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a b s t r a c t

Chaperone Mediated Autophagy (CMA) is a selective autophagy pathway deregulated in many cancers. In
this study, we were aiming at understanding the importance of CMA in breast cancer. To this end, we
examined the expression of the CMA markers HSP8 and LAMP2A in different breast cancer cell lines and
found a wide range of LAMP2A expression levels across the cell lines analyzed. Next, we applied a specific
immunohistochemical staining protocol to a tissue microarray derived from a cohort of 365 breast cancer
patients. Therefore, we were able to find a correlation of high LAMP2A but not HSPA8 (HSC70) with
worse disease free survival in patients with HER2 negative tumors (p ¼ 0.026) which was independent
prognostic parameter from pT category, pN category and grading in a multivariate model (HR ¼ 1.889;
95% CI ¼ 1.039e3.421; p ¼ 0.037). In line, low LAMP2A levels decrease proliferation of the breast cancer
cell lines T47D and MCF-7 in vitro. Our data suggest that LAMP2A supports a more severe breast cancer
cell phenotype.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Breast cancer is the most frequent cancer and the leading cause
of cancer-related deaths in females worldwide [1]. In routine
diagnostic settings, breast cancers are divided into different mo-
lecular subtypes based on the expression of estrogen receptor (ER),
progesterone receptor (PR) and the human epidermal growth fac-
tor receptor 2 (HER2) [2], which has implications on systemic tu-
mor treatment.

Early and localized breast cancers are curable and overall
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survival is relatively high, while metastatic disease courses are
difficult to treat, which results in a low overall survival. Conse-
quently, there is an urgent need for better treatment options and a
better understanding of resistance mechanisms. One pathway,
which has been related to treatment resistance [3] is autophagy.
Autophagy is an essential intracellular degradation and recycling
process [4]. There are three major forms, namely macroautophagy,
chaperone-mediated autophagy (CMA), and microautophagy [5].
There is a growing number of reports relating autophagy alter-
ations to a variety of diseases [6,7] including cancer [8e10]. Inter-
estingly, CMA is upregulated in different cancer cell lines compared
to normal counter parts. In agreement, concentrations of the CMA-
related protein LAMP2A are increased in different human tumors
compared to normal tissue [8]. On the other hand, CMA can prevent
cellular transformation, by, for example, targeting oncogenic
signaling components for degradation [11].
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On a molecular level, CMA delivers soluble cytosolic proteins
across the lysosomal membrane. Cytosolic proteins harboring a
KFERQ pentapeptide motif are recognized by a co-chaperone
complex including the heat shock protein family A (Hsp70) mem-
ber 8 (HSP8; also known as heat shock cognate 70 (HSP8)) and are
targeted to the lysosomal membrane. Once at the lysosomal
membrane, CMA substrates interact with the cytosolic tail of the
lysosome-associated membrane protein type 2A (LAMP2A) [12]
triggering multimerization of LAMP2A and subsequent substrate
translocation. Lysosomal HSPA8 is required to complete the trans-
location of CMA target proteins [13,14]. In the lysosome, substrate
proteins are degraded by proteases and amino acids are recycled.
LAMP2A is the rate-limiting factor for CMA activity [15]. Conse-
quently, LAMP2A abundance is frequently used as an indirect
marker of CMA activity, and interventions that change lysosomal
levels of this receptor are used to modulate CMA activity [15,16].

In the present study, we aimed at investigating the expression of
the CMAmarkers LAMP2A and HSP8 in breast cancer to gain insight
to the role of CMA in this disease.
2. Materials and methods

2.1. Cell lines and culture conditions

MCF-7 breast cancer cells were obtained from the American
Type Tissue Culture (ATCC, Wesel, Germany), MDA-MB-231 and
T47D were a kind gift of Prof. C. Lengerke (Department of
Biomedicine, University of Basel, Switzerland) and all other breast
cancer cell lines (HCC-1428, HC-1500, SKBR3, MDA-MB-361, MDA-
MB-453, MDA-MB-157, MDA-MB-436, Cal-51, Cal-85-1, HCC-70)
were a kind gift of Prof, E. Garattini (Mario Negri Institute for
Pharmacological Research, Milano, Italy). Detailed cell culture
conditions can be found in Supplementary methods.
2.2. Western blotting

The procedure is described in detail elsewhere [17]. The
following antibodies and dilutions were used: Anti-LC3B (Novus
Biologicals, NB600-1384) 1:1000 in 5% Milk or anti-LAMP2A
(Abcam, ab18528) 1:1000 in 5% BSA.
2.3. Immunofluorescence staining and confocal microscopy

Cells were seeded on 18 � 18mm glass slides inserted to 6-well
plates at a density of 0.3 x 106 cells/well. 24h post-seeding cells
were stained for LAMP1 (Thermofisher (eBioscience), 14-1079-80)
and LAMP2A (Abcam, ab18528) according to the protocol described
elsewhere [18]. Pictures were taken on a confocal microscope
(Olympus FluoView1000 with a 63x objective).
Fig. 1. LAMP2A expression levels differ across a panel of breast cancer cell lines. (a)
Proteins from 13 different breast cancer cell lines were harvested and Western blot for
LAMP2A was performed. n ¼ 2. Luminal, Human epidermal growth factor receptor 2
(HER2), and triple negative breast cancer subtypes are indicated. Luminalll, and . (b)
Immunofluorescent staining of LAMP2A (green) and LAMP1 (red) in MCF-7 and T47D.
(c) MCF-7 and T47D stably expressing the PA-mCherry-KFERQ construct were exposed
to UV to switch on mCherry fluorescence and degradation was monitored by FACS
analysis at indicated time points. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
2.4. Lentiviral vectors

pLKO.1-puro lentiviral vector expressing shRNA targeting HSP8
(shHSC70_1: NM_006597.3e2040s21c1) were purchased from
Sigma-Aldrich. Sequences of shRNAs to target LAMP2A (shRNA#1:
CTGCAACCTGATTGATTA; shRNA#2: GGCAGGAGTACTTATTCTAGT;
shRNA#3: GACTGCAGTGCAGATGACG) were derived from Massey
et al., 2006 and Han et al., 2017 [10,19] and cloned with an U6
promoter into an EF1a-IRES-Hygro lentiviral vector backbone. The
pSIN-PA-mCherry-KFERQ-NE [20] construct was as a gift from Shu
Leong Ho (Addgene plasmid # 102365). Lentivirus production and
transduction were done as described [21,22].
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2.5. PA-mCherry-KFREQ degradation assay

T47D and MCF-7 stably expressing the PA-mCherry-KFERQ
construct were seeded at a density of 2x105 cells/well of a 6-well
plate. The day after, cells were exposed to UV light for 2.5 min
and media was changed. In each experiment, we included inacti-
vated cells as a negative control. 0, 6, 24 and 30 h post-activation,
cells were detached using Accutase, washed with PBS containing
1% FBS and fixed with 4% PFA for 10 min. After fixation, cells were



Fig. 2. LAMP2A staining correlates with a decreased disease-free survival in HER2-negative breast cancer patients. (aed) MCF-7 cells were transduced with different lentiviral
vectors containing either, an empty vector control (Control), a scrambled shRNA (shCtrl) or shRNAs targeting LAMP2A or HSP8, respectively. After selection cells were subjected to
(aeb) Western blot analysis or (c) immunohistochemistry (IHC) for LAMP2A (upper panel) or HSP8 (lower panel). (deg) Disease free survival curves for the expression of (d-e)
LAMP2A and (f-g) HSP8 (HSC70) in breast cancer patients are shown. DFS; disease free survival, Cum survival; cumulative survival.
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Table 1
Patient collective.

Parameter Frequency %

Age at diagnosis median 67 yrs (range:31e98)

Histological subtypes No special type (NST) 253 71.1
Lobular 51 14.3
Other 52 14.6

Grading G1 41 11.5
G2 194 54.5
G3 121 34.0

pT category pT1 150 42.1
pT2 167 46.9
pT3 21 5.9
pT3 18 5.1

pN category pN0 146 41
pN1mi 18 5.1
pN1 102 28.6
pN2 27 7.6
pN3 22 6.2
no lymph nodes 11.5

Molecular Subtype Lum A 240 67.4
Lum B 68 19.1
Her2 12 3.4
basal/oth 36 10.1

Her2 status Negative 320 89.9
Positive 36 10.1

Anti Hormone Therapy Yes 229 64.3
No 60 16.9
no data 67 18.8

chemotherapy Yes 123 34.6
No 168 47.2
no data 65 18.3

anti Her2 therapy Yes 21 5.9
No 270 75.8
no data 65 18.3

Total 356 100
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washed, resuspended in PBS/1% FBS and stored at 4 �C until FACS
analysis. FACS analysis was performed on a BD LSR-II flow cytom-
eter (BD Biosciences). Living and single cells were gated based on
FSC and SSC and SSC-H and SSC-W respectively. Living, single cells
were analyzed for mCherry median fluorescent intensity.
2.6. CAM assay

A schematic overview of the procedure is shown in
Supplementary Fig. 3 and methods.
3. Results and discussion

3.1. LAMP2A is differently expressed across a panel of breast cancer
cell lines

First, we aimed at assessing LAMP2A expression in a panel of
breast cancer cell lines. We found a high degree of variation in the
levels of LAMP2A expression across different cell lines from
different molecular subtypes (Fig. 1a). LAMP2A bands were
normalized to total protein and quantified using ImageJ and the
expression in MCF7 cells was set to 100%. LAMP2A expression
50
varied from less than 10%, as seen in T47D (7.2%), HCC1500 (9.1%),
SKBR3 (5.2%) and MDA-MB-436 (3.9%) to 100% and more in MCF-7
(100%) and MDA-MB-157 (108.6%). LAMP2A protein expression in
MCF-7 and T47D were confirmed by immunofluorescence (Fig. 1b).
In agreement with the Western Blot data, MCF-7 cells display high
and T47D low levels of LAMP2A, respectively. Importantly, LAMP2A
is found as a dot-like staining in the cytoplasm, as seen for another
lysosomal marker, namely LAMP1 (Fig. 1b), suggesting that
LAMP2A is present at lysosomes. Next, we assessed CMA activity in
MCF-7 and T47D by analyzing the degradation of a photoactivatable
mCherry construct containing a KFERQ motif [20]. As expected
from the high levels of LAMP2A, degradation of the CMA targeted
mCherry construct was significantly faster in MCF-7 than T47D
cells. The effect was already observed at 6h post activation of the
mCherry signal (Fig. 1c). We conclude, that CMA activity correlates
with LAMP2A expression in MCF-7 and T47D breast cancer cell
lines. Since the effect starts at 6h post activation, we exclude that
proliferation differences play a role. Although, we cannot rule out
that the construct is degraded via other pathways.

3.2. LAMP2A, but not HSP8 staining correlates with a decreased
disease-free survival in breast cancer

Next, we aimed at analyzing our primary breast cancer cohort
for the CMA markers LAMP2A and HSP8. First we confirmed the
specificity of a previously established IHC staining protocol for the
two CMA-related proteins LAMP2A and HSP8 [28] using RNAi. All
three shLAMP2a constructs caused and efficient knockdown in
MCF-7 cells, whereas knockdown efficiency for HSP8 (HSC70) was
only around 25% (Fig. 2 a-c).

Next, we applied the staining protocol to a TMA derived from a
cohort of 365 breast cancer patients. Clinicopathological details of
the case collection can be found in Table 1. Expression levels for
LAMP2A and HSP8 ranged from IRS 0e12, with a median of 4. There
was no significant correlation between the expression levels of
LAMP2A and HSP8 among each other (r ¼ 0.102; p ¼ 0.062 for IRS;
p ¼ 0.355 for dichotomized categories). There were no associations
for LAMP2A levels with pathological parameters including HER2 or
molecular subtype. In contrast, HER2 enriched subtypes and
luminal B tumors (including HER2 positive and hormone receptor
positive tumors) more frequently showed higher HSP8 levels
(p < 0.001). For other pathological parameters (e.g. TNM category)
no associations with HSP8 expression were found.

Survival data were available from 293 patients with 44 deaths,
38 metastases and 22 recurrences recorded during the follow up
period. The mean overall survival time (OS) was 76 months. Mean
disease-free survival time (DFS) was 70 months. For subsequent
survival analysis only patients with completely resected tumors,
without perioperative mortality (survival >1month) and without
distant metastases at the time of surgery were analyzed (n ¼ 234).
We did not find a significant association between LAMP2A or HSP8
expression and overall survival of the patients (p¼ 0.232, p¼ 0.667,
Supplementary Figs. 1aec). However, for disease-free survival, high
LAMP2A expression was associated with a trend to worse outcome
(p ¼ 0.05, Fig. 2d), which turned significant when analyzing the
group of HER2 negative tumors only (p ¼ 0.026, Fig. 2e). For this
subgroup, LAMP2A expression was also an independent prognostic
parameter in a multivariate model encompassing pT category, pN
category and grading (HR¼ 1.889; 95% CI¼ 1.039e3.421; p¼ 0.037
for LAMP2A). For HSP8, no significant impact for DFS was seen,
neither in the total cohort (p ¼ 0.52, Fig. 2f) nor in the subgroup of
HER2 positive tumors (p ¼ 0.631, Fig. 2g).

The results of our ex vivo study point towards an oncogenic role
of LAMP2A in breast cancer. This is in line with previously pub-
lished papers, showing increased LAMP2A levels in most breast



Fig. 3. LAMP2A expression is positively associated with breast cancer cell viability in vitro. (aeb) MCF-7 and T47D cells were seeded and cultured in presence of 10% or 2.5.% FBS.
Cell viability was monitored at day 0, 3, 4 and 5 post-seeding by determining metabolic activity using Alamarblue® assay. (a) Growth curves of MCF-7 and T47D in normal (10% FBS,
left panel) and low serum (2.5% FBS, right panel) conditions are shown. Values were normalized to T47D cells cultured in 10% FBS at day 5. Regular Two-way ANOVA was applied to
compare MCF-7 and T47D cells. n ¼ 3 (b) Another representation of the data shown in a. Relative cell viability in 10% and 2.5% FBS is compared at different time points of the assay
(day 3, 4, 5). On each day values were normalized to 10% FBS. Statistical analysis was performed as described in a. (c) MCF-7 cells were transduced with a lentiviral control vector
(Control) or lentiviral vectors expressing three independent shRNAs targeting LAMP2A. Cell viability was monitored over time in presence of complete (10% FBS) or low-serum (2.5%
FBS) medium using an Alamarblue® assay. Parental MCF-7 cells were included in the experiment as an additional control. n ¼ 3. Two-way ANOVA followed by Dunn's test for
multiple comparisons was used to compare the groups. (dee)MCF-7 and 2 different shLAMP2A cell lines were cultured in ovo, followed by staining and scoring of the tumor cells for
LAMP2A (upper panel) and Ki-67 (lower panel) expression. (d) Representative IHC staining in MCF-7 shLAMP2A cells and the corresponding control are shown and (e) quanti-
fication thereof. The error bars represent SD of 3 or 4 pictures/samples from one experiment. Statistical significance was determined by Kruskal-Wallis test.
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cancer compared to normal breast tissues [9,10] and the correlation
of LAMP2A expression and histological grade [10]. The association
of LAMP2A with worse clinical parameters was also found in other
cancer types such as resected squamous cell carcinomas of the lung
[23], esophageal squamous cell carcinoma [24] or non-small cell
lung cancer [25].

Interestingly, the levels of another CMA associated protein,
HSP8, did not correlate with DFS. This might be due to the versatile,
homeostatic functions of HSP8 that are not related to CMA [26]. Is
the effect of LAMP2A on clinical outcome mediated via its role in
CMA? Currently we can only determine CMA activity in FFPE-
derived tissue by analyzing steady state analysis of proteins [27].
Until we establish markers, which are associated with an active
CMA status, assessing LAMP2A and HSP8 expression, is still the best
option. Importantly, LAMP2A levels at lysosomes correlate with
CMA activity [28].

3.3. High LAMP2A expression confers a survival advantage to MCF-
7 cells in vitro

Next, we aimed at validating our ex vivo findings in an in vitro
model. Since CMA can be activated upon serum withdrawal [28],
we next compared proliferation of LAMP2A-high MCF-7 and
LAMP2A-low T47D cells (Fig. 1 a-b) in presence of high (10%) and
low (2.5%) serum. Our data indicate that high-LAMP2A MCF-7 cells
have a proliferation advantage in low serum conditions (Fig. 3 a-b).
First, MCF-7 cells are proliferating significantly faster than T47D
cells as monitored by an Alamarblue assay over a time course of 5
days (Fig. 3a). Importantly, T47D are more sensitive to low serum
conditions as compared toMCF-7 (Fig. 3b): At day 5 of proliferation,
cell viability of MCF-7 is reduced to ~62% in 2.5% FBS compared to
100% if grown in 10%, whereas viability of T47D is reduced to ~38%
in presence of 2.5% FBS (Fig. 3b, right panel). The higher sensitivity
of T47D cells to low serum conditions might be attributed to the
amino acid recycling function of CMA [18], which is presumably
more efficient in the high-LAMP2A MCF-7 cells. As a proof of
principle, we knocked down LAMP2A in MCF-7 cells and again
assessed viability of cells over-time in high and low serummedia. In
line with the previous data, 2 out of 3 LAMP2A knockdown cell lines
(shLAMP2 #2 and #3) exhibit decreased viability compared to
parental and control cells no matter whether grown in 10% or 2.5%
FBS (Fig. 3c). In a next experiment, wewere interested to determine
clonogenic growth of the different cell lines. We found no signifi-
cant difference in the number of colonies between control and
LAMP2A depleted MCF-7 cells, but the colonies were smaller in
LAMP2A KD#2 and #3, as assessed by the total area covered of
colonies (Supplementary Fig. 2). This result suggests a lower pro-
liferation rate of these two cell lines, which is in agreement with
the viability assay. Next, we assessed the tumorigenic properties of
two LAMP2A-manipulated MCF-7 cells (KD#1 and #3) if grown on
a chick chorioallantoic membrane (CAM) to mimic the 3D archi-
tecture (Supplementary Fig. 3). As expected, we found a reduction
of LAMP2A levels in both LAMP2A knockdown cells (IRS of 0.25 and
1.333 respectively) if compared to control cells (IRS of 10.25) (Fig. 3
d-e, upper panel), supporting the Western blot data. In contrast to
our 2D data, proliferation of LAMP2A depletedMCF-7 cells was only
slightly decreased to control cells as determined by Ki-67 staining
(Fig. 3dee, lower panel).

There are fundamental differences between in vitro 2D culture
and in ovo 3D culture, such as different cell to cell contact, inter-
actionwith extra cellular matrix components in the CAM, as well as
a different nutrient supply, which may explain that we only see a
slight decrease in proliferation, which was more pronounced in 2D.
Triple-negative breast cancer cells, for example, differentially
respond to autophagy inhibitionwhether they are cultured in 2D or
52
3D [29] and there are clear differences in gene expression profiles
between 2D and 3D cultured neuroblastoma cells [30]. Further-
more, we may not be looking at the same aspects of tumor devel-
opment with these two models. It is well established that
autophagy can have different roles depending on the stage of tumor
formation [31].

In summary, we found that high LAMP2A levels correlate with a
worse outcome in HER2 negative breast cancer patients. In vitro
experiments further demonstrate that low LAMP2A levels in the
HER2 negative cell lines, T47D and MCF-7, decrease proliferation.
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