 70 

19 U20-45°-RC 20 45

° 

13 40 

5.5 Model analysis 

Bird’s-eye perspective photographs of the model surface evolution are taken at 1-minute intervals, 

which translates to a displacement of 1⅔ mm between each image (about 33 m in nature). Videos of 

all models, except model U20-45°-CT, are provided in the supplementary materials (Schori et al., 

2020). After every model run, the sand is removed and the surface of the viscous layer is 

photographed. Experiment U20-45°-CT is scanned at intervals of 15 minutes using a 64-slice Siemens 

Somatom Definition AS X-Ray CT scanner, located at the Institute of Forensic Medicine, University of 

Bern. The scanned cylindrical volume of 104.4 cm length with a diameter of 50 cm is digitised into 

3480 circular slices, each with a diameter of 512 pixels. Slices are scanned at a tube setting of 211 

mA and 140 kV and exported with an I30 and I70 filter that highlight different parts of the model. We 

use the software RadiAnt DICOM Viewer V.4.6.8 by Medixant to analyse scans and export cross-

sections for illustrations. Note that the viscous layer is poorly distinguishable from the quartz sand in 

CT-scans and for intermediate model stages (D < 39 cm) of Model U20-45°-CT, the viscous layer is 

reconstructed based on structural observations after removal of the sand. 
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6 Analogue model results 

6.1 Flat-base models 

The flat-base models F1 and F2 serve as a reference for the other models that include a baseplate-

step. The first structure in the flat-base models is an imbricate stack that forms in front of the backstop 

(referred to as backstop imbricate BI, see Fig. 8a-c). The subsequent thrust sheets T1 and T2 forming 

in front of the BI show leading pop-up structures (Fig. 8c). The BI and thrust sheet T1 are closely 

spaced and in an evolved stage of T1, its backthrust interferes with the previous structure (Fig. 8c). In 

each flat-base model, thrust sheets T1 and T2 are identical in their internal architecture and 

dimension. 

In order to compare the structural wedge-development of models, wedge-propagation plots are used 

(Fig. 8d), which show the evolution of the wedge length L (corresponding to the distance between the 

backstop and the wedge front) with respect to the backstop displacement D (see Fig. 8c for an 

illustration of parameters). This representation of data was proposed in Strayer et al. (2001) and called 

G-grams in Mary et al. (2013). Flat-base models F1 and F2 had slightly different viscous layer 

thicknesses, which are 14 mm and 15 mm respectively (~280 m and ~300 m in nature). The 

comparison between flat-base models F1 and F2 (Fig. 8d) shows that the thicker viscous layer leads 

to longer thrust sheets T1 and T2 (Fig. 8c, d), which in the whole reduces the surface angle of the 

wedge. This is analogous to critical wedge mechanics (Dahlen, 1990; Davis et al., 1983), where a 

lower basal friction (i.e. thicker viscous layer) leads to a smaller taper angle of the wedge. Note that 

thrust fronts of our flat-base models are generally convex to the foreland due to boundary friction at 

the sidewalls (Fig. 8a), which is characteristic of sandbox-analogue models using a mobile backstop 

(e.g. Schreurs et al., 2006). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



15 
 

 

Fig. 8 Analysis of flat-base models. a) Top-view illustrating structures of model F1, which form in sequence from right to left. 

Two thrust sheets T1 and T2 follow the backstop imbricate stack (BI). The white arrow indicates the direction of compression. b) 

Oblique view photo of model F1. c) Interpreted cross-section sketch across flat-base model F2 at ~32 cm displacement, 

illustrating principal structures and parameters. Structural units BI, T1 and T2 are accentuated in different shades of grey. T1 is 

in an evolved stage, backthrusting the imbricate stack BI whereas T2 just emerges. Note that the wedge front and the length of 

structures are measured at the model surface. d) Wedge-propagation plot illustrating the difference between flat-base models 

F1 and F2, of which the latter has a thicker viscous layer that reduces the basal friction. A sudden increase of L is caused by the 

formation of new structures (BI, T1 and T2). Note that lengths of thrust sheets (lT1 and lT2) between models differ. BI adds thrust-

slices by frontal accretion, which leads to a jagged graph between X = 24 and 28 cm. BI: Backstop imbricate-stack, T1, T2: 

Thrust sheet 1 and 2, lT1, lT2: length of thrust sheets T1 and T2 at the surface. 

6.2 Evolution of structures related to basement step formation 

During vertical movement of the mobile base plate in phase 1, a major reverse fault rooting at the 

upper step-edge commonly forms in the brittle sand cover. Sub-parallel to that, a minor reverse fault 

with less offset is seen on CT imagery of model U20-45°-CT, rooting at the lower step edge (Fig. 9a). 

At a step offset of roughly 10 mm (200 m in nature), the major reverse fault appears on the sand 

surface. Reverse faults are verging towards the lower baseplate and show inclinations between ca. 
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55° and 65°. At an offset of ca. 15 mm (300 m in nature), extensional collapse of the quartz sand 

occurs above the higher plate (Fig. 9a). Fig. 9a shows structures after 20 mm (400 m in nature) 

upward displacement of the mobile plate. In the case of a 20 mm downward displacement, structures 

are the same but mirror-inverted. Note that similar reverse faults and collapse structures induced by 

basement faults are known from seismic lines (Fig. 5). 

 

Fig. 9 Cross-sections of CT scans showing step induced structures of model U20-45°-CT, which are representative for the 

structures in the other models involving steps. a) After 20 mm vertical displacement of the mobile baseplate, an extensional 

collapse structure is visible in the sand layer. A reverse fault nucleates at the upper step edge and becomes sub-horizontal 

towards the surface and additionally, a blind reverse fault nucleates at the lower step edge. b) After 12.5 cm displacement (D) of 

the backstop in phase 2, a backthrust nucleating in the viscous layer above the upper step-edge is observed. c) After 17.5 cm 

displacement (D), structures that formed in phase 1 are embedded in the pop-up of thrust sheet T1. Note that pre-existing faults 

of phase 1 are not reactivated. 

Reactivation of phase 1 faults is not observed during subsequent thin-skinned deformation in phase 2 

(Fig. 9b, c), which suggests a high friction angle of these pre-existing faults (Caër et al., 2015). 

Instead, new thrusts with shallower and mechanically favourable angles between ca. 20° and 33° are 

formed (Fig. 9b, c). In the case of upward steps with a vertical offset of at least 10 mm (200 m in 

nature), a backthrust temporarily leading the deformation front nucleates in the viscous layer above 

the upper step edge (Fig. 9b). Only afterwards, the pop-up structure at the front of thrust sheet T1 

appears (Fig. 9c). Note that both the fore- and backthrust of the pop-up structure nucleate above the 

lower baseplate but the fore-thrust traverses the upper edge of the baseplate step (Fig. 9c). Although 

genetically different, extensional and compressional structures of phase 1 and 2 are controlled by the 

same baseplate step and therefore, their position is ultimately linked. In the upward-step model in Fig. 
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9, structures of phase 1 (Fig. 9a) are embedded in the central and frontal part of the pop-up structure 

of T1 during phase 2 (Fig. 9b, c). The distinct extensional collapse structure of phase 1 remains in the 

frontal half of the evolving pop-up structure (Fig. 9c). 

6.3 Frontal steps (α = 0˚) 

Fig. 10 shows wedge-propagation plots for frontal-step models ( = 0°). In all plots, we add the graph 

of flat-base model F1 as a reference, in order to infer the influence of baseplate steps. Furthermore, 

the calculated surface position of step-controlled fore-thrusts (Fig. 9c) and leading backthrusts (Fig. 

9b) are plotted in wedge-propagation plots of Fig. 10 (dotted graphs). If abrupt slope changes of solid 

black graphs (wedge front) coincide with dotted graphs, the wedge front is likely controlled by the step. 

Nucleation centres of step-controlled thrusts are assumed according to observations in CT-scans (see 

fault nucleation lines in Fig. 9b, c). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



18 
 

 

Fig. 10 Wedge-propagation plots of frontal-step models showing compressional phase 2. Cross-sections at the top illustrate 

parameters after formation of structure BI. The wedge front is the intersection of the foremost active thrust with the sand 

surface. The surface position along the X-axis indicates the distance to the backstop. Flat-base model F1 (grey graph) is given 

as reference to evaluate the influence of steps. Dotted graphs plot the calculated surface position of step-controlled thrusts and 

leading backthrusts for D between 0 and 39 cm. Dip angles of thrusts (β) used to plot the surface positions are indicated at the 

bottom of dotted graphs. a-c) The downward-step series reveals increasing localisation of the wedge front at higher steps and 

associated to this, a temporary forward movement of the wedge front. d) The 5 mm high upward step does not control the 

wedge front. e, f) By contrast, 10 and 20 mm upward steps trigger step-controlled and fore-thrusts and leading backthrusts. D: 

Displacement of backstop, L: Length of wedge at the surface. 

6.3.1 Frontal downward-steps 

Frontal downward-step models (Fig. 10a-c) illustrate that with increasing throw of downward steps, 

thrust sheet T1 forms at less displacement (D) of the backstop and additionally, T1 becomes 

increasingly larger. In comparison to flat-base model F1, our downward steps therefore lead to a 
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notable forward advancement of the deformation front (Fig. 10a-c). In an evolved stage however, 

localisation of deformation at the step prevents downward ramping onto the lower baseplate and 

inhibits an overall propagation of deformation in comparison to flat-base models (Fig. 10b, c). 

After the step-controlled front of T1 has formed in models D10 and D20, backthrusts appear in a 

backbreaking sequence (see videos in supplementary material, Schori et al., 2020). The overall 

structure at the front of T1 corresponds to a fault-bend fold with a single thrust-ramp, where 

backthrusts nucleate (Fig. 11a). The thrust-ramp at the front of T1 roots at the upper edge of the 

baseplate step and continuous upwards, over the sand of the lower baseplate (Fig. 11a). 

 

Fig. 11 Step-controlled structures of frontal-step models in phase 2, sketched based on surfaces of the sand and exhumed 

viscous layer (after removal of sand at the end of the experiment). a) Sketch of model D20, showing a 20 mm downward step. 

The overall step-controlled structure corresponds to a fault-bend fold that forms backthrusts in a backbreaking sequence, 

nucleating along the single, main thrust-ramp. b) Sketch of model U10, showing a 10 mm upward step. A pop-up structure 

nucleates at the step, moves forward and adds frontal thrust-slices subsequently. The step between baseplates is covered by a 

long viscous ramp with moderate inclination. 

6.3.2 Frontal upward-steps 

The small upward step of 5 mm (100 m in nature) in model U05 does not trigger thrusts and the overall 

wedge propagation plot of model U05 is quite similar to flat-base model F1 (Fig. 10d). Upward steps of 

10 and 20 mm height (corresponding to 200 and 400 m in nature) localise deformation (step-controlled 

thrusts), and the deformation front is attracted forwards leading to an enlarged thrust sheet T1 (Fig. 

10e, f). In all our upward-step models, a long viscous ramp smoothens the abrupt step between the 

two baseplates (Fig. 11b) enabling a propagation of deformation onto the higher baseplate (Fig. 11b). 

Backthrusting becomes increasingly prominent with higher steps (Fig. 10e, f). For one thing, step-

controlled leading backthrusts (Fig. 9b) precede the formation of thrust-sheet T1 in models U10 and 

U20 (Fig. 10e, f). For another thing, the backthrust of the pop-up structure shows concentrated 

displacement (Fig. 11b) and remains constantly active during shortening of T1. Wedge-propagation 

plots of models U10 and U20 (Fig. 10e, f) show jagged graphs at the front of thrust sheet T1. This is 

due to thrust slices that are added at the toe of T1, nucleating beyond the step above the higher 

frontal baseplate (Fig. 11b). The accretion of thrust-slices distributes deformation among several thrust 

planes so that individual fore-thrusts absorb notably less displacement than the long-time active 
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backthrust (Fig. 11a). The overall structure at the front of thrust sheet T1 in model U10 is a pop-up 

with dominant backthrusting (Fig. 11b) and an imbricated front.  

In contrast to downward steps (Fig. 10a-c), thrust sheet T1 in the upward step models forms at about 

the same displacement (D) of the backstop as observed in flat-base model F1 (Fig. 10d-f) and 

therefore, forward advancement of the deformation front is due to enlarged thrust sheets only. Note 

that frontal-step models do not form thrust sheet T2, except for model U05, where the low upward-step 

of 5 mm does not trigger thrusts (Fig. 10d). 

6.4 Oblique downward-step model 

Model D10-30° is the only experiment featuring an oblique downward-step (10 mm, at α = 30°, Fig. 

12). No downward ramp forms at the transition from the upper to the lower baseplate. Instead, a large 

fault-bend fold develops that thrusts the sand on the lower baseplate (Fig. 11a). Due to the oblique 

step, we observe important lateral variations. The deformation front sufficiently close to the oblique 

step is advanced forward between Y = 0 to 30 cm in Fig. 12a, attracted by the step. As the step 

controls the deformation front of this segment, the thrust is parallel to the step (Fig. 12a). In flat-base 

model F1, the position of the regular thrust-front of thrust-sheet T1, which is unaffected by steps, is at 

X = 10 cm (Fig. 12a). The downward-step model forms a relay thrust that connects the regular thrust 

position and the forward promoted, step-controlled thrust front. This leads to an initial front of T1, 

which is a composite of two thrusts that are about 84° oblique to each other (Fig. 12a). We observe an 

overall angular deformation front that tapers in the direction of transport. Note that in model D10-30˚, 

no thrust is perpendicular to the direction of displacement (Fig. 12a-c). 

 

Fig. 12 Top-view photos showing the evolution of structures in model D10-30°, which has a 30° oblique downward-step with a 

throw of 10 mm. a) The front of thrust sheet T1 nucleates at the step between Y = 0 to 30 cm and therefore, it is parallel to the 

step. b) A thrust slice is added on the right hand side of the model subsequently. c) Individual oblique thrusts connect to a single 

thrust front. Due to its large size, the fault-bend fold collapses at the centre forming a graben, parallel to the oblique step. 

In our experiment, deformation is step-controlled on the left side (Y = 0 to 30 cm) and afterwards, a 

thrust slice is added on the right-hand side (Fig. 12b, Y = 25 to 50 cm). The reverse fault remaining 

from baseplate-offset in phase 1 is passively transported forwards without significant rotation (see 

lateral position 0 to 25 cm in Fig. 12a, b). In an evolved stage of the experiment, a new graben 
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structure forms due to extensional collapse roughly in the centre of the large oblique fault-bend fold 

(Fig. 12c). This graben is sub-parallel to the downward oblique step. 

In summary, we observe three step-parallel structures, which are (1) a reverse fault related to vertical 

baseplate offset in phase 1, (2) an oblique thrust-front of T1 on the left (Fig. 12a, b) controlled by the 

oblique step during phase 2 and (3) extensional collapse normal faults forming in response to 

localisation of deformation at the oblique step in phase 2 (Fig. 12c). 

6.5 Oblique upward-step models 

In the two oblique upward-step series with oblique angles (α) of 30° and 45°, we vary the step throw 

between 5 and 20 mm (Fig. 13). All oblique upward-step models form oblique viscous-ramps between 

the lower and higher baseplates (Fig. 11b). Above these continuous ramps, different oblique structures 

form in the brittle sand cover. These structures reveal step-controlled thrust segments that nucleate 

near the baseplate step and are therefore parallel or sub-parallel to the step. With increasing step 

throw, step-controlled thrusts on the sand surface are more numerous (Fig. 13). 

6.5.1 30° oblique-step series 

At a low oblique upward-step height of 5 mm (100 m in nature), thrust sheet T1 remains a continuous 

structure with virtually no imbrication (Fig. 13a). The frontal thrust of T1 in Fig. 13a is step-controlled 

on the left, roughly between Y = 0 to 15 cm. In an evolved model stage, this leads to a continuous, 

bow-shaped front of thrust sheet T1 (Fig. 13a, late stage). Note that flat-base model F1 (Fig. 8a) is 

notably less bow-shaped than U05-30° (Fig. 13a), illustrating that the bow shape is not a mere cause 

of boundary effects. 

Model U10-30° (Fig. 13b), with a 30° oblique-upward step and a throw of 10 mm (200 m in nature), 

develops thrust slices that pinch out laterally and reveal curved fronts, resulting in distinct crescent-

shaped structures (Fig. 13b, late stage). These thrust-slices are added at the toe of the wedge, 

alternatingly on the left and right hand side. Crescent-shaped thrust-slices nucleate in the viscous 

layer on the upper plate, commonly beyond the step. With increasing throw of the oblique step, curved 

thrusts become less numerous in favour of angular thrusts (Fig. 13c, d). Therefore, at step throws of 

15 and 20 mm (300 to 400 m in nature), individual thrust-slices are reminiscent of triangles (Fig. 

13c,d). The left side of angular thrusts (left limb of triangle) mirrors the orientation of the step and 

nucleates at the upper step-edge, thus representing a step-controlled feature (Fig. 13c, d).  

At the highest oblique upward-step of 20 mm (400 m in nature), step-controlled thrust segments are 

initially sub-parallel to the step (Fig. 13d, early stage), but rotate clockwise with progressive 

deformation (Fig. 13d, late stage). The thrust segment between Y = 20 to 25 cm in Fig. 13d (early 

stage), forms as a relay oblique-thrust that is ca. 80° oblique to the step and also distinctly oblique to 

the direction of transport (Fig. 13d). The relay thrust connects the step-controlled thrust front above the 

upper baseplate with the trailing regular thrust-front on the lower baseplate. 
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Fig. 13 Evolution of step-controlled structures with increasing throws for 30° (a-d) and 45° oblique upward-steps (e-h). a) A 30° 

oblique step with a low throw (5 mm) leads to a continuous structure which is step-controlled between Y = 0 to 15 cm. b) With 

increasing step throw, imbrication increases and thrusts are curved. c) Angular thrusts with step-controlled left sides are 

accompanied by curved thrusts. d) At a 30° oblique step and a high throw of 20 mm, the thrust front between Y = 0 to 20 cm is 

step-controlled, whereas on the right between Y = 25 to 50 cm, the regular thrust front lags behind. A relay oblique thrust 

connects both fronts. e-g) At 45° oblique upward-steps with throws of 5 to 15 mm, the front of T1 is continuous but asymmetric, 

being step-controlled on the left side. h) At a high 45° oblique step with a throw of 20 mm, imbrication of T1 occurs. 

6.5.2 45° oblique-step series 

At step throws of 5 to 15 mm (100 to 300 m in nature) in 45° oblique-step models, the thrust front of T1 

is continuous, but becomes increasingly asymmetric and angular with higher step throws (Fig. 13e-g). 

The left sides of these continuous thrusts nucleate above the upper step-edge and are step-controlled 
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features (Fig. 13e-g, early stage). Only at a high step throw of 20 mm (400 m in nature), the 45° 

oblique-step model shows imbrication of thrust sheet T1 (Fig. 13h). 

6.5.3 Difference between 30° and 45° oblique steps 

We observe a fundamental difference between 30° and 45° oblique-step models at intermediate step 

heights of 10 and 15 mm (200 to 300 m in nature, Fig. 13b, c, f, g). The overall wedge-length evolution 

plots of 30° oblique-step models show a notable influence of the step (Fig. 14a, b), whereas the 

wedge-length plots of 45° oblique-step models resemble flat-base model F1 (Fig. 14c, d). For one 

thing, this difference is because 30° oblique steps cause a strong frontal imbrication of thrust sheet T1 

at a step height of 10 and 15 mm (Fig. 13b, c), which is not the case for 45° oblique steps with the 

same throws (Fig. 13f, g). For another thing, instead of adding thrust-slices to T1, deformation 

propagates forwards in the 45° models and a new thrust-sheet T2 forms similar to flat-base models 

(Fig. 14c, d). 

 

Fig. 14 Wedge-propagation plots for 10 and 15 mm high oblique upward-step models. Note that the wedge-length (L) is given 

with respect to the front-most thrust measured on the sand surface. a, b) Plots of 30° oblique upward-step models differ 

considerably from flat-base model F1, featuring strong imbrication of thrust sheet T1 and absence of thrust sheet T2. c, d) Plots 

of 45° oblique upward-steps resemble flat-base model F1, because both thrust sheets T1 and T2 form and imbrication is 

virtually absent. 

6.5.4 Leading backthrusts 

At 30° and 45° oblique upward-steps of 10 to 20 mm (200 to 400 m in nature), we observe step-

controlled leading backthrusts (Fig. 13) that temporarily constitute the front of the wedge, preceding T1 

(also see Fig. 9b, c). In bird’s eye perspective, leading backthrusts are relatively long, stretching the 

entire width of 30° oblique-step models (e.g. Fig. 13c, d). They are distinctly step-parallel and become 
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inactive after only 1 to 3 cm displacement and subsequently, they are dissected during imbrication of 

thrust sheet T1 (Fig. 13c, d, late stage). Since leading backthrusts are step-controlled features that 

hardly experience subsequent rotation (Fig. 13d, f), they constitute excellent indicators for the 

orientation of oblique steps, even in an evolved stage of models (Fig. 13). 

6.5.5 Lineament rotation 

Step-controlled thrusts start forming on the left side of our oblique-step models and append 

sequentially along the step (Fig. 15a). This is typically accompanied by crescent-shaped thrust slices 

that are added on the left wedge front (Fig. 15a, b), seemingly to compensate an asymmetric 

deformation front, and resulting in an overall thrust front that becomes more perpendicular to the 

direction of transport. When triangular thrust-slices append, their step-controlled left segments connect 

to a single lineament (Fig. 15a) that shows an overall clockwise rotation about a vertical axis over time. 

This rotation is strongest for high upward steps in models U20-30° and U20-45°, where we measure a 

rotation of 12° and 15°, respectively of step-controlled fore-thrusts (see Fig. 15a, b). 
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Table 4 shows observed rotations at different step throws. In contrast to step-controlled fore-thrusts, 

step-controlled leading backthrusts do not reveal any noticeable rotations (see Fig. 15a, b, sequence 

number 2). 

 

Fig. 15 Line drawings of top-views illustrating the relative sequence of structures in models U20-30° and U20-45°. Structures 

are (1) reverse faults forming in phase 1, (2) step-controlled leading backthrusts, (3) initial pop-up structures and (4) first 

triangular thrust-slices. Subsequent structures vary in between the two models. a) In the model U20-30° featuring a 30° oblique 

step, structure (5) is another triangular thrust-slice, (6) and (7) follow as crescent-shaped thrust-slices whereas structures (8) are 

thrusts associated with small buckle folds. b) In comparison to this, at the 45° oblique step of U20-45°, structures (5) to (7) are 

crescent-shaped thrust-slices. 
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Table 4 Overview of observed clockwise rotations of step-controlled fore-thrusts over time. A negative throw denotes a 

downward step whereas positive throws indicate upward steps. α: Obliquity of step. 

Step Rotation of thrust 

Throw α = 30° α = 45° 

-10 mm <1° - 

5 mm *4° *13° 

10 mm 8° *6° 

15 mm 10° *3° 

20 mm 12° 15° 

* No imbrication of thrust sheet T1 

6.6 CT-scanned oblique upward-step model 

Model U20-45°-CT is a CT-scanned rerun of model U20-45°, featuring a 20 mm (400 m in nature) 

upward-step of 45° obliquity. The CT scans allow the reconstruction of cross-sections at different 

model stages (Fig. 16). Raw CT-scan sections interpreted for Fig. 16 are compiled in the 

supplementary material of this article (Schori et al., 2020). 

Structures of phase 1 (Fig. 16a) are fragmented laterally and at depth during horizontal shortening, 

and transported forwards embedded in the front of thrust sheet T1 (compare to Fig. 16c and d). In 

contrast to this, late collapse structures due to sediment stacking are situated at the back of thrust 

sheet T1 and not at the front (e.g. Fig. 16d, cross-section B4 and C4). 

The front of thrust sheet T1 is step-controlled on the left side (Fig. 16b, cross-sections D2 and E2) 

whereas the right hand side is yet unimpeded by the step (Fig. 16b, cross-section A2). By comparison, 

pop-up structures in cross-sections D2 and E2 (Fig. 16b) lie slightly more frontwards, attracted by the 

upward oblique-step, which results in an overall curved thrust front, visible on the top view image in 

Fig. 16b. 

The thrust-slice added in cross-sections B3 to E3 (Fig. 16c) corresponds to a triangular thrust-slice in 

top-view images of Fig. 16c, d. Cross-sections C3 and D3 (Fig. 16c) illustrate that on the left side, the 

triangular thrust-slice nucleates near the step, whereas in C4 to D4 (Fig. 16d), the subsequent 

crescent-shaped thrust-slice nucleates beyond the step. The backthrust of pop-up structure T1 is 

permanently active whereas fore-thrusts become inactive when new thrust-slices are added to the 

front of the wedge (e.g. compare cross-sections A2 to A4, Fig. 16). 
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Fig. 16 Interpreted CT-sections across model U20-45°-CT, showing five sections at different model stages. a) The first stage 

shows the model after baseplate-offset phase 1. An extensional collapse structure and two reverse faults form in the sand cover 

in response to vertical offset of the baseplates. b) The front of thrust sheet T1 reveals a pop-up, which is localised by the step in 

cross-sections D2 and E2. c) Thrust-slices are added to the front of T1. d) The final stage gives detailed insight into structures of 

the viscous layer. A viscous ramp is documented in cross-sections C4, D4 and E4. The along-strike length of the ramp varies 

laterally. BI: Backstop imbricate stack, T1: Thrust sheet 1. 

6.6.1 Formation of viscous ramps 

In all models, viscous material thins out underneath the backstop imbricate fan BI (Fig. 16d), which is 

the structure showing most sand stacking and therefore, the vertical load exerted on the 

PDMS/corundum-mixture by the overburden is highest. Consequently, viscous material flows forward 

with no material escaping backwards through the gap between the backstop and the baseplate (Fig. 
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16d). In upward-step models, the forward flowing viscous material accumulates in two locations. First, 

thickening occurs underneath the front of the pop-up structure of T1 (Fig. 16d, section A4). Secondly, 

upward steps cause an accumulation of viscous material on the lower baseplate, between the step 

and the roots of BI, thereby forming a long viscous ramp with moderate inclination (Fig. 16d, C4 to 

E4). Since the length of the ramp depends on the spacing between the step and BI, the length of the 

viscous ramp varies laterally (Fig. 16d, C4 to E4) and furthermore, over time with ongoing 

displacement of the backstop (Fig. 16a to d). Note that if the step-throw exceeds the thickness of the 

viscous layer (e.g. step height 15 or 20 mm, 300 or 400 m in nature), the formation of the viscous 

ramp ultimately leads to in-situ uplift of a few millimetres. Above the edge of the upper baseplate, the 

viscous layer thins out down to a few millimetres (Fig. 16d, C4 to E4). 

6.7 Oblique upward-step model with reduced cover 

Model U20-45°-RC tests a 20 mm (400 m in nature) oblique upward-step with a reduced sand cover of 

40 mm instead of 70 mm (Fig. 17a, b). The thinner sand cover leads to shorter and more numerous 

thrust sheets and generally smaller thrust-slices in comparison to a cover thickness of 70 mm (Fig. 

17c), which is directly related to the geometric relationship between layer thickness and thrust-fault 

dip-angle (Allemand and Brun, 1991). However, similar step-controlled features as observed in models 

with a high oblique upward-step and a sand thickness of 70 mm are present, such as triangular thrust-

slices and a step-controlled leading backthrust (Fig. 17a). In the model, an overall sigmoidal structure 

is the result of triangular thrust-slices of variable size that grow sequentially (Fig. 17a, b). The overall 

step-controlled front of connected triangular thrust-slices rotates by about 15° clockwise (Fig. 17b). 
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Fig. 17 Top view photographs of model U20-45°-RC, featuring a 45° oblique ramp, 20 mm step-throw and a reduced sand 

thickness of 40 mm. a) The left side of the large triangular thrust slice is initially parallel to the step. b) In the final stage, an 

overall sigmoidal shape results from connected triangular thrust-slices. c) Top view of model U20-45°, featuring a 70 mm thick 

sand cover and therefore showing larger but similar structures as model U20-45°-RC. 
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7 Discussion 

7.1 Summary of model results 

 

Fig. 18 Summary of experiments and first-order step-controlled structures. An overview of the final surface structures of the 

different model set-ups is presented in the Appendix (Fig. A.1 and Fig. A.2), and the original data are compiled in the 

supplementary material (Schori et al., 2020). 

An overview of experiments and the first order influence of upward and downward steps is 

summarised in (Fig. 18). Flat-base models (Fig. 18a, b) develop two similar thrust sheets (T1 and T2) 

with notable less stacking of granular material than observed in step models and there is no 

imbrication of thrust sheets. Vertical offset of baseplates (Fig. 18c) induces graben structures and 
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reverse faults in the brittle sand cover. During subsequent thin-skinned compression, both downward 

and upward steps attract and localise deformation, which stimulates a fast forward propagation of 

deformation in an early stage, but retains the overall deformation in a late stage. Downward steps (Fig. 

18d) show exceedingly strong localisation of deformation preventing the formation of viscous 

downward ramps and overall propagation of deformation onto the lower baseplate. Instead, fault-bend 

folds with thrusts nucleating above the upper edge of the downward step form at the front of thrust 

sheet T1 (Fig. 18d). An oblique downward-step (Fig. 18e) controls the formation of fault-bend folds 

with oblique frontal thrusts. Numerical and analogue downward-step models of Caër et al. (2018) show 

that with sufficient shortening at step-controlled thrusts under the right mechanical conditions (high 

friction angle of cover sediments and low friction angle of décollement layers), deformation can 

propagate onto the lower baseplate. 

The localisation of deformation at upward steps is less efficient than for downward steps. In 

comparison to downward steps, upward steps (Fig. 18f) feature smooth viscous ramps that enable a 

propagation of deformation onto the higher baseplate. Thickening of viscous material is therefore 

indicative for upward steps. The brittle cover shows dominant backthrusts and frontal imbrication (Fig. 

18f). Oblique upward-step models (Fig. 18g) reveal a more complex imbrication of brittle structures, 

featuring asymmetric thrust slices and step-controlled thrust segments that rotate up to 15° about a 

vertical axis. In contrast to this, oblique viscous ramps remain continuous structures. 

Higher oblique steps increase deformation localisation and step-controlled thrust segments become 

more important, overall leading to angular structures (Fig. 18g, U20-30° and U20-45°). 45° oblique 

steps cause less localisation of deformation (less imbrication and faster wedge-propagation) than 30° 

oblique steps. Consequently, the efficiency of deformation-localisation does not depend on step height 

alone, but also on the angle of obliquity (α) of the upward-step. 

In summary, the effect of deformation localisation at steps is (i) stronger at high steps than at low 

steps, (ii) stronger at downward steps than at upward steps and (iii) stronger at frontal steps than at 

oblique steps. 
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7.2 Comparison to previous oblique-ramp models 

 

Fig. 19 a) Oblique and lateral-ramp analogue sandbox-models of Philippe (1995). b) Cross-section through the lateral ramp 

model illustrating a basal wooden plate that enforces a rigid ramp of 30°. A thin layer of microbeads provides the basal 

décollement. c) Model U20-45°-RC featuring a thin brittle layer shows remarkably similar structures as the 45° oblique upward-

step model of Philippe (1995) in an early stage. 

Previous models on oblique ramps in the Jura Mountains were carried out by Philippe (1995, see Fig. 

19a). In contrast to our models, the baseplate geometry in Philippe (1995) provides an enforced, rigid 

ramp with an inclination of 30° (Fig. 19b). The brittle cover is thinner above the higher basal wooden 

plate (Fig. 19b) and no precursory baseplate-offset phase is simulated. Furthermore, the basal 

décollement is modelled using a thin layer of microbeads (Fig. 19b) and therefore, no viscous flow 

occurs. However, the top-view pattern of the early stages of the 45° oblique-ramp model of Philippe 

(1995) is very similar to the pattern forming in the 45° oblique-step model with reduced brittle cover 

U20-45°-RC of this paper (Fig. 19c). In addition to 45°-oblique rigid ramps, Philippe (1995) tested 60° 

oblique ramps as well as lateral ramps (Fig. 19a), showing that with increasing obliquity, triangular 

thrust-slices disappear in favour of thrust-sheets with a rather straight front perpendicular to the 

transport direction. 

Our experiments demonstrate that deformation localisation at oblique steps is the reason for triangular 

structures. Therefore, the absence of such triangles in 60° oblique-step models (Fig. 19a) suggests 

reduced deformation localisation with increasing step-obliquity (α). Extrapolated, this suggests that 

lateral steps show the least localisation of deformation and frontal upward-steps the most. 
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7.3 Local and regional rotations of structures 

Step-controlled fore-thrusts in our models reveal local rotations about a vertical axis of up to 15° over 

time (e.g. Fig. 17, Fig. 15), related to localisation of deformation at individual baseplate steps. The 

sketch in Fig. 20 shows a schematic overview of rotations of step-controlled thrusts deduced from 

observations in our models, with a transport direction and basement-step orientations matching typical 

cases in the JFTB. Note that step-controlled oblique structures are local anomalies within a regional 

trend of structures. The Central and Eastern Jura show a regional clockwise rotation of 7° to 8° 

(Laubscher, 1965, 1961), whereas regional counter-clockwise rotation is proposed for the Southern 

Jura (Affolter, 2004; Philippe, 1994). These regional rotations are more broadly linked to lateral 

displacement gradients across the Jura arc (Affolter, 2004). Regional and local rotations in the JFTB 

have a different origin; they were competing and have to be distinguished. 

 

Fig. 20 Rotation scheme for thin-skinned thrusts that are controlled by pre-existing oblique upward-steps, derived from 

observations of our analogue models and those by Philippe (1995). The sketch fits typical directions that may occur in the JFTB, 

with basement faults striking NNE-SSW, ENE-WSW and NW-SE, and a transport direction to the NW. 

7.4 Natural examples of step-controlled structures 

Our analogue models show that sufficiently high oblique steps ultimately lead to step-controlled 

oblique structures, such as sigmoidal, curved or angular thrusts viewed from above (e.g. Fig. 17b, Fig. 

18g). In the tectonic map of Fig. 21a, we point out exemplary zones in the JFTB, where we propose 

oblique structures, associated with pre-existing basement faults that acted as structural controls. 

These zones are described with sketches (Fig. 21b) outlining the proposed tectonic linkage between 

basement faults and corresponding thin-skinned structures in the cover. Note that sketches in Fig. 21b 

illustrate thin-skinned structures of the JFTB, which formed during Mio-Pliocene times above a basal 

décollement in Triassic evaporites. Therefore, oblique structures were also transported several 

kilometres north-westwards after their formation, at least in the Internal Jura (see displacements 

indicated in Fig. 21a). 
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Fig. 21 a) Overview of faults in the Mesozoic cover across the JFTB. Zones in the Internal Jura with notable occurrences of 

oblique-thrust systems are marked with black rectangles. The tectonic map contains an updated structural interpretation, using 

available geological vector maps of France (BRGM, 2004) and Switzerland (Swisstopo, 2012) as well as high-resolution digital 

elevation models (IGN-F, 2018; Swisstopo, 2011). b) Structural interpretations illustrating pre-existing basement steps (thick, 

grey normal faults) that trigger thrusts in the Mesozoic cover (black thrusts). Numbers indicate the relative sequence of 

structures. RBTZ: Rhine-Bresse Transfer Zone, URG: Upper Rhine Graben. 

7.4.1 Zones I and II – Pontarlier fault zone and Internal Jura north of La Chaux-de-Fonds 

Zone I in Fig. 21a marks the northern termination of the Pontarlier fault zone. Angular thrusts are 

observed and folds parallel to NNE-SSW trending sinistral strike-slip faults reveal the thrusting 

component of oblique ramps. We interpret this system as a connection of oblique and lateral ramps 

that constituted the western lateral limits of thrust-sheets of the Internal Jura (Fig. 21b, zone I). It 

follows that the Pontarlier sinistral fault zone was contemporaneously active to folding and thrusting, 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



35 
 

and does not represent a late structural feature of the Jura Mountains. This agrees with previous 

suggestions by Laubscher (1961). 

Zone II to the north of the town of La Chaux-de-Fonds (Fig. 21a) shows angular and overlapping 

thrusts. Therefore, similar to zone I, we propose NNE-SSW striking oblique basement-steps that 

triggered the observed structures in the Mesozoic cover (Fig. 21b). The sketch for zones I and II in Fig. 

21b correlates with structures of analogue models of Philippe (1995) featuring 60° oblique upward-

steps, where laterally confined triangular thrust-slices are absent (Fig. 19a). 

7.4.2 Zone III - Oyonnax-Vuache 

Zone III (Fig. 21a) lies in the Southern Jura Mountains and an enlargement is depicted in Fig. 22a. The 

Vuache fault zone in the southern part of Fig. 22a reveals oblique ramps that are indicative of step-

controlled structures and a NW-SE trending basement step. A connection to pre-JFTB tectonic 

features has also been proposed in previous studies (Laubscher, 1981; Philippe et al., 1996).  

A distinct triple-nappe system south of Oyonnax comprises two triangular nappes and a more 

crescent-shaped nappe (Fig. 22a), which bears resemblance to our analogue model U20-45°, 

featuring a 20 mm (400 m in nature) 45° oblique upward-step (Fig. 22b). In analogy to model U20-45°, 

we propose a NW-SE trending basement fault for the structures that formed in zone III (Fig. 21b). 

Within the 45° oblique-step series, triangular thrust-slices occur at the highest throw of 20 mm only 

(Fig. 13h) and accordingly, we infer a basement step for the natural example of at least 400 m. This is 

in agreement with a seismic line interpretation across Oyonnax-Champfromier (Guellec et al., 1990), 

which reveals a basement high with a throw of several hundreds of metres, SE of Oyonnax (Fig. 22c). 

Whether this basement high formed by post-Jura inversion or rather represents a horst that predates 

the Jura Mountains (see tectonic solutions adressed in Guellec et al., 1990), remains debated. 

However, as thrust geometries in Fig. 22a are strongly suggestive of an oblique-step in the basement, 

our study supports the latter solution. In addition, a direct comparison between the natural example 

and our analogue model (Fig. 22a, b) suggests a probable structural evolution as depicted in Fig. 22a. 

Note that a pre-JFTB normal fault in the basement does not rule out a subsequent inversion of the 

basement in recent times. Jo
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Fig. 22 Natural example in the Internal Jura, Zone III - Oyonnax-Vuache (location in Fig. 21a). a) Hillshade model derived from 

NASA (2014) in the area of Oyonnax with highlighted main thrusts. b) Model U20-45° shows similar triangular structures as the 

natural example in the area of Oyonnax. c) Cross-section from Guellec et al. (1990) based on a seismic survey, showing a 

basement high underneath Champfromier. 

7.4.3 Zone IV - Chasseral Anticline 

Zone IV (Fig. 21a) lies in the Internal Jura and comprises the Chasseral anticline, which contains an 

oblique fold-segment in respect to JFTB transport directions (see magnification in Fig. 23a). The 

overall structure in Fig. 23a is remarkably similar to our 45˚ oblique upward-step model with a reduced 

cover U20-45°-RC (Fig. 23b). The comparison between the model (Fig. 23b) and the natural example 

(Fig. 23a) suggests that the curved shape of the Chasseral anticline is connected to a NNE-SSW 

trending basement fault. This supports previous suggestions by Lüthi (1954), Laubscher (2008b) and 

Meier (2010). We furthermore deduce a high basement step of about 400 m for the natural example, 

as the best-fit model U20-45°-RC features a 20 mm upward step. Based on our model (Fig. 23b), we 

also deduce a rough relative sequence of structures for the natural example (Fig. 23a). Note that the 

basement structure that controlled the oblique Chasseral anticline lies between 9.5 to 16 km to the 

southeast, according to different displacement models of Affolter and Gratier (2004) and Philippe et al. 

(1996), respectively. 
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Fig. 23 Natural example in the Internal Jura, Zone IV - Chasseral anticline (location in Fig. 21a). a) Hillshade model derived from 

NASA (2014) in the area of St-Imier and Lake Biel with highlighted main thrusts. b) Model U20-45°-RC shows similar structures 

as the natural example. 

7.5 Summary of natural structures 

We propose the presence of pre-JFTB normal faults in the basement with NW-SE (Hercynian) and 

NNE-SSW (Rhenish) orientations that provided trigger lines for thin-skinned structures in the Internal 

Jura (Fig. 22, Fig. 23). The orientations of these basement faults suggest Palaeozoic Variscan fault 

systems, which were reactivated during Mesozoic and Cenozoic times. This led to important basement 

offsets that controlled the thin-skinned deformation in Miocene and Pliocene times. The tectonic 

events that come into question for fault reactivations are the opening of the Alpine Tethys rift system in 

Jurassic times (Stampfli et al., 1998; Ziegler, 1988b), Eo-Oligocene graben formation in connection 

with the ECRIS (Illies, 1972; Michon, 2000) and Eocene to Miocene evolution of the Alpine flexural 

foreland basin (Burkhard and Sommaruga, 1998; Laubscher, 1992). 

Our models suggest that basement offsets in the examples in the Internal Jura (Fig. 22, Fig. 23) must 

reach at least 400 m in order to control the formation of triangular nappes or thrust-slices during Mio-

Pliocene thin-skinned formation of the JFTB. Smaller basement throws rather led to continuous but 

curved or angular anticlines with few imbrication (e.g. Fig. 13a, e, f, g), such as for example the 

Graitery anticline in the Eastern Jura (Fig. 3b). Step-controlled structures were displaced up to about 

30 km north-westwards during JFTB formation (Affolter, 2004; Philippe et al., 1996). Therefore, graben 

structures and reverse faults in the Mesozoic cover, which formed due to pre-JFTB basement 

extension, are allochthonous and do not overlie their original basement fault. 

Basement structures were undoubtedly present before the formation of the JFTB and controlled thin-

skinned structures. In addition, seismic surveys and earthquakes show that the area of the Jura 

Mountains and surrounding was under the influence of thick-skinned compression after the main thin-

skinned JFTB stage until today, which caused local basement inversion (Caër, 2016; Edel et al., 2006; 
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Lacombe and Bellahsen, 2016; Madritsch et al., 2008; Ustaszewski and Schmid, 2007). Recent 

inversion may be related to tectonic underplating in connection with an equilibration of the Alpine 

wedge (Mosar, 1999) and/or lithospheric long-wavelength buckling (Bourgeois et al., 2007; Lefort and 

Agarwal, 1996). 

8 Conclusions 

Thin-skinned deformation of the JFTB during Mio-Pliocene was locally pre-conditioned by steps 

(faults) in the pre-Mesozoic basement (Laubscher, 1961). By means of brittle-viscous analogue 

sandbox-models, we study the formation of step-controlled structures. Our models involve the 

formation of steps between rigid baseplates, overlain by a viscous layer at the base of a brittle sand 

layer. The brittle sand layer is subsequently pushed horizontally across the step. We subsequently 

compare our model results to natural examples. The following important observations characterise the 

deformation style: 

 Initial vertical baseplate offset induces reverse faults and extensional collapse structures in the 

brittle cover that nucleate at the step and above the higher plate. A reactivation of these initial 

structures is not observed during subsequent horizontal compression. 

 During subsequent horizontal compression, pre-existing steps in the rigid footwall trigger step-

controlled thrusts, because they localise deformation in a different position due to stress 

perturbations. Localisation of deformation results in a fast forward propagation of deformation in 

an early stage but inhibits propagation later.  

 Downward steps lead to the formation of fault-bend folds with considerable duplication of the 

brittle cover. In contrast, upward steps control pop-up structures with imbricated fronts, dominant 

backthrusts and long viscous ramps with moderate inclinations. 

 The effect of deformation localisation at baseplate steps is stronger at high steps than at low 

steps, stronger at downward steps than at upward steps and stronger at frontal steps than at 

oblique steps. 

 30° and 45° oblique upward-steps lead to imbrication with laterally confined thrust-slices. 

Imbrication and angular thrusts, pointing into the direction of transport, are more abundant with 

increasing step-height. Angular thrusts are composed of two oblique-thrust segments, with one 

side that is step-controlled and the other side forming a relay thrust that connects to the regular 

trailing thrust front. Laterally confined, triangular thrust-slices are characteristic for 30° and 45° 

oblique steps (this study), but they are absent at oblique steps of 60° and more (Philippe, 1995). 

 Upward oblique-step models with high step throws of 20 mm (400 m in nature) reveal vertical 

rotations of up to 15° of step-controlled fore-thrusts. Step-controlled leading backthrusts hardly 

rotate and provide excellent indicators for the orientation of oblique steps. 

 Frontward flow of viscous material during thin-skinned deformation has important consequences 

for upward-step dynamics. In particular, viscous ramps form in front of upward-steps, assisting 

deformation to propagate onto the upper plate. Subsequently, the viscous ramp ensures the 

transition of more material onto the upper baseplate without forming new step-controlled 

structures in the cover. Viscous ramps are dynamic structures, adapting their length laterally (in 
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the case of oblique upward-steps) and over time. Accumulation of viscous material occurs in front 

of upward steps and towards the front of the wedge. Oblique viscous ramps are large continuous 

structures whereas the overlying brittle layer may show strong imbrication. 

We find good correlations of model structures with oblique structures in the Internal Jura (Fig. 22 and 

Fig. 23). Correlations allow inferring the rough orientation and throw of pre-existing basement steps in 

nature that controlled thin-skinned deformation. In particular, our models support a NNE-SSW striking 

oblique upward-step with a throw of 400 m that controls the Chasseral anticline and a NW-SE striking 

oblique upward-step with a throw of 400 m controlling the Oyonnax-Vuache nappe system. Step-

controlled structures of the Internal Jura are transported several kilometres north-westwards, away 

from the basement step that induced deformation. Therefore, step-controlled structures need a 

palinspastic restoration to identify the position of a corresponding basement step. Model-to-nature 

comparison of step-controlled oblique structures can also be a powerful tool to assess the relative age 

of basement structures. An important basement high was for example documented on a seismic line 

across the Internal Jura (Guellec et al., 1990), but interpretations did not unambiguously reveal 

whether the basement high formed before or after the JFTB. Correlations with our models strongly 

support that the basement high predates the JFTB and controlled characteristic oblique structures in 

the cover. Examples from the JFTB highlight the importance of analysing structures of fold-and-thrust 

belts in all three dimensions, and our model results may be of use for interpreting fold-and-thrust belts 

from around the globe. 
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Appendix 

 

Fig. A.1 Overview of downward-step models showing top-view photos at a consistent displacement D = 35 cm. Slight 

inclinations of the model apparatus have no detectable influence. Even the small downward step of 5 mm already controls 

deformation exceedingly and outweighs uneven distributions of viscous material. 
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Fig. A.2 Overview of upward-step models showing top-view photos at a consistent displacement D = 35 cm. In experiments U05 

and U20, the model apparatus is slightly tilted along the long axis. This causes an asymmetric distribution of viscous material, 

which is slightly thicker (less friction) on the plunging side. Models U05 and U20 consequently develop asymmetric structures. 

References 

Affolter, T., 2004. Map view retrodeformation of an arcuate fold-and-thrust belt: The Jura case. J. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



42 
 

Geophys. Res. 109, B03404. https://doi.org/10.1029/2002JB002270 

Allemand, P., Brun, J.P., 1991. Width of continental rifts and rheological layering of the lithosphere. 

Tectonophysics 188, 63–69. https://doi.org/10.1016/0040-1951(91)90314-I 

Allenbach, R.P., Wetzel, A., 2006. Spatial patterns of Mesozoic facies relationships and the age of the 

Rhenish Lineament: A compilation. Int. J. Earth Sci. 95, 803–813. 

https://doi.org/10.1007/s00531-006-0071-0 

Apotria, T.G., Snedden, W.T., Spang, J.H., Wiltschko, D. V., 1992. Kinematic models of deformation at 

an oblique ramp, in: Thrust Tectonics. Springer, pp. 141–154. https://doi.org/10.1007/978-94-

011-3066-0_12 

Aubert, D., 1971. Le Risoux, un charriage jurassien de grandes dimensions. Eclogae Geol. Helv. 64, 

152–156. https://doi.org/10.5169/seals-163975 

Becker, A., 2000. The Jura Mountains - an active foreland fold-and-thrust belt? Tectonophysics 321, 

381–406. https://doi.org/10.1016/S0040-1951(00)00089-5 

Bellahsen, N., Mouthereau, F., Boutoux, A., Bellanger, M., Lacombe, O., Jolivet, L., Rolland, Y., 2014. 

Collision kinematics in the Western external Alps. Tectonics 33, 1055–1088. 

https://doi.org/10.1002/2013TC003453 

Berberian, M., 1995. Master ‘blind’ thrust faults hidden under the Zagros folds: active basement 

tectonics and surface morphotectonics. Tectonophysics 241, 193–224. 

https://doi.org/10.1016/0040-1951(94)00185-C 

Bergerat, F., Cazes, M., Damotte, B., Guellec, S., Mugnier, J.-L., Roure, F., Truffert, C., 1989. Les 

structures distensives en Bresse d’après les données du profil sismique Jura-Bresse 

(programme ECORS). Comptes rendus l’Académie des Sci. Série 2, Mécanique, Phys. Chim. 

Sci. l’univers, Sci. la Terre 309, 325–332. 

Bergerat, F., Mugnier, J.-L., Guellec, S., Truffert, C., Cazes, M., Damotte, B., Roure, F., 1990. 

Extensional tectonics and subsidence of the Bresse basin: an interpretation from ECORS data, 

in: Roure, F., Heitzmann, P., Polino, R. (Eds.), Deep Structures of the Alps. Mém. Soc. géol. 

suisse, pp. 145–156. 

Bièvre, G., Mercier, E., 2010. The ‘Bois du Peu’ thrust sheets (external French Jura mountains): re-

examining the concept of ‘Fault-Fold’. HAL-INSU Arch. Ouvert. insu-00442. 

Boigk, H., Schöneich, H., 1974. Perm, Trias und älterer Jura im Bereich der südlichen Mittelmeer-

Mjösen-Zone und des Rheingrabens, in: Illies, J.H., Fuchs, K. (Eds.), Approaches to 

Taphrogenesis: Proceedings of an Nternational Rift Symposium Held in Karlsruhe, April 13-15, 

1972 - Inter-Union Commission on Geodynamics, Scientific Report. Schweizerbart, Stuttgart, 

Germany, pp. 60–71. 

Bonnet, C., Malavieille, J., Mosar, J., 2008. Surface processes versus kinematics of thrust belts: 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



43 
 

impact on rates of erosion, sedimentation, and exhumation - Insights from analogue models. 

Bull. la Société Géologique Fr. 179, 297–314. https://doi.org/10.2113/gssgfbull.179.3.297 

Bourgeois, O., Ford, M., Diraison, M., Le Carlier de Veslud, C., Gerbault, M., Pik, R., Ruby, N., 

Bonnet, S., 2007. Separation of rifting and lithospheric folding signatures in the NW-Alpine 

foreland. Int. J. Earth Sci. 96, 1003–1031. https://doi.org/10.1007/s00531-007-0202-2 

BRGM, 2004. Cartes géologiques à 1/50000 format ‘vecteurs’. Bureau de recherches géologiques et 

minières (BRGM). 

Burkhard, M., 1990. Aspects of the large-scale Miocene deformation in the most external part of the 

Swiss Alps (Subalpine Molasse to Jura fold belt). Eclogae Geol. Helv. 83, 559–583. 

https://doi.org/10.5169/seals-166602 

Burkhard, M., Sommaruga, A., 1998. Evolution of the western Swiss Molasse basin: structural 

relations with the Alps and the Jura belt, in: Mascle, A., Puigdefàbregas, A., Luterbacher, H.P., 

Fernandez, M. (Eds.), Geological Society Special Publication. Geological Society Special 

Publications, pp. 279–298. https://doi.org/10.1144/GSL.SP.1998.134.01.13 

Buxtorf, A., 1916. Prognosen und Befunde beim Hauensteinbasis- und Grenchenbergtunnel und die 

Bedeutung der Letzteren für die Geologie des Juragebirges. Verhandlungen der 

Naturforschenden Gesellschaft Basel 27, 184–254. 

Buxtorf, A., 1907. Zur Tektonik des Kettenjura. Bericht der Versammlung des Oberrheinischen Geol. 

Vereins 40, 29–38. 

Caër, T., 2016. Interprétation structurale et équilibre mécanique: Le calcul à la rupture appliqué aux 

chaînes d’avant-pays. Dr. thesis. Université de Cergy-Pontoise. 

Caër, T., Maillot, B., Souloumiac, P., Leturmy, P., de Lamotte, D.F., Nussbaum, C., 2015. Mechanical 

validation of balanced cross-sections: The case of the Mont Terri anticline at the Jura front (NW 

Switzerland). J. Struct. Geol. 75, 32–48. https://doi.org/10.1016/j.jsg.2015.03.009 

Caër, T., Souloumiac, P., Maillot, B., Leturmy, P., Nussbaum, C., 2018. Propagation of a fold-and-

thrust belt over a basement graben. J. Struct. Geol. 115, 121–131. 

https://doi.org/10.1016/j.jsg.2018.07.007 

Chauve, P., Perriaux, J., 1974. Le jura, in: Debelmas, J. (Ed.), Géologie de La France: Les Chaînes 

Plissées Du Cycle Alpin et Leur Avant-Pays. Doin, Paris, pp. 443–464. 

Coward, M.P., De Donatis, M., Mazzoli, S., Paltrinieri, W., Wezel, F.C., 1999. Frontal part of the 

northern Apennines fold and thrust belt in the Romagna-Marche area (Italy): Shallow and deep 

structural styles. Tectonics 18, 559–574. https://doi.org/10.1029/1999TC900003 

Dahlen, F.A., 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. 

Earth Planet. Sci. 18, 55–99. https://doi.org/10.1146/annurev.ea.18.050190.000415 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



44 
 

Davis, D., Suppe, J., Dahlen, F.A., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. 

J. Geophys. Res. Solid Earth 88, 1153–1172. https://doi.org/10.1029/JB088iB02p01153 

Debrand-Passard, S., Courbouleix, S., Lienhardt, M.-J., 1984. Synthèse géologique du Sud-Est de la 

France. Mémoire BRGM France, n° 125. 

Delmas, M., 1965. Rapport de fin de sondage H.J. Essavilly 101. Société Nationale Pétrologique 

d’Aquitaine (S. N. P.A.). 

Deville, E., 2021. Structure of the tectonic front of the Western Alps: Control of fluid pressure and 

halite occurrence on the decollement processes. Tectonics 1–21. 

https://doi.org/10.1029/2020TC006591 

Deville, E., Blanc, E., Tardy, M., Beck, C., Cousin, M., Ménard, G., 1994. Thrust Propagation and 

Syntectonic Sedimentation in the Savoy Tertiary Molasse Basin (Alpine Foreland), in: 

Hydrocarbon and Petroleum Geology of France. Springer, pp. 269–280. 

https://doi.org/10.1007/978-3-642-78849-9_19 

Dèzes, P., Schmid, S.M., Ziegler, P.A., 2004. Evolution of the European Cenozoic Rift System: 

interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 

389, 1–33. https://doi.org/10.1016/j.tecto.2004.06.011 

Edel, J.B., Whitechurch, H., Diraison, M., 2006. Seismicity wedge beneath the Upper Rhine Graben 

due to backwards Alpine push? Tectonophysics 428, 49–64. 

https://doi.org/10.1016/j.tecto.2006.08.009 

Egli, D., Mosar, J., Ibele, T., Madritsch, H., 2016. The role of precursory structures on Tertiary 

deformation in the Black Forest-Hegau region. Int. J. Earth Sci. 1–22. 

https://doi.org/10.1007/s00531-016-1427-8 

Glangeaud, L., 1951. Interprétation tectono-physique des caractères structuraux et 

paléogéographiques de la Méditerranée occidentale. Bull. la Société Géologique Fr. 6, 735–762. 

https://doi.org/10.2113/gssgfbull.S6-I.8.735 

Guellec, S., Mugnier, J.-L., Tardy, M., Roure, F., 1990. Neogene evolution of the western Alpine 

foreland in the light of ECORS data and balanced cross sections, in: Roure, F., Heitzmann, P., 

Polino, R. (Eds.), Deep Structures of the Alps. Mém. Soc. géol. suisse, pp. 165–185. 

Hauber, L., 1993. Der südliche Rheingraben und seine geothermische Situation. Bull. der Vereinigung 

Schweizerischer Pet. und Ingenieure 60, 53–69. https://doi.org/10.5169/seals-216879 

Homberg, C., Bergerat, F., Philippe, Y., Lacombe, O., Angelier, J., 2002. Structural inheritance and 

cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics 357, 137–158. 

https://doi.org/10.1016/S0040-1951(02)00366-9 

IGN-F, 2018. MNT RGE ALTI 5m, Digital Elevation Models. Institut national de l’information 

géographique et forestière (IGN-F). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



45 
 

Illies, H., 1962. Oberrheinisches Grundgebirge und Rheingraben. Geol. Rundschau 52, 317–332. 

https://doi.org/10.1007/BF01840083 

Illies, J.H., 1972. The Rhine graben rift system-plate tectonics and transform faulting. Geophys. Surv. 

1, 27–60. https://doi.org/10.1007/BF01449550 

Jordan, P., 1992. Evidence for large-scale decoupling in the Triassic evaporites of northern 

Switzerland: an overview. Eclogae Geol. Helv. 85, 677–693. https://doi.org/10.5169/seals-

167025 

Jordan, P., Nuesch, R., 1989. Deformation Structures in the Muschelkalk Anhydrites of the 

Schafisheim Well (Jura Overthrust, Northern Switzerland). Eclogae Geol. Helv. 82, 429–454. 

https://doi.org/10.5169/seals-166384 

King Hubbert, M., 1937. Theory of scale models as applied to the study of geologic structures. Bull. 

Geol. Soc. Am. 48, 1459–1520. https://doi.org/10.1130/GSAB-48-1459 

Klinkmüller, M., Schreurs, G., Rosenau, M., Kemnitz, H., 2016. Properties of granular analogue model 

materials: A community wide survey. Tectonophysics 684, 23–38. 

https://doi.org/10.1016/j.tecto.2016.01.017 

Lacombe, O., Bellahsen, N., 2016. Thick-skinned tectonics and basement-involved fold-thrust belts: 

insights from selected Cenozoic orogens. Geol. Mag. 153, 763–810. 

https://doi.org/10.1017/S0016756816000078 

Larroque, J.M., Laurent, P., 1988. Evolution of the stress field pattern in the south of the Rhine Graben 

from the Eocene to the present. Tectonophysics 148, 41–58. https://doi.org/10.1016/0040-

1951(88)90159-X 

Laubscher, H., 2008a. 100 years Jura décollement hypothesis: How it affects Steinmann’s (1892) 

‘Schwarzwaldlinie’. Int. J. Earth Sci. 97, 1231–1245. https://doi.org/10.1007/s00531-007-0224-9 

Laubscher, H., 2008b. The Grenchenberg conundrum in the Swiss Jura: a case for the centenary of 

the thin-skin décollement nappe model (Buxtorf 1907). Swiss J. Geosci. 101, 41–60. 

https://doi.org/10.1007/s00015-008-1248-2 

Laubscher, H.P., 1992. Jura kinematics and the Molasse Basin. Eclogae Geol. Helv. 85, 653–675. 

https://doi.org/10.5169/seals-167024 

Laubscher, H.P., 1986. The eastern Jura: Relations between thin-skinned and basement tectonics, 

local and regional. Geol. Rundschau 75, 535–553. https://doi.org/10.1007/BF01820630 

Laubscher, H.P., 1982. Die Südostecke des Rheingrabens - ein kinematisches und dynamisches 

Problem. Eclogae Geol. Helv. 75, 101–116. https://doi.org/10.5169/seals-165219 

Laubscher, H.P., 1981. The 3D propagation of décollement in the Jura. Geol. Soc. Spec. Publ. 9, 311–

318. https://doi.org/10.1144/GSL.SP.1981.009.01.27 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



46 
 

Laubscher, H.P., 1965. Ein kinematisches Modell der Jurafaltung. Eclogae Geol. Helv. 58, 232–318. 

https://doi.org/10.5169/seals-163266 

Laubscher, H.P., 1961. Die Fernschubhypothese der Jurafaltung. Eclogae Geol. Helv. 54, 222–282. 

https://doi.org/10.5169/seals-162820 

Lefort, J.P., Agarwal, B.N.P., 1996. Gravity evidence for an Alpine buckling of the crust beneath the 

Paris Basin. Tectonophysics 258, 1–14. https://doi.org/10.1016/0040-1951(95)00148-4 

Leloup, P.H., Arnaud, N., Sobel, E.R., Lacassin, R., 2005. Alpine thermal and structural evolution of 

the highest external crystalline massif: The Mont Blanc. Tectonics 24, 1–26. 

https://doi.org/10.1029/2004TC001676 

Lienhardt, G., 1962. Géologie du bassin houiller stéphanien du Jura et de ses morts-terrains. 

Mémoires du Bur. Rech. Géologiques Miniéres N°9 449. 

Lienhardt, M.-J., Aubague, M., Barféty, J.-C., Courel, L., Durand, M., Glintzboeckel, C., Mégard-Galli, 

J., 1984. Trias - Puissance et faciès de la partie supérieure, planche T2, in: Debrand-Passard, 

S., Courbouleix, S., Lienhardt, M.-J. (Eds.), Synthèse Géologique Du Sud-Est de La France, 

Mémoire Du BRGM N°126. BRGM France, p. T2. 

Looser, N., Madritsch, H., Guillong, M., Laurent, O., Wohlwend, S., Bernasconi, S.M., 2020. Absolute 

Age and Temperature Constraints on Faulting along the Basal Décollement of the Jura Fold-and-

thrust Belt from carbonate U-Pb Dating and Clumped Isotopes. Tectonics. 

https://doi.org/10.1002/Essoar.10503905.1 

Lüthi, E., 1954. Geologische Untersuchungen im Gebiete zwischen Tessenberg und St.Immertal 

(Berner Jura). Promotionsarbeit Eidgenössische technische Hochschule Zürich, 9-37. 

Madritsch, H., Deplazes, G., 2014. NTB 14-02, SGT Etappe 2: Vorschlag weiter zu untersuchender 

geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage - 

Geologische Grundlagen - Dossier IV Geomechanische Unterlagen. Nationale Genossenschaft 

für die Lagerung radioaktiver Abfälle (Nagra), Wettingen, Switzerland. 

Madritsch, H., Kounov, A., Schmid, S.M., Fabbri, O., 2009. Multiple fault reactivations within the intra-

continental Rhine-Bresse Transfer Zone (La Serre Horst, eastern France). Tectonophysics 471, 

297–318. https://doi.org/10.1016/j.tecto.2009.02.044 

Madritsch, H., Naef, H., Meier, B., Franzke, H.J., Schreurs, G., 2018. Architecture and Kinematics of 

the Constance-Frick Trough (Northern Switzerland): Implications for the Formation of Post-

Variscan Basins in the Foreland of the Alps and Scenarios of Their Neogene Reactivation. 

Tectonics 37, 2197–2220. https://doi.org/10.1029/2017TC004945 

Madritsch, H., Schmid, S.M., Fabbri, O., 2008. Interactions between thin- and thick-skinned tectonics 

at the northwestern front of the Jura fold-and-thrust belt (eastern France). Tectonics 27. 

https://doi.org/10.1029/2008TC002282 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



47 
 

Malz, A., Madritsch, H., Jordan, P., Meier, B., Kley, J., 2019. Along-strike variations in thin-skinned 

thrusting style controlled by pre-existing basement structure in the easternmost Jura Mountains 

(Northern Switzerland), in: Geological Society, London, Special Publications. Geological Society 

of London, pp. 199–220. https://doi.org/10.1144/SP490-2019-090 

Malz, A., Madritsch, H., Meier, B., Kley, J., 2016. An unusual triangle zone in the external northern 

Alpine foreland (Switzerland): Structural inheritance, kinematics and implications for the 

development of the adjacent Jura fold-and-thrust belt. Tectonophysics 670, 127–143. 

https://doi.org/10.1016/j.tecto.2015.12.025 

Martin, J., Mercier, É., 1996. Héritage distensif et structuration chevauchante dans une chaîne de 

couverture: apport de l’équilibrage par modélisation géométrique dans le Jura nord-occidental. 

Bull. la Soc. Geol. Fr. 167, 101–110. 

Mary, B.C.L., Maillot, B., Leroy, Y.M., 2013. Deterministic chaos in frictional wedges revealed by 

convergence analysis. Int. J. Numer. Anal. Methods Geomech. 37, 3036–3051. 

https://doi.org/10.1002/nag.2177 

Meier, B., 2010. NAB 10-40, Ergänzende Interpretation reflexionsseismischer Linien zwischen dem 

östlichen und westlichen Molassebecken: Gebiete Waadtland Nord, Fribourg, Berner Seeland 

und Jurasüdfuss zwischen Biel und Oensingen (Text und Beilage). Nationale Genossenschaft für 

die Lagerung radioaktiver Abfälle (Nagra), Wettingen, Switzerland. 

Michel, P., Appert, G., Lavigne, J., Lefavrais, A., Bonte, A., Liénhardt, G., Ricour, J., 1953. Le contact 

Jura-Bresse dans la région de Lons-le-Saunier. Bull. la Société géologique Fr. 6, 593–611. 

https://doi.org/10.2113/gssgfbull.s6-iii.7-8.593 

Michon, L., 2000. Dynamique de l’extension continentale - Application au Rift Ouest-Européen par l ’ 

étude de la province du Massif Central. Dr. thesis. Université Blaise Pascal. 

Mosar, J., 1999. Present-day and future tectonic underplating in the western Swiss Alps: reconciliation 

of basement/wrench-faulting and décollement folding of the Jura and Molasse basin in the Alpine 

foreland. Earth Planet. Sci. Lett. 173, 143–155. https://doi.org/10.1016/S0012-821X(99)00238-1 

Müller, W.H., Schmid, S.M., Briegel, U., 1981. Deformation experiments on anhydrite rocks of different 

grain sizes: Rheology and microfabric. Tectonophysics 78, 527–543. 

https://doi.org/10.1016/0040-1951(81)90027-5 

NASA, 2014. Shuttle Radar Topography Mission, 1-Arc Second scene. United States Geological 

Survey (USGS), College Park, Maryland. 

Noack, T., 1995. Thrust development in the eastern Jura Mountains related to pre-existing extensional 

structures. Tectonophysics 252, 419–431. https://doi.org/10.1016/0040-1951(95)00089-5 

Nussbaum, C., Kloppenburg, A., Caër, T., Bossart, P., 2017. Tectonic evolution around the Mont Terri 

rock laboratory, northwestern Swiss Jura: constraints from kinematic forward modelling. Swiss J. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



48 
 

Geosci. 110, 39–66. https://doi.org/10.1007/s00015-016-0248-x 

Panien, M., Schreurs, G., Pfiffner, A., 2006. Mechanical behaviour of granular materials used in 

analogue modelling: insights from grain characterisation, ring-shear tests and analogue 

experiments. J. Struct. Geol. 28, 1710–1724. https://doi.org/10.1016/j.jsg.2006.05.004 

Peper, T., Cloetingh, S., 1992. Lithosphere dynamics and tectono-stratigraphic evolution of the 

Mesozoic Betic rifted margin (southeastern Spain). Tectonophysics 203, 345–361. 

https://doi.org/10.1016/0040-1951(92)90231-T 

Philippe, Y., 1995. Rampes latérales et zones de transfert dans les chaînes plissées: géométrie, 

conditions de formation et pièges structuraux associés. Université de Savoie. tel-00755680. 

Philippe, Y., 1994. Transfer Zone in the Southern Jura Thrust Belt (Eastern France): Geometry, 

Development, and Comparison with Analogue Modeling Experiments, in: Mascle, A. (Ed.), 

Hydrocarbon and Petroleum Geology of France, Special Publication of the European Association 

of Petroleum Geoscientists. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 327–346. 

https://doi.org/10.1007/978-3-642-78849-9_23 

Philippe, Y., Colletta, B., Deville, E., Mascle, A., 1996. The Jura fold-and-thrust belt: A kinematic 

model based on map-balancing., in: Ziegler, P.A., Horvàth, F. (Eds.), Peri-Tethys Memoir 2: 

Structure and Prospects of Alpine Basins and Forelands. Editions du Muséum Paris, pp. 235–

261. 

Ramberg, H., 1981. Gravity, Deformation and the Earth’s Crust: in theory, experiments and geological 

applications. Academic Press, London. 

Rat, P., 1974. Le système Bourgogne-Morvan-Bresse (articulation entre le bassin parisien et le 

domaine péri-alpin), in: Debelmas, J. (Ed.), Géologie de La France: Les Chaînes Plissées Du 

Cycle Alpin et Leur Avant-Pays. Doin, Paris, pp. 480–500. 

Reisdorf, A.G., Wetzel, A., 2018. Evidence for synsedimentary differential tectonic movements in a 

low-subsidence setting: Early Jurassic in northwestern Switzerland. Swiss J. Geosci. 111, 417–

444. https://doi.org/10.1007/s00015-018-0318-3 

Rotstein, Y., Schaming, M., Rousse, S., 2005. Structure and Tertiary tectonic history of the Mulhouse 

High, Upper Rhine Graben: Block faulting modified by changes in the Alpine stress regime. 

Tectonics 24, 1–15. https://doi.org/10.1029/2004TC001654 

Schardt, H., 1908. Les causes du plissement et des chevauchements dans le Jura. Eclogae Geol. 

Helv. 10, 484–488. 

Schori, M., Mosar, J., Schreurs, G., 2015. Multiple detachments during thin-skinned deformation of the 

Swiss Central Jura: a kinematic model across the Chasseral. Swiss J. Geosci. 108, 327–343. 

https://doi.org/10.1007/s00015-015-0196-x 

[dataset]Schori, M., Zwaan, F., Schreurs, G., Mosar, J., 2020. Supplementary material - Pre-existing 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



49 
 

basement faults controlling deformation in the Jura Mountains fold-and-thrust belt: insights from 

analogue models. Mendeley Data V2. https://doi.org/10.17632/6pm5zwjv9w.2 

Schreurs, G., Buiter, S.J.H., Boutelier, D., Corti, G., Costa, E., Cruden, A.R., Daniel, J.-M., Hoth, S., 

Koyi, H.A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R.W., Withjack, M.O., Yamada, 

Y., Cavozzi, C., Del Ventisette, C., Brady, J.A.E., Hoffmann-Rothe, A., Mengus, J.-M., Montanari, 

D., Nilforoushan, F., 2006. Analogue benchmarks of shortening and extension experiments. 

Geol. Soc. London, Spec. Publ. 253, 1–27. https://doi.org/10.1144/GSL.SP.2006.253.01.01 

Schumacher, M.E., 2002. Upper Rhine Graben: Role of preexisting structures during rift evolution. 

Tectonics 21, 6–17. https://doi.org/10.1029/2001TC900022 

Sommaruga, A., 1997. Geology of the Central Jura and the Molasse Basin: new insight into an 

evaporite-based foreland fold and thrust belt. Mémoire la Société neuchâteloise des Sci. Nat. 12, 

1–176. 

Sommaruga, A., Eichenberger, U., Marillier, F., 2012. Seismic Atlas of the Swiss Molasse Basin, in: 

Kissling, E. (Ed.), Matériaux Pour La Géologie de La Suisse - Géophysique. Federal Office of 

Topography (swisstopo), p. 90. 

Sommaruga, A., Mosar, J., Schori, M., Gruber, M., 2017. The Role of the Triassic Evaporites 

Underneath the North Alpine Foreland, in: Soto, J.I., Flinch, J., Tari, G. (Eds.), Permo-Triassic 

Salt Provinces of Europe, North Africa and the Atlantic Margins. Elsevier, pp. 447–466. 

https://doi.org/10.1016/b978-0-12-809417-4.00021-5 

Stampfli, G.M., Mosar, J., Marquer, D., Marchant, R., Baudin, T., Borel, G., 1998. Subduction and 

obduction processes in the Swiss Alps. Tectonophysics 296, 159–204. 

https://doi.org/10.1016/S0040-1951(98)00142-5 

Steinmann, G., 1902. Zur Tektonik des nordschweizerischen Kettenjura. Cent. für Mineral. Geol. und 

Paläontologie Stuttgart 488–492. 

Steinmann, G., 1892. Bemerkungen über die tektonischen Beziehungen der oberrheinischen 

Tiefebene zu dem nordschweizerischen Kettenjura. Berichte der naturforschenden Gesellschaft 

zu Freibg. im Breisgbau 6, 150–159. 

Strayer, L.M., Hudleston, P.J., Lorig, L.J., 2001. A numerical model of deformation and fluid-flow in an 

evolving thrust wedge. Tectonophysics 335, 121–145. https://doi.org/10.1016/S0040-

1951(01)00052-X 

Swisstopo, 2012. GeoCover geological vector data. Federal Office of Topography (swisstopo), 

Wabern, Switzerland. 

Swisstopo, 2011. Digital elevation model swissALTI3D. Federal Office of Topography (swisstopo), 

Wabern, Switzerland. 

Tavarnelli, E., 1997. Structural evolution of a foreland fold-and-thrust belt: The Umbria-Marche 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



50 
 

Apennines, Italy. J. Struct. Geol. 19, 523–534. https://doi.org/10.1016/s0191-8141(96)00093-4 

Trümpy, R., 1980. Geology of Switzerland a guide-book: An Outline of the Geology of Switzerland. 

Wepf & Co. Publishers, Basel - New York. 

Tschanz, X., 1990. Analyse de la déformation du Jura central entre Neuchâtel (Suisse) et Besançon 

(France). Eclogae Geol. Helv. 83, 543–558. https://doi.org/10.5169/seals-166601 

Ustaszewski, K., 2004. Reactivation of pre-existing crustal discontinuities: the southern Upper Rhine 

Graben and the northern Jura Mountains - a natural laboratory. Dr. thesis. University of Basel. 

Ustaszewski, K., Schmid, S.M., 2007. Latest Pliocene to recent thick-skinned tectonics at the Upper 

Rhine Graben - Jura Mountains junction. Swiss J. Geosci. 100, 293–312. 

https://doi.org/10.1007/s00015-007-1226-0 

Ustaszewski, K., Schmid, S.M., 2006. Control of preexisting faults on geometry and kinematics in the 

northernmost part of the Jura fold-and-thrust belt. Tectonics 25, 1–26. 

https://doi.org/10.1029/2005TC001915 

Ustaszewski, K., Schumacher, M.E., Schmid, S.M., 2005. Simultaneous normal faulting and 

extensional flexuring during rifting: an example from the southernmost Upper Rhine Graben. Int. 

J. Earth Sci. 94, 680–696. https://doi.org/10.1007/s00531-004-0454-z 

van Keken, P.E., Spiers, C.J., van den Berg, A.P., Muyzert, E.J., 1993. The effective viscosity of 

rocksalt: implementation of steady-state creep laws in numerical models of salt diapirism. 

Tectonophysics 225, 457–476. https://doi.org/10.1016/0040-1951(93)90310-G 

Weijermars, R., Schmeling, H., 1986. Scaling of Newtonian and non-Newtonian fluid dynamics without 

inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological 

similarity). Phys. Earth Planet. Inter. 43, 316–330. https://doi.org/10.1016/0031-9201(86)90021-X 

Wetzel, A., Allenbach, R., Allia, V., 2003. Reactivated basement structures affecting the sedimentary 

facies in a tectonically ‘quiescent’ epicontinental basin: an example from NW Switzerland. 

Sediment. Geol. 157, 153–172. https://doi.org/10.1016/S0037-0738(02)00230-0 

Winnock, E., 1961. Résultats géologiques du forage Risoux 1. Bull. der Vereinigung Schweizerischer 

Pet. und Ingenieure 28, 17–26. https://doi.org/10.5169/seals-191403 

Withjack, M.O., Callaway, S., 2000. Active normal faulting beneath a salt layer: An experimental study 

of deformation patterns in the cover sequence. Am. Assoc. Pet. Geol. Bull. 84, 627–651. 

https://doi.org/10.1306/c9ebce73-1735-11d7-8645000102c1865d 

Yang, K.M., Huang, S.T., Wu, J.C., Ting, H.H., Mei, W.W., 2006. Review and new insights on foreland 

tectonics in western Taiwan. Int. Geol. Rev. 48, 910–941. https://doi.org/10.2747/0020-

6814.48.10.910 

Yang, K.M., Wu, J.C., Wickham, J.S., Ting, H.H., Wang, J.B., Chi, W.R., 1996. Transverse structures 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



51 
 

in Hsinchu and Miaoli areas: Structural mode and evolution in foothills belt, northwestern Taiwan. 

Pet. Geol. Taiwan 30, 111–150. 

Ziegler, P.A., 1992. European Cenozoic rift system. Tectonophysics 208, 91–111. 

https://doi.org/10.1016/0040-1951(92)90338-7 

Ziegler, P.A., 1988a. Evolution of the Arctic - North Atlantic and the Western Tethys - A Visual 

Presentation of a series of Paleogeographic-paleotectonic maps. AAPG Mem. 43, 164–196. 

Ziegler, P.A., 1988b. Late Jurassic-Early Cretaceous Central Atlantic Sea-Floor Spreading, Closure of 

Neo-Tethys, and Opening of Canada Basin. AAPG Mem. Vol. 43 Evol. Arctic-North Atl. West. 

Tethys 63–82. https://doi.org/10.1306/M43478C6 

Ziegler, P.A., Dèzes, P., 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and 

controlling mechanisms. Glob. Planet. Change 58, 237–269. 

https://doi.org/10.1016/j.gloplacha.2006.12.004 

Zwaan, F., Schreurs, G., Gentzmann, R., Warsitzka, M., Rosenau, M., 2018a. Ring-shear test data of 

quartz sand from the Tectonic Modelling Lab of the University of Bern (CH). GFZ Data Serv. 1–9. 

https://doi.org/10.5880/fidgeo.2018.028 

Zwaan, F., Schreurs, G., Naliboff, J., Buiter, S.J.H., 2016. Insights into the effects of oblique extension 

on continental rift interaction from 3D analogue and numerical models. Tectonophysics 693, 

239–260. https://doi.org/10.1016/j.tecto.2016.02.036 

Zwaan, F., Schreurs, G., Ritter, M., Santimano, T., Rosenau, M., Naliboff, J., Buiter, S.J.H., 2018b. 

Rheology of PDMS-corundum sand mixtures from the Tectonic Modelling Lab of the University of 

Bern (CH). GFZ Data Serv. https://doi.org/10.5880/fidgeo.2018.023 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



52 
 

Marc Schori: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data 

Curation, Writing – Original Draft, Writing - Review & Editing, Visualization Frank Zwaan: 

Conceptualization, Methodology, Writing - Review & Editing Guido Schreurs: Resources, Writing - 

Review & Editing, Supervision Jon Mosar: Resources, Writing - Review & Editing, Supervision, 

Funding acquisition 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



53 
 

Declaration of interests 

 

☒ The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

 

☐The authors declare the following financial interests/personal relationships which may be 
considered as potential competing interests:  
 

 

 
 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



54 
 

 Brittle-viscous analogue models testing frontal and oblique fault-steps 

 Basement faults controlling deformation of the Jura Mountains fold-and-thrust belt 

 Rigid basement steps controlling viscous oblique-ramps 

 Upward and downward steps localising deformation 

 Rotation of step-controlled lineaments 
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