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Summary

Plants are systemically relevant to our planet not only by constituting amajor part of its biomass,

but also because they produce a vast diversity of bioactive phytochemicals. These compounds

often modulate interactions between plants and the environment, and can have substantial

effects on plant consumers and their health. By taking a food web perspective, we highlight the

role of bioactive phytochemicals in linking soils, plants, animals and humans and discuss their

contributions to systems health. The analysis of connections among food web components

revealed an underexplored potential of phytochemicals to optimize food web health and

productivity.

I. Introduction: phytochemical connections in the
food web

Current frameworks such as ‘One Health‘, ‘One Medicine‘ or
‘Ecosystem Health‘ apply integrative systems thinking to under-
stand and improve environmental, animal and human health
(Zinsstag et al., 2011). They have also been broadened to include
soils and plants (van Bruggen et al., 2019). Common to these
frameworks is the recognition that different components of a
system are connected and collectively determine global wellbeing.
Here, we apply this integrative ‘One Health’ thinking to the food
web and explore how plants in general, and plant chemistry in
particular, contribute to their health.

A food web is such a system, where the cycling of plant material
connects the different components. The connecting material
consists mainly of biologically accessible organic molecules made

by plants from inorganic matter using solar energy, so called
phytochemicals (Fig. 1). Phytochemicals account for up to 90% of
the continuous production of organic molecules on our planet
(Bar-On et al., 2018). Despite recent advances in food (bio-)
technology, we heavily depend on plant-derived organic molecules
to feed the growing world population. Even plans to colonize Mars
rely on plants as primary extra-terrestrial food source (McKay,
2004). In general terms, phytochemicals present a large share of the
energy and matter that travels from producers to consumers and
back. The cycling starts with phytochemicals being consumed by
countless micro- andmacro-organisms, with domesticated animals
converting them into food products. Consistently, our human
body is largely made from plant-derived organic building blocks.
The consumed phytochemicals and their transformation products
cycle then back to the environment as detritus, i.e. organic material
from faeces or dead organisms. Plants also directly provide the
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environment organic molecules by secreting root exudates, thereby
feeding the surrounding rhizosphere microfauna and macrofauna
(Fig. 1; Sasse et al., 2018). Generally, the plant-derived carbon,
mainly from decomposition, presents a major allocation to the
global soil organic matter stocks that are key for climate
homeostasis (Schmidt et al., 2011). However, life on our planet
is not simply maintained by providing plant-derived chemical
building blocks to consumers, but the vast diversity of plant
compounds also shape many organismal interactions and thereby
environmental health.

Phytochemicals are broadly classified into primary and sec-
ondary metabolites. Primary metabolites account for only a small
fraction of the diversity of chemicals and include carbohydrates,
amino acids, fatty acids and vitamins among others. They mainly
serve as building blocks and energy-carrying carbon resources and
thereby, they are essential for plant growth as well as for animal and
humandiets. Plants also produce a staggering diversity of secondary
metabolites. Although boundaries between primary and secondary
metabolites are blurry, the latter often modulate interactions

between plants and the environment, and can have substantial
effects on consumers and their health (Erb & Kliebenstein, 2020).
For instance, plant alkaloids have evolved to protect plants from
herbivorous animals and can also be harmful to humans. Many
other secondary metabolites, as in essential oils or superfoods (e.g.
goji or acai berries), are promoted for their beneficial effects on our
health. However, for many secondary metabolites, the effects on
consumer physiology and health remain unknown.

Below, we put forward that phytochemicals other than well-
known nutrients and vitamins represent important proximal links
between food web components and function as mediators of food
web health (Fig. 1). We do this with two well-studied examples,
glucosinolates and benzoxazinoids, and illustrate their journey and
discuss mechanisms by which they mediate food web health.

II. Glucosinolates in soil, animal and human health

Glucosinolates form a large group of structurally diverse sulphur
containing secondary metabolites commonly found in Brassicaceae
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Fig. 1 Matter flow and phytochemical connections in the food web. This simplified food web consists of humans, animals and insects that consume matter
produced by plants growing in soil. The general matter flow is indicated by the grey shading. Plants use solar energy to convert CO2, H2O and micronutrients
into a broad diversity of biologically accessible phytochemicals. Green arrows illustrate the ‘routes’ where and name the ‘vehicles’ how the phytochemicals
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illustrates that health effects can be caused directly by the phytochemicals or indirectly through changes in the microbiome.
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plants including broccoli, cabbage, cauliflower, rapeseed and
mustard (Bla�zevi�c et al., 2020). These b-thioglucoside N-hydrox-
ysulphates function as a two-component system, where they
become activated by glucohydrolases, known as myrosinases. The
aglucones rearrange to different compounds such as isothio-
cyanates, thiocyanates or nitriles that are responsible for the sharp
taste and typical odour of Brassica vegetables. For plants, glucosi-
nolates primarily have a defence function against pathogens and
pests, but also operate in regulation, growth and development (Erb
&Kliebenstein, 2020). This health function ismainly attributed to
the antimicrobial capacity of the glucosinolate hydrolysis products,
which are effective against (soil-borne) plant pathogens as well as
against animal and human pathogens (Romeo et al., 2018; Poveda
et al., 2020).

Glucosinolates travel down the food web to soil (Fig. 1) when
released by Brassicaceae into the rhizosphere (M€onchgesang et al.,
2016; Sasse et al., 2018). Due to their antimicrobial properties,
glucosinolates likely establish a pathogen and pest suppressive zone
in the rhizosphere. Glucosinolates also reach soils when Brassica
inter- or cover crops are used in rotations and their glucosinolate-
containing residues are incorporated into soil by tillage (Gimsing&
Kirkegaard, 2009). The latter cropping method is referred to as
biofumigation, which successfully controls fungal and oomycete
pathogens, plant-parasitic nematodes and other pests on a field
scale (Brennan et al., 2020; Poveda et al., 2020). Hence,
glucosinolates function as natural biocides to improve soil health.

Upward travel of glucosinolates in the food web (Fig. 1) occurs
when, e.g. insects, ruminants or humans consume glucosinolate-
containing plant material. Specialized insect herbivores can ingest
glucosinolates as they have evolved the capacity to detoxify them
(Halkier & Gershenzon, 2006). Some insects even accumulate
glucosinolates and activate them by their own myrosinases, which
increases their resistance to natural enemies and their capacity to
recruit mating partners (Beran et al., 2014). When animals
consume glucosinolate-containing forages, phytochemicals are
partly degraded by the rumen and intestinal microflora and then
absorbed by the digestive tract (Mandiki et al., 2002). Glucosino-
lates such as 5-vinyl-1,3-oxazolidine-2-thione or thiocyanates were
detected in products such asmilk, eggs,muscular tissue and visceral
organs like liver, lung and kidney (Mabon et al., 2000; Zhu et al.,
2018), suggesting that glucosinolates will travel further up the food
web with human consumption of these products (Fig. 1).
Glucosinolates often negatively affect livestock performance and
health (reviewed by Tripathi & Mishra, 2007). Negative effects
include retarded growth, reduced feed intake, lower egg and milk
production. Systemic effects are manifested by iodine deficiency,
hypertrophy of kidney, liver and the thyroid gland followed by an
elevated secretion of thyroid hormones (Tripathi&Mishra, 2007),
which is associated with an increased digesta efflux and conse-
quently reduced rumen retention time (Barnett et al., 2012).
Despite the overly negative effects on animal physiology, the use of
glucosinolates-containing fodder can improve environmental
health by mitigating methane emissions by ruminants (Dillard
et al., 2018; Sun, 2020). Mechanistically, glucosinolates do not
directly inhibit the methanogenic microbes, but are supposed to
alter the microbial community and rumen fermentation

parameters (Kumar et al., 2018; Sun, 2020). Hence, together with
the aforementioned indirect effect of reduced rumen retention
time, methane production decreases and interestingly, seems to
persist when dairy cows continue to feed on pastures (Storlien et al.,
2017).

In contrast to predominately negative health effects on animals,
glucosinolates account for many health promoting effects on
humans when consuming raw or cooked brassica vegetables.While
glucosinolates are activated by glucohydrolases in plants, these
enzymes are often denatured during cooking. Glucosinolates still
function in a pro-drug-like manner where after ingestion they are
activated by the intestinal gut microbiota. Hydrolysis of glucosi-
nolates to isothiocyanates by a commensal gut bacterium was
recently uncovered as an underlyingmechanism (Liou et al., 2020).
Activated glucosinolates have beneficial health effects in humans
including anti-inflammatory, antimicrobial and antioxidant func-
tions as well as being cancer preventive agents (Narbad & Rossiter,
2018). For instance, diets rich in brassica vegetables are associated
with a decreased risk of gastrointestinal cancer (Herr & B€uchler,
2010). Health claims are underpinned by detailed mechanistic
studies of indole-3-carbinol (I3C), the activated hydrolysis product
of glucobrassicin, a glucosinolate found in broccoli and other
crucifers. I3Cwhen supplemented in the humandiet, functions as a
strong agonist of the arylhydrocarbon receptor (AHR) and
effectively complements dietary AHR ligand deficiencies (Li
et al., 2011). AHR agonists are essential for normal intestinal
immune development and associated host-microbial mutualism.
More specifically, dietary AHR agonist deficiency leads to
profound intestinal mucosal immunodeficiency in mice (Schiering
et al., 2017). This evidence attests a clear health promoting
potential to at least one commonly consumed glucosinolate,
although it remains to be demonstrated whether consumption of
cooked or raw broccoli significantly effects AHR activation in
humans (Koper et al., 2020).

These examples highlight that glucosinolates, as they travel up
and down the food web, function as important health modulating
phytochemicals connecting the food web across soils, plants,
animals and humans.

III. Benzoxazinoids in soil, animal and human health

Benzoxazinoids are a structurally diverse group of indole-derived,
nitrogen containing secondary metabolites that are mainly
produced by major monocotyledonous crops such as maize, wheat
and rye (Frey et al., 2009). Benzoxazinoids typically accumulate as
glucosides in intact plant cells (Glauser et al., 2011). Upon
secretion or cell damage, b-glucosidases release benzoxazinoid
aglucones, cyclic hemiacetals that can act as electrophiles to react
with thiols and amines, for instance (Wouters et al., 2016).
Benzoxazinoids provide multiple benefits to plants. They protect
them against insect pests by acting as repellents and digestibility
reducers (Glauser et al., 2011; Maag et al., 2016), they provide
pathogen and aphid resistance by triggering callose deposition
(Ahmad et al., 2011; Glauser et al., 2011; Meihls et al., 2013), and
they improve iron acquisition at the seedling stage (Hu et al.,
2018a).
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Downward travel in the food web occurs (Fig. 1) when
benzoxazinoids are secreted to soil. They are abundant constituents
of root exudates of wheat and maize and in the rhizosphere,
benzoxazinoids structure the microbiomes (Cadot et al., 2021, and
references cited therein). These microbial changes affect soil
functioning, leading to enhanced pest resistance in the following
plant generation, in some cases at the expense of growth (Hu et al.,
2018b).While the exuded benzoxazinoids are relatively short-lived
in soil, microbial degradation products such as phenoxazinones are
more stable (Mac�ıas et al., 2004) and may have long-term
consequences for plant and soil health. Phenoxazinones can for
instance inhibit histone deacetylases (Venturelli et al., 2015), and
may thereby influence other organisms.

Benzoxazinoids travel up the food web (Fig. 1) when animals or
humans ingest green foliage, silage, cereal products or superfoods
such as sprouts (Adhikari et al., 2015). For instance, adapted maize
insect herbivores such as the western corn rootworm take up and
accumulate benzoxazinoids. Through their iron-chelating proper-
ties, benzoxazinoid improve iron homeostasis and growth of this
important agricultural pest (Hu et al., 2018a). By stabilizing and
converting benzoxazinoids and their breakdown products into
insect-specific glucosides, which again can be de-glucosylated upon
attack, the western corn rootworm gains protection against
biocontrol agents such as entomopathogenic nematodes and their
endosymbiotic, insect-killing bacteria (Robert et al., 2017).
Bacteria and nematodes again can evolve behavioural and
metabolic resistance to sequestered benzoxazinoids (Zhang et al.,
2019; Machado et al., 2020), thus increasing their efficacy and
potential as biological control agents for sustainable agriculture.
The impact of benzoxazinoids on farm animal and human health is
less well understood. For sure, humans can be exposed to high doses
of benzoxazinoids through food (Pedersen et al., 2011; Pihlava &
Kurtelius, 2016) that are then deglucosylated, taken up and
partially reduced by phase-2 metabolism in pigs, rats and humans
(Adhikari et al., 2012a,b; Jensen et al., 2017). Several studies
indicate that benzoxazinoids may have immunoregulatory and
anticancer effects and may stimulate the central nervous system
(Adhikari et al., 2015), but whether such effects can be triggered by
dietary uptake of benzoxazinoids is unclear. Finally, benzoxazi-
noids are considered as promising chemical lead structures for the
development of novel antibiotics that may lead to human medical
applications (de Bruijn et al., 2018).

Similar to glucosinolates, the effects of benzoxazinoids on other
food web components exemplify that these phytochemicals present
important health modulators connecting soils, plants, animals and
humans.

IV. Direct and indirect microbiome-mediated health
effects

Phytochemicals can cause direct or indirect health effects. Indirect
health effects can occur through microbiomes, as each food web
component hosts a multitude of commensal microorganisms
(Fig. 1). Direct health effects were illustrated by some of the
examples from above. For instance, glucosinolates have regulatory
function on plant growth and development (Erb & Kliebenstein,

2020), promote thyroid hormones secretion to change rumen
physiology (Barnett et al., 2012) or have direct anti-inflammatory
and antioxidant functions on human cells (Narbad & Rossiter,
2018). Similarly benzoxazinoids have direct health functions such
as in plant immune signalling (Ahmad et al., 2011), driving insect
behaviour (Robert et al., 2012; Zhang et al., 2019) or possibly
immunoregulatory and anticancer effects on humans (Adhikari
et al., 2015). Simply, the antimicrobial activities of such phyto-
chemicals (Romeo et al., 2018; Poveda et al., 2020) can be seen as a
direct health effect on a food web component, as direct action on
pathogens precludes disease emergence.

Indirect effects occur when phytochemicals change the compo-
sition and functioning of the microbiome and thereby affect health
of an organism. Such microbiome-mediated indirect health effects
by the phytochemicals become more and more apparent, also in a
food web context. One example is the benzoxazinoid-driven and
rhizosphere microbiome-mediated defence and growth legacy
effects found in consecutive maize cultivation (Hu et al., 2018b).
This example provides a rationale for studying microbiota
modulating effects in other systems such as for instance the guts
of animals and humans and testing to which extent consumption of
glucosinolates or benzoxazinoidswould indirectly affect host health
through eventual microbiome changes. This is an important
research avenue, as phytochemicals with gut microbiota-reconfig-
uring capacities would open novel medical intervention possibil-
ities, e.g. for common microbiome-linked health conditions like
obesity and type-2 diabetes (Fan & Pedersen, 2021).

Phytochemicals present important connections between soil,
plant, animal and human health, and we particularly highlight to
incorporate each component’s microbiome into such holistic food
web thinking.

V. Conclusion: phytochemicals modulate food web
health

Based on their bioactivity and because of their journey through the
food web, phytochemicals are systemically relevant for food web
health. Glucosinolates and benzoxazinoids present just two
examples for bioactive and health modulating phytochemicals.
However, there are many more compounds, including flavonoids,
cardenolides, terpenes and alkaloids, and many of them have
beneficial properties for one or another food web component. It
appears plausible that the deliberate management of travel routes
and specific bioactivities of phytochemicals can be used to optimize
food web health and productivity. Biofumigation is an example of
successful bioprospecting of the glucosinolate travel route, but we
anticipate thatmore applications are possible, where quantities and
qualities of travelling bioactive phytochemicals are specifically
engineered. For instance, breeding enhanced crops with dual
functions of improving soil health when cultivated and as
superfood having health promoting properties for the consumers.
Alternatively, plant cultivars may enhance ecosystem services, for
instance during agricultural production.Or, crops with augmented
root exudationmay enhance soil carbon inputs that mitigate global
warming, or they improve soil health and nutrient cycling to reduce
agrochemicals. From applying integrative systems thinking to the
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food web framework it emerges that the vast diversity of plant-
derived molecules remains an underexplored reservoir to optimize
and promote food web health and productivity.
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