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Abstract. Temporal (serial) clustering of extreme precipi-
tation events on sub-seasonal timescales is a type of com-
pound event. It can cause large precipitation accumulations
and lead to floods. We present a novel, count-based proce-
dure to identify episodes of sub-seasonal clustering of ex-
treme precipitation. We introduce two metrics to characterise
the prevalence of sub-seasonal clustering episodes and their
contribution to large precipitation accumulations. The pro-
cedure does not require the investigated variable (here pre-
cipitation) to satisfy any specific statistical properties. Ap-
plying this procedure to daily precipitation from the ERA5
reanalysis data set, we identify regions where sub-seasonal
clustering occurs frequently and contributes substantially to
large precipitation accumulations. The regions are the east
and northeast of the Asian continent (northeast of China,
North and South Korea, Siberia and east of Mongolia), cen-
tral Canada and south of California, Afghanistan, Pakistan,
the southwest of the Iberian Peninsula, and the north of Ar-
gentina and south of Bolivia. Our method is robust with re-
spect to the parameters used to define the extreme events (the
percentile threshold and the run length) and the length of the
sub-seasonal time window (here 2–4 weeks). This procedure
could also be used to identify temporal clustering of other
variables (e.g. heat waves) and can be applied on different
timescales (sub-seasonal to decadal). The code is available at
the listed GitHub repository.

1 Introduction

Regional-scale extreme precipitation events can affect the en-
tire catchment area of a river or a lake and result in flooding.
Floods can have significant socio-economic impacts such as
shortages of drinking water, water-borne diseases, and the
displacement of people (e.g., IPCC, 2014). The impact of
catchment-wide precipitation extremes is intensified when
the events happen in close temporal succession, i.e. when
they are serially clustered. The sub-seasonal serial cluster-
ing of extreme precipitation is a temporally compounding
event (Zscheischler et al., 2020), and it is relevant for several
reasons. First, it can lead to floods in rivers and catchment
areas with a high retention capacity. Examples include sev-
eral floods in Lake Maggiore in southern Switzerland (Bar-
ton et al., 2016), the floods in England in winter 2013/2014
(Priestley et al., 2017), the floods in Pakistan in 2010 (e.g.,
Lau and Kim, 2012; Martius et al., 2013), and the floods
in China in summer 2020 (Guo et al., 2020). Second, the
short recovery time between events can overburden rescue
and response teams and prevent proper clean-up and efficient
repairs to damaged protective structures (Raymond et al.,
2020). Therefore, temporal dependence of precipitation and
other extremes is of interest for insurance companies (Priest-
ley et al., 2018) as floods are a major cause of financial
loss from natural hazards (European Environment Agency,
2020).

A number of previous studies have analysed the statistical
properties of the serial clustering of extreme events. Mailier
et al. (2006), Vitolo et al. (2009) and Pinto et al. (2013) stud-
ied European winter storms (see Dacre and Pinto, 2020, for
a review); Villarini et al. (2011) quantified clustering of ex-
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treme precipitation in the North American Midwest; and Vil-
larini et al. (2012) focused on extreme flooding in Austria. In
these studies, clustering in time was assessed using the index
of dispersion (variance-to-mean ratio) of a one-dimensional
homogeneous Poisson process model, i.e. a Poisson process
with a constant rate of occurrence (Cox and Isham, 1980).
Villarini et al. (2013) analysed flood occurrence in Iowa us-
ing a Cox regression model, i.e. a Poisson process with a
randomly varying rate of occurrence (e.g., Cox and Isham,
1980; Smith and Karr, 1986). Yang and Villarini (2019) also
used a Cox regression model to show that heavy precipita-
tion events over Europe exhibit serial clustering. Their study
also indicated that reanalysis products are skilful in repro-
ducing serial clustering identified in observations. Barton
et al. (2016) studied serial clustering of extreme precipita-
tion events in southern Switzerland using Ripley’s K func-
tion (Ripley, 1981) applied to a one-dimensional time axis
(Dixon, 2002).

All studies discussed above used statistical models to iden-
tify significant serial clustering of extreme events. However,
none of those methods are able to directly identify individ-
ual clustering episodes. According to the review of Dacre
and Pinto (2020), there are no widely used impact metrics
used as a proxy for precipitation-related damage, and only
a recent study by Bevacqua et al. (2020) introduced a count-
based procedure to identify individual cyclone clusters, com-
bined with an impact metric based on precipitation accumu-
lations. Here we propose a novel count-based procedure to
study serial clustering of catchment-aggregated heavy pre-
cipitation using daily precipitation data from ERA5 (Hers-
bach et al., 2020). We investigate sub-seasonal serial clus-
tering of extreme precipitation events in the mid-latitudes of
the Northern Hemisphere and Southern Hemisphere. We also
quantify the contribution of sub-seasonal serial clustering to
large sub-seasonal precipitation accumulations at the catch-
ment level. More specifically, we address the following ques-
tions. (1) Globally, what are the regions (catchments) where
sub-seasonal serial clustering of extreme precipitation occurs
frequently? (2) What is the contribution of sub-seasonal clus-
tering to large sub-seasonal (14 to 28 d) precipitation accu-
mulations? (3) Are the results affected by the choice of the
parameters used to identify the extreme events and the length
of the period (sensitivity analysis)?

The paper is organised as follows: the data and methods
are introduced in Sect. 2. The results are presented and dis-
cussed in Sect. 3. Finally, general conclusions and future re-
search avenues are presented in Sect. 4. All important quan-
tities used in this study are listed in Table 1.

2 Data and methods

2.1 Catchment selection and precipitation aggregation

This study uses precipitation from the ERA5 reanalysis data
set (Hersbach et al., 2020) by the European Centre for
Medium-Range Weather Forecasts (ECMWF). The precip-
itation fields are interpolated to a 0.25◦× 0.25◦ spatial grid,
and the hourly precipitation is aggregated to daily precipita-
tion for the period 2 January 1979 to 31 March 2019. Pre-
cipitation is not directly constrained by observations in the
ERA5 reanalysis data set as it stems from short-range nu-
merical weather model forecasts. Consequently, the quality
of the precipitation data depends on the forecast quality.

For catchment boundaries we use the HydroBASINS data
set format 2 (with inserted lakes) (Lehner and Grill, 2013).
HydroBASINS contains a series of polygon layers that de-
lineate catchment area boundaries at a global scale. This
dataset has a grid resolution of 15 arcsec, corresponding to
approximately 500 m at the Equator. The HydroBASINS
product provides 12 levels of catchment area delineations.
The first three levels are assigned manually, with Level 1 dis-
tinguishing nine continental regions. From Level 4 onward,
the breakdown follows a Pfafstetter coding, where a larger
basin is sequentially subdivided into nine smaller units: the
four largest tributaries and the five inter-basins. A basin is di-
vided into two sub-basins at every location where two river
branches meet and where they have an individual upstream
area of at least 100 km2. We use Level 6 of HydroBASINS
for our study. This choice is motivated further below.

Daily precipitation aggregated by catchment area was
computed by taking the average of all ERA5 grid point values
located within the catchment area (see Fig. 1 for an illustra-
tion). Computations were performed using the GeoPandas
(version 0.6.0 and onward) Python library (Jordahl et al.,
2019). Some small or elongated catchments had few or no
grid points inside their boundaries. This is a consequence of
the Pfafstetter coding used to construct the HydroBASINS
division, where large differences can exist in the catch-
ment areas for a given level. We retained only catchments
containing at least five ERA5 grid points for our analy-
ses. The choice of HydroBASINS Level 6 and the removal
of the smallest catchments allow us to focus our analysis
on relatively large catchments (90 % of the catchments are
3000 km2 or larger). Such large catchments are sensitive to
extended periods of heavy rainfall lasting for several days
or longer (Westra et al., 2014), and consequently the impact
of subseasonal clustering is likely to be more important for
those catchments.

Further, we kept only catchments located in two latitudi-
nal bands between 20 and 70◦ with a catchment 99th an-
nual percentile (99 p) of daily precipitation above 10 mm
(Fig. 2). Those criteria remove catchments from the tropics
and the poles as well as dry areas and result in the selection of
6466 catchments. The timing of extreme precipitation (time
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Table 1. Symbols for important quantities used in this study.

Symbol Definition

r Run length parameter (minimal distance between two high-frequency clusters)
t Threshold (above which daily precipitation is considered an extreme event)
w Time window length (duration of a sub-seasonal clustering episode)
nw Count of extreme events (resulting from the runs declustering) during a time window of w days
accw Precipitation accumulation during a time window of w days
Nep Number of sub-seasonal clustering episodes considered in the classifications
Cln Classification of sub-seasonal clustering episodes with the highest extreme event counts and the largest precipitation accumulations
Clacc Classification of sub-seasonal clustering episodes with the largest precipitation accumulations
qi Weight of the ith episode in a classification
Scl Clustering metric
Sacc Accumulation metric
Scont Contribution metric
φ̂ Estimator of the index of dispersion

Figure 1. Example of a catchment area (Aare basin, Switzerland in
green). The red lines show the HydroBASINS Level 6 catchment
area division. The blue dots indicate the ERA5 grid points. Country
borders are indicated by black lines.

of the year) is important for the present study because our
method is based on counting how many extreme events hap-
pen in a certain time window (see Sect. 2.3). Rivoire et al.
(2021) showed that this timing of extreme precipitation is
well captured by ERA5 in the extratropics but less so in the
tropics. Our choice of ERA5 was also motivated by its global
coverage, its regular spatial and temporal resolution, and its
consistency with the large-scale circulation (Rivoire et al.,
2021).

Our method can be applied to any kind of dataset, inde-
pendently of their spatial configuration and temporal reso-
lution. Still, we do not expect our results to change signif-
icantly using other gridded datasets, surface station data or
satellite observations. Indeed, previous studies have shown
that precipitation extremes in gridded observational and re-
analysis datasets correlated significantly (Donat et al., 2014)
and that reanalysis products tended to agree in capturing the
temporal clustering of heavy precipitation (Yang and Vil-
larini, 2019). These studies used ERA-Interim, the prede-
cessor of ERA5. More recently, Rivoire et al. (2021) com-

pared moderate to extreme daily precipitation from ERA5
against two observational gridded datasets, EOBS (station-
based) and CMORPH (satellite-based). Using the hit rate as
a measure of co-occurrence, they found that for days exceed-
ing the local 90th percentile, the mean hit rate is 65 % be-
tween ERA5 and EOBS (over Europe) and 60 % between
ERA5 and CMORPH (globally). They also found that the
differences between ERA5 and CMORPH are largest over
NW America, central Asia, and land areas between 15◦ S
and 15◦ N (the tropics). Another recent study by Tuel and
Martius (2021) on sub-seasonal clustering compared ERA5
with three satellite-based datasets (TRMM, CMORPH and
GPCP), as well as output from 25 CMIP6 global climate
models (GCMs). They found a good agreement on the spatio-
temporal clustering patterns across datasets.

2.2 Identification of extreme precipitation events

We used a peak-over-threshold approach to identify extreme
precipitation events from the time series of daily precipi-
tation per catchment (Coles, 2001). We consider only the
precipitation values exceeding the local annual 99th per-
centile. We use annual percentiles rather than seasonal per-
centiles because they are more impact relevant. To anal-
yse sub-seasonal serial clustering, high-frequency cluster-
ing had to be removed from the daily precipitation time se-
ries. High-frequency clustering, i.e. successive days of ex-
treme precipitation, can be caused by a stationary synop-
tic system (e.g., an extratropical cut-off cyclone). We em-
ployed the “runs declustering” method to account for the
high-frequency clustering (Ferro and Segers, 2003). Thereby,
given a run length r and a threshold t , days with precipita-
tion exceeding t that are separated by fewer than r days with
precipitation below t were grouped into one high-frequency
cluster (see Fig. 3a for an illustration). The run declustering
successively removes the short-term temporal dependence of
extremes so as to focus exclusively on clustering at longer
timescales (weekly and above). In this framework, a multi-
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Figure 2. The 99th annual percentile of daily precipitation per catchment (mm d−1). White areas correspond to the catchments that have
been excluded from the analysis.

day sequence of afternoon severe convective storms at the
same grid point would be reduced to a single event, while
being composed of multiple independent events. This is not
an issue because the present research is more targeted at the
larger-scale structures, such as mid-latitudes cyclones and
cut-off lows. More importantly, the spatial (0.25◦ lat–long)
and temporal (daily) resolutions of ERA-5 are too coarse to
properly target convective-scale precipitation, and many con-
vective extremes would be missed. Input data with a higher
temporal and spatial resolution should be used to apply our
approach to shorter timescales. After applying the decluster-
ing approach, a series of binary events of extreme daily pre-
cipitation was defined (Fig. 3a and b). In the case of a high-
frequency cluster, the first day of the cluster was retained as
the representative day for the event.

The choice of the two parameters (t and r) affects the dis-
tribution of independent extreme events (Coles, 2001). We
followed the empirical approach of Barton et al. (2016) to
determine reasonable values for the parameters. First, we se-
lected two different thresholds: the 98th and 99th annual per-
centiles (further denoted as 98 p and 99 p) of the catchment
area daily precipitation distribution. These thresholds have
been used in previous studies (e.g. Fukutome et al., 2015).

The run length can either be determined with an objective
method (Barton et al., 2016; Fukutome et al., 2015) or chosen
based on meteorological process arguments (Lenggenhager
and Martius, 2019). Following the approach of Lenggen-
hager and Martius (2019), we tested run lengths of both 1
and 2 d, corresponding to the influence time of a cyclone at
one location (Lackmann, 2011).

The R package evd (Stephenson, 2002) was used for the
computation of the yearly percentiles and the identification
of independent peaks over the threshold, i.e. for the removal

of the high-frequency clusters with the run declustering de-
scribed above.

2.3 Identification of sub-seasonal clustering episodes

The identification of sub-seasonal clustering episodes is
equivalent to searching for time periods (here 2 to 4 weeks)
that contain several extreme precipitation events. The first
step is to count the number of independent extreme precip-
itation events (nw) in a running (leading) time window of
w days, after the run declustering has been applied to the
time series. This count is computed for each day of the time
series over the next w−1 d (not w, as the starting day is in-
cluded in the time window length). In parallel, we calculate
the running sum of daily precipitation (accw) over the same
leading time window w. Time windows of w = 14, 21 and
28 d were investigated. Figure 3c and d show the values of
n21 and acc21, corresponding to the time series of Fig. 3a.

We then run an automated clustering episode identifica-
tion algorithm that consists of the following steps: (i) iso-
late the days with the largest value of nw (highlighted in
red in Fig. 3c). (ii) Among these days, retain the one with
the largest accumulation accw (the purple bar in Fig. 3d).
This selects a clustering episode which starts at the retained
day and ends w− 1 d later (shown by the red rectangle in
Fig. 3a). The clustering episode identified in Fig. 3a contains
four extreme events (n21 = 4), and the related accumulation
acc21 is 275 [mm]. (iii) Reduce the time series by remov-
ing all days within w−1 d before and after the starting day
of the selected episode (the purple window in Fig. 3d), to
avoid further selected episodes from overlapping. (iv) Repeat
steps (ii) and (iii) on the reduced time series to successively
select the next episodes with the largest values of nw and
accw until a predetermined number of episodes Nep = 50 is

Hydrol. Earth Syst. Sci., 25, 5153–5174, 2021 https://doi.org/10.5194/hess-25-5153-2021



J. Kopp et al.: Serial clustering of heavy precipitation 5157

reached. The choice of Nep is discussed below in greater de-
tail, and at this stage we emphasise that limiting the selec-
tion to 50 episodes is sufficient for our method. This iterative
selection results in the identification of 50 non-overlapping
clustering episodes sorted by the number of extreme events
(nw) and then by accumulations (accw). We denote this clas-
sification as Cln. The left panel of Table 2 shows the Cln
classification obtained for a subcatchment of the Tagus river
in the Iberian Peninsula (HydroBASINS ID: 2060654920).
The Cln classification contains information about the fre-
quency of sub-seasonal clustering. In a catchment where sub-
seasonal clustering scarcely happens, Cln would typically be
composed of a majority of episodes having a small number
of extremes (e.g. nw ≤ 2). However, for a catchment where
sub-seasonal happens frequently, Cln would be composed of
several episodes with more extreme events (e.g. 2≤ nw ≤ 6).
Additional examples of catchments can be found in Ap-
pendix A.

In addition, we identify and classify the episodes with
the largest precipitation accumulations as follows: we ap-
ply steps (ii) to (iv) of the automated identification algorithm
to the accumulation time series. This is equivalent to select-
ing episodes using the sole criterion of maximising accw (the
21 d accumulations) at each iteration. This second selection
results in the identification of 50 non-overlapping episodes
sorted by accumulations (accw). We denote this classifica-
tion as Clacc. The right half of Table 2 shows the Clacc clas-
sification obtained for the same catchment as the left half.
All episodes listed in Table 2 are represented on the yearly
timeline of Fig. 4 (in orange for Cln, in blue for Clacc and in
grey when they overlap), along with the timing of all extreme
events (black dots). We note that the choice of a centred or
lagged window, instead of a leading window, does not change
the values of nw and accw, except for the first and lastw days
of the time series. This has no significant impact on the re-
sults.

The degree of similarity between Cln and Clacc is the key
point in our method to evaluate the contribution of clustering
to large accumulations. This degree of similarity can be eval-
uated by doing a rank-by-rank comparison of the number of
extreme events (nw) in the episodes of Cln with the episodes
of Clacc. If the episodes composing Clacc and Cln have the
same nw at each rank, then it means that the episodes with
the largest number of extreme events are also leading to the
largest accumulations. In this particular case, the contribution
of clustering to accumulations is maximised. If an episode
of Clacc has fewer extreme events than the episode with the
same rank in Cln, then the contribution of clustering to accu-
mulations is below the maximum contribution. The episodes
selected in Cln and Clacc can be the same and ordered simi-
larly or differently (they appear in grey in Fig. 4), but they can
also differ (they appear in orange or blue in Fig. 4). The fifth
columns of the left and right halves in Table 2 illustrate such
a comparison, where the corresponding rank of each episode
in the other classification is displayed. If the column is empty,

Figure 3. Schematic illustration of the identification of a sub-
seasonal clustering episode with w = 21 d. (a) Time series of daily
precipitation with extreme precipitation days marked by blue bars;
the horizontal blue line represents the threshold t (e.g. the 99th per-
centile) defining the extreme events; the light blue shading high-
lights a high-frequency cluster (r = 2 d), and the red rectangle de-
notes the clustering episode identified using the information of pan-
els (c) and (d). (b) Series of binary events of extreme precipita-
tion obtained after applying the declustering approach to the daily
precipitation. (c) Number of extreme precipitation events in a run-
ning (leading) time window of 21 d (n21) based on the time series
in panel (b); the light red shading indicates the day with the largest
n21. (d) Precipitation accumulation in a running (leading) time win-
dow of 21 d (acc21) derived from the time series of panel (a); the
purple bar denotes the day with the largest acc21 among the days
with highest n21; this day is the starting day of the selected clus-
tering episode; all days within the light purple shading are removed
from the initial time series in the next step of the selection algo-
rithm.

it means that the episode is not present in the other classifi-
cation. In this example, both classifications share the same
first episode (nw = 5), but their second and third episodes
have different nw. We also note one episode without extreme
events in Clacc at rank 11. The additional examples in Ap-
pendix A illustrate cases with different degrees of similarity
between Cln and Clacc.
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Table 2. First 15 episodes of the Cln (left half) and Clacc (right half) classifications for the catchment with HydroBASINS ID 2060654920.
Episodes of Cln (Clacc) are ranked according to their number of extreme events n21 (their accumulation acc21). The rightmost column of
each panel indicates the corresponding rank of the episode in the other classification; if it is empty, the episode is not present in the other
classification.

Cln Clacc

Rank Starting day acc21 n21 Rank Rank Starting day acc21 n21 Rank
Cln [mm] Clacc Clacc [mm] Cln

1 5 December 1989 281 5 1 1 5 December 1989 281 5 1
2 25 December 1995 275 4 2 19 December 1995 279 3
3 23 December 2009 213 4 3 16 October 2006 275 2 11
4 25 January 1979 247 3 5 4 27 February 2018 255 2 12
5 11 November 1989 242 3 6 5 25 January 1979 247 3 4
6 4 December 1996 229 3 7 6 11 November 1989 242 3 5
7 3 October 1979 188 3 16 7 4 December 1996 229 3 6
8 19 October 1997 188 3 8 16 December 2009 220 3
9 18 October 2012 161 3 9 21 December 2000 214 2 13
10 25 October 2011 141 3 10 2 November 1983 212 2 14
11 16 October 2006 275 2 3 11 15 February 2010 202 0
12 27 February 2018 255 2 4 12 14 December 1981 196 1 28
13 21 December 2000 214 2 9 13 1 November 1997 191 2
14 2 November 1983 212 2 10 14 20 November 2000 191 2 15
15 20 November 2000 191 2 14 15 13 January 1996 190 2

Figure 4. For the catchment 2060654920, all extreme events are
shown as black dots, and 21 d episodes are highlighted by the
coloured rectangles. Episodes appearing in both classifications are
shown in grey, and those appearing only in the Cln classification
are shown in orange, whereas those only in the Clacc classifica-
tion are shown in blue. Episodes containing two or more extreme
events (nw ≥ 2) are highlighted with a red edge. The clustering
and contribution metrics (see Sect. 2.4) for this catchment are re-
spectively Scl = 43.63 and Scont = 0.89, indicating prevalent sub-
seasonal clustering with a substantial contribution to large accumu-
lations (similar to the catchment of Appendix A1).

2.4 Metrics for sub-seasonal clustering

Next we define metrics that synthesise the properties of
the two classifications to compare catchments. An intuitive
choice for the metrics would be to average the number of ex-
treme events; however such a choice would result in a loss of
information (see Appendix C for a more detailed discussion
on this). We take a different approach, equivalent to defining
a scoring system, where each episode is given a weight qi
depending on its rank in the classification, and this weight
is used as a proportion factor for the number of extreme
events in the episode. We have many options for defining
the weights. For example, taking the average over the Nep
episodes (as discussed in Appendix C) is the same as set-
ting all weights equal to 1

Nep
. Sitarz (2013) discusses a math-

ematical approach for defining a scoring system in sports,
with two intuitively appealing properties. First, the first place
should be rewarded more points than the second, and the sec-
ond more than the third, and so on. In our case, rewarding
more points is equivalent to giving a larger weight. Second,
the difference between the ith place and the (i+ 1)th should
be larger than the difference between the ith place and the
(i+2)th. The second property means that someone gaining a
place (or a rank) should be rewarded more if the initial rank
is higher, as improving at upper ranks is more challenging
than improving at lower ranks. We then follow the method of
the incentre of a convex cone (Sitarz, 2013) to construct our
weighting scheme (see Appendix B for a detailed descrip-
tion). The same weight qi is assigned to the ith episode of
each classification (Cln and Clacc). We have tried two other
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weighting schemes, also satisfying the two required proper-
ties: the inverse of the rank (qi = 1

i
) and the inverse of the

square root of the rank (qi = 1
√
i
). The former gave slightly

too much weight to the very first episodes of the classifica-
tion, and the latter gave almost identical results to the incen-
tre method. Our results are hence only slightly sensitive to
the choice of the weighting scheme, as long as it satisfies the
two desired properties.

We can now use each weight qi as a proportion factor
for the corresponding number of extreme events in the ith
episode for both classifications and derive the three follow-
ing metrics.

Scl =
∑
i∈Cln

nw(i) · qi (1)

Sacc =
∑
i∈Clacc

nw(i) · qi (2)

Scont =
Scl

Sacc
(3)

The first metric Scl, called the clustering metric, is the
weighted (qi) sum of the number of extreme events (nw(i))
over all episodes (i = 1 to 50) in the Cln classification. Scl is
proportional to the number of extreme events in the cluster-
ing episodes. It is most sensitive to the number of extreme
events in the first clustering episodes, which are given the
largest weight. In Sect. 2.5, we show that Scl correlates well
with the index of dispersion – a widely used measure of clus-
tering. Appendix A provides examples of catchments with
high and low values of Scl for illustration.

The second metric Sacc, called the accumulation metric,
is computed similarly to Scl, but using the episodes of the
Clacc classification, where episodes were ranked according
to their accumulations. As Scl and Sacc are computed using
the same weights, their ratio Scont can be used to make a
rank-by-rank comparison. Scont is equal to 1 when Sacc = Scl,
i.e. when the two classifications have episodes with the same
number of extreme events at identical ranks. Scont is equal
to 0 when Sacc = 0, i.e. when all episodes in the Sacc classi-
fication contain no extreme events (nw(i)= 0 ∀i ∈ [1,Nep]).
In this particular case, subseasonal clustering does not con-
tribute to large accumulation, and there is even no contri-
bution of single extremes to large accumulations. In other
cases, a proper assessment of the contribution of clustering
to large accumulations is done by considering both Scl and
Scont. Scont alone evaluates the similarity of the two classi-
fications, and catchments can have low values of Scl (lim-
ited sub-seasonal clustering) and high values of Scont at the
same time. The exact interpretation of intermediary values of
Scont requires looking at both classifications (Cln and Clacc)
in detail to see where they differ from each other. For ex-
ample, if Scont = 0.8, both classifications have a high degree
of similarity, but it does not necessarily imply that 80 % of
the episodes are ranked equally. Appendix A provides exam-

ples of catchments having high and low values of Scont as an
illustration.

We now briefly address some technical points related to
the definition of the metrics. First, we note that performing a
regression between Cln and Clacc would be a more conserva-
tive approach in assessing their degree of similarity because
it would require giving a unique identifier to each episode
according to its starting day. In that case, the strength of the
regression would be lowered when two episodes containing
the same number of extreme events just swap their ranks in
the two classifications. Such a change does not affect Scont.

Second, both scores depend on the number of clustering
episodes considered (Nep). The choice of Nep is arbitrary
but should be guided by some principles. The same value of
Nep should be chosen for both Scl and Sacc and for all catch-
ments to allow for comparisons. This implies that one cannot
simply iterate over the precipitation time series until all non-
overlapping episodes have been selected and classified. By
doing so, one could end up with different values of Nep for
each catchment. Moreover, the contribution of the ith term to
the sums in Scl and Scont becomes smaller as Nep increases.
We have tested several values of Nep ranging from 10 to 50
and found that the results with Nep ranging from 30 to 50 are
comparable. Hence, we selected Nep = 50 for our analysis.

Third, Scl and Sacc both increase with the number of ex-
treme events per episode, so any parameter change which in-
creases this number will also lead to an increase in Scl and
Sacc. The variations in Scont with the parameters depend on
the variations in both Scl and Sacc. This sensitivity to the pa-
rameters is assessed in Sect. 3.2.

2.5 Correlations with index of dispersion and
significance test

We computed the index of dispersion φ for each catchment
(Cox and Isham, 1980; Mailier et al., 2006) to compare our
results to a more traditional method. For an homogeneous
Poisson process, φ = 1. When φ > 1, the process is more
clustered than random. When φ < 1, the process is more reg-
ular than random (Mailier et al., 2006). To estimate φ for a
given catchment, we separated the precipitation time series
in successive intervals of w days and counted the number of
extreme events in each interval. An estimator of φ is then
given by (Mailier et al., 2006)

φ̂ =
s2
n

n
, (4)

where n is the sample mean and s2
n the sample variance of

the number of extreme events in the 14199
w

intervals, where
14199 is the number of days in our time series.

We computed Scl and φ̂ and calculated their Spearman
rank correlation coefficient (Wilks, 2011) for all catchments
and for each parameter combination (Table 3). All correla-
tion coefficients are positive with values between 0.738 and
0.885 and significant with p values< 10−5. Figure 5 displays
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a scatter plot of Scl versus φ̂ for all catchments for the ini-
tial parameter combination (r = 2d, t = 99p,w = 21d) and
illustrates this correlation. This significant positive correla-
tion means that the use of Scl and φ̂ leads to similar con-
clusions about the clustering of extreme precipitation events.
This is further illustrated in Figs. 6a and E1, which respec-
tively show a map of Scl and a map of φ̂ for the initial pa-
rameter combination. A visual comparison of the two maps
reveals that regions of high (low) Scl correspond to regions
of high (low) φ̂.

An evident drawback of Scl compared to φ̂ is the lack of
a reference value above (below) which there is (no) cluster-
ing (e.g. φ̂ = 1). While we cannot derive such a reference
value, we can still use a bootstrap-based approach to assess
how significant the value of Scl is for each catchment. More
precisely, we tested the following hypothesis:

H0 : The clustering episodes contain a number of extreme
precipitation events (nw) which is not higher than for a
distribution of those extremes without temporal struc-
ture (random).

H1 : The clustering episodes contain a number of extreme
precipitation events (nw) which is significantly higher
than for a distribution of those extremes without tempo-
ral structure (random).

We reject H0 if the observed value of Scl is significantly
greater than a given threshold. A rejection of H0 at a certain
level of significance will be further noted as “significant sub-
seasonal clustering” for simplicity. To this end, 1000 random
samples were generated by doing permutations of the pre-
cipitation time series (i.e. each daily value is drawn only one
time in each sample, without repetition; this way the distribu-
tion quantiles remain identical.). Scl was calculated for each
sample, using the initial parameter combination and leading
to an empirical distribution of Scl values. An empirical cu-
mulative distribution function (ECDF) was calculated from
the Scl empirical distribution, and an empirical p value was
obtained by evaluating the ECDF at the observed Scl value:
1−ECDF(Scl(obs)). At a 1 % level, approx. 42 % of the
catchments (2729 out of 6466) show significant sub-seasonal
clustering (Fig. 6b, catchments in red).

Interestingly, the whole Scl empirical distribution based on
the random samples is almost identical for all catchments,
with a mean value around 31.42. This means that a selec-
tion of catchments based on a given level of significance can
be well approximated by a selection based on relatively high
observed Scl values. In Sect. 3, we select catchments which
are either below the 25th percentile or above the 75th per-
centile of the observed Scl distribution for all catchments.
It allows for a quick selection of catchments with rare or
prevalent sub-seasonal clustering for each parameter combi-
nation, whereas the permutation/resampling approach would
have required more computational time. We compared the

Table 3. Spearman rank correlation coefficients between Scl and φ̂
for all parameter combinations.

r t w Cor.
[days] [p] [days] coeff.

1 98 14 0.832
1 98 21 0.871
1 98 28 0.885
1 99 14 0.814
1 99 21 0.844
1 99 28 0.860
2 98 14 0.738
2 98 21 0.816
2 98 28 0.840
2 99 14 0.765
2 99 21 0.816
2 99 28 0.836

two selection methods for the initial parameter combination
and found only limited differences.

Many catchments have a very low p value because we take
an annual percentile for defining the extreme precipitation
events. With this definition, catchments with strong season-
ality in the precipitation (e.g. with extremes occurring during
a “wet” season) will have their extreme events occurring only
during a few months. A random permutation of the daily pre-
cipitation will redistribute the extremes equally during the
year in most cases, corresponding to much lower values of
Scl. Taking seasonal percentiles would most likely result in
fewer catchments having very low p values. The implica-
tions of seasonality and the choice of an annual percentile
are further discussed in Sect. 4.

3 Results

3.1 Sub-seasonal clustering and its contribution to
accumulations

Sub-seasonal clustering is prevalent in catchments having
high values of Scl (see Sect. 2.5). Such catchments are lo-
cated in the east and northeast of the Asian continent (north-
east of Siberia, northeast of China, Korean Peninsula, south
of Tibet), between the northwest of Argentina and the south-
west of Bolivia, in the northeast and northwest of Canada as
well as in Alaska, and in the southwestern part of the Iberian
Peninsula (Fig. 6a). Regions with low values of Scl are lo-
cated on the east coast of North America, on the east coast
of Brazil, in central Europe, in South Africa, in central Aus-
tralia, in New Zealand and in the north of Myanmar (Fig. 6a).
Catchments with strongly contrasting values of Scl are rarely
found in close proximity, except for a group of catchments
located northeast of the Himalayas (south of Tibet) and an-
other group located southeast of the Himalayas (Bangladesh
and Myanmar). The catchments to the north have high val-
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Figure 5. Scatterplot of the index of dispersion φ̂ versus the Scl met-
ric for all selected catchments for the initial parameter combination
(r = 2d, t = 99p, w = 21d).

ues of Scl, whereas the neighbouring catchments to the south
exhibit low values of Scl.

The contribution of sub-seasonal clustering to precipita-
tion accumulations is analysed with both Scl and Scont. Catch-
ments with high values of Scl and Scont are of special in-
terest, because in these catchments, sub-seasonal clustering
is prevalent and contributes substantially to large 21 d pre-
cipitation accumulations. We identify such catchments by
considering those whose values of Scl and Scont are greater
than the 75th percentile of their respective distribution for
all catchments. The choice of the 75th percentile makes it
possible to focus on the highest values, without being too re-
strictive, and follows the quick selection method mentioned
in Sect. 2.5. Catchments where sub-seasonal clustering is
prevalent and contributes substantially to large accumula-
tions are mainly concentrated over eastern and northeastern
Asia (Fig. 7a), in an area covering northeastern China, North
and South Korea, Siberia, and east of Mongolia. Other ar-
eas with several catchments of interest are central Canada,
south California, Afghanistan, Pakistan, the southwest of the
Iberian Peninsula, the north of Argentina, and the south of
Bolivia. Every continent includes groups of two to three or
isolated catchments. Appendix A1 contains detailed informa-
tion for an example catchment with a strong seasonality lo-
cated in northeastern China (Scl = 41.14, Scont = 0.93). Al-
most all extreme events happen between June and August,
which make clustering episodes and periods of large accu-
mulations more likely to overlap.

We also identify catchments with values of Scl below
the 25th percentile and values of Scont above the 75th per-

centile (Fig. 7b). Low values of Scl mean that the clustering
episodes identified by our algorithm contain a small number
or even no extreme events, and high values of Scont mean
that those episodes lead to the largest accumulations. Such
regions that exhibit rare clustering and where this rare clus-
tering contributes substantially to large accumulations are
the following: Taiwan, most of Australia, central Argentina,
South Africa, south of Botswana and south of Greenland.
Again, every continent includes groups of two to three or
isolated catchments. Interestingly, the identified catchments
are almost all located in the Southern Hemisphere. An ex-
ample located in Australia is presented in detail in Appendix
A1 (Scl = 26.79, Scont = 0.90). The extreme events are dis-
tributed throughout the whole year, and only a limited num-
ber of episodes contain two or more extreme events.

Finally, we identify regions with values of Scl above the
75th percentile and values of Scont below the 25th percentile
(Fig. 7c). The high values of Scl mean that the clustering
episodes identified by our algorithm contain a relatively large
number of extreme events, whereas the low values of Scont
mean that episodes leading to the largest accumulations con-
tain a low number or even no extreme events. Such regions
that exhibit prevalent clustering with a limited contribution to
large accumulations are located in central China, the south-
west of Japan and central Bolivia. Again, every continent in-
cludes groups of two to three or isolated catchments. Only a
few catchments exhibit this combination of high Scl and low
Scont values, highlighting the importance of the clustering of
extreme events for generating the largest accumulations for
the majority of the catchments. An example located in cen-
tral China is presented in detail in Appendix A3 (Scl = 43.23,
Scont = 0.59). The seasonality is present but less pronounced
than in Appendix A1: almost all extreme events happen be-
tween mid-May and September. However, in this case, clus-
tering episodes and periods of large accumulations tend not
to overlap as much as in Appendix A1. This is a particu-
larly interesting feature, especially because the two different
patterns exemplified by Appendices A1 and A3 happen in
neighbouring regions.

We investigated a potential link between the catchment
size (in km2) and both the clustering (Scl) and contribution
metric (Scont), by computing their Spearman rank correla-
tion coefficient, but we found no significant correlations (not
shown).

The physical drivers of the sub-seasonal clustering of ex-
treme precipitation are numerous, and a detailed analysis of
the identified clustering patterns is beyond the scope of the
present research. Generally speaking, sub-seasonal cluster-
ing of extremes requires either very stationary or recurrent
conditions that locally provide the ingredients for heavy pre-
cipitation (lifting and moisture) (Doswell et al., 1996). In
some areas, large-scale patterns of variability were found to
be relevant, such as the North Atlantic Oscillation (e.g., Vil-
larini et al., 2011; Yang and Villarini, 2019), the El Niño–
Southern Oscillation (Tuel and Martius, 2021) or the vari-
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Figure 6. Metric Scl (a) and sub-seasonal clustering significance (b) by catchment, for r = 2d, t = 99p and w = 21d. In (a), high values of
Scl denote catchments where sub-seasonal clustering is prevalent. In (b), catchments where Scl is significantly higher than for a distribution
of extremes events without temporal structure are shown in red at the 1 % level.

ability of the extratropical storm tracks (Bevacqua et al.,
2020). However, in other areas the circulation patterns asso-
ciated with clustering differ from the patterns of variability
(Tuel and Martius, 2021). We direct the interested readers to
the above-mentioned publications.

3.2 Sensitivity analysis

The choice of the parameters will affect the values of Scl
and Sacc. A lower (higher) threshold t and a shorter (longer)
run length r both increase (decrease) the number of extreme
events and lead to an increase (decrease) in Scl (Fig. D1 and
Table D1). A longer (shorter) time window w increases (de-
creases) the likelihood of capturing more extreme events in
a single episode and also leads to an increase in Scl (Fig. D1
and Table D1). Sacc will be impacted similarly to Scl. The
sensitivity of Scl and Sacc to the parameters does not affect
our general conclusions. Indeed, a change of parameters im-
pacts all catchments, so while the scale of Scl (or Sacc) is
changed, the comparison of two catchments will result in
the same conclusion in almost all cases (not shown). That
is, a catchment with a relatively low value of Scl compared

to other catchments for one parameter combination will also
have a relatively low value for other combinations and simi-
larly for high values. However, the variations in Scont with the
parameters depends on the variations in both Scl and Sacc. If
the variations in Scl and Sacc are of the same order of mag-
nitude, then Scont will change only slightly. It is therefore of
interest to perform a sensitivity analysis on Scont by modify-
ing the parameters used to define the clustering episodes to
see whether the distribution of Scont remains similar.

Figure 8a shows the distributions of Scont for all param-
eter combinations, while Fig. 8b displays the distributions
of the difference between the initial parameter combination
(r = 2d, t = 99p, w = 21d) and the other combinations. The
data used to draw the boxplots can be found in Tables F1 and
F2 in the Appendix. The median value of Scont, indicated by
the green lines in the boxplots, exhibits very low sensitivity
to changes in the parameters with a minimum value of 0.79
(for r = 2d, t = 98p, w = 14d; see Fig. 8a) and a maximum
value of 0.84 (r = 1d, t = 98p, w = 28d). The same conclu-
sion holds for the mean. In addition, the interquartile range
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Figure 7. (a) Catchments where Scl and Scont are both above their respective 75th percentile (pink areas). (b) Catchments where Scl < 25p
and Scont > 75p (pink areas) and (c) catchments where Scl > 75p and Scont < 25p (pink areas). In all panels, catchments in grey do not
satisfy the respective conditions, whereas catchments in white were excluded from the analysis according to the criteria defined in Sect. 2.1.

and the position of the outliers are similar for all parameter
combinations.

Examination of Fig. 8b reveals that the differences in Scont
between the initial combination of parameters and the other
combinations are relatively small for most catchments. For
example, a change in r from 2 to 1 d, while keeping t and
w constant (r = 1d, t = 99p, w = 21d), results in an abso-
lute difference in Scont smaller than 0.05 for almost all catch-
ments. However, the variation can be more substantial for

other parameter combinations. For example, a change in t
from 99 to 98p and in w from 21 to 14 d, while keeping
r constant (e.g. r = 2d, t = 98p, w = 14d), leads to much
larger absolute differences in Scont that can reach up to 0.35.
Moreover, Scont at a given catchment can exhibit a wide range
of variations when looking at all parameter combinations
(not shown).

Taking into account the potential for high sensitivity to
the parameters, we counted the number of parameter com-
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Figure 8. Boxplots of (a) Scont for all catchments and parameter combinations and (b) of the differences in Scont between the initial parameter
combination (the second boxplot from the left, i.e. r = 2d, t = 99p, w = 21d) and the other combinations. Boxes extend from the first (Q1)
to the third (Q3) quartile values of the data, with a blue line at the median. The position of the whiskers is 1.5× (Q3−Q1) from the edges
of the box. Outlier points past the end of the whiskers are shown with black circles.

binations where catchments are above the 75th percentile
of both the Scl and Scont distributions to reach more robust
conclusions. Areas with high counts, i.e. where catchments
have been selected in several parameter combinations, are
almost identical to the ones identified with the initial param-
eter combination (Fig. 9a). This means that the parameter
selection does not have a substantial impact on the identi-
fied regions where sub-seasonal clustering occurs frequently
and contributes substantially to large accumulations. This ro-
bustness with respect to variations in the parameters is also
found for the catchments with Scl < 25p and Scont > 75p
(rare clustering with substantial contribution) and Scl > 75p
and Scont < 25p (frequent clustering with limited contribu-
tion),

4 Discussion and conclusions

We present a novel count-based procedure to analyse sub-
seasonal clustering of extreme precipitation events. The pro-
cedure identifies individual clustering episodes and intro-
duces two metrics to characterise the frequency of sub-
seasonal clustering episodes (Scl) and their relevance for
large precipitation accumulations (Scont). Applying this pro-
cedure to the recent ERA5 dataset, we identify regions where
sub-seasonal clustering of annual high precipitation per-
centiles occurs frequently and contributes substantially to
large precipitation accumulations. Those regions are the east

and northeast of the Asian continent, central Canada and the
south of California, Afghanistan, Pakistan, the southwest of
the Iberian Peninsula, and the north of Argentina and south
of Bolivia. The method is robust with respect to changes in
the parameters used to define the extreme events (the thresh-
old t and the run length r) and the length of the episode (the
time window w).

Conceptually, our approach differs from previously pro-
posed methods to quantify sub-seasonal clustering that are
based on parametric distributions with associated assump-
tions on the underlying distributions of the data. A major
advantage of our method is that it does not require the in-
vestigated variable (here precipitation) to satisfy any specific
statistical properties. This allowed us to study annual per-
centiles, which in most catchments exhibit a strong seasonal
cycle. The seasonal cycle violates the independence assump-
tions underlying the parametric approaches. The seasonality
issue is countered in the parametric approaches by either fo-
cusing on a single season (e.g., Mailier et al., 2006) or by
including a seasonally varying occurrence rate in the mod-
els (Villarini et al., 2013). Working with annual percentiles
allows us to focus on high-impact events. This comes at the
cost of not being able to distinguish seasonal drivers from
other drivers of sub-seasonal clustering. If precipitation in
some regions occurs more often or with more intensity dur-
ing a specific period of the year, then the use of an annual
threshold will result in a more frequent detection of extremes
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Figure 9. (a) Count of parameter combinations where Scl > 75p and Scont > 75p (pink areas). (b) Count of parameter combinations where
Scl < 25p and Scont > 75p (pink areas) and (c) count of parameter combinations where Scl > 75p and Scont < 25p (pink areas). In all panels,
catchments in grey do not satisfy the respective conditions for any parameter combination, whereas catchments in white were excluded from
the analysis according to the criteria defined in Sect. 2.1.

during this specific period. Consequently, extremes will also
be more likely to happen successively in a sub-seasonal time
window. Hence, a catchment exhibiting a strong seasonality
of extreme precipitation would likely show higher values of
Scl than a catchment where precipitation shows no or weak
seasonality. Finally, we note that our method can be applied
using seasonally varying percentiles, by taking certain pre-

cautions in the identification of episodes to avoid edge effects
at each season transition (Barton et al., 2016).

Our procedure introduces valuable practical refinements
to the established methods. First, the identification of indi-
vidual clustering episodes allows researchers to study the
atmospheric conditions that prevailed before and during an
episode and hence the processes leading to clustering. An
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Figure 10. Example of a sub-seasonal clustering episode identified with our procedure for catchment 2060654920 of HydroBASINS.
(a) Daily precipitation with extreme precipitation events marked by blue bars. The horizontal blue line represents the 99 p of the catch-
ment area daily precipitation distribution. (b) Potential vorticity composite in PVU on the 320 K isentropic level (colour shading) and
dynamical tropopause identified by the 2 PVU contour (black line). (c) Integrated vapour transport composite magnitude (shading) and field
in kg m−1 s−1 (arrows) and sea level pressure (SLP) composite in hPa (black contours). The black and red markers indicate the catchment
location in panels (b) and (c) respectively. Both composites were calculated as the mean of the ERA5 6-hourly fields during the episode.
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illustration is given in Fig. 10a, which shows a 21 d cluster-
ing episode identified with our procedure for a catchment of
the Iberian Peninsula (HydroBASINS ID no. 2060654920),
with the corresponding potential vorticity and integrated
vapour transport composites (Fig. 10b and c respectively).
Second, knowing when clustering episodes happen enables
researchers to study their medium range to seasonal pre-
dictability (see Webster et al., 2011 for an example). Third,
the episode identification makes it possible to link the precip-
itation clustering to hydrological impacts (e.g., using disas-
ter databases or hydrological models). And finally, the Scont
metric allows the global assessment of the contribution of
sub-seasonal clustering to high precipitation accumulations,
which to our knowledge cannot be done with any existing
method.

The objective of the present paper was to introduce a new
methodology and to demonstrate its application to the study
of sub-seasonal clustering of extreme precipitation. It paves
the way for further research on several aspects. First, poten-
tial extensions of the method itself could be explored, such
as integrating the magnitude of each extreme event within
an episode and sequencing its variability. Second, possi-
ble trends in the contribution of clustering to accumulations
could be studied by comparing values of Scl and Scont in the
first half and the second half of the investigated period. Third,
the method could provide insights into the physical drivers
of clustering by looking at scaling between the two metrics
and other environmental variables (such as temperature or
pressure) during selected clustering episodes or globally. Re-
gions that exhibit frequent clustering according to our ap-
proach could be studied with other methods to see whether
the sub-seasonal clustering is due to seasonal effects such as
monsoon circulations, changes in sea surface temperatures or
seasonal variability of the extratropical storm tracks. We also
think that our approach is very flexible and that it could also
be used to identify serial clustering of other variables (e.g.
heat waves) and can be applied on different timescales (e.g.
for drought years). An example would be the classification
of hurricane seasons using frequency and categories of hur-
ricanes. For this reason, we have made our code available on
the listed GitHub repository.
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Appendix A: Examples of episodes by catchment

A1 Catchment with frequent sub-seasonal clustering
contributing substantially to large accumulations

Figure A1. Catchment 4060460860 located in northeastern China,
with prevalent clustering (Scl = 41.14) and a high degree of simi-
larity between the classifications Cln and Clacc: Scont = 0.93. All
extreme events are shown as black dots, and 21 d episodes are high-
lighted by the coloured rectangles. Episodes appearing in both clas-
sifications are shown in grey, and those appearing only in the Cln
classification are shown in orange, whereas those only in the Clacc
classification are shown in blue. A total of 34 episodes contain two
or more extreme events (nw>=2) and are highlighted with a red
edge.

A2 Catchment with rare sub-seasonal clustering
contributing substantially to large accumulations

Figure A2. Catchment 5060089390 located in Australia, with rare
clustering (Scl = 26.79) and a high degree of similarity between the
classifications Cln and Clacc: Scont = 0.9. In that case, most of the
contribution to precipitation accumulations is due to isolated ex-
treme events. A total of 11 episodes contain two or more extreme
events (nw>=2). Extreme events and episodes are shown as in
Fig. A1.

A3 Catchment with frequent sub-seasonal clustering
and limited contribution to large accumulations

Figure A3. Catchment 4060660750 located in central China, preva-
lent clustering (Scl = 43.23) and a limited degree of similarity be-
tween the classifications Cln and Clacc: Scont = 0.59. A total of 35
episodes contain two or more extreme events (nw>=2). Extreme
events and episodes are shown as in Fig. A1.

Appendix B: Calculation of the weights

Sitarz (2013) assume two intuitive conditions for a scoring
system. First, more points are assigned to the first place than
to the second place, more to the second than to the third and
so on. Second, the difference between the ith place and the
(i+ 1)th place should be larger than the difference between
the (i+ 1)th place and the (i+ 2)th place. This is equivalent
to considering the following set of points:

K =
{
(x1,x2, . . . ,xN ) ∈ RN : x1 ≥ x2 ≥ . . .≥ xn ≥ 0

and x1−x2 ≥ x2−x3 ≥ . . .≥ xN−1−xN } , (B1)

where x1 denotes the points for the first place, x2 the points
for the second place, . . . and xN the points for theN th place.
Any choice of points in K would satisfy the two conditions
for a scoring system; however we would like to have a unique
and representative value. The option chosen by Sitarz (2013)
is to look for the equivalent of a mean value: the incentre of
K . Formally, the incentre is defined as an optimal solution of
the following optimisation problem by Henrion and Seeger
(2010):

max
x∈K∩Sx

dist(x,∂K), (B2)

where Sx denotes the unit sphere, ∂K denotes the boundary
of setK and dist denotes the distance in the Euclidean space.
By using the calculation presented in the Appendix of Sitarz
(2013), and dividing the points of the first place (x1) to get
the weights (qi), we obtain
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qi =
xi

x1
, ∀i ∈ [1,N ]. (B3)

The weight q1 is always 1, but the values of weights q2 to qN
depend on N , and in our case N is the number of clustering
episodes Nep.

Appendix C: Rationale behind the construction of the
metrics

An intuitive choice to define the metrics (see Sect. 2.4) is
to use the sum or average of the number of extreme events
over all (or a subset of) the episodes of Cln and Clacc. How-
ever, such a choice would result in a loss of relevant infor-
mation on how the episodes are ranked and preclude a rank-
by-rank comparison between classifications. This can be il-
lustrated with the following theoretical example: let us con-
sider a catchment where Cln is composed of five episodes,
each with three extreme events, and five other episodes,
each with one extreme event (i.e. Nep = 10). The average
number of extreme events is two. If Clacc is composed of
the same episodes, then the average remains identical what-
ever the order of the episodes in Clacc, and we cannot say
anything about the contribution of clustering to accumula-
tions by comparing the averages. For example, all episodes
with one extreme event could have larger accumulations than
those with three extreme events. There is a low contribu-
tion of clustering to accumulations in this case, and met-
rics based on averages would not be able to capture this
feature. A metric based on average would also fail to cap-
ture some differences in the same classification between two
catchments. This again can be illustrated with a theoretical
example: let us consider catchment A where Cln is composed
of five episodes, one with five extreme events, the four oth-
ers without an extreme event, and catchment B, where Cln is
composed of five episodes, each with one extreme event. In
both cases the average number of extreme events is one but
the clustering behaviour is different. Consequently, we need
a way to properly account for the respective rank of each
episode in both classifications.
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Appendix D: Distributions of Scl and related data

Figure D1. Boxplots of Scl for all catchments and parameter combinations. Boxes extend from the first (Q1) to the third (Q3) quartile values
of the data, with a blue line at the median. The position of the whiskers is 1.5 · (Q3−Q1) from the edges of the box. Outlier points past the
end of the whiskers are shown with black circles.

Table D1. Descriptive statistics of the Scl distributions for all parameter combinations. The measures are, from top to bottom, the mean
value, the standard deviation, the minimum value, the first quartile, the median value, the third quartile and the maximum value.

Measure r2t99w14 r2t99w21 r2t99w28 r1t99w14 r1t99w21 r1t99w28 r2t98w14 r2t98w21 r2t98w28 r1t98w14 r1t98w21 r1t98w28

Mean 30.51 34.99 38.37 32.13 36.58 39.98 39.58 46.66 52.77 42.87 50.30 56.61
SD 2.88 3.35 3.85 3.11 3.62 4.14 2.94 4.35 5.29 3.80 5.15 6.10
Min 20.64 24.79 26.97 22.29 26.39 27.51 31.69 34.47 39.13 32.85 35.62 40.15
Q1 28.50 32.47 35.45 29.95 33.92 36.92 37.49 43.33 48.71 39.94 46.37 51.99
Median 30.46 34.89 38.11 32.12 36.30 39.65 39.16 46.37 52.56 42.62 50.02 56.21
Q3 32.42 37.14 40.97 34.11 38.90 42.69 41.37 49.54 56.40 45.37 53.63 60.70
Max 44.35 53.54 59.94 45.75 56.33 64.15 52.29 68.22 81.35 60.50 75.41 89.24

Appendix E: Map of φ̂ (index of dispersion)

Figure E1. Index of dispersion φ̂ by catchment, for r = 2d, t = 99p and w = 21d. φ̂ > 1 denotes catchments where extreme precipitation
events are more clustered than random.
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Appendix F: Data of Fig. 8a and b

Table F1. Descriptive statistics of the Scont distributions for all parameter combinations. The measures are the same as in Table D1.

Measure r2t99w14 r2t99w21 r2t99w28 r1t99w14 r1t99w21 r1t99w28 r2t98w14 r2t98w21 r2t98w28 r1t98w14 r1t98w21 r1t98w28

Mean 0.78 0.78 0.78 0.79 0.79 0.79 0.78 0.81 0.82 0.80 0.82 0.83
SD 0.06 0.07 0.07 0.06 0.07 0.07 0.05 0.05 0.05 0.05 0.05 0.05
Min 0.42 0.38 0.32 0.44 0.37 0.31 0.53 0.53 0.55 0.57 0.54 0.53
Q1 0.75 0.74 0.74 0.75 0.75 0.75 0.75 0.78 0.79 0.77 0.79 0.80
Median 0.79 0.79 0.79 0.80 0.80 0.80 0.79 0.81 0.82 0.81 0.82 0.84
Q3 0.83 0.83 0.84 0.84 0.84 0.84 0.82 0.84 0.85 0.84 0.85 0.86
Max 0.95 0.93 0.96 0.95 0.95 0.97 0.93 0.93 0.94 0.94 0.94 0.95

Table F2. Descriptive statistics of the distributions of the difference between the initial parameter combination (r = 2d, t = 99p,w = 21d)
and the other combinations. The measures are the same as in Table D1.

Measure r2t99w14 r2t99w28 r1t99w14 r1t99w21 r1t99w28 r2t98w14 r2t98w21 r2t98w28 r1t98w14 r1t98w21 r1t98w28

Mean 0.00 0.00 0.01 0.01 0.01 0.00 0.03 0.04 0.02 0.04 0.05
SD 0.04 0.04 0.04 0.02 0.04 0.07 0.06 0.06 0.07 0.06 0.06
Min −0.16 −0.14 −0.16 −0.05 −0.16 −0.27 −0.21 −0.19 −0.26 −0.20 −0.17
Q1 −0.03 −0.02 −0.02 0.00 −0.01 −0.04 −0.01 0.00 −0.02 0.00 0.01
Median 0.00 0.00 0.01 0.00 0.01 0.00 0.03 0.04 0.02 0.04 0.05
Q3 0.03 0.03 0.04 0.02 0.03 0.05 0.06 0.08 0.07 0.08 0.09
Max 0.23 0.16 0.20 0.13 0.18 0.35 0.35 0.35 0.38 0.34 0.34
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Code and data availability. ERA5 data are available on the Coper-
nicus Climate Change Service (C3S) Climate Data Store:
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2018).

HydroBASINS data are available on the HydroSHEDS website:
https://www.hydrosheds.org/downloads (last access: 16 Septem-
ber 2021) (Lehner and Grill, 2013).

The complete code used to identify the clustering episodes, com-
pute the metrics and generate all the figures is available on the
following Zenodo page: https://doi.org/10.5281/zenodo.5330676
(Kopp, 2021b).

Datasets created in this study are available from
the FAIR-aligned repository in the in-text data citation
(https://doi.org/10.5281/zenodo.5330713; Kopp, 2021a.
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