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Simple Summary: Motor evoked potential (MEP) alarm criteria may have an important impact
on the preservation of motor function in supratentorial neurosurgical procedures. However, no
consensus exists regarding the optimal cut-off values and interpretation of MEP signal changes.
In addition, their performance as diagnostic and surrogate biomarkers has not been adequately
investigated. The existing clinical studies that utilized alarm criteria are heterogeneous, rendering
quantitative evidence synthesis problematic. In this study, we sought to summarize the pertinent
literature using an emerging synthesis methodology, namely a scoping review. The objective was to
assess the extent and range of available evidence, identifying research gaps, clarifying concepts, and
providing insights for further research. Due to the heterogeneity of studies, we applied a descriptive
approach, in particular by visualizing instead of pooling the data. A comprehensive overview of
MEP warning criteria has not been provided yet, and therefore, our study should pave the way for
future research.

Abstract: During intraoperative monitoring of motor evoked potentials (MEP), heterogeneity across
studies in terms of study populations, intraoperative settings, applied warning criteria, and outcome
reporting exists. A scoping review of MEP warning criteria in supratentorial surgery was conducted
in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses ex-
tension for Scoping Reviews (PRISMA-ScR). Sixty-eight studies fulfilled the eligibility criteria. The
most commonly used alarm criteria were MEP signal loss, which was always a major warning sign,
followed by amplitude reduction and threshold elevation. Irreversible MEP alterations were associ-
ated with a higher number of transient and persisting motor deficits compared with the reversible
changes. In almost all studies, specificity and Negative Predictive Value (NPV) were high, while in
most of them, sensitivity and Positive Predictive Value (PPV) were rather low or modest. Thus, the
absence of an irreversible alteration may reassure the neurosurgeon that the patient will not suffer a
motor deficit in the short-term and long-term follow-up. Further, MEPs perform well as surrogate
markers, and reversible MEP deteriorations after successful intervention indicate motor function
preservation postoperatively. However, in future studies, a consensus regarding the definitions of
MEP alteration, critical duration of alterations, and outcome reporting should be determined.

Keywords: motor evoked potential; warning criteria; glioma surgery; aneurysm clipping; motor
deficit; intraoperative monitoring; intraoperative neurophysiology

1. Introduction

During supratentorial surgery, risk stratification and intraoperative guidance of the
surgical strategy depend on various tools. Intraoperative monitoring of motor evoked
potentials (MEPs) enables real-time assessment of functional integrity of motor pathways
and has become a valuable adjunct in neurosurgical procedures [1,2]. Minimizing the risk
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of disabling motor deficits is the main factor during surgery in eloquent motor areas. At the
same time, this constitutes the major challenge for the neurosurgeon, who aims to achieve
the best possible surgical outcome, such as the maximal extent of tumor removal, without
compromising the patient’s functional status.

Classical, intraoperative stimulation for MEP can be delivered through scalp electrodes
(transcranial electrical stimulation, TES) or directly over the exposed motor cortex via
strip electrodes (direct cortical stimulation, DCS). The responses are recorded from the
target muscles (muscle MEPs) or (less frequent) with epidural electrodes (D wave) [3,4].
Intraoperative recording of muscle MEPs requires trains of stimuli to overcome the aesthetic
inhibition of the lower motor neuron excitability by temporal and spatial summation of
the excitatory postsynaptic potentials [5]. Stimulating scalp montages are derived from
the 10/20 international system. Scalp stimulating arrays are placed at measured sites
over the motor cortex to allow hemispheric stimulation (C3/Cz-1 and C4/Cz-1) or inter-
hemispheric stimulation (C3/C4, C4/C3, C1/C2, and C2/C1) [6]. As classical stimulation
intensity is applied slightly above the motor threshold, responses of several muscles can be
recorded at the same time. Direct cortical and subcortical stimuli might be applied focal on
the primary motor cortex or at the trajectory of the corticospinal tract (CST) and thus, elicit
MEP in a few muscles of one anatomical territory [7,8].

Intraoperative MEP signal changes may result from an acutely disturbed nerve action
potential conduction along the corticospinal axons because of compression, traction, is-
chemia, or mechanical injury [9]. However, MEP alterations may also be confounded by
non-surgical factors. MEPs exhibit trial-to-trial variability and are susceptible to the effect
of volatile anesthetic agents, neuromuscular blockade, systemic factors like hypotension
and hypothermia, and focal factors like nerve conduction failure because of malposition-
ing [9]. Provided that non-surgical causes are excluded, MEP alterations should urge the
surgical team to intervene or to stop in time while the impending neurological injury is
still reversible.

Warning criteria represent a priori defined parameters. Optimally, they should alert
the surgical team, and they prompt the implementation of corrective measures. Obviously,
a false-negative reassurance will miss the neurological injury; however, a false-positive
alarm may also indirectly harm the patient by stopping the surgery too early. The most
common proposed MEP alarm criteria include the disappearance of MEP signal, amplitude
reduction, threshold elevation, and morphology simplification [9–11]. Additional discussed
warning criteria include latency increase [12,13], decrease in the Area Under the Curve
(AUC) [14], and increase in potential width [15]. Further, different criteria are recommended
for supratentorial surgery, compared to the brainstem, skull base, and spinal surgery [9].
Moreover, the magnitude of MEP change regarded as alarming varies substantially across
neurosurgical centers and sometimes depends on previous institutional experience [16–19]. It
becomes apparent that there is no consensus on the interpretation of MEP signal alterations
and the selected cut-off values are often empirically derived [20,21].

The diagnostic accuracy of MEPs in supratentorial surgery for temporary and perma-
nent postoperative motor deficits has not been adequately investigated, and the existing
evidence provides controversial results [22,23]. Drawing overall conclusions is fraught
with difficulty, as there is significant heterogeneity across primary studies in terms of
methodological approach and reporting of outcomes. In light of all these considerations,
we conducted a scoping review of MEP warning criteria in supratentorial neurosurgical
procedures, including tumor, vascular, and epilepsy surgery. The objective was to assess
the extent, range, and nature of primary studies that utilized intraoperative MEP warning
criteria, summarize their findings within the context of postoperative motor outcomes,
identify research gaps and provide implications for future research. Subsequently, we
intended to perform a diagnostic accuracy analysis of MEPs as well as a correlation analysis
between postoperative motor deficits and recovery of an intraoperative MEP alteration
after successful interventions to investigate the value of MEPs as a surrogate marker.
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2. Materials and Methods

The scoping review was conducted in accordance with the Preferred Reporting Items
for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR) [24] and was based on the methodological framework suggested by Arksey and
O’Malley and refined by Levac et al. [25,26].

2.1. Search Strategy

The literature research was done by two independent researchers using the electronic
databases PubMed (MEDLINE), Embase, Scopus, CINAHL, and the Cochrane Library.
The included research articles ranged from the beginning of the databases until April
2021. There was no restriction on language. A detailed description of search terms and
techniques is provided in Appendix A. The reference lists of retrieved articles and the sets
of similar articles suggested by the database were screened in order to identify additional
relevant citations. Additionally, the grey literature databases Open Grey, NTIS, British
Library Direct Plus, York’s CRD, and Mednar were also searched.

2.2. Eligibility Criteria

Studies eligible for inclusion were all types of primary clinical studies, in which at
least one MEP warning criterion was used intraoperatively in anesthetized patients during
supratentorial surgery, including intrinsic brain tumors, metastases, aneurysms, vascular
malformations, and other brain lesions, that are targets for epilepsy surgery. The utilized
warning criteria had to be preoperatively (a priori) defined, and the authors had to report
postoperative motor outcome data in conjunction with the intraoperative presence or
absence of MEP alterations. MEPs had to be elicited by electrical stimulation and not
transcranial magnetic stimulation. Our goal was to analyze MEP monitoring alarm criteria,
but if D-wave recording or subcortical mapping were used as supplementary factors for
warning signs, we included these aspects as well. However, we did not include studies
solely with D-wave monitoring or mapping warning criteria without continuous muscle
MEP monitoring. Studies with awake patients, infratentorial and spinal cord lesions were
not included in our analysis unless the outcomes for asleep patients with supratentorial
lesions were clearly described in a subgroup. In this case, only the data for supratentorial
operations for anesthetized patients were extracted for further analysis. Studies with
aneurysms located in arteries of the posterior circulation were included because the primary
outcome of interest was the postoperative motor outcome and not ischemia.

2.3. Study Selection

The study selection was performed by two independent authors. Each author screened
the titles and abstracts of all retrieved articles, defined a subset of relevant studies, and
after full-text review, selected the eligible studies. The results of their individual search
were compared, and a final list of eligible records was created. Some disagreements were
resolved through discussion. If multiple publications from the same authors or overlapping
study populations from the same institution were identified, the most recent paper was
taken into consideration. The reason why specific articles did not meet the inclusion criteria
can be found in Appendix B.

2.4. Data Extraction

From each included study, the following data were extracted: authors, year of publi-
cation, study design, country, number of patients with MEP data, stimulation technique
(transcranial electrical stimulation (TES), direct cortical stimulation (DCS), subcortical stim-
ulation), and stimulation parameters, recorded muscles, MEP warning criterion/criteria,
interventions in case of a warning sign, number of reversible and irreversible intraopera-
tive MEP changes and number of patients with postoperative motor deficit immediately
after surgery as well as during short-term and long-term follow-up. A pilot test of the
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data extraction protocol was initially performed with five citations and was afterward
implemented for all included studies.

2.5. Data Analysis and Synthesis of Results

The extracted data were charted in tables with special emphasis on the number of
patients with reversible or irreversible MEP changes who developed a postoperative motor
deficit. A 2 × 2 contingency table was constructed for each study providing sufficient
information to identify the true positive (TP), false positive (FP), false negative (FN), and
true negative (TN) results. Subsequently, we performed a Diagnostic Test Accuracy (DTA)
analysis of MEPs for postoperative motor deficits. Sensitivity, specificity, Positive Predictive
Value (PPV), and Negative Predictive Value (NPV) were calculated using the RevMan
calculator in the Review Manager software (RevMan, version 5.4) from the Cochrane
Collaboration [27]. The forest plots displaying sensitivity, specificity, and the corresponding
95% Confidence Interval (CI) were generated for each study with the same software [27]. In
order to visualize the values of diagnostic accuracy measures across all studies, heatmaps
were constructed using MATLAB (version R2020b). The DTA analysis was divided into four
sub-analyses and more specifically in the analysis of early-transient motor deficit (reported
by authors as motor deficit immediately after surgery or at the day of the operation or
resolved before the day of discharge), transient motor deficit (reported by authors as
temporary or transient or present at discharge or short-term motor deficit), permanent
motor deficit (reported by authors as permanent or persistent or long-term motor deficit)
and all motor deficits regardless of the postoperative duration of the impairment. Given the
differences in outcome reporting among the studies, this descriptive approach was deemed
more appropriate than the use of the common cut-off time of 3 months to distinguish
transient from permanent deficits. A postoperative motor deficit was defined as any new
motor deficit or deterioration of an already compromised motor function with a decrease of
≥0.5 points on the Medical Research Council Scale (MRCS) or an increase of ≥0.5 points on
the Modified Rankin Scale (mRS). In all sub-analyses, irreversible MEP changes according
to the utilized warning criterion that did not recover until the end of the operation were
considered as positive results, whereas reversible MEP changes and absence of MEP
changes were considered as negative results. Detailed definitions for the DTA analysis
are provided in Table S1. The DTA sub-analyses were performed separately for different
stimulation modalities and warning criteria if it was possible to retrieve the relevant data
from a primary study. Monitoring and mapping criteria were analyzed both separately
and in combination, if applicable. We did not pool the data and did not undertake a
meta-analysis of the results because of the heterogeneity in study populations, anesthetic
regimens, stimulation techniques and parameters, recorded muscles, and utilized MEP
warning criteria.

In addition to the DTA analysis, we carried out an analysis of the correlation between
intraoperative MEP alterations that were reversed after successful intervention and new
postoperative motor deficits. We sought to investigate the direction of association between
these two variables in order to assess the significance of MEPs as surrogate endpoints.
The calculations were performed based on the formulas and the methodology described
by Holdefer et al. [28]. A 3 × 2 summary table was constructed for each study, and the
proportion of reversible MEP changes after intraoperative intervention triggered by MEP
warning criteria as well as the proportion of new motor deficits associated with MEP alter-
ations were defined. All new motor deficits were included regardless of the postoperative
duration. The correlation analysis was performed in R (version 4.0.2, R-project.org). The
normality of the data was checked with a Shapiro–Wilk test, and Spearman’s rank correla-
tion coefficients with corresponding p-values were computed. The plots were constructed
using the R package ggplot2. Case reports were not included in the DTA analysis or in the
correlation analysis.
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3. Results

A total of 662 records were identified from the literature research. In particular, we
extracted 540 references from electronic databases (204 from PubMed, 224 from Scopus, 63
from Embase, 25 from CINAHL, three from Cochrane Library, and 21 from grey literature
databases), while the reference lists provided 122 additional citations. The titles were
screened for relevance to our research question and for duplicate records. After exclusion
of irrelevant or dual records, 281 abstracts were further screened, and subsequently, the full-
texts of 208 articles were reviewed. Finally, 68 studies (31 studies for tumors and other brain
lesions, two for epilepsy surgery, 28 for aneurysm clipping, five for endovascular aneurysm
procedures, and two case reports) fulfilled the eligibility criteria and were included in our
review. All of them were published in peer-reviewed journals, and no record from grey
literature databases met the inclusion criteria. Figure 1 depicts the flow chart with the
different phases of study selection.
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Figure 1. Flow diagram for study selection.

The included studies were 30 prospective and 28 retrospective case series, two case
series with both prospective and retrospective design, six case series with unclear study
design, and two case reports. The largest portion of evidence for tumors and other brain
lesions was derived from Europe (especially Germany), whereas the main body of literature
for aneurysm surgery consisted of studies from Asia (especially Japan, Korea, and China).
An overview of MEP warning criteria utilized in supratentorial surgery and a summary
of transient and permanent postoperative motor deficits in correlation with reversible
and irreversible alarming MEP alterations for tumor surgery is provided in Table 1. The
equivalent for vascular surgery can be found in Table 2. In all studies, MEP signal loss
was considered a major warning sign. Additional information about the pathology of
treated lesions, stimulation parameters, recorded muscles, and interventions following the
appearance of warning criteria is provided in Table S2 in the Supplementary Material.
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Table 1. Overview of the included studies with tumor and epilepsy surgery. Number of included patients, study design, stimulation parameters, MEP warning criteria, number of patients
who met these criteria, as well as the relation with postoperative motor deficits are presented. *: The results are presented as the total number and percentage of patients with the indicated
MEP warning criterion who developed a transient and permanent motor deficit. In studies with outcome reporting at distinct time-points, the results are presented as the total number and
percentage of patients with the indicated MEP warning criterion who had a new postoperative motor deficit still present at the indicated time-point that resolved thereafter. #: Permanent
motor deficit in 13/25 = not assessable. Transient motor deficit in 1/25 = not assessable. (The absence of cases with a deficit is indicated by the symbol “-”).

Authors No. of Patients
Study Design/

Country STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to

MEP Change

Transient * Permanent *

TUMORS AND OTHER BRAIN LESIONS

Giampiccolo et al. (2021)
[29] 125

Retrospective
Italy DCS AR > 50%

Upper Limbs
AR/loss (n = 26)

2d: 3/26 (11.5%)
5 d: 6/26 (23%) 10/26 (38.5%)

Lower Limbs
AR/loss (n = 14)

2 d: 2/14 (14.3%)
5 d: 3/14 (21.4%) 3/14 (21.4%)

Gogos et al. (2020)
[30] 58 Prospective

USA

DCS
TES
ScS

AR > 20%
MT ≤ 5 mA

IRR AR (n = 6) 2/6 (33.3%) 1/6 (16.6%)

MT ≤ 5 mA (n = 18) 2/18 (11.1%) 1/18 (5.5%)

Mammadk-hanli et al.
(2020)
[31]

145
Retrospective

Turkey DCS AR > 50%
LTI > 10%

REV changes (n = 7) 4/7 (57.1%), not specified if transient or
permanent

IRR changes (n = 14) 14/14 (100%), not specified if transient or
permanent

Seidel et al. (2020)
[32] 182 Prospective

Switzerland
DCS
ScS

THI ≥ 4 mA MT ≤ 3 mA
MT ≤ 3 mA (n = 58)

24 h: 13/58 (22.4%)
discharge:

14/58 (24.1%)
3/58 (5.1%)

MT ≤ 3 mA+ IRR THI/loss (n = 3) - 3/3 (100%)

Abboud et al. (2019)
[33] 126

Prospective
Germany TES AR > 50%

THI > 20%i

REV AR (n = 2) - -

IRR AR (n = 36) 24 h: 6/36 (16.7%)
discharge: 6/36 (16.7%) 8/36 (22.2%)

REV THI (n = 9) - -

IRR THI (n = 25) 24 h: 7/25 (28.0%)
discharge: 7/25 (28.0%) 8/25 (32.0%)

Majchrzak et al. (2018)
[34] 35 Prospective

Poland TES AR > 50%
REV AR (n = 7) 6/7 (85.7%) 1/7 (14.3%)

IRR AR (n = 11) 1/11 (9.1%) 10/11 (90.9%)
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Table 1. Cont.

Authors No. of Patients
Study Design/

Country STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to

MEP Change

Transient * Permanent *

Moiyadi et al. (2018)
[35] 39 Prospective

India

DCS
TES
ScS

TES:AR > 50–80%
DCS:AR > 30–50%

MT ≤ 10 mA

TESIRR AR (n = 1) IRR loss (n = 2) -
1
2 (50.0%)

-
-

DCS
REV AR (n = 1)
REV loss (n = 1)
IRR loss (n = 1)

-
-

1/1 (100%)

-
-
-

MT ≤ 10 mA (n = 13) 4/13 (30.8%) -

MT ≤ 10 mA + AR/loss
(n = 3) 2/3 (66.6%) -

Plans et al.
(2017)
[36]

92
Retrospective

Spain
DCS
ScS

AR > 50%
THI ≥ 5 mA
MT ≤ 5 mA

IRR THI (n = 12) 24 h: 4/12 (33.3%) -

IRR AR (n = 2) - 2/2 (100%)

IRR loss (n = 7) - 6/7 (85.7%)

MT ≤ 5 mA (n = 30) 24 h: 2/30 (6.7%) 9/30 (30.0%)

MT ≤ 5 mA + AR (n = 7) - 7/7 (100%)

MT ≤ 5 mA + THI (n = 2) 24 h: 2/2 (100%) -

MT ≤ 5 mA + THI/AR (n = 9) 24 h: 2/9 (22.2%) 7/9 (77.8%)

Zhou et al. (2017)
[37] 70 Retrospective

China
DCS
TES AR > 80% AR/loss (n = 6) 5/6 (83.3%) 1/6 (16.7%)

Abboud et al. (2016)
[17] 93 Prospective

Germany
TES THI > 20%i IRR THI (n = 13) 8/13 (61.5%) 5/13 (38.5%)

Boex et al. (2016)
[38] 104 Retrospective

Switzerland
DCS
TES AR > 50% IRR AR/loss (n = 16) 1 d: 5/16 (31.3%)

discharge: 3/16 (18.8%) 8/16 (50.0%)

Obermueller et al.
(2015) [23]

105 gliomas Retrospective
Germany DCS AR > 50%

REV AR (n = 85) 14/85 (16.5%) 5/85 (5.9%)

IRR AR (n = 11) 2/11 (18.2%) 8/11 (72.7%)

53 metastases DCS AR > 50%
REV AR (n = 32) 5/32 (15.6%) 2/32 (6.3%)

IRR AR/loss (n = 14) - 3/14 (21.4%)

Shiban et al. (2015)
[39] 14

Prospective
Germany

DCS
ScS

AR > 50%
MT ≤ 3 mA

REV loss (n = 1) 1/1 (100%) -

IRR loss (n = 2) 1/2 (50.0%) 1/2 (50.0%)
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Table 1. Cont.

Authors No. of Patients
Study Design/

Country STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to

MEP Change

Transient * Permanent *

Lee et al.
(2014)
[40]

84 Retrospective
Korea TES AR > 50%

LTI > 10% IRR AR (n = 7) - 3/7 (42.9%)

Gempt et al. (2013)
[41] 70

Prospective
Germany DCS AR > 50%

REV AR (n = 8) 2/8 (25.0%) 2/8 (25.0%)

IRR AR (n = 13) 5/13 (38.5%) 8/13 (61.5%)

Ostrý et al.
(2013)
[42]

25
Prospective

Czech Republic
DCS
ScS

THI ≥ 2 mA
MT ≤ 5 mA

THI (n = 6) 4/6 (66.6%) -

MT ≤ 5 mA (n = 10) 3/10 (30.0%) 1/10 (10%)

MT ≤ 5 mA + MEP alteration (n = 2) 2/2 (100%) -

Pastor et al. (2013)
[43] 30

Prospective
Spain

DCS
TES

AR > 50%
LTI > 10%

TES (n = 16) 1 w: 4/16 (25.0%) 3/16 (18.8%)

DCS (n = 2) - -

Seidel et al. (2013)
[8] 100 Prospective

Switzerland
DCS
ScS

THI ≥ 4 mA
MT ≤ 3 mA

THI ≤ 15 min/unspecific changes (n = 18) 24 h: 5/18 (27.8%)
Discharge: 2/18 (11.1%) -

THI ≥ 15 min
(n = 8)

24 h: 2/8 (25.0%)
Discharge: 3/8 (37.5%) 2/8 (25.0%)

Loss ≥15 min
(n = 4) Discharge: 1/4 (25.0%) 3/4 (75.0%)

MT ≤ 3 mA (n = 25) 24 h: 4/25 (16.0%)
Discharge: 2/25 (8.0%) 2/25 (8.0%)

MT ≤ 3 mA+ THI ≥ 15 min/Loss ≥15 min
(n = 5)

24 h: 1/5 (20.0%)
Discharge: 2/5 (40.0%) 2/5 (40.0%)

Sakurada et al. (2012)
[44] 30

Retrospective
Japan DCS AR > 50%

REV AR (n = 2) 1/2 (50.0%) -

IRR AR (n = 2) - 2/2 (100%)

Senft et al. (2012)
[45] 54 Retrospective

Germany TESDCS

AR > 50%
THI ≥ 20 mA

(TES)
THI ≥ 3 mA

(DCS)

MEP alterations (n = 7:
2 THI, 1 AR, 1 loss, 3 N/A) 4/7 (57.1%) 2/7 (28.6%)

Hatiboglu et al. (2010)
[46] 16 Retrospective

USA DCS MEP loss Loss (n = 4) 1/4 (25.0%) 2/4 (50.0%)
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Table 1. Cont.

Authors No. of Patients
Study Design/

Country STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to

MEP Change

Transient * Permanent *

Ichikawa et al.
(2010) [47] 21

Retrospective
Japan DCS AR > 50%

REV AR (n = 3) 1/3 (33.3%) -

REV loss (n = 1) 1/1 (100%) -

IRR loss (n = 1) - 1/1 (100%)

Szelényi et al. (2010) #
[48]

25
Prospective

Germany TES
AR > 50%

THI > 20 mA or >100 V

REV AR (n = 3) - -

IRR AR (n = 2) 2/2 (100%) -

REV loss (n = 6) 2/6 (33.3%) 2/6 (33.3%)

IRR loss (n = 5) 2/5 (40.0%) 2/5 (40.0%)

REV THI (n = 3) - -

IRR THI (n = 8) 2/8 (25.0%) 3/8 (37.5%)

Kombos et al. (2009)
[49] 15 Prospective

Germany TESScS
AR > 80%
LTI > 30%

MT ≤ 3 mA

REV AR + LTI
(n = 5) 2/5 (40.0%) -

Neuloh et al. (2009)
[50] 191

Prospective
Germany

DCS
TES AR > 50%

REV AR (n = 50) 19/50 (38.0%) 1/50 (2.0%)

REV loss (n = 7) 2/7 (28.6%) 1/7 (14.3%)

IRR AR (n = 26) 11/26 (42.3%) 5/26 (19.2%)

IRR loss (n = 7) 1/7 (14.3%) 6/7 (85.7%)

Neuloh et al. (2007)
[51] 88

Prospective
Germany

DCS
TES AR > 50%

REV AR/loss (n = 26) 12/26 (46.2%) -

IRR AR (n = 8) 7/8 (87.5%) 1/8 (12.5%)

IRR loss (n = 7) - 7/7 (100%)

Suess et al. (2006)
[15] 232

Unclear
Germany

DCS
AR > 50%
LTI > 5%

PWI > 30%

REV changes(n = 27) 6/27 (22.2%) -

IRR changes (n = 20) - 17/20 (85.0%)

Neuloh et al. (2004)
[11] 159

Prospective
Germany DCS

AR > 50%
LTI > 10%

REV AR (n = 16) 8/16 (50.0%) 1/16 (6.3%)

IRR AR (n = 16) 7/16 (43.8%) 4/16 (25.0%)

REV loss (n = 22) 8/22 (36.4%) 1/22 (4.5%)

IRR loss (n = 10) 2/10 (20.0%) 8/10 (80.0%)
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Table 1. Cont.

Authors No. of Patients
Study Design/

Country STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to

MEP Change

Transient * Permanent *

Kombos et al. (2001)
[10] 70

Prospective
Germany DCS

AR > 80%
LTI > 15%

REV LTI (n = 3) - -

IRR LTI (n = 1) 1/1 (100%), not specified if transient orpermanent

REV loss (n = 7) - -

IRR loss (n = 1) - 1/1 (100%)

Zhou et al.
(2001)
[52]

50 Prospective
USA TES AR > 50%

REV AR (n = 4) -

IRR AR/loss (n = 8) 8/8 (100%), not specified if transient orpermanent

Cedzich et al. (1996)
[53] 25

Prospective
Germany DCS MEP loss

REV loss (n = 9) 4/9 (44.4%) 1/9 (11.1%)

IRR loss (n = 6) - 3/6 (50.0%)

EPILEPSY SURGERY

Koo et al.
(2019)
[54]

279 Prospective
Korea TES AR > 50% REV AR (n = 6) 1/6 (16.7%) -

REV loss (n = 4) 1/4 (25.0%) -

Neuloh et al. (2010)
[55] 86

Prospective
Germany DCSTES AR > 50%

LTI > 10–15%

REV changes (n = 20) 4/20 (20.0%) -

IRR changes (n = 11) 2/11 (18.2%) 5/11 (45.5%)

Abbreviations: AR: Amplitude Reduction; DCS: Direct Cortical Stimulation; i: ipsilateral; IRR: irreversible; LTI: Latency Increase; MT: Motor Threshold (=MEP threshold); N/A: Not available; PWI: Pulse Width
Increase; REV: Reversible; ScS: Subcortical Simulation; STT: Stimulation Technique; TES: Transcranial Electrical Stimulation; THI: Stimulation Threshold Increase.
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Table 2. Overview of included studies with aneurysm clipping and endovascular procedures for aneurysms. Number of included patients, study design, stimulation parameters, MEP
warning criteria, number of patients who met these criteria as well as the relation with postoperative motor deficits are presented. Two case reports are also summarized in this table. *: The
results are presented as the total number and percentage of patients with the indicated MEP warning criterion who developed a transient and permanent motor deficit. In studies with
outcome reporting at distinct time-points, the results are presented as the total number and percentage of patients with the indicated MEP warning criterion who had a new postoperative
motor deficit still present at the indicated time-point that resolved thereafter. £: 3/116 cases = not assessable. The absence of cases with a deficit is indicated by the symbol “-”.

Authors No. of Patients Study Design STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to MEP Change

Transient * Permanent *

ANEURYSM CLIPPING

Guo et al. (2021)
[56] 285 Retrospective

China TES AR > 50%
REV AR/loss (n = 49) 5/49 (10.2%) 6/49 (12.2%)

IRR AR/loss (n = 14) 1/14 (7.1%) 10/14 (71.4%)

Park et al. (2021)
[57] 319 Retrospective

Korea TES AR > 50%

REV AR (n = 1) 1/1 (100%) -

IRR AR (n = 3) 2/3 (66.6%) 1/3 (33.3%)

IRR loss (n = 1) - 1/1 (100%)

You et al. (2021)
[58] 138 Retrospective

China TES AR > 50%
REV AR (n = 28) 11/28 (39.3%), not specified if transient or permanent

IRR loss (n = 5) 3/5 (60.0%), not specified if transient or permanent

Kameda et al. (2020)
[59] 42 Retrospective

Japan
DCS
TES AR > 50% REV AR (n = 2) 1/2 (50.0%) -

Byoun et al. (2019) [22] 115 Retrospective
Korea TES AR > 50% REV AR (n = 5) - 2/5 (40.0%)

Greve et al. (2019)
[60] 133

Retrospective
Germany TES AR > 50%

REV AR (n = 8) 1/8 (12.5%) 1/8 (12.5%)

IRR AR (n = 4) - -

IRR AR (n = 1) - 1/1 (100%)

Li et al.
(2019)
[61]

92 Retrospective
China TES AR > 50%

REV
AR/loss (n = 76)

24 h: 3/76 (3.9%)
1 w: 19/76 (25%) 15/76 (19.7%)

IRR AR (n = 11) 1 w: 1/11 (9.1%) 9/11 (81.8%)

IRR loss (n = 5) 1 w: 1/5 (20.0%) 4/5 (80.0%)

Choi et al. (2017)
[12] 386 Retrospective

Korea TES AR > 50%
LTI > 10%

REV AR (n = 4) - -

REV loss (n = 5) 1/5 (20.0%) 1/5 (20.0%)

IRR loss (n = 1) - 1/1(100%)

Komatsu et al. (2017)
[62] 9 Retrospective

Japan DCS AR > 50% REV AR (n = 5) - -
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Table 2. Cont.

Authors No. of Patients Study Design STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to MEP Change

Transient * Permanent *

Staarman et al. (2017)
[63] 123 Retrospective

USA TES AR > 50%
REV AR (n = 9 aneurysms) 1/9 (11.1%) N/A

IRR AR (n = 1 aneurysm) 1/1 (100%) N/A

Kim et al. (2016)
[64] 685 Retrospective

Korea TES AR > 50%
REV AR (n = 30) 10/30 (33.3%), not specified if transient or permanent

IRR AR (n = 13) 6/13 (46.2%), not specified if transient or permanent

Maruta et al. (2016)
[65] 243

Retrospective
Japan

DCS
TES

AR > 50%
(sMEP + mMEP)

REV AR (n = 47) 2/47 (4.2%) 1/47 (2.1%)

IRR AR (n = 5) - -

REV loss (n = 19) 3/19 (15.7%) 4/19 (21.0%)

IRR loss (n = 2) - 2/2 (100%)

Song et al. (2015)
[66] 11 Unclear

China
TES AR > 50%

REV AR (n = 5) 2/5 (40.0%) N/A

IRR AR (n = 1) 1/1 (100%) N/A

Sasaki et al. (2014) [67] 177
Prospective

Japan
DCS
TES MEP loss

REV loss (n = 20) 1/20 (5.0%) -

IRR loss (n = 2) - 2/2 (100%)

Takebayashi et al. (2014)
[68] 50

Unclear
Japan DCS MEP loss

REV loss (n = 15) 6/15 (40.0%) -

IRR loss (n = 4) - 4/4 (100%)

Yue et al. (2014)
[69] 43 Prospective

China TES AR > 50%

REV AR (n = 5) Immediate: 1/5 (20.0%) -

REV loss (n = 9) - 1/9 (11.1%)

IRR loss (n = 1) - 1/1 (100%)

Dengler et al. (2013)
[70] 30

Prospective
Germany TES AR > 50%

LTI > 10%

REV changes
(n = 14 cases) 1/14 (7.1%) -

IRR changes (n = 1 case) - 1/1 (100%)

Kang et al. (2013)
[71] 37 Unclear

China TES AR > 50% AR (n = 8) 3/8 (37.5%) N/A

Maruta et al. (2012)
[72] 22

Prospective
Japan

DCS
TES AR > 50%

REV AR (n = 1) - -

REV loss (n = 3) 2/3 (66.6%) -

Shi et al. (2012)
[73] 68 Unclear

China
TES AR > 50%

REV AR (n = 6) - -

IRR AR (n = 3) - 3/3 (100%)
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Table 2. Cont.

Authors No. of Patients Study Design STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to MEP Change

Transient * Permanent *

Motoyama et al. (2011)
[74] 48

Retrospective
Japan DCSTES AR > 50%

REV AR (n = 2) - N/A

REV loss (n = 2) - N/A

IRR loss (n = 1) 1/5 (20.0%), < 24 h N/A

Irie et al.
(2010)
[75]

110
Retrospective

Japan
TES AR > 50%

THI > 20 mA

REV AR (n = 2) - -

REV +IRR loss (n = 4) 2/4 (50.0%) -

Yeon et al. (2010)
[76] 98

Prospective
Japan TES AR > 50%

REV AR (n = 4) - -

REV loss (n = 8) 1/8 (12.5%) -

Szelényi et al. (2007)
[77] 108

Prospective and
Retrospective

Germany/USA

DCS
TES

AR > 50%
THI > 20 mA(TES)
THI > 2 mA(DCS)

TES changes
(n = 9: 1 IRR THI, 1 REV AR, 6 REV loss, 1

IRR loss)
3/9 (33.3%) -

DCS changes
(n = 13: 1 REV THI, 3 IRR THI, 2 REV AR, 6

REV loss, 1 IRR loss)
- 2/13 (15.4%)

Weinzierl et al. (2007)
[78] 18

Prospective
Germany TES AR > 50%

LTI > 10%

REV AR (n = 8) - -

IRR AR (n = 3) - -

Szelényi et al. (2006) £
[16] 116

Prospective and
Retrospective

Germany

DCS
TES

AR > 50%
THI > 20 mA

REV loss (n = 8) 1/8 (12.5%) 3/8 (37.5%)

IRR loss (n = 2) - 2/2 (100%)

REV THI (n = 1) 1/1 (100%) -

IRR THI (n = 1) - 1/1 (100%)

Horiuchi et al.
(2005)
[79]

53
Prospective

Japan DCS AR > 50%

REV AR (n = 3) - -

REV loss (n = 6) 3/6 (50.0%) -

IRR loss (n = 1) - 1/1 (100%)

Suzuki et al.
(2003)
[19]

108
Prospective

Japan DCS AR > 50%
REV changes (n = 19) 4/19 (21.0%):

* < 24 h, REV loss -

IRR loss (n = 1) - 1/1 (100%)
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Table 2. Cont.

Authors No. of Patients Study Design STT Warning Criterion MEP Changes
Postoperative Motor Deficit in Relation to MEP Change

Transient * Permanent *

ENDOVASCULAR PROCEDURES FOR ANEURYSMS

Nakagawa et al. (2020)
[80] 164

Retrospective
Japan TES AR > 50%

REV AR (n = 3) - N/A

IRR AR (n = 2) 2/2 (100%) N/A

REV loss (n = 1) - N/A

IRR loss (n = 1) 1/1 (100%) N/A

Wilent et al. (2020)
[81] 763 Retrospective

USA TES AR >40%
IRR AR (n = 36) 12/36 (33.3%) N/A

REV AR (n = 15) - N/A

Lee et al. (2019)
[82] 561 Retrospective

Korea TES AR > 50%
LTI > 10%

REV AR (n = 5) - N/A

IRR AR (n = 1) - N/A

IRR loss (n = 1) 1/1 (100%) N/A

Piñeiro et al. (2015)
[83] 8

Prospective
Spain TES AR > 50%

REV AR (n = 1) - -

IRR AR (n = 1) - 1/1 (100%)

Hiraishi et al. (2011)
[84] 7 Unclear

Japan TES AR > 50% REV AR (n = 3) 1/3 (33.3%) N/A

CASE REPORTS

Iwasaki et al. (2013)
[85]

2
(1 awake)

Case report
Japan TES AR > 50% Absence of MEP AR > 50% for >10 min after clipping as an indicator for the preservation of the long

insular artery

Szelényi et al. (2003)
[86] 1 Case report

Germany
DCS
TES MEP loss Arteriosclerotic aneurysm wall preventing the complete closure of the clip.

REV loss and immediate postoperative hemiplegia still present at discharge (1 month).

Abbreviations: AR: Amplitude Reduction; DCS: Direct Cortical Stimulation; IRR: irreversible; LTI: Latency Increase; mMEP: muscle motor-evoked potential; N/A: Not available; REV: Reversible; sMEP: spinal
motor-evoked potential; STT: Stimulation Technique; TES: Transcranial Electrical Stimulation; THI: Stimulation Threshold Increase.



Cancers 2021, 13, 2803 15 of 48

The overall results of the DTA analysis are presented in a heatmap in Figure 2. The
corresponding numerical values are described in detail in Tables S3–S6. Sensitivity and
specificity estimates of MEPs regarding permanent postoperative motor deficits and their
CIs are depicted in Figure 3. The forest plots for transient, early-transient, and all motor
deficits can be found in Figures S1–S3, and separate heatmaps for permanent, transient,
early-transient, and all postoperative motor deficits are provided in Figures S4–S7 in the
Supplementary Material. The relative rates of MEP changes as well as the rates of reversible
and irreversible MEP changes and permanent deficits are summarized for all studies in
Table 3. Table S7 additionally depicts the total number of early-transient, transient, and
permanent motor deficits in conjunction with MEP changes and the relative rate of all
motor deficits in all studies. Figure 4 illustrates the results of the correlation analysis in a
bubble plot, and the corresponding scatterplot can be found in Figure S8.

Overall, the results obtained from the data analysis suggest the following:

- Reversible MEP changes did not result in a postoperative motor deficit in most cases. If
a motor deficit occurred, it was more frequently transient than permanent. Irreversible
MEP changes were associated with a higher number of permanent than transient
motor deficits;

- In almost all studies of the scoping review, specificity and NPV were high regardless of
the timing of postoperative assessment. MEPs can reliably identify the true negative
cases, and if no irreversible MEP alterations are observed, then it is not probable
that the patient suffers a motor deficit immediately after surgery, in the short-term
follow-up or in the long-term follow-up;

- Sensitivity and PPV varied across the studies and were rather low or modest in most
of them, whereas some individual studies reported a 100% sensitivity and others
a 100% PPV. The sensitivity estimates appeared to be higher for permanent motor
deficits compared with the early-transient and transient deficits and for the threshold
criterion compared with the amplitude criterion. PPV seemed to be higher for the
prediction of any motor deficit regardless of the postoperative duration of the deficit.
The low and modest values are impacted by the low prevalence of motor deficits;

- There was no remarkable difference in the diagnostic accuracy measures between TES
and DCS in the included studies;

- In most cases, the combination of mapping and monitoring yielded higher PPV for all
type of deficits compared with monitoring criteria alone;

- The CIs were narrow and indicated high precision of the specificity estimates, but the
CIs of the sensitivity estimates were wide, implying greater uncertainty. The wider
CIs for sensitivity are also attributed to the low incidence of postoperative deficits;

- The summary of events for each study demonstrated that the rate of postoperative
motor deficits and intraoperative MEP changes is low. Regarding MEP changes,
reversible alterations appeared to be more frequent than irreversible;

- The correlation analysis revealed a negative correlation between the proportion of
reversible MEP changes and the proportion of new postoperative motor deficits
associated with MEP changes (rspearman = −0.498, p < 0.001).
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Figure 2. Heatmap depicting sensitivity (SS), specificity (SP), Positive Predictive Value (PPV), and Negative Predictive Value (NPV) estimates for permanent and all motor deficits
(regardless of the time) across different studies. The scale ranges from 0 (red) to 1 (yellow). If the study did not provide sufficient data for the calculation of an estimate, the corresponding
area is colored grey. Irreversible MEP changes were considered as positive results, whereas reversible MEP changes and the absence of MEP changes were considered as negative results.
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Figure 3. Forest plot of sensitivity and specificity estimates for permanent motor deficits AR: Amplitude criterion; DCS:
Direct Cortical Stimulation; FN: False Negative; FP: False Positive; i: ipsilateral; LAT: Latency criterion; MEP: Motor Evoked
Potential; MT: Motor Threshold/Mapping criterion; PW: Pulse Width Increase; TES: Transcranial Electrical Stimulation;
TH: Threshold criterion; TN: True Negative; TP: True Positive.
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Table 3. Summary of events. The table summarizes the relative rates of all MEP changes as well as the rates of reversible and irreversible MEP changes and permanent postoperative motor
deficits in each study.

Authors Total No. of Patients (n) No. of All MEP
Changes (n)

No. of All New
Motor Deficits (n)

No. of Permanent
Motor Deficits (n)

No. of All MEP
Changes/Total No

of Patients (%)

No. of Reversible
MEP Changes/No of

All MEP Changes (%)

No. of Irreversible
MEP Changes/No of

All MEP Changes (%)

No. of Permanent
Motor Deficits/Total
No of Patients (%)

TUMORS AND OTHER BRAIN LESIONS

Giampiccolo
et al. (2021)

[29]

125 UL 26 63 22 21% N/A N/A 18%

125 LL 14 21 13 11% N/A N/A 10%
Gogos et al. (2020) [30] 58 6 6 2 10% 0% 100% 3%

Mammadk-hanli et al. (2020) [31] 145 21 N/A N/A 14% 33% 67% N/A
Seidel et al. (2020) [32] 182 N/A 56 3 N/A N/A N/A 2%

* Abboud et al. (2019) [33] 126 72 44 18 14% 15% 85% 4%
Majchrzak et al. (2018) [34] 35 18 18 11 51% 39% 61% 31%
Moiyadi et al. (2018) [35] 39 6 7 0 15% 33% 67% 0%
** Plans et al. (2017) [36] 92 21 18 9 23% 0% 100% 11%

Zhou et al. (2017) [37] 70 6 10 1 9% N/A N/A 1%
Abboud et al. (2016) [17] 93 13 13 5 13% 0% 100% 5%

Boex et al. (2016) [38] 104 16 19 8 18% 0% 100% 8%
Obermueller et al. (2015) [23] 158 142 43 19 90% 82% 18% 12%

Shiban et al. (2015) [39] 14 3 5 1 21% 33% 67% 7%
Lee et al.

(2014) [40] 84 7 14 6 8% 0% 100% 7%

Gempt et al. (2013) [41] 70 21 23 10 30% 38% 62% 14%
Ostrý et al. (2013) [42] 25 6 8 1 24% N/A N/A 4%
Pastor et al. (2013) [43] 30 12 8 3 40% 0% 100% 10%
Seidel et al. (2013) [8] 100 30 30 5 30% 60% 40% 5%

Sakurada et al. (2012) [44] 30 4 7 5 13% 50% 50% 17%
Senft et al. (2012) [45] 54 7 11 4 13% N/A N/A 7%

Hatiboglu et al. (2010) [46] 16 4 8 2 25% N/A N/A 13%
Ichikawa et al. (2010) [47] 21 5 3 1 24% 80% 20% 5%
* Szelényi et al. (2010) [48] 25 27 15 7 96% 44% 56% 25%
Kombos et al. (2009) [49] 15 5 2 0 33% 100% 0% 0%
Neuloh et al. (2009) [50] 191 90 52 15 47% 63% 37% 8%
Neuloh et al. (2007) [51] 88 41 27 8 47% 63% 37% 9%
Suess et al. (2006) [15] 232 47 35 19 20% 57% 43% 8%

Neuloh et al. (2004) [11] 159 64 61 14 40% 59% 41% 9%
Kombos et al. (2001) [10] 70 12 8 N/A 17% 83% 17% N/A

Zhou et al.
(2001) [52] 50 12 8 N/A 24% 33% 67% N/A

Cedzich et al. (1996) [53] 25 15 9 5 60% 60% 40% 20%
EPILEPSY SURGERY

Koo et al.
(2019) [54] 279 10 2 0 4% 100% 0% 0%

Neuloh et al. (2010) [55] 86 31 11 5 36% 65% 35% 6%
ANEURYSM CLIPPING

Guo et al. (2021) [56] 285 63 32 23 22% 78% 22% 8%
Park et al. (2021) [57] 319 12 10 6 4% 67% 33% 2%
You et al. (2021) [58] 138 33 17 N/A 24% 85% 15% N/A

Kameda et al. (2020) [59] 42 2 2 0 5% 100% 0% 0%
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Table 3. Cont.

Authors Total No. of Patients (n) No. of All MEP
Changes (n)

No. of All New
Motor Deficits (n)

No. of Permanent
Motor Deficits (n)

No. of All MEP
Changes/Total No

of Patients (%)

No. of Reversible
MEP Changes/No of

All MEP Changes (%)

No. of Irreversible
MEP Changes/No of

All MEP Changes (%)

No. of Permanent
Motor Deficits/Total
No of Patients (%)

Byoun et al. (2019) [22] 115 5 3 3 4% 100% 0% 3%
Greve et al. (2019) [60] 133 13 9 4 9% 61% 39% 3%

Li et al.(2019) [61] 92 92 52 28 100% 83% 17% 30%
Choi et al. (2017) [12] 386 10 8 6 3% 0% 100% 2%

Komatsu et al. (2017) [62] 9 5 0 0 56% 100% 0% 0%
Staarman et al. (2017) [63] 123 10 3 N/A 8% 90% 10% N/A

Kim et al. (2016) [64] 685 43 36 N/A 6% 70% 30% N/A
Maruta et al. (2016) [65] 243 73 18 11 30% 90% 10% 5%

Song et al. (2015) [66] 11 6 3 N/A 55% 83% 17% N/A
Sasaki et al. (2014) [67] 177 22 6 2 12% 90% 10% 1%

Takebayashi et al. (2014) [68] 50 19 10 4 38% 79% 21% 8%
Yue et al. (2014) [69] 43 15 4 3 35% 93% 7% 7%

* Dengler et al. (2013) [70] 30 15 2 1 44% 93% 7% 3%
Kang et al. (2013) [71] 37 8 3 N/A 22% 0% 100% N/A

Maruta et al. (2012) [72] 22 4 3 N/A 18% 100% 0% N/A
Shi et al. (2012) [73] 68 9 N/A N/A 13% 67% 33% N/A

Motoyama et al. (2011) [74] 48 5 1 N/A 11% 80% 20% N/A
Irie et al. (2010) [75] 110 6 8 N/A 5% 83% 17% N/A

Yeon et al. (2010) [76] 98 12 1 0 12% 100% 0% 0%
Szelényi et al. (2007) [77] 108 22 5 2 13% 73% 27% 2%

Weinzierl et al. (2007) [78] 18 4 0 0 22% 25% 75% 0%
Szelényi et al. (2006) [16] 116 12 15 6 11% 75% 25% 5%
Horiuchi et al. (2005) [79] 53 10 4 1 19% 90% 10% 2%
Suzuki et al. (2003) [19] 108 20 5 1 19% 95% 5% 1%

ENDOVASCULAR PROCEDURES FOR ANEURYSMS
Nakagawa et al. (2020) [80] 164 7 10 N/A 4% 57% 43% N/A

Wilent et al. (2020) [81] 763 51 13 N/A 7% 29% 71% N/A
Lee et al. (2019) [82] 561 7 4 N/A 1% 71% 29% N/A

Piñeiro et al. (2015) [83] 8 2 3 3 25% 50% 50% 38%
Hiraishi et al. (2011) [84] 7 3 1 N/A 43% 100% 0% N/A

Color scale: 0–25%; 26–50%; 51–75%; 76–100%; Not available/Not applicable. * In these studies, the calculations were done based on the number of total cases/events. ** Only 85 patients
were available for analysis at 3 months.
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Figure 4. Bubble plot with regression line depicting the negative correlation between the proportion of reversible MEP changes and proportion of new motor deficits associated with
MEP changes. Each dot represents one study, and the color corresponds to the type of the lesion (blue: tumor, red: aneurysm/clipping, green: aneurysm/endovascular procedures).
The two studies of epilepsy surgery are depicted together with tumors (blue color). The third dimension added is the study population size, which is displayed by the size of each dot.
Spearman’s rank correlation coefficient = −0.498 (p < 0.001).
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4. Discussion
4.1. Type and Range of Available Evidence

This scoping review included 68 primary clinical studies and, more specifically,
31 studies for tumors and other brain lesions, two for epilepsy surgery, 28 for aneurysm
clipping, five for endovascular aneurysm procedures, and two case reports. Except for
the two case reports, all the studies were observational case series, either prospective
(47%) or retrospective (44%), with a high number of patients. Small-scale studies with
less than 20 patients were rare (12%), while non-randomized and randomized controlled
trials (RCTs) were not identified. Obviously, the lack of RCTs from the body of the existing
literature is attributed to ethical considerations that hinder the implementation of this
study design [87]. As intraoperative monitoring of MEPs provides data that necessitates a
rescue intervention, it would be unethical to ignore the intraoperative alarms in a group of
patients or not to use them at all in operation within highly eloquent regions [88].

However, the clinical and methodological heterogeneity across the studies was remark-
able, and the main sources of this heterogeneity were patients’ characteristics, intraoperative
monitoring and mapping techniques, utilized MEP warning criteria, and outcome assess-
ment. Undoubtedly, the varying study protocols and definitions render evidence synthesis
quite challenging. This accounts for the relatively few reviews and meta-analyses of MEP
warning criteria in supratentorial surgery, although some authors attempted to synthesize
the existing research and estimate summary effects for vascular surgeries [89–92]. Due to
those factors, we applied a descriptive approach using the systematic format of a scoping
review, and we tried, in particular, visualizing instead of pooling the data.

4.2. Study Population and Type of Lesions

In many case series, children and adolescents were included in the study population.
Except for patients in late adolescence, whose neuroanatomical and neurophysiological
characteristics do not differ substantially from adults, the inclusion of young patients
may confound the results. Due to incomplete myelination, modifications of intraoperative
neurophysiological techniques might be necessary [93]. Especially in children younger
than 10 years old, longer stimulating pulse trains and higher stimulation thresholds might
be needed to elicit an MEP response [94,95]. However, the evidence regarding the optimal
stimulation parameters in younger ages is scarce. It remains unclear if MEP warning
criteria that are commonly used in supratentorial surgery of adults are equal in the pedi-
atric population.

Similar MEP warning criteria were applied in surgeries for a broad spectrum of
brain lesions, such as intrinsic glioma of different grades, extrinsic metastases, vascular
malformations, cortical dysplasia, and aneurysms located in different arteries. Because of
the obvious different surgical strategies and approaches, we did analyze studies for tumor
surgeries separately from them for aneurysm surgeries (Tables 1 and 2, Figure 4). During
tumor surgeries, additional warning criteria provided by subcortical mapping have been
suggested by 12% of the included studies, and this aspect will be discussed in detail below
in the paragraph “The mapping-monitoring crosstalk and the warning sign hierarchy”.
Aneurysm surgeries presented a higher tendency of reversible MEP changes than tumor
surgeries, which will be discussed further in the paragraph “MEPs as surrogate markers”.

Concerning tumor location, Abboud et al. [33] observed a significant correlation of
postoperative motor deterioration with tumor location in the insula. This fact might be
attributed to the higher incidence of vascular injury during insular glioma surgery [30].
Krieg et al. [96] found a statistically significant increase in postoperative motor deficits
in cases where the tumor was located in the precentral cortex compared with the post-
central and anterior frontal cortex. During resection of tumors located in the precentral
gyrus, MEP monitoring might be inferior to mapping methods as either the stimulating
electrode interferes with the surgical approach or the MEP might be generated in the
corticospinal tract distal to the resected area [97]. Giampiccolo et al. [29] performed a lesion
analysis, which showed that motor-evoked potential-related long-term motor deficits were
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associated with direct or ischaemic damage to the corticospinal tract, whereas muscle
motor-evoked potential-unrelated deficits occurred when supplementary motor areas were
resected in conjunction with dorsal premotor regions and the anterior cingulate. This
important observation illustrates the fact that MEP represents the integrity of the primary
motor cortex (M1) and the corticospinal tract but not associative motor areas.

4.3. Stimulation Techniques and Parameters

Continuous MEP monitoring was performed either with TES (via scalp electrodes) or
DCS (electrodes directly placed on the precentral gyrus), but many authors used both stim-
ulation techniques simultaneously or applied them in subgroups of patients in their series.
The high-frequency multipulse stimulation technique introduced by Taniguchi et al. [5]
was applied in all studies, but there were differences in stimulation parameters, which were
more apparent in stimulation intensity. The stimulation intensity has special importance
when interpreting the amplitude criterion, as MEP exhibits trial-to-trial variability, and
MEP amplitude alterations may be caused by non-surgical factors [9]. There has been
much debate regarding the use of TES in supratentorial surgery because TES induces less
focal stimulation, and at high intensity, the activation site might be located deeper than
the actual level of the lesion [17,77,98]. Rothwell et al. [99] stated that strong stimulation
currents may activate the CST even at the foramen magnum. Hence, depending on the area
of interest, there might be the risk of stimulating the white matter more caudally than the
site of neurological damage, leading to a higher rate of false-negative results. Furthermore,
loss of cerebrospinal fluid after dural opening leads to brain shift and subdural air accu-
mulation. That fact may interfere with the reliability and evaluation of TES-MEP warning
criteria. Further, TES may cause a higher rate of patient movement [100]. Because of these
drawbacks, many neurosurgeons opt for DCS, which needs lower stimulation intensities
and allows a focal and superficial stimulation of corticospinal neurons [8]. Nonetheless,
DCS is not applicable in patients with scar tissue from previous operations. It may also in-
terfere with MEP monitoring due to electrode dislocation on the cortex [101]. Szelényi et al.
reported that TES and DCS do not differ in their ability to detect an impending neurological
injury. Both paradigms may be alternatively applied during the same surgical procedure,
provided if lateral TES montages are not used, and near-threshold stimulation intensities
are applied [77]. Our scoping review supports this observation if applied as a general rule.
However, a more thorough comparison between the two stimulation modalities depending
on the type of surgery, pathology, and tumor location (especially in the precentral area)
would be clinically meaningful and may contribute to an optimized implementation of
warning criteria.

The inclusion criterion for our review was the use of MEP alarm criteria during
continuous MEP monitoring, eventually complemented by a secondary test such as sub-
cortical mapping. Consequently, studies, which applied mapping techniques (such as
Penfield or high-frequency stimulation) without MEP monitoring were excluded. In all
included studies, the high-frequency multipulse stimulation technique was utilized for
subcortical motor mapping, and the stimulation parameters were similar to the ones in
MEP monitoring. For subcortical mapping, monopolar cathodal stimulation was applied
in all studies except for the study by Kombos et al. [49], who used anodal stimulation. In a
comparative study by Shiban et al. [102], the authors pointed out that cathodal stimulation
was superior and lower stimulation intensities were required. Gogos et al. [30] utilized
bipolar stimulation in a subset of 20 patients in addition to monopolar stimulation and
reported that bipolar stimulation elicited MEPs in only 30% of patients as opposed to the
monopolar stimulation, which identified the descending motor tracts in 86.4% of patients.
These results are in concordance with the findings of Szelényi et al. [103], who concluded
that monopolar cathodal stimulation is more efficient than bipolar cathodal stimulation in
subcortical motor mapping. Applying the short train monopolar paradigm, the current
spreads radially towards a distal reference electrode [104]. This pattern of electric current
spreading enables the estimation of the distance between stimulation point and CST based
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on the rule that 1 mA increase in subcortical stimulation threshold corresponds to 1 mm
increase in the distance towards the CST. Up to now, no definitive statement on this re-
lationship is possible; however, the vague rule of thumb “1 mA correlates to 1 mm” is
increasingly used when performing subcortical short train monopolar stimulation with five
0.5 ms cathodal constant-current pulses. Three groups performed continuous (dynamic)
subcortical mapping, with two of them integrating the monopolar stimulation probe in
the surgical suction device [32,35] and one of them in the ultrasonic aspirator [39]. In the
remaining studies, subcortical mapping was performed intermittently with a handheld
probe. Allowing an uninterrupted and procedure-driven stimulation [32,105], continuous
dynamic mapping via a surgical instrument may improve awareness of the intraopera-
tive conditions and may facilitate immediate reaction to warning signs, but more studies
addressing this aspect are needed to make a definitive statement.

4.4. The Spectrum of MEP Warning Criteria

The utilized warning criteria varied across the included studies, but in all cases,
the disappearance of MEP signal was considered as a major alarming sign that required
re-assessment of intraoperative settings and an adjustment of surgical strategy. Apart
from MEP loss, the most commonly used warning criteria were amplitude reduction and
threshold elevation with cut-off values that differed among the authors. Notably, a >50%
amplitude reduction was regarded in the vast majority of studies as a significant change,
although other magnitudes like >80% and >20% have also been applied [10,11,30,37,49].
Threshold cut-off values that have been used during TES were >100 V or >20 mA [16,45,
48,75,77] and during DCS >3 mA [45], ≥4 mA [8,32], and ≥5 mA [36]. Interestingly, Ostry
et al. [42] used during supratentorial tumor surgery a threshold increase >2 mA not as an
indicator for surgical intervention but for the performance of subcortical mapping. The
definition of a minimum MEP amplitude to be monitored varied significantly among the
papers from 10 to 100 µV with an average of 30–50 µV [8,10,11,29,32,33,35,38,42,48,53,66,
73,74,76,78]. However, in many, it was not clearly defined.

Recently, Abboud et al. [17] introduced a novel threshold criterion and suggested that
a TES threshold increase on the affected side of more than 20% beyond the percentage
increase on the unaffected side should be considered as a warning sign. In contrast to the
conventional approach of a threshold increase beyond the baseline level, this modification
incorporates changes on the unaffected side, which can serve as a negative control for MEP
alterations caused by factors other than damage to the CST and highlights the significance
of bilateral MEP monitoring. Indeed, the results in their series were highly promising, as
none of the patients without threshold increase greater than 20% beyond the unaffected
side suffered a postoperative motor deficit, but further studies are needed for the definite
establishment of the novel threshold criterion. Latency increase has never been used as a
sole criterion in supratentorial surgery and was always an adjunct to the amplitude criterion.
A significant latency increase not accompanied by a consistent amplitude decrease was
unusual. This might be obvious, as latency shift would indicate a demyelination process,
which is not an expected acute type of injury in supratentorial surgery. Morphology
simplification is also a poorly studied warning criterion that remains controversial and
may be susceptible to subjectivity.

A significant flaw was that the majority of authors did not report the duration of
reversible changes or if they applied a threshold for the duration, above which duration the
alteration was considered as irreversible. This clarification is important, as a longer duration
of the reversible MEP alteration might explain why some patients develop a postoperative
motor deficit despite the successful MEP recovery after the intervention while others do
not. Krieg et al. [96] noted that the mean duration of amplitude reduction and latency
increase was significantly higher in patients with permanent motor deficit than those with
no deficit. In aneurysm surgery, Li et al. [61] proposed 13 min as the cut-off duration of
MEP deterioration for higher risk of ischemic damage, while Guo et al. [56] suggested
8.5 min and Kameda et al. [59] an even shorter duration of 5 min. The determination of a
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critical threshold to delineate the duration above which an MEP change should be regarded
as irreversible and is associated with a higher risk for postoperative motor deficit would
guide the neurosurgeon more efficiently and is worth being investigated. Similarly, the
borderline between MEP amplitude reduction and MEP loss is still vague, as the maximal
stimulation-intensity value has not been defined in many studies.

4.5. The Mapping-Monitoring “Crosstalk” and the Warning Sign Hierarchy

Regarding assistant mapping warning criteria, monopolar cathodal subcortical motor
thresholds (MT) ≤5 mA and ≤3 mA were the most widely used thresholds that provided
an alarming sign for proximity to CST. It has been suggested that the critical MTs might be
even lower, but the exact threshold has not been identified yet [8].

As mentioned above, this scoping review included only those subcortical mapping
studies that utilized mapping warning criteria combined with MEP monitoring criteria.
Due to methodological reasons, subcortical mapping studies, which performed a post-hoc
analysis to investigate the critical MT (without using an a priori defined MT as a surrogate
to stop resection), studies that did not correlate motor outcome exactly to intraoperative
alarm criteria or did not describe precisely the criteria when combining subcortical mapping
with continuous MEP monitoring, were excluded [106–111].

Mapping and monitoring warning signs may present a hierarchical “crosstalk” be-
tween them [8]. Each method has distinct shortcomings and limitations, and their simulta-
neous use during surgery may lead to mutual reinforcement. MEP monitoring can assess
the functional integrity of the primary motor pathways in real-time and detect potential
damage caused by mechanical or vascular injury, providing a trigger for actions to reverse
it. Nevertheless, no guarantee is provided that the motor pathway has not already been
irreversibly damaged by the time the alarming sign occurs. In other words, the warning
criterion may appear after the critical event, and hence, its value is undermined by the
eventually irreversible nature of the damage. This fact is also illustrated in Table 3 and
in Figure 4. During tumor compared to vascular surgery, a higher rate of irreversible
compared to reversible MEP alterations was described. The reason might be the different
patterns of injury, especially mechanically induced injury during tumor surgery. If the
surgeon injures fibers of the CST, there might be no way back to reverse the damage.

Contrariwise, the mission of subcortical mapping is to localize the motor tracts and
provide information about their distance from the operation site. A warning sign obtained
from mapping denotes proximity to CST and not functional compromise of the CST. Subcor-
tical motor mapping warns about an impending neurologic injury that has not necessarily
taken place but is likely to occur if surgical maneuvers are further continued. Therefore, the
surgeon is aware of working close to eloquent structures, meaning that meticulous maneu-
vers or reappraisal of surgical strategy might be necessary. For mechanical alteration of the
CST, the mapping warning signs seem to precede those from monitoring, which may occur
at a later moment with low mapping thresholds [8]. However, motor mapping is limited by
its inability to detect remote vascular injury, critical end-artery blood supply, and ischemia
due to brain retraction that can be detected by MEP monitoring [8]. The advantages of
this combinatorial approach with these two neurophysiological techniques during tumor
surgery came into focus during the past few years [8,30,32,35,36,39,49,108–111]. Our DTA
analysis (Figures 2 and 3) indicated that their combination results in a more powerful tool.
Yet, more evidence is needed to confirm that the combination may achieve the ultimate
goal of maximizing resection and minimizing debilitating motor deficits.

4.6. Different Patterns of Injury-Neurophysiological and Neurosurgical Considerations

Especially during resection of motor eloquent tumors, permanent motor deficits might
be caused by different patterns of injury: direct (mechanical) injury of the primary motor
cortex or the corticospinal tract, ischemia due to coagulation of critical perforator arteries, or
lesion of multiple supplementary motor areas. In our scoping review, 54.8% of the included
tumor papers did differentiate between injury patterns. If considering the described cases
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of permanent motor deficits, seven groups [30,38–40,44,47,51] described exclusive vascular
injury and one group [55] sole mechanical injury as a cause. Nine groups [8,15,23,32,36,
41,46,48,50] did observe different injury patterns in their tumor patients with permanent
motor deficits with different ratios of vascular, mechanical, or other causes (see also Table
S8 in the Supplementary Material).

In our own initial series of 100 motor eloquent tumors, we did describe five patients
(5%) with a postoperative new or worsened motor deficit at three-month follow-up con-
sultation [8]. In all five patients, DCS MEP monitoring alterations were documented
(two sudden irreversible threshold increases and three sudden irreversible MEP losses).
Of these five patients, two had ischemic vascular lesions, and three had mechanical CST
damage. After the introduction of the dynamic mapping method (continuous stimulation
via the surgical suction device), the permanent motor deficit rate was 3%, with direct
mechanical injury in three of these patients (1.7%) [32]. In our series, DCS MEP alterations
did occur abruptly, but they could be influenced in 60% of cases [8]. Further, the stability of
DCS-MEPs did provide real-time feedback about the functional integrity of the CST and
supported us to continue tumor removal at even very low mapping thresholds. This obser-
vation is supported by the recent publication of Gogos et al. [30], where the senior author
M. Berger reports in his previous series of 700 motor mapping cases applying bipolar map-
ping that 41% of permanent motor deficits had to been attributed to “direct transgression
of the motor system” [112]. The authors even concluded that adding monopolar (short
train) stimulation and MEP monitoring as an additional neurophysiological tool could
significantly reduce permanent motor deficits within the present series being reported at
3.4%. Giampiccolo et al. [29] observed MEP-related deficits in vascular territories (insular
cortex and post-central gyrus) and anatomical territories (internal capsule and precentral
gyrus) of the CST. However, they also described MEP-unrelated motor deficits in cases of
SMA resection in conjunction with damage to the dorsal premotor and anterior cingulate
cortex. Finally, they concluded that MEP drop predicts a permanent, severe motor deficit,
which is associated with disconnection of the CST, and they did support MEP monitoring
as an important neurophysiological marker.

As already discussed, MEP monitoring may detect different types of vascular damage
such as direct vascular damage or injury of perforating vessels, critical end-artery blood
supply (for example, in the lenticulostriate territory) due to hypoperfusion, and ischemia
due to brain retraction. Those different mechanisms might explain why some MEP alter-
ations can be reversed and others not. This fact is also in accordance with our findings in
this scoping review (Table 3 and Figure 4). In the included papers of aneurysm surgery,
a higher rate of reversible MEP changes attributed to temporary clipping (mean rate 16.2%
of all temporary clipping cases corresponding to 78% of all MEP changes during temporary
clipping) compared to irreversible MEP changes (mean rate 4.6%) was described, which
demonstrates that MEP monitoring may successfully guide temporary clipping before
definitive aneurysm repair.

Non-surgical factors, such as global or local hypoperfusion, may also affect the MEP
amplitude. The autoregulation range of mean arterial pressure (MAP) varies from as low
as 55 mmHg to rarely, as high as 113 mmHg [113]. However, the pathology itself or the
clinical diseases of the patient may affect the capability of autoregulation, and already
small MAP alterations might not be tolerated. In general, it has been described that the
MEP amplitude starts to decrease if the cerebral blood flow falls below the threshold of
16 mL/min/100 g [114]. In those cases, raising the intraoperative blood pressure could
restore blood flow and consequently MEP amplitudes [7].

4.7. MEP Warning Criteria and Postoperative Motor Deficit

The DTA analysis revealed that irreversible alterations of MEPs have high specificity
and NPV. Sensitivity and PPV varied across the studies, and definite conclusions cannot be
drawn, although in most studies, they tended to be low or moderate. This suggests that
MEPs cannot always reliably detect the true positive cases. For intraoperative decision-
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making, an important aspect is the confidence in the test’s ability to distinguish patients
who are likely to develop a motor deficit from those who are not, and in this regard, the
high NPV of MEPs is meaningful [115]. In other words, if MEPs remain stable or an MEP
change signified by a warning criterion is successfully reversed, then the M1 and the
CST are expected to be intact after surgery. Stable or reversed MEPs may reassure the
surgeon to continue and, in tumor surgery, achieve a higher extent of tumor resection. If an
irreversible MEP change occurs, it does not mean per se that the patient will suffer a new
motor impairment, although it is highly possible. Skepticism about false positive alarms
and putting the alarm in the right context are important. The ensuing compromise of the
surgical goal is reasonable. False alarms may indirectly harm the patient by stopping the
surgery. However, too early termination of the surgery may be compensated through a
reoperation, whereas a debilitating neurological injury cannot.

Nonetheless, the low prevalence of postoperative deficits has a significant impact
on the PPV and may account for the observed low values. Thus, even minor test errors
have a considerable effect on the performance of the test. This signifies that a refinement
of the alarm criteria cut-off values may not significantly upgrade the PPV. In view of
this limitation, the focus should be moved to a multimodal approach and, more specif-
ically, to the combination of MEP monitoring with other intraoperative modalities such
as subcortical mapping (see paragraph “The warning sign hierarchy”) and intraoperative
imaging. Our DTA analysis provides implications for this perspective. The combina-
tion of monitoring and mapping criteria seemed to yield higher PPV estimates in tumor
surgery. In the future, artificial intelligence and machine learning algorithms may markedly
contribute to a better outcome prediction, counterbalancing the interrater variability and
the inherent subjectivity of MEP evaluation. However, intraoperative decision-making
based on MEP alarms should not be regarded as a rigidly mechanistic process. Thus,
the neurophysiologist’s/neurosurgeon’s contextualization and intraoperative judgment
are indispensable.

Secondary postoperative events such as delayed ischemia due to vasospasm, hem-
orrhage, and edema may lead to motor deficits that will not be detected intraoperatively
with MEP monitoring. Therefore, those events cannot be regarded as false-negative out-
comes [45]. Moreover, motor function compromise following supratentorial surgery may
result from resection of associative motor areas such as the supplementary motor area
(SMA) [45]. The classical described SMA syndrome is characterized by impaired ability to
initiate voluntary movements (or speech) and resembles muscle weakness after injury of
the CST [116]. The disturbances are, in most cases, temporary and may resolve within some
weeks after surgery [116]. Given that the SMA is not assessed by MEP intraoperatively,
SMA syndrome should not be considered false-negative [50,116,117]. These elucidations
have been scarcely provided by authors, and this may imply that the real number of
false-negative cases in the body of literature might be lower than previously thought.

4.8. MEPs as Surrogate Markers

Intraoperative MEPs have a dual function with regard to postoperative motor deficits.
Firstly, they may serve as a diagnostic tool for the detection of neurological injury and pre-
diction of postoperative motor status [28]. Secondly, they may contribute to the prevention
of motor impairment, acting as surrogate endpoints that trigger a rescue intervention [28].
In the studies of our review, a reversible MEP change did not result in a postoperative
motor deficit in most cases, and if a motor deficit manifested, it was transient, with only
a few patients suffering a permanent deficit. Irreversible MEP changes were associated
with a higher number of transient deficits compared with the reversible ones. Additionally,
patients with irreversible alterations were more likely to develop permanent motor deficits.
These observations suggest that in case of a successful intervention and reversal of MEP
changes, the fatal damage is avoided, and if motor deficits occur, they are expected to
resolve during the short-term follow-up. On the contrary, if the intervention was not
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effective and MEP changes were not reversed by the end of the surgery, postoperative
motor deficits are more likely to occur and persist.

Table 3 provides an overview of intraoperative events and the rate of permanent
motor deficits across different studies. Five percent of the studies had a high number of
MEP changes related to all monitored patients, indicating that either these studies had a
tendency towards (too) early alarms or alternatively high-risk surgeries were performed.
Thirty-eight percent of the studies had a high rate of reversible related to all MEP changes,
suggesting that an intraoperative intervention was successful in most cases. On the contrary,
14% of studies had a high rate of irreversible MEP changes indicating that the warning
sign appeared rather (too) late or that it has been impossible by the surgeon to reverse
the injury. Remarkably, no study in which the number of permanent motor deficits in
the whole study population was high. Further, the bubble plot (Figure 4) illustrates that
aneurysm procedures tend to cluster at the right-bottom part of the plot, signifying that
vascular surgeries have a higher rate of reversible MEP changes compared with tumor
surgery. This observation may be attributed to the fact that the rescue interventions in the
two types of surgeries have a different potential for success. Admittedly, ischemia caused
by a temporary clip can be reversed more easily than a mechanical injury of the CST.

The characterization of reversible MEP changes followed by postoperative motor
deficit either as false-negative or as true-positive is a controversial point. In our DTA
analysis, we regarded only irreversible MEP changes as positive results. A question that
arises is whether the reversible alterations followed by motor deficit should be considered
as true-positive cases that were partially reversed after successful intervention and the
postoperative deficit as the residue of a partially reversed injury. This issue is more
prominent in cases of immediate postoperative (early-transient) motor deficits that resolve
in a short time. Indeed, the rescue intervention that takes place between the occurrence of
the intraoperative alarm and the time of motor function evaluation may alter the outcome
and confounds the assessment of MEPs as diagnostic tools. However, the diagnostic
performance of MEPs in itself does not encompass the rescue intervention. Undoubtedly,
the rescue intervention can be triggered by MEP alarms, but this is rather a matter of MEP
performance as a surrogate and not as diagnostic markers. Thus, reversible MEP changes
should be evaluated under the concept of MEP surrogacy [92].

MEPs may function as surrogate endpoints in the sense of substituting the postopera-
tive motor deficit, which is the clinical endpoint but cannot be assessed on the anesthetized
patient intraoperatively [28,92]. Although similar, surrogacy is not identical with diag-
nosis, and useful diagnostic markers are not necessarily useful surrogate markers and
vice versa [118]. The diagnostic performance of MEPs is more related to the accuracy
in prediction of the neurological deficit after surgery as a post-hoc event, whereas the
surrogate performance is more related to the indication of the neurological injury during
surgery as an intraoperative event that warrants intervention. The link to the postoperative
condition lies in the effect of the triggered intervention on the onset of new deficits at
that time [92]. Therefore, MEPs can be regarded as useful surrogate endpoints if suc-
cessful intervention and reversal of MEP change are correlated with a lower number of
postoperative motor deficits [28]. Holdefer et al. [28] reported this significant negative
correlation between the proportion of reversible MEP alterations and the proportion of
new motor deficits associated with MEP changes in vascular surgery (rpearson = −0.81,
p < 0.05). This negative association was also found during our own correlation analy-
sis (rspearman = −0.5, p < 0.001, Figure 4). Our results are in concordance with those by
Holdefer et al. [28], but the difference is that in their study, a total of ten studies with
intracranial aneurysm surgeries were included, while in our own correlation analysis, we
included 59 studies (25 tumor surgery, 2 epilepsy surgery, 27 aneurysm/clipping, and
5 aneurysm/endovascular). The fact that this finding was replicated with a higher number
of studies should corroborate this observation and suggest that reversible MEP changes
following intervention indicate a successful reversal of an impending neurological injury
and motor function preservation postoperatively.
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4.9. Implications for Research

This scoping review summarized the existing evidence on MEP warning criteria in
supratentorial surgery. The appraisal of this heterogeneous literature should provide some
insights into research gaps and concepts. The sources of evidence on MEP warning criteria
are observational studies, and it is unlikely that RCTs will be implemented in the future due
to ethical considerations. Efforts for evidence synthesis are hindered by the heterogeneity
of primary studies that lessens the power of summary estimates. In this regard, the interest
should be focused on strategies to upgrade the evidence provided by observational studies
and to mitigate the heterogeneity across them in order to enable evidence synthesis with
more robust results in the future. First, basic concepts in the field of MEP warning criteria
need to be clarified, and a standard terminology needs to be utilized by authors when
reporting outcomes. To define the exact time-points at which a motor deficit is registered as
early-transient, transient, or permanent, as well as which MEP alterations are considered
reversible and irreversible, will facilitate a consensus among authors of future studies.
The anesthetic regimen, stimulation protocols, minimal MEP amplitude, and recorded
muscles should be described in detail. If more than one warning criteria or stimulation
techniques are utilized, it is essential that the outcomes are clearly described separately so
that the contribution of each criterion can be assessed. Data should be presented in such
a way that the calculation of diagnostic accuracy measures is feasible. For this purpose,
documentation protocols of intraoperative events with standard terminology might be
established to facilitate intra-institutional as well as inter-institutional comparisons.

In this context, the sequence of actions undertaken when an alarm criterion occurs
during surgery may be emphasized. Although the interventions after a warning sign
were mentioned in most of the studies in our review, it was unclear how these actions
were prioritized, if technical troubleshooting preceded the surgical measures and which
intervention finally managed to reverse the alteration. These clarifications are essential to
assess the efficacy of interventions and could contribute to the development of algorithms
for the efficient management of intraoperative events signified by MEP alarms.

4.10. Limitations

We did not perform a risk of bias assessment of the included studies, as our objective
was not to assess the quality of the existing studies but rather to provide a broad overview
of the available evidence to identify gaps and clarify concepts. Secondly, in a few studies
of the DTA analysis, MEP changes were not reported as irreversible but were characterized
as significant. These MEP changes were regarded as irreversible in our analysis, although
they were not clearly defined as such. Moreover, the discrimination between transient
and permanent deficit was based on reporting provided by the authors and not on a
specific time-point because of the heterogeneity in outcome reporting. Therefore, in a
few studies, there were some deviations from the most commonly utilized cut-off time
of 3 months. Further, we did not analyze studies, which performed subcortical mapping
without simultaneous MEP monitoring as this was not within the scope of our review.
Finally, it is important to highlight that correlation analysis should not be confounded by
causality, especially when analyzing reversible MEP alterations.

Due to the severe heterogeneity of the included studies, we have not been able to
pool the data, which would either allow a systematic review or even be the first step in
preparing big data analysis. To train models in machine learning algorithms and thus,
extract meaningful patterns or predict future classes relies on the way the data is collected.
Further, it depends on the amount of data available. Small data has meaningful information
but also contains a lot of noise. If we would train any machine learning model on such
data as reported in our review, the chances that it will learn the noise “too well” might be
huge, and when applied for deployment on new data, it will fail at making predictions due
to “overfitting”. However, our scoping review may raise awareness to solve this limitation
in future research studies.
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5. Conclusions

In conclusion, the existing evidence for MEP warning criteria in supratentorial surgery
derives from observational case series with high heterogeneity in terms of the study pop-
ulation, intraoperative neuromonitoring settings, utilized warning criteria, and outcome
reporting. MEP signal loss was always considered as a major warning sign that triggered a
cascade of actions in order to reverse impending motor damage. Additional common MEP
warning criteria were amplitude reduction followed by threshold elevation. Irreversible
MEP alterations were associated with a higher number of transient deficits compared with
the reversible MEP changes and a higher likelihood that these motor deficits did persist.

In almost all studies, MEPs showed high specificity and NPV. Thus, the absence of
an irreversible alteration may reassure the surgeon that the patient will not suffer a motor
deficit in the short-term and long-term follow-up. On the contrary, less consistency was
found for sensitivity estimates and PPV, which were rather low to modest, which could
probably be attributed to the low prevalence of events. Further, in tumor surgery, the combi-
nation with subcortical mapping warning criteria did increase the test accuracy. Moreover,
the role of neurophysiologist/neurosurgeon contextualization and intraoperative judg-
ment are essential. MEPs seem to perform well as surrogate markers, and successful
intervention followed by a reversal of MEP deterioration indicates postoperative motor
function preservation.

In future studies, a consensus regarding the definitions of MEP alteration, critical
duration of alterations, and outcome reporting should be established. Documentation
protocols with standard terminology could facilitate comparisons and combinations of
patient datasets to enable evidence synthesis.
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Appendix A

Database and Search Strategy

PubMed
Key concepts
Concept 1: Motor evoked potentials
Keywords: “motor evoked potential*”[tw], MEP[tw]
MeSH terms: “Evoked Potentials, Motor”[Mesh]
Query 1: ((“motor evoked potential*”[tw]) OR (MEP[tw])) OR (“Evoked Potentials, Motor”[Mesh])
Concept 2: warning criteria
Keywords: “warning criteri*”[tw], warning [tw], alarm [tw], alert [tw], “alarm criteri*”[tw], mapping[tw], monitoring[tw]
MeSH terms: “Intraoperative Neurophysiological Monitoring”[Mesh], “Brain Mapping”[Mesh]
Query 2: ((((((((“warning criteri*”[tw]) OR (warning [tw])) OR (alarm [tw])) OR (alert [tw])) OR (“alarm criteri*”[tw])) OR (mapping[tw])) OR (monitoring[tw])) OR
(“Intraoperative Neurophysiological Monitoring”[Mesh])) OR (“Brain Mapping”[Mesh])
Concept 3: motor deficit
Keywords: “motor deficit”[tw], paresis[tw], hemiparesis[tw], paralysis[tw]
MeSH terms: “Predictive Value of Tests”[MeSH], “Paresis/prevention and control”[Mesh], “Paralysis/prevention and control”[Mesh], “Neurologic
Manifestations/injuries”[Mesh], “Neurologic Manifestations/prevention and control”[Mesh], “Neurologic Manifestations/surgery”[Mesh]
Query 3: ((((“Predictive Value of Tests”[Mesh]) AND “Paresis/prevention and control”[Mesh]) AND “Paralysis/prevention and control”[Mesh]) AND (“Neurologic
Manifestations/injuries”[Mesh] OR “Neurologic Manifestations/prevention and control”[Mesh] OR “Neurologic Manifestations/surgery”[Mesh])) OR (“motor
deficit”[tw])) OR (paresis[tw])) OR (hemiparesis[tw])) OR (paralysis[tw])
Concept 4: supratentorial brain surgery
Keywords: supratentorial [tw], brain surgery[tw], “supratentorial surgery”[tw], tumor*[tw], aneurysm*[tw], epilepsy[tw]
MeSH terms: “Neurosurgical Procedures”[Mesh], “Brain Injuries/diagnosis”[Mesh], “Intracranial Aneurysm/surgery”[Mesh], “Brain Neoplasms/surgery”[Mesh],
“Epilepsy/surgery”[Mesh], “Central Nervous System Vascular Malformations/surgery”[Mesh]
Query 3: ((((((((((((supratentorial[tw]) OR (brain surgery[tw])) OR (“supratentorial surgery”[tw])) OR (tumor*[tw])) OR (aneurysm*[tw])) OR (epilepsy[tw])) OR
(“Neurosurgical Procedures”[Mesh])) OR (“Brain Injuries/diagnosis”[Mesh])) OR (“Intracranial Aneurysm/surgery”[Mesh])) OR (“Brain
Neoplasms/surgery”[Mesh]))) OR (“Epilepsy/surgery”[Mesh])) OR (“Central Nervous System Vascular Malformations/surgery”[Mesh])
Combined query
(((((((((((“warning criteri*”[tw]) OR (warning [tw])) OR (alarm [tw])) OR (alert [tw])) OR (“alarm criteri*”[tw])) OR (mapping[tw])) OR (monitoring[tw])) OR
(“Intraoperative Neurophysiological Monitoring”[Mesh])) OR (“Brain Mapping”[Mesh])) AND (((((“Predictive Value of Tests”[Mesh]) AND “Paresis/prevention and
control”[Mesh]) AND “Paralysis/prevention and control”[Mesh]) AND (“Neurologic Manifestations/injuries”[Mesh] OR “Neurologic Manifestations/prevention
and control”[Mesh] OR “Neurologic Manifestations/surgery”[Mesh])) OR (“motor deficit”[tw])) OR (paresis[tw])) OR (hemiparesis[tw])) OR (paralysis[tw])) AND
(((((((((((((supratentorial[tw]) OR (brain surgery[tw])) OR (“supratentorial surgery”[tw])) OR (tumor*[tw])) OR (aneurysm*[tw])) OR (epilepsy[tw])) OR
(“Neurosurgical Procedures”[Mesh])) OR (“Brain Injuries/diagnosis”[Mesh])) OR (“Intracranial Aneurysm/surgery”[Mesh])) OR (“Brain
Neoplasms/surgery”[Mesh]))) OR (“Epilepsy/surgery”[Mesh])) OR (“Central Nervous System Vascular Malformations/surgery”[Mesh]))) AND (((“motor evoked
potential*”[tw]) OR (MEP[tw])) OR (“Evoked Potentials, Motor”[Mesh]))

Embase, Scopus, CINAHL, Cochrane Library
(“warning criteri*” OR warning OR alarm OR alert OR “alarm criteri*” OR mapping OR monitoring OR “Intraoperative Neurophysiological Monitoring” OR “Brain
Mapping”) AND (“motor deficit” OR paresis OR hemiparesis OR paralysis) AND (supratentorial OR brain surgery OR “supratentorial surgery” OR tumor* OR
aneurysm* OR epilepsy OR arteriovenous malformation) AND (“motor evoked potential*” OR MEP)

Grey literature databases (OpenGrey, NTIS, British Library Direct Plus, York’s CRD, Mednar)
(“warning criteri*” OR warning OR alarm OR alert OR “alarm criteri*” OR mapping OR monitoring OR “Intraoperative Neurophysiological Monitoring” OR “Brain
Mapping”) AND (“motor deficit” OR paresis OR hemiparesis OR paralysis) AND (supratentorial OR brain surgery OR “supratentorial surgery” OR tumor* OR
aneurysm* OR epilepsy OR arteriovenous malformation) AND (“motor evoked potential*” OR MEP)

Appendix B

Authors Reason for Exclusion

After full-text review (n = 140)

Bidkar et al. (2021) [119] Not a primary study

Keeble et al. (2021) [120] No preoperatively defined MEP warning criteria

Lee et al. (2021) [121] No MEP warning criteria

Simon et al. (2021) [122] No MEP warning criteria

Wang et al. (2021) [123] No motor outcome analysis

Bander et al. (2020) [124] No MEP warning criteria

Brage et al. (2020) [125] No sufficient motor outcome data in conjunction with MEP warning criteria

Fekete et al. (2020) [126] Only spinal and brainstem lesions

Hayashi et al. (2020) [127] No MEP warning criteria

Jahodová et al. (2020) [128] No preoperatively defined cutoff value for MEP warning criteria

Kim et al. (2020) [129] No MEP warning criteria

Lee et al. (2020) [130] No MEP warning criteria

Porčnik et al. (2020) [131] Motor outcome data of asleep patients cannot be distinguished from those of awake patients

Roth et al. (2020) [132] No cutoff values for MEP warning criteria

Balaji et al. (2019) [133] No MEP warning criteria

Chung et al. (2019) [134] Only analysis of false-positive and false-negative cases

Hu et al. (2019) [135] No MEP warning criteria
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Authors Reason for Exclusion

After full-text review (n = 140)

Kanaya et al. (2019) [136] No MEP warning criteria

Rossi et al. (2019) [137] No sufficient motor outcome data in conjunction with MEP warning criteria

Wang et al. (2019) [138] No MEP warning criteria

Della Puppa et al. (2018) [139] No MEP warning criteria

Han et al. (2018) [140] No MEP warning criteria

Silverstein et al. (2018) [141] No MEP warning criteria

Skrap et al. (2018) [142] No clear MEP monitoring warning criteria and no sufficient motor outcome data in conjunction with MEPs-mixture
with SSEP

Umemura et al. (2018) [143] Motor outcome data of patients with supratentorial lesions were not clearly reported and could not be extracted

Wakui et al. (2018) [144] No MEP warning criteria

Abboud et al. (2017) [100] Predefined analysis of patients without a postoperative deficit and without MEP warning criteria to investigate
pneumocephalus with MRI

Akiyama et al. (2017) [145] No preoperatively defined MEP warning criteria

Lv X et al. (2017) [146] No MEP monitoring

Pintea et al. (2017) [147] No MEP warning criteria

Takagaki et al. (2017) [148] No MEP monitoring

Carrabba et al. (2016) [149] No MEP warning criteria

Gripp et al. (2016) [150] No MEP warning criteria

Grossauer et al. (2016) [151] No preoperatively defined MEP warning criteria

Ikedo et al. (2016) [152] Evacuation of hematoma and control of the presence of MEPs after evacuation -not tumor, vascular or epileptogenic
lesion

Imai et al. (2016) [153] No motor outcome analysis

Isozaki et al. (2016) [154] No MEP warning criteria

Koenig et al. (2016) [155] No preoperatively defined MEP warning criteria

Nakagomi et al. (2016) [156] No MEP warning criteria

Rossetto et al. (2016) [157] No MEP warning criteria

Zhuang et al. (2016) [158] Data for patients with supratentorial lesions cannot be extracted with certainty

Zhukov et al. (2016) [159] No preoperatively defined MEP warning criteria

Wang et al. (2016) [160] No MEP warning criteria

Eldin et al. (2015) [161] No MEP warning criteria

Erdoğan et al. (2015) [162] “Presence or absence” warning criterion but only the spinal and brainstem cases are adequately related to
postoperative motor outcome

Jo et al. (2015) [163] No MEP warning criteria

Joksimovic et al. (2015) [164] No MEP warning criteria

Okamoto et al. (2015) [165] No MEP warning criteria

Quan et al. (2015) [166] No MEP warning criteria

Rashad et al. (2015) [167] No MEP warning criteria

Shiban et al. (2015) [102] No clear MEP warning criteria

Udaka et al. (2015) [168] No MEP warning criteria

Raabe et al. (2014) [105] Overlapping series from the same institution

Sahaya et al. (2014) [169] Only 3 cases with MEP monitoring and no reporting of motor outcome for them

Schucht et al. (2014) [170] No sufficient motor outcome data in conjunction with MEP warning criteria and mapping thresholds

Bulusu et al. (2013) [171] No MEP warning criteria

Krieg et al. (2013) [172] Overlapping series from the same institution

Krieg et al. (2013) [173] No sufficient motor outcome data in conjunction with MEP warning criteria, data for asleep patients, and
postoperative motor deficit cannot be extracted with certainty

Shah P.A. (2013) [174] No clear MEP warning criteria

Vassal et al. (2013) [175] No MEP warning criteria

Chen et al. (2012) [176] No clear MEP warning criteria

Horton et al. (2012) [177] No cutoff values for MEP warning criteria

Krieg et al. (2012) [96] Overlapping series from the same institution
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Authors Reason for Exclusion

After full-text review (n = 140)

Ohue et al. (2012) [107] No preoperatively defined MEP warning criteria

Ritzl EK. (2012) [178] Not a primary study

Schucht et al. (2012) [179] No sufficient motor outcome data in conjunction with MEP warning criteria

Seidel et al. (2012) [97] No MEP monitoring warning criteria, only mapping warning criteria

Uchino et al. (2012) [180] No sufficient motor outcome data in conjunction with MEP warning criteria

Zhu et al. (2012) [181] No clear MEP warning criteria

Chang et al. (2011) [182] No MEP warning criteria

Chen et al. (2011) [183] No MEP monitoring

Fukaya et al. (2011) [184] No MEP warning criteria

González-Darder(2011) [185] No MEP warning criteria

Li et al. (2011) [186] No sufficient motor outcome data in conjunction with MEP warning criteria

Lin et al. (2011) [187] No cutoff values for MEP warning criteria

Nossek et al. (2011) [108] No clear MEP monitoring warning criteria. No sufficient motor outcome data in conjunction with mapping warning
criteria for the asleep patients.

Prabhu et al. (2011) [106] No preoperatively defined MEP warning criteria

Szelényi et al. (2011) [103] No MEP warning criteria

Tanaka et al. (2011) [188] Numbers of MEP changes reported in percentages. Only motor palsy <2/5 MMRC and not postoperative motor
deterioration is reported.

von Der Brelie et al. (2011) [189] No MEP monitoring

Walter et al. (2011) [190] No MEP warning criteria

Bello et al. (2010) [191] No preoperatively defined MEP warning criteria

Bozzao et al. (2010) [192] No MEP warning criteria

Feigl et al. (2010) [193] No sufficient motor outcome data in conjunction with MEP warning criteria

Juretschke et al. (2010) [194] No MEP warning criteria

Maesawa et al. (2010) [195] No preoperatively defined MEP warning criteria

Sala et al. (2010) [196] Not a primary study

Sanai et al. (2010) [197] Not a primary study

Talacchi et al. (2010) [1] No MEP monitoring warning criteria

Tanaka et al. (2010) [198] Earlier series from the same institution

Yang et al. (2010) [199] No MEP warning criteria

Gorji et al. (2009) [200] No clear MEP warning criteria

Hattingen et al. (2009) [201] Data for patients with supratentorial lesions cannot be extracted with certainty

Kamada et al. (2009) [109] No preoperatively defined MEP warning criteria

Kombos et al. (2009) [202] No sufficient motor outcome data in conjunction with MEP warning criteria

Krammer et al. (2009) [203] Motor outcome data of patients with supratentorial lesions were not clearly reported and could not be extracted

Ozawa et al. (2009) [204] No MEP warning criteria

Simon et al. (2009) [205] No MEP warning criteria

Sugita et al. (2009) [206] No MEP warning criteria

Von Lehe et al. (2009) [207] No MEP warning criteria

Yamaguchi et al. (2009) [208] No motor outcome analysis

Calancie et al. (2008) [209] Only spinal cases

Berman et al. (2007) [210] No MEP warning criteria

Mikuni et al. (2007) [211] No MEP warning criteria

Neuloh et al. (2007) [212] Overlapping series from the same institution

Szelényi et al. (2007) [6] No MEP warning criteria

Yamaguchi et al. (2007) [213] No motor outcome analysis

Fujiki et al. (2006) [214] No clear preoperatively defined MEP warning criteria

Okada et al. (2006) [215] No MEP warning criteria

Kamada et al. (2005) [216] No MEP warning criteria

Szelényi et al. (2005) [101] No motor outcome data in conjunction with MEP warning criteria

Keles et al. (2004) [217] No MEP warning criteria
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Authors Reason for Exclusion

After full-text review (n = 140)

Kombos et al. (2004) [218] No MEP warning criteria

Neuloh et al. (2004) [219] No clear and preoperatively defined MEP warning criteria

Quiñones-Hinojosa et al. (2004)
[220] No sufficient motor outcome data in conjunction with MEP warning criteria

Sakuma et al. (2004) [221] No MEP warning criteria

Signorelli et al. (2004) [222] No MEP warning criteria

Yamamoto et al. (2004) [223] Only D-wave recording

Duffau et al. (2003) [224] No MEP monitoring warning criteria

Fukaya et al. (2003) [225] Inclusion criterion in the study that the patient did not exhibit MEP amplitude decrease of >50% (warning criteria)
intraoperatively

Sala et al. (2003) [111] No sufficient motor outcome data in conjunction with MEP warning criteria

Suess et al. (2002) [226] No MEP warning criteria

Kombos et al. (2000) [227] No MEP warning criteria

Kofler et al. (1999) [228] No MEP warning criteria

Kombos et al. (1999) [229] No MEP warning criteria

Rohde et al. (1999) [230] MEPs elicited through Transcranial Magnetic Stimulation(TMS)

Yingling et al. (1999) [231] No MEP warning criteria

Krombach et al. (1998) [232] No MEP warning criteria

Zentner et al. (1998) [233] No correlation of MEPs with postoperative but with preoperative motor deficit

Zentner et al. (1996) [117] No MEP warning criteria

Kawaguchi et al. (1996) [234] No clear MEP warning criteria

Maertens et al. (1996) [235] No clear MEP warning criteria

Pechstein et al. (1996) [236] No MEP warning criteria

Rodi et al. (1996) [237] No MEP warning criteria

Skirboll et al. (1996) [238] No MEP warning criteria

Taniguchi et al. (1993) [5] No MEP warning criteria

Ebeling et al. (1992) [239] No MEP warning criteria

Schramm et al. (1990) [240] Only SSEP monitoring

Zentner et al. (1988) [241] No clear MEP warning criteria

After abstract screening (n = 73)

Chen et al. (2021) [242] Technical report, presentation of a new technique

Machetanz et al. (2021) [243] MEPs elicited through Transcranial Magnetic Stimulation(TMS)

Cattaneo et al. (2020) [244] Use of MEPs to investigate brain connectivity

Kang et al. (2020) [245] Not a primary study

Policicchio et al. (2020) [246] Not a primary study

Shibata et al. (2020) [247] Awake craniotomy

Wang et al. (2020) [248] Only SSEP analysis

Zuo et al. (2020) [249] Not a primary study

NCT04178395(2019) [250] Protocol for clinical trial

Hiruta et al. (2019) [251] Technical report (cortical and subcortical stimulation ratio), no motor outcome data

Zhu et al. (2019) [91] Not a primary study

Rajan et al. (2018) [252] Not a primary study

Valci et al. (2018) [253] No MEP monitoring to avoid a postoperative deficit, no MEP warning criteria

Abdulrauf et al. (2017) [254] Awake surgery

Benavides et al. (2017) [255] Not a clinical study; study in pigs

Bharadwaj et al. (2017) [256] Technical report, application, and feasibility of a new monitoring system

Calancie B. (2017) [257] Not a primary study

Grasso et al. (2017) [258] Not a primary study

Hemmer et al. (2017) [259] Not a primary study

Journée et al. (2017) [20] Not a primary study
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Authors Reason for Exclusion

After full-text review (n = 140)

Ku et al. (2017) [260] Case report of a patient with vestibular schwannoma

Liu et al. (2017) [21] Spinal surgery

MacDonald DB. (2017) [9] Not a primary study

Moser et al. (2017) [261] MEPs elicited through Transcranial Magnetic Stimulation (TMS)

Sanmillan et al. (2017) [98] Not a primary study

Schucht et al. (2017) [104] Not a primary study

Thomas et al. (2017) [89] Not a primary study

Alimohamadi et al. (2016)
[262] Awake craniotomy

Coppola et al. (2016) [263] Not a primary study

Holdefer et al. (2016) [28] Not a primary study

König, R. (2016) [264] Not a primary study

Raabe et al. (2016) [265] Not a primary study

Yao et al. (2016) [266] The term MEP referred to Meningiomas-en-plaque, no MEP monitoring

Holdefer et al. (2015) [92] Not a primary study

Ottenhausen et al. (2015) [267] Not a primary study

Sala et al. (2015) [87] Not a primary study

Nakamura et al. (2014) [268] Only abstract available

Suzuki et al. (2014) [269] Awake aneurysm clipping

Yang et al. (2014) [270] Intraoperative neuromonitoring used as a mapping technique to find the corticospinal projections

Landazuri et al. (2013) [271] Not a primary study

MacDonald et al. (2013) [7] Not a primary study

Rajapakse et al. (2013) [272] Not a primary study

Yamashita et al. (2013) [273] Only abstract available

Bacigaluppi et al. (2012) [274] Not a primary study

De Witt Hamer et al. (2012)
[275] Not a primary study

Emerson et al. (2012) [276] Not a primary study

Hotson et al. (2012) [277] Electrocorticography analysis

Ito et al. (2012) [278] Spinal surgery

Guo et al. (2011) [90] Review/Not a primary study

Guo et al. (2011) [279] Letter to the Editor/not a primary study

Li et al. (2011) [280] Case report of a patient with high-grade brainstem glioma

Deiner S. (2010) [281] Spinal surgery

Pabon et al. (2010) [282] Only abstract available

Lefaucheur et al. (2009) [283] Electrode placement for neuropathic pain treatment

Sun et al. (2009) [284] MEPs elicited through Transcranial Magnetic Stimulation (TMS)

Duffau, H. (2008)-1 [285] Not a primary study

Duffau, H. (2008)-2 [286] Not a primary study

Takashima et al. (2008) [287] Not a primary study

Duffau H. (2007) [288] Not a primary study

Tharin et al. (2007) [289] Not a primary study

Duffau, H. (2006) [290] Not a primary study

Schramm et al. (2006) [291] Only abstract available

Shinoura et al. (2006) [292] Awake surgery

Kuzniecky et al. (2005) [293] Not a primary study

Binder et al. (2004) [294] Correlation of intraoperative neuromonitoring and imaging with Kernohan’s notch syndrome

Hashiguchi et al. (2004) [295] Only abstract available

Kondo et al. (2004) [296] Only abstract available

Neuloh et al. (2004) [297] Not a primary study
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Authors Reason for Exclusion

After full-text review (n = 140)

Sala et al. (2002) [93] Not a primary study

Di Lazzaro et al. (1999) [298] Neurological and not neurosurgical patients

Calancie et al. (1998) [299] Spinal lesions

Reinhardt et al. (1996) [300] Technical report, presentation of an optical navigation system

Newlon et al. (1984) [301] MEPs in diagnosis/prognosis/follow-up. Not intraoperatively.

After title screening: Duplicate or irrelevant records (n = 381)

** Additional clarifications

- Not a primary study: review/meta-analysis/letter to the editor/technical report.
- No MEP warning criteria: MEP monitoring may have been applied, but no MEP warning criteria were defined.
- No clear MEP warning criteria: The authors reported that intraoperative MEP changes were considered, but it was not specified which criteria (amplitude,

threshold, latency, and other) or which cut-off values were used.
- No sufficient motor outcome data in conjunction with MEP warning criteria: The occurrence of MEP warning criteria and/or motor deficits were reported for

the overall study population without specifying how many patients with intraoperative MEP alterations had postoperative motor deficits or vice versa, which
was the outcome of interest for the scoping review.

- No preoperatively defined MEP warning criteria: MEP warning criteria had to be determined a priori, namely before the operation. Postoperative reviews of
monitoring datasets with post-hoc defined cut-off values as warning criteria, and analysis of motor outcomes were not eligible. A preoperatively determined
warning criterion could be used to trigger intervention that may have altered the final results of the study. In the case of a postoperatively defined warning
criterion, the intraoperative actions were not driven by alarm criteria, and the final results should not be regarded as comparable with those of studies with a
priori defined alarm criteria.

- No preoperatively defined cutoff value for MEP warning criteria: The cut-off values for MEP warning criteria (e.g., amplitude reduction >50%, threshold
elevation >20 mA, latency increase >10%, etc.) had to be preoperatively defined.

- No motor outcome analysis: Postoperative motor outcome was not reported. The study reported postoperative radiologic findings or sensory/cognitive/other
deficits but no motor deficits.

- Motor outcome data of anesthetized patients with supratentorial lesions were not clearly reported and could not be extracted: In studies with mixed
populations (namely, anesthetized patients with supratentorial lesions and awake patients or infratentorial/spinal lesions). The data for
supratentorial/anesthetized patients were not separately tabulated or reported in a way that they could be clearly distinguished from those with
infratentorial/spinal/awake patients and extracted.

- No MEP monitoring warning criteria, only mapping warning criteria: Our aim was to analyze MEP alarm criteria during continuous muscle MEP monitoring.
Mapping criteria as complementary criteria were taken into consideration but only in studies that combined mapping with MEP monitoring. Studies with
Penfield mapping without MEP monitoring were not included in the scoping review.
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