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Abstract: Increased cell proliferation is a hallmark of acute lymphoblastic leukemia (ALL), and
genetic alterations driving clonal proliferation have been identified as prognostic factors. To evaluate
replicative history and its potential prognostic value, we determined telomere length (TL) in lym-
phoblasts, B-, and T-lymphocytes, and measured telomerase activity (TA) in leukocytes of patients
with ALL. In addition, we evaluated the potential to suppress the in vitro growth of B-ALL cells
by the telomerase inhibitor imetelstat. We found a significantly lower TL in lymphoblasts (4.3 kb
in pediatric and 2.3 kb in adult patients with ALL) compared to B- and T-lymphocytes (8.0 kb and
8.2 kb in pediatric, and 6.4 kb and 5.5 kb in adult patients with ALL). TA in leukocytes was 3.2 TA/C
for pediatric and 0.7 TA/C for adult patients. Notably, patients with high-risk pediatric ALL had a
significantly higher TA of 6.6 TA/C compared to non-high-risk patients with 2.2 TA/C. The inhibition
of telomerase with imetelstat ex vivo led to significant dose-dependent apoptosis of B-ALL cells.
These results suggest that TL reflects clonal expansion and indicate that elevated TA correlates with
high-risk pediatric ALL. In addition, telomerase inhibition induces apoptosis of B-ALL cells cultured
in vitro. TL and TA might complement established markers for the identification of patients with
high-risk ALL. Moreover, TA seems to be an effective therapeutic target; hence, telomerase inhibitors,
such as imetelstat, may augment standard ALL treatment.

Keywords: acute lymphoblastic leukemia (ALL); clonal expansion; replicative history; telomere
length; telomerase activity; prognostic markers; telomerase inhibitor; imetelstat

1. Introduction

Recently, a number of genomic studies have facilitated the further subclassification
of pediatric and adult acute lymphoblastic leukemia (ALL) and provided deeper insight
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into the interplay of genetic alterations and their possible role in disease pathogenesis [1,2].
Some of these alterations bear significant implications for the diagnosis, risk stratification,
and therapeutic approach of childhood and adult ALL [3,4]. However, early identification
of patients with high-risk disease allowing timely treatment adaption remains challenging.
Complementing prognostic markers and additional therapeutic agents are urgently needed.

Uncontrolled cellular proliferation is a key feature of ALL, and the assessment of
altered regulatory cellular mechanisms driving clonal expansion might add to the un-
derstanding of different disease courses and the identification of potential therapeutic
targets. Cellular proliferation in human cells is closely associated with the regulation of
telomere length (TL) maintenance and telomerase activity (TA). Due to the lack of TA in
most human somatic cells, telomere repeats are lost with each cell division, resulting in
telomere attrition with cellular replication and age. In contrast, most human cancer cells
reactivate telomerase, thereby compensating for the loss of telomere repeats with cellular
replication, enabling immortality [5,6]. Short telomeres and detectable levels of TA are de-
scribed in adult and pediatric solid tumors and hematologic neoplasia [7–12]. Telomerase
has become a target of novel therapies, and recent preclinical and clinical studies have
demonstrated the efficacy of the competitive telomerase inhibitor imetelstat in hematologic
malignancies, in particular, myeloproliferative neoplasms, myelodysplastic syndromes,
and acute myeloid leukemia [13–16].

The main aim of this pilot study was to test whether the determination of TL and TA
at the time of diagnosis could facilitate the early identification of pediatric patients with
ALL and high-risk features, allowing timely treatment adaption. In addition, our goal was
to assess the ex vivo effects of imetelstat on primary B-ALL cells, suggesting a potential
augmentative role in future ALL treatment.

2. Patients and Methods
2.1. Study Design

Screening of TL and TA was conducted in two separate patient cohorts, one comprising
pediatric and the other, adult patients with ALL. In the latter cohort, additional assays
testing the ex vivo effects of imetelstat on primary B-ALL cells were performed. The
study was carried out in accordance with the Declaration of Helsinki after approval by
the Swiss cantonal Ethics Committee, Bern (Ref.-Nr. KEK-BE: 2017-00914/2019-01043).
Written informed consent was obtained from the patients’ legal guardians and the patients,
if applicable, after they were provided age-appropriate oral and written information.

From the pediatric patients, between 2.5 mL and 5 mL of EDTA-anticoagulated pe-
ripheral blood (PB) was collected in parallel with routine diagnostics for the measurements
of TL in leukocyte subsets at the time of diagnosis, and of TA in leukocytes at the time of
diagnosis and during induction therapy.

Clinical and laboratory data at diagnosis and during follow up were extracted from
in-house and reference records.

For measurements of TL and TA and testing of the ex vivo effects of imetelstat in
primary cells of adult patients with B-ALL, samples with 10 mL of EDTA-anticoagulated
PB were collected at the Department of Hematology, University Hospital Essen, Germany,
after obtaining informed consent and according to institutional guidelines.

2.2. Patients

For the pediatric cohort, children and adolescents aged 0–17 years with newly diag-
nosed B- or T-ALL before treatment initiation were eligible. All pediatric patients were
treated according to the international collaborative treatment protocol for children and ado-
lescents with ALL of the AIEOP-BFM ALL 2009 Registry. Accordingly, standard induction
therapy comprised the continuous application of oral steroids from day 1 with tapering
between days 29 and 37; infusion of vincristine and daunorubicin on days 8, 15, 22, and 29;
and PEG-asparaginase on days 12 and 26, complemented by intrathecal methotrexate on
days 1, 12, and 33.
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For the adult cohort, patients ≥ 18 years with a diagnosis of B-ALL before the start
of therapy were included. Classification into risk groups was based on hematologic
parameters, immunophenotype, (cyto)genetics, and treatment response [4,17].

2.3. Measurement of Telomere Length

Blood samples were transferred immediately to the laboratory, and an erythrocyte
lysing step, using ammonium chloride (STEMCELL Technologies Germany, GmbH,
Cologne, Germany) added by a washing step in PBS (pH 7.3, no calcium, no magnesium; In-
stitute of Hospital Pharmacy, Bern University Hospital, Bern, Switzerland), was performed
to obtain leukocytes for subsequent analyses. Leukocytes were then counted, aliquoted, and
frozen at −80 ◦C in 50% PBS, 0.05% BSA, 40% FCS (Gibco, Thermo Fisher Scientific, Zug,
Switzerland), and 10% DMSO (WAK-Chemie Medical GmbH, Steinbach/Ts., Germany).
The TL was analyzed in leukocytes by flow-FISH, as described by Baerlocher et al. [18].
Briefly, cells were hybridized with heat (87 ◦C) and 75% formamide (Millipore, Merck
KGaA, Darmstadt, Germany) with fluorescent-labelled telomere-specific DNA probes
complementary to the telomere repeats (Applied Biosystems, Thermo Fisher Scientific,
Zug, Switzerland); the DNA was counterstained with LDS751 (Invitrogen, Thermo Fisher
Scientific, Zug, Switzerland), and cell-specific epitopes were stained with CD20 (Beckman
Coulter, Inc., Mississauga, ON, Canada) and CD45RA (BD Biosciences; Becton, Dickin-
son and Company, Allschwil, Switzerland). Telomere fluorescence was assessed by flow
cytometry (FACSCalibur Flow Cytometer and FlowJo software, BD Biosciences, Becton,
Dickinson and Company, Allschwil, Switzerland) and the TL values were compared to
reference ranges from over 400 TL values of normal probands (aged 0–102 years) [18]. Due
to the non-linear age-dependent decrease in telomere length, the age-adjusted telomere
length difference (dTL) was calculated for comparison as the difference between the TL
value and the age-adjusted value of the 50th percentile of the reference range. The higher
the dTL, the shorter the TL adjusted for age.

2.4. Measurement of Telomerase Activity

An aliquot of isolated and frozen leukocytes was analyzed for TA by a protocol
adapted from Mender and Shay [19]. In brief, pelleted cells were treated with a lysis buffer,
and, for comparison, the protein content was adjusted to the same amount for all samples.
For the telomerase reaction step, cell lysates were added to the fragment amplification
reaction using a primer mix including a fluorescent (Cy5) marked primer (primer ACX
5′-GCG CGG CTT ACC CTT ACC CTT ACC CTA ACC-3′ and Cy5-TS 5′-Cy5 AAT CCG
TCG AGC AGA GTT-3′, Microsynth AG, Balgach, Switzerland). To visualize the pattern of
the amplified telomere fragments, the reaction volume was loaded on an acrylamide and
bis-acrylamide gel (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) in a TRIS-Borat-
EDTA buffer (Sigma-Aldrich, Merck, KGaA, Darmstadt, Germany) for electrophoresis (200
voltage, 1 h). A seven Cy5 dye-marked band pattern was used for analysis of the band
intensities relative to the pattern of the reference [19] on each gel.

2.5. Ex Vivo Assays Testing the Effects of Imetelstat on Primary B-ALL Cells

Mononuclear cells were isolated from the PB of patients newly diagnosed with B-ALL
(n = 8) by density gradient centrifugation (Pharmacia, Freiburg, Germany). Cells were
incubated in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, Thermo Fisher
Scientific, Karlsruhe, Germany) containing 10% FCS (PAN-Biotech, Aidenbach, Germany),
100 U/mL penicillin, 100 µg/mL streptomycin, and 2 mM glutamine (Gibco, Thermo
Fisher Scientific, Karlsruhe, Germany). Different clinically relevant concentrations (1 µM,
3 µM, and 10 µM) of imetelstat (5′-TAG GGT TAG ACA A-3′) (Geron Corporation, Foster
City, CA, USA) or medium without imetelstat were added to the cultures (performed in
triplicates with at least 200,000 cells at early time points and over 40,000 cells at later time
points) at the time of plating. Cells were incubated for 6 to 13 days at 37 ◦C with 5%
CO2 and a change in media was performed every 2–4 days. The percentage of apoptotic
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cells in relation to the number of viable lymphoblasts was quantified using trypan blue
staining (Sigma-Aldrich, Merck KGaA, Munich, Germany) and compared to the number
of apoptotic cells in relation to viable lymphoblasts in samples from the same patient
incubated in the absence of imetelstat at the same time points.

2.6. Statistical Analyses

The demographic characteristics and results are expressed in number and percent-
age or median, mean, and range for categorical and continuous variables, respectively.
Comparisons among the groups were performed using standard statistical tests includ-
ing the Student’s t-test, the Pearson correlation, the rank-sum test (Mann–Whitney), and
the one-way ANOVA or one-way ANOVA on ranks (Kruskal–Wallis). A p value < 0.05
was considered to indicate statistical significance. Data analyses were carried out with
SigmaPlot for Windows version 14.0 software (Systat Software, Inc., Düsseldorf, Germany).

3. Results
3.1. Characteristics of Patients

The pediatric cohort characteristics are summarized in Table 1. In total, 18 children
and adolescents with newly diagnosed ALL were included in this study. Seventeen patients
were diagnosed with B-cell precursor ALL, whereas one patient had T-ALL. The median
age at diagnosis was 6.5 years (range 2.2–17.8). Seven of the 18 patients were female;
11 patients were male. At the time of diagnosis, the median leukocyte count was 9.1 G/L
(range 0.8–75.9), the median lymphocyte count was 1.0 G/L (range 0.6–8.1), and the median
lymphoblast count was 5.9 G/L (range 0.0–35.1). The percentage of lymphoblasts in the
bone marrow ranged from 70% to 100%, with a median of 97%.

Table 1. Demographic, hematologic, cytogenetic, and response data of 18 pediatric patients with acute lymphoblastic
leukemia (ALL).

Characteristics at Diagnosis of ALL Overall (n = 18) Non-High Risk (n = 14) High Risk (n = 4)

Age, median years (range) 6.5 (2.2–17.8) 5.6 (2.2–15.1) 9.9 (5.8–17.8)

Sex (f/m) 7/11 6/8 1/3

Hematology

Leukocyte count in PB (G/L) median (range) 9.1 (0.8–75.9) 7.7 (0.8–75.9) 21.9 (5.7–32.3)

Lymphocyte count in PB (G/L) median (range) 2.0 (0.6–8.1) 2.0 (0.6–8.1) 2.0 (0.7–2.3)

Lymphoblast count in PB (G/L) median (range) 5.9 (0.0–35.1) 4.1 (0.0–35.1) 17.1 (3.2–27.8)

Lymphoblast proportion in PB (%) median (range) 68 (0–90) 64 (0–90) 79 (56–87)

Lymphoblast proportion in BM (%) median (range) 97 (70–100) 98 (70–100) 88 (78–92)

Cytogenetics

t(12;21)/ETV6-RUNX1 6 6 0

Hyperdiploidy 4 4 0

Deletion 9p + other aberration 3 3 0

t(1;19)/TCF3-PXB1 2 2 0

Other 3 0 3

Treatment response

Blast count in PB day 8 (G/L) median (range) 0.028 (0–0.600) 0.028 (0–0.500) 0.181 (0.003–0.600)

FACS-MRD in BM day 15 (%) median (range) 0.30 (0–14.18) 0.30 (0–5.40) 5.63 (0.03–14.18)

PCR-MRD BM day 33 (log) median (range) 1.0 × 10−6

(neg. −1.0 × 10−3)
1.0 × 10−6

(neg. −2.0 × 10−4)
7.0 × 10−4

(neg. −1.0 × 10−3)
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The recurrent cytogenetic aberrations comprised ETV6-RUNX1 in six patients (33%),
hyperdiploid karyotype in four patients (22%), 9p deletion in three patients (17%), and
TCF3-PXB1-translocation in two patients (11%). Three patients (17%) carried other cyto-
genetic aberrations. In the final risk stratification according to the pediatric international
collaborative treatment protocol of the AIEOP-BFM ALL 2009 Registry, five patients (28%)
belonged to the standard-risk group, nine patients (50%) to the medium-risk group, and
four patients (22%) to the high-risk group. At diagnosis, high-risk pediatric ALL patients
had a lower percentage of lymphoblasts in the bone marrow (Figure 1), and a higher
percentage and count of lymphoblasts in their PB compared to the non-high-risk patients
(Table 1).

Figure 1. Bone marrow lymphoblasts of pediatric patients at diagnosis. Bone marrow lymphoblasts
(in %) from pediatric patients with high risk (right column) compared to patients with standard and
medium risk (left column) at diagnosis.

One child underwent allogeneic hematopoietic stem cell transplantation (HSCT)
due to PCR-based risk stratification according to minimal residual disease (MRD) at
indicated time points. After a median follow-up interval of 29 months (9–39), no therapy
refractoriness or relapse was observed in the pediatric cohort. For additional individual
patient characteristics, see Supplemental Table S1.

The adult cohort contained 14 patients, most with very high-risk characteristics at diag-
nosis. As the aim of the ex vivo experiments with the adult patient samples was primarily a
proof of principle regarding the proapoptotic effects of imetelstat on primary human B-ALL
cells, only limited clinical and laboratory data are available (see Supplemental Table S2).

4. Telomere Length

All measured TLs in lymphoblasts of patients with ALL at diagnosis were below the
50th percentile of TL reference ranges for B-lymphocytes from over 400 healthy individuals
(Figure 2A). In eleven pediatric patient samples, the TL in lymphoblasts was also far below
the 1st percentile of the normal reference range. The median TL in lymphoblasts was 4.3 kb
(range 1.9–8.3) compared to the median TL of 8.0 kb (range 6.9–9.3) in B-lymphocytes
and 8.2 kb (range 6.5–8.8) in T-lymphocytes of the same patients. The median dTL in
lymphoblasts was −5.3 kb (range −7.1–−1.1) and was significantly lower (p < 0.001) than
the median dTL in B- lymphocytes with −1.9 kb (range −2.6–0.4) and T-lymphocytes with
−1.6 kb (range −2.5–0.0) in the cohort (Figure 2B). No significant linear correlations of
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TL with laboratory parameters, treatment response, or risk stratification were observed.
Similarly, for adult ALL patient samples (n = 7), the median TL in lymphoblasts was 2.3 kb
(range 1.9–6.2) compared to 6.3 kb (range 5.9–7.2) in B-lymphocytes and 5.7 kb (range
4.0–6.6) in T-lymphocytes (see Supplemental Table S2). The median dTL in lymphoblasts
was −5.4 kb (range −5.7–−1.7) which is significantly lower (p < 0.001) than the median
dTL in B-lymphocytes with −1.5 kb (range −1.9–0.3) and T-lymphocytes with −1.3 kb
(range −3.8–0.0).

Figure 2. (A). Absolute telomere lengths of pediatric patients. Telomere lengths (TLs) in lymphoblasts (L) (right panel)
compared to B-lymphocytes (B) (left panel) and T-lymphocytes (T) (central panel) in pediatric patients with ALL in relation
to reference percentiles (grey lines) established from TLs of over 400 healthy individuals. (B). Age-adjusted telomere lengths
of pediatric patients. Age-adjusted difference in telomere lengths (dTLs) in lymphoblasts (L) (right column) compared
to B-lymphocytes (B) (left column) and T-lymphocytes (T) (central column). Pediatric patients with high risk (HR) are
represented by filled diamonds, patients with standard risk (SR) and medium risk (MR) are represented by transparent
diamonds. ** p < 0.001.

5. Telomerase Activity

The mean TA in leukocytes of pediatric ALL patients at diagnosis was 3.2 TA/C (the
telomerase activity signal was normalized to control the cell line) (range 0.2–12.3), and
it was 0.7 TA/C (range 0.1–1.5) for the adult ALL patients. Pediatric patients stratified
as high risk showed a significantly higher mean TA of 6.6 TA/C (range 2.5–12.3) than
non-high-risk patients with 2.2 TA/C (range 0.2–10.3) (Figure 3). Despite the higher TA
found in high-risk patients at diagnosis, they had a rapid and steady decline in TA during
the induction treatment comparable to non-high-risk patients, reflecting the lack of TA in
matured, non-leukemic leukocytes in the PB (data not shown).



Int. J. Mol. Sci. 2021, 22, 6653 7 of 11

Figure 3. Telomerase activity in pediatric patients. Telomerase activity (TA) in leukocytes from
pediatric ALL patients with high risk (right column) compared to patients with standard and
medium risk (left column) at diagnosis.

No linear correlation was observed between TA and other clinical or laboratory
parameters. Due to the fact that all patients of the pediatric cohort responded efficiently to
treatment (rapid MRD), and no relapse was observed during the study period, it was not
possible to correlate TA with the uniform MRD response and outcome.

6. Ex Vivo Effects of Imetelstat on Primary B-ALL Cells

Ex vivo incubation of primary B-ALL lymphoblasts from patients with imetelstat in-
duced significant (p < 0.001) dose-dependent proapoptotic effects (Figure 4). Lymphoblasts
from patient samples cultured in the absence of imetelstat (=100%) compared to those
cultured in the presence of 1 µM, 3 µM, or 10 µM imetelstat showed viability indices of
89.1 ± 2.6%, 87.7 ± 2.0%, and 59.3 ± 2.1%, respectively (mean ± standard error of the
mean from triplicates).

Figure 4. Ex vivo effects of imetelstat on primary B-ALL cells. Percentages of apoptosis in lym-
phoblasts (n = 8, ALL_a–h) treated ex vivo with different clinically relevant concentrations of imetel-
stat compared to lymphoblasts from the same patients cultured without imetelstat. Each panel is the
result of triplicate cell cultures.
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7. Discussion

In this study, we combined the exploration of differences in telomere biology in
normal versus leukemic cells within a clinical study of pediatric patients with ALL, with
the investigation of ex vivo effects of the telomerase inhibitor imetelstat on primary B-ALL
cells. Clinical and laboratory parameters, namely, TL and TA, were assessed for different
risk groups of ALL patients. The lower lymphoblast count found in the BM and higher
values in the PB of high-risk ALL patients could be due to lymphoblasts that lost adhesion
molecules and migrated into the circulation and other lymphatic tissues, as has been
described in solid tumors and leukemia alike [20,21].

The significantly lower TL values in ALL lymphoblasts compared to the TL values of
other leukocyte subsets from the same newly diagnosed patient reflect the mitotic history
of the malignant clone with an elevated number of cell divisions. Considering that human
telomeres shorten by about 50–100 base pairs per cell division under physiologic conditions
and up to 500 base pairs under increased oxidative stress, the median age-adjusted dTL
of −5.3 kb observed in lymphoblasts of pediatric patients and −5.4 kb in adult patients
corresponds to approximately 53–108, respectively 10 additional cell divisions, resulting
in a high number up to 253–108, respectively 210 cells derived from the leukemic clone
over time. Although this calculation is relatively theoretical and does not consider the
short-lived nature and constant death of leukemic cells, it serves to demonstrate the
immense proliferative capacity of the leukemic clone, as reflected by the short lengths of
telomeres resulting from the exceptionally large number of cell divisions. The extent of
clonal proliferation might even be underestimated as TA measured in ALL lymphoblasts
potentially compensated, at least partially, for the loss of telomere repeats. Notably, the
median size of the neoplastic clone seems to be remarkably similar for children and adults at
diagnosis of ALL. Interestingly, a substantial telomere attrition was also observed in normal
B- and T-lymphocytes. This loss of telomere repeats might reflect cellular proliferation
induced by the anti-leukemic immune responses of lymphocyte subsets, similar to our
findings in patients with CLL [22].

Earlier studies have reported telomere shortening in the blood specimens of pediatric
and adult patients newly diagnosed with ALL, reflecting a subpopulation of highly prolif-
erating cells [8,23–28]. Compared to these earlier studies, the use of the flow-FISH method,
which combines the techniques of interphase FISH with cell type-specific antibody staining,
allowed us to assess TL in the subtypes of cells from the same patient simultaneously
without prior cell sorting.

The lower mean TA in lymphoblasts of adult ALL, in contrast to pediatric ALL, might
result from a decrease in the level of TA in the stem cells and lymphocytes with age,
as reported in a study of non-human primates [29]. Consequently, this lower TA in the
lymphoblasts of adults compared to children and adolescents could also contribute to
the even shorter lymphoblast telomeres observed in adult patients compared to pediatric
patients. In general, the lack to compensate telomere attrition despite high TA could also
be due to diminished or lost accessibility of telomerase to telomeres. The higher mean
TA found in lymphoblasts of high-risk pediatric patients at diagnosis in this study is in
line with the higher TA reported in other hemato-oncological diseases and its correlation
with prognosis. Altered promotor methylation of TERT (telomerase reverse transcriptase)
as well as of cyclin-dependent kinases are associated with higher TA and have been
reported in patients with ALL [30–32]. In adult patients, TA has been established as a
prognostic marker in several solid tumors and hematologic malignancies alike (e.g., non-
small cell lung carcinoma and colorectal cancer [33,34], myeloproliferative neoplasms,
and chronic lymphocytic leukemia [12,35]). In pediatric patients, TA has been described
to correlate with the risk profile in neuroblastoma and acute myeloid leukemia [36,37].
Our data suggest that the determination of TA at diagnosis could potentially provide an
additional prognostic marker in ALL, which would allow the risk profile to be assessed
earlier compared to the current risk stratification mainly based on milestones over the
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treatment course. This approach would allow timely treatment modification and might
improve the outcome in this subgroup of patients.

TA not only bears prognostic value but has become a target of new therapies through
the availability of a specific telomerase inhibitor. Recent preclinical and clinical studies have
shown that imetelstat, a competitive inhibitor of telomerase targeting the RNA component
of TA, decreases TA and has activity in hematologic malignancies, i.e., myeloproliferative
neoplasms, myelodysplastic syndromes, and acute myeloid leukemia [13–16]. In the
face of efficacious pharmacologic telomerase inhibition, TA could ultimately serve as a
potential additional target for the treatment of ALL, especially in patients with a high-
risk profile. The dose-dependent proapoptotic effects of imetelstat on primary patient
lymphoblasts observed in our ex vivo assays are suggestive of a specific sensitivity to
telomerase inhibition.

A recent clinical study of imetelstat in patients with myelofibrosis showed that patients
with shorter telomeres at baseline tended to have better clinical benefits, including higher
spleen and symptom responses and longer overall survival, compared to patients with
longer telomeres [38]. The results from the present study showed significantly lower TL
values in ALL lymphoblasts, suggesting that ALL may represent a suitable type of cancer
for imetelstat treatment.

It is intriguing to consider that imetelstat might complement bortezomib, which has
recently been implemented in the treatment of high-risk ALL patients, and in addition to
proteasome inhibition, also targets telomerase integrity [39,40]. The latter mechanism may
even potentiate the effect of direct telomerase inhibition by imetelstat.

This pilot study comprised a limited number of patients with high-risk ALL and,
therefore, further data from pediatric and adult ALL patients are needed to validate
these results. Our prospective pilot study, however, illustrates that the assessment of TL
and TA can be easily integrated into larger trials and, eventually, into clinical routine
diagnostics. These techniques are particularly attractive for use in pediatric patients as
they also maintain a high sensitivity with small sample sizes only containing very few
target cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22136653/s1.
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