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Proactive inhibition is not modified by deep brain stimulation
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Abstract

In predictable contexts, motor inhibitory control can be deployed before the actual

need for response suppression. The brain functional underpinnings of proactive inhi-

bition, and notably the role of basal ganglia, are not entirely identified. We investi-

gated the effects of deep brain stimulation of the subthalamic nucleus or internal

globus pallidus on proactive inhibition in patients with Parkinson's disease. They

completed a cued go/no-go proactive inhibition task ON and (unilateral) OFF stimula-

tion while EEG was recorded. We found no behavioural effect of either subthalamic

nucleus or internal globus pallidus deep brain stimulation on proactive inhibition,

despite a general improvement of motor performance with subthalamic nucleus stim-

ulation. In the non-operated and subthalamic nucleus group, we identified periods of

topographic EEG modulation by the level of proactive inhibition. In the subthalamic

nucleus group, source estimation analysis suggested the initial involvement of bilat-

eral frontal and occipital areas, followed by a right lateralized fronto-basal network,

and finally of right premotor and left parietal regions. Our results confirm the overall

preservation of proactive inhibition capacities in both subthalamic nucleus and inter-

nal globus pallidus deep brain stimulation, and suggest a partly segregated network

for proactive inhibition, with a preferential recruitment of the indirect pathway.
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1 | INTRODUCTION

Motor inhibitory control is a fundamental capacity involved in control-

ling behaviour, when external environmental stimuli prompt the sup-

pression of ongoing actions. Importantly, the efficacy of motor

inhibition is modulated by context: if an interruption of the action is

expected, it will be more readily deployed because the inhibition

would have been prepared. Referred to as ‘proactive’ inhibition, the
readiness to suppress motor action might for instance allow for an

easier interruption of walking when the switch between a green to a

red traffic light is preceded by a flashing phase. Yet, while proactive

inhibition better reflects daily life situation that reactive control,

its neural underpinning remains underexplored (Stuphorn &

Emeric, 2012).

Current evidence indicate that proactive inhibitory control

involves a brain network partly overlapping with reactive control,

namely the pre-supplementary motor area, pre-SMA, and the right

inferior frontal gyrus (rIFG), as well as the subthalamic nucleus (STN;

Aron, 2011; Aron, Behrens, Smith, Frank, & Poldrack, 2007a; Aron &

Poldrack, 2006; van Belle, Vink, Durston, & Zandbelt, 2014; Zandbelt,
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Bloemendaal, Neggers, Kahn, & Vink, 2013). The pre-SMA and IFG

first react to stopping stimuli, followed by an early recruitment of STN

through the ‘hyperdirect’ pathway (Aron, Robbins, & Poldrack, 2014).

While some authors advance that proactive inhibition depend

merely on the modulation of the hyperdirect pathway (Stuphorn &

Emeric, 2012), other accounts propose that the ‘indirect pathway’ has
a specific role in this process. This latter view implies a more impor-

tant role for the dorsolateral prefrontal cortex (DLPFC) and the cau-

date, external and internal globus pallidum in proactive response

suppression (Jahanshahi, Obeso, Rothwell, & Obeso, 2015). Yet, the

involvement of each these structure remains largely speculative.

Deep brain stimulation of the STN improves motor symptoms of

Parkinson's disease interfering with dysfunctional oscillations within

basal ganglia circuitry, eventually favouring a prokinetic state

(Chiken & Nambu, 2016). Despite the proposed centrality of STN in

inhibitory control, the few studies having investigated the effects of

STN-DBS on proactive inhibition reported no effect (Mancini

et al., 2019; Mirabella et al., 2012), or even suggested a possible

normalisation of proactive capabilities (Obeso, Wilkinson, Rodríguez-

Oroz, Obeso, & Jahanshahi, 2013). Experimental design is probably

key for capturing subtle modifications. For instance, Mirabella

et al. (2013) could demonstrate that STN-DBS restores to normal the

relationship between reaction time and movement time in the context

of uncertainty, possibly modulating proactive inhibition mechanisms

still active during movement execution. Likewise, comparisons of the

effects of dopaminergic drugs and STN-DBS suggest that STN-DBS

may specifically normalise the capacity of releasing proactive inhibi-

tion, contrary to dopaminergic drug treatment (Favre, Ballanger,

Thobois, Broussolle, & Boulinguez, 2013).

The internal globus pallidus (GPi) is a more rarely chosen target

for DBS in Parkinson's disease. Despite allowing for a lesser decrease

of dopaminergic medication than STN-DBS, GPi-DBS has a compara-

ble efficacy on motor symptoms, and in the reduction of fluctuations

and dyskinesia (Williams, Foote, & Okun, 2014). As a common struc-

ture within multiple basal ganglia pathways (direct, indirect, hyper-

direct), it is involved in inhibitory control, but has been less studied

than STN. Current evidence suggest a positive effect of GPi-DBS in

triggering the action, with no impairment in its suppression (Kohl

et al., 2015), or even an improvement of the dysfunctional proactive

inhibition after turning GPi stimulator ON (Pan et al., 2018).

In the present study, we aimed at resolving the inconsistencies of

previous literature and examined thoroughly the involvement of STN

and of the internal globus pallidus (GPi) in proactive inhibition. To this

aim, we capitalised on Parkinson's disease patients previously oper-

ated for deep brain stimulation (DBS) of either of the two nuclei.

We developed a task requiring the deployment of varying levels

of proactive inhibitory control, and studied the behavioural and elec-

trophysiological effects of the stimulation of STN and GPi in

Parkinson's Disease patients previously operated for DBS. Topo-

graphic and source estimation analyses of event-related potentials

recorded between the presentation of a cue and the Go/NoGo probe

were conducted to examine the functional effect of the stimulation.

Turning the device on and off, we contrasted the electrophysiological

activity associated with the engagement of proactive inhibition in the

two stimulation conditions.

Given the above, we expected (a) that both STN- and GPi-DBS

reduce an excessive proactive inhibition, related to PD symptoms,

(b) that both STN- and GPi-DBS decrease the capacity of modulating

proactive inhibition, interfering with the activity of the hyperdirect

pathway and the indirect pathway, respectively; and (c) EEG evidence

of the involvement of DLPFC, IFG, and pre-SMA during the task.

2 | METHODS

2.1 | Participants

We recruited patients with Parkinson's disease from the Neurological

Department, Movement Disorders Unit, Bern University Hospital, and

from the Neurology Department, Fribourg Cantonal Hospital,

Switzerland.

The cohort included 12 non-operated patients (NO), 14 STN-DBS

patients (STN), and seven GPi-DBS patients (GPi). All patients signed

an informed consent according to the Declaration of Helsinki and to

the protocol approved from the local ethics committee (Protocol

PB_2016-01384). Five NO patients were excluded from the analyses:

two were suspected of drug-induced parkinsonism, one was not able

to complete the task, and two had excessively noisy EEG signal

resulting in too few ERP trials for averaging. As we focused on the

ERPs time-locked to the cue and thus not contaminated by the activity

related to the motor response, we did not exclude left-handed patients

from the EEG analysis (two NO and two STN). In the STN group, one

left-handed participant was tested as a right-handed. The second left-

handed participant was tested on the left side and thus, the stimulator

was switched off on the opposite side as the other participants. As the

analyses with and without this patient showed the same results, we

kept this patient to maximise our statistical power. Previous studies

have shown that reactive and proactive inhibition behavioural perfor-

mance was not influenced by the hand employed to perform the task

(Caprio, Modugno, Mancini, Olivola, & Mirabella, 2020; Mirabella,

Fragola, Giannini, Modugno, & Lakens, 2017).

Demographic data are summarised in Table 1. Hoehn and Yahr

staging was not assessed formally but we estimate it was for all

patients in all groups between II and III. Group comparisons were per-

formed using non-parametric Kruskal–Wallis One-Way ANOVAs.

We collected clinical and demographic information from the

patients before the experiment and during the 30 min pause between

sessions. Patients filled in questionnaires assessing mood (Beck

Depression Inventory, BDI); and the presence and severity of impulse

control disorders (Questionnaire for Impulsive-Compulsive Disorders

in Parkinson's Disease, QUIP, (Weintraub et al., 2012). They under-

went a Montreal Cognitive Assessment (MoCA) conducted by an

experienced neurologist or neuropsychologist during the experimental

session, if not available from medical records and not older than

3 months. All patients were examined by a trained neurologist (EAA,

ID) for assessing the motor part of the Movement Disorders Society
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Unified Parkinson's Disease Rating Scale (0–132 points, MDS-UPDRS

III, [Goetz et al., 2008]). All patients were tested under their usual anti-

parkinsonian medication.

2.2 | Stimuli and task

The cued Go/NoGo task involved a green circle as Go signal and a red

circle as NoGo signal preceded by a cue informing on the probability

of an upcoming NoGo signal (Figure 1). The cue was represented by a

vertical bar, in three alternative configurations. If the bar was

completely white, then there was a 0% chance that the following trial

would be a NoGo. If the bar was only partially shaded, then there was

a 25% chance that the following trial would be a NoGo. This probabil-

ity reached 75% if the symbol was almost all shaded. The participants

were not informed about the detailed probabilities, but only given

general indications (‘certainly go’, ‘maybe stop’, ‘likely stop’).
Each trial started with a white fixation cross on light grey back-

ground (1500–1900 ms). During fixation, the participants were asked

to keep their hand on a response box (E-Prime Chronos box), with the

index finger ready to press the key. The cue was then presented for

1,000 ms. The delay between the cue and the probe was variable

(600–1,100 ms) to reduce the predictability of the task. Participants

were instructed to press the key as fast as possible as soon as they

TABLE 1 Demographic data

NO STN GPi p-value NO vs STN NO vs GPi STN vs GPi

n 12 14 7

Female [%] 25% 36% 57% .383

Age [mean (sd)] 62.1 (11.2) 64.3 (9.9) 66.4 (4.4) .538

Disease duration [mean (sd)] 4.1 (2.8) 14.6 (6.1) 17.5 (7.5) .000 0.000 0.005 0.786

Time since operation [mean (sd)] n/a 1.9 (3) 2 (2.9) .961

UPDRS ON [mean (sd)] 22.3 (3.9) 17 (6.3) 25 (6.5) .016 0.038 0.738 0.075

UPDRS OFF [mean (sd)] n/a 25.1 (5.4) 25.4 (6.1) 1.000

QUIP [mean (sd)] 21.6 (20.9) 8.8 (12.4) 15 (16.5) .211

BDI [mean (sd)] 8.9 (6.1) 4 (2.9) 6.3 (4.1) .029 0.023 0.698 0.341

MoCA [mean (sd)] 25.7 (2.6) 27.1 (1.5) 26.7 (2.7) .441

LEDD [mean (sd)] 575.0 (397.1) 401.7 (440.2) 1,057.2 (392.4) .007 0.355 0.033 0.016

Abbreviations: BDI, Beck Depression Inventory; LEDD, Levodopa Equivalent Daily Dose; MoCA, Montreal Cognitive Assessment; QUIP, Questionnaire for

Impulsive-Compulsive Disorders in Parkinson's Disease; UPDRS, Unified Parkinson's Disease Rating Scale.

F IGURE 1 Experimental task. The patients had to respond as fast as possible to the Go stimuli (green circle) while withholding their
responses to the NoGo stimuli (red circles). A Cue preceding the Go/NoGo signals indicated the probability of a NoGo signal to occur
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saw a Go signal, and to withhold their response in case of a NoGo sig-

nal. They were shown a brief example in order to familiarise them

with the task and stimuli. Then, they completed a short training ses-

sion of 12 trials during which we record each participant's average

reaction time. This mean value was used as a threshold during execu-

tion of the task. If their response to Go trials exceeded the threshold,

they saw a ‘too late!’ feedback message. This added time pressure to

encourage faster reaction times (De Pretto, Rochat, & Spierer, 2017;

Vocat, Pourtois, & Vuilleumier, 2008). The ‘too late’ trials were

included in the average RTs so that the RT distribution's right tail was

preserved (Mancini, Falciati, Maioli, & Mirabella, 2020). Alternatively,

they received a feedback on whether they performed the correct

action, with a pictorial face with happy or sad expressions. The partici-

pants completed two sessions of three consecutive blocks. Each block

consisted of 36 randomly presented trials (12 ‘certainly go’, 12 ‘maybe

stop’, 12 ‘likely stop’), for a total of 24 Go trials (12 following a ‘cer-
tainly go’ cue, 9 ‘maybe stop’, 3 ‘likely stop’), and 12 NoGo trials

(0 following a ‘certainly go’ cue, 3 ‘maybe stop’, 9 ‘likely stop’).
DBS-operated patients (STN and GPi) completed one session

with their stimulator on (bilateral) and one session after turning off

the stimulation contralateral to the task performing hand. The two

sessions were separated by a 30-min break, allowing after-effects

from the previous stimulation to wane. The order of the stimulator

sessions (ON or OFF) was randomised to control for learning effects.

For non-operated patients, the dominant and non-dominant hands

were both tested, always starting with the dominant hand side

(to match stimulated patients, always tested on the dominant side).

UPDRS-III score was calculated before each session in DBS patients.

2.3 | EEG recording and pre-processing

Electroencephalogram (EEG) was recorded at a sampling rate of

1,024 Hz over 64 channels following the extended 10–20 system,

with a Biosemi ActiveTwo system (Biosemi, Amsterdam, Netherlands).

Offline pre-processing of the raw EEG signal was conducted using in-

house Matlab scripts and EEGlab (Delorme & Makeig, 2004), in order

to obtain ERPs time-locked to the cue, over all electrodes.

Raw EEG data were first filtered using a 0.5–40 Hz band-pass,

which removed DBS-related high frequency noise (Lio, Thobois,

Ballanger, Lau, & Boulinguez, 2018; Sun et al., 2014). Removal of

occasional, large amplitude non-brain noise such as eye and muscle

artefacts was completed with the Artefact Subspace Reconstruction

EEGlab plugin (ASR; Chang, Hsu, Pion-Tonachini, & Jung, 2018; Mul-

len et al., 2015). The EEG signal was then segmented into epochs from

100 ms pre-cue onset to 600 ms post-cue onset, with a baseline cor-

rection applied over the whole epoch window. Due to remaining eye

blinks in the GPi group, individual data for this group went through an

ICA procedure using the AMICA algorithm with default settings (Hsu

et al., 2018; Palmer, Makeig, Kreutz-Delgado, & Rao, 2008). This step

was not necessary in the NO and STN groups. Channels showing a

bad signal were interpolated (mean: 2.3 channels) using multiquadric

interpolation relying on radial basis functions (Buhmann &

Jäger, 2019; Jäger, Klein, Buhmann, & Skrandies, 2016). Epochs with

at least one time-frame ±80 μV were automatically rejected and the

remaining epochs were averaged across trial for each cue separately.

Finally, ERPs were re-referenced to the common average reference.

The number of accepted epochs for each condition were con-

trolled in order to ensure that any observed between-condition differ-

ences were not due to differences in signal-to-noise ratio (STN: 35.7

± 0.5, p = .630; GPi: 33.5 ± 4.8, p = .613; NO: 35.7 ± 1.0, p = .523).

2.4 | Data analysis

Because of the heterogeneity of the groups (NO had no stimulation,

GPi was limited in size), we analysed the three groups separately. For

all statistical tests, our alpha threshold was set at 0.05, and effect sizes

are reported for behavioural data.

2.5 | Behavioural analysis

Performance at the Go/NoGo task was assessed by extracting the

response times (RT) to Go stimuli and the false alarm rate (FA) to

NoGo stimuli, that is, the percentage of inaccurately responded NoGo

trials. We removed trials with RTs ≤ 100 ms as they reflect implausi-

ble cognitive processing of the Go signal (Gabay & Behrmann, 2014).

We then identified univariate outliers using the median absolute devi-

ation (MAD; Leys, Ley, Klein, Bernard, & Licata, 2013), with the

suggested default parameters (i.e., MAD range around the median of

1.48 and level of decision of 2.5). Two participants were flagged as

potential outliers for RT in one condition (LS-OFF for an STN patient

and MS-ON a GPi patient). As they showed no other extreme values

(either for RT or FA), we considered the flagged values as belonging

to the distribution of interest and kept them in the dataset (Leys, Del-

acre, Mora, Lakens, & Ley, 2019).

RT and FA were averaged for each Cue type and Stim session

(only the dominant hand session for the NO group). Normality of the

data was assessed using the Shapiro–Wilk test a criterion of skewness

and kurtosis within a ± 2 range (Kim, 2013). Whenever Mauchly's test

indicated sphericity violation, we reported corrected p-values using

the Greenhouse–Geisser estimates.

RT in the STN and GPi groups was analysed using repeated mea-

sures ANOVAs (2 Stimulation [ON; OFF] � 3 Cue [CG; MS; LS]), and

in the NO group using a one-way repeated measures ANOVA (3 Cue

[CG; MS; LS]). Because RT in the GPi group the assumption of normal-

ity was not consistently met, we verified the results using a Friedman

non-parametric repeated measures ANOVA. Given the low number of

FA occurrences, we did not conduct statistical analyse over FA rates.

2.6 | EEG analysis

All analyses were conducted using the Cartool software (Brunet, Mur-

ray, & Michel, 2011), the STEN toolbox developed by Jean-François
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Knebel and Michael Notter (http://doi.org/10.5281/zenodo.

1164038), and the RAGU toolbox developed by T. Koenig (Koenig,

Kottlow, Stein, & Melie-García, 2011). Because the signal at one elec-

trode is the sum of the electrical activity from all over the brain, we

used global measures of the electrical signal at each time point of the

ERPs of all electrodes allowing neurophysiological interpretation of

scalp-recorded ERPs (Michel & Murray, 2012; Murray, Brunet, &

Michel, 2008; Tzovara, Murray, Michel, & Lucia, 2012): (a) the global

field power (GFP) is a measure of the global strength of the electric

field, indexing modulation of response strength of the intracranial

generators; (b) the global map dissimilarity (GMD) assesses the

dynamic changes of scalp-recorded electric field configuration (ERP

topography) indexing modulations of the configuration of intracranial

generators. In the cases of significant GMD and/or GFP effects, dis-

tributed electrical source estimation were computed and statistically

compared to identify the brain generator underlying the effect mea-

sured at the scalp.

GFP and GMD were analysed in the RAGU software by comput-

ing time-frame wise randomisation statistics. These analyses followed

the same design as for RT: Stimulation [ON; OFF] � Cue [CG; MS; LS]

repeated measures ANOVAs for the STN and GPi groups, and a 3 Cue

[CG; MS; LS] one-way repeated measures ANOVA for the NO group.

The randomisation additionally estimates a minimal duration threshold

for contiguous significant effects to account for multiple tests and

temporal autocorrelation (Koenig et al., 2011). Only periods of statisti-

cal significance longer than the duration threshold were interpreted.

For each significant period identified, we averaged the individual

ERP signals across timeframes and computed brain source estimation.

For this, we applied a local autoregressive average (LAURA) distrib-

uted linear inverse solution (Grave de Peralta Menendez, Gonzalez

Andino, Lantz, Michel, & Landis, 2001; Grave de Peralta Menendez,

Murray, Michel, Martuzzi, & Gonzalez Andino, 2004) to the MNI aver-

age brain. Skull thickness and relative conductivity were estimated for

a mean age of 65, as implemented in the Cartool software, yielding

spatial gradient of current densities across neighbouring solution

points. The solution space included 5,006 nodes equally distributed

on a 6 � 6 � 6 mm grid within the grey matter of the Montreal Neu-

rological Institute (MNI) average brain.

In order to identify brain areas associated with the effects

observed at the ERP level, we applied the same design as for ERP ana-

lyses over each node using STEN. We corrected for multiple testing

and spatial autocorrelation by applying a spatial-extent threshold of at

least 19 contiguous nodes with p < .05. This spatial criterion was cal-

culated with the AlphaSim program (available from the Analysis of

Functional NeuroImages website: http://afni.nimh.nih.gov). This pro-

gram applies a cluster randomisation approach by computing 10,000

Monte Carlo permutations performed on our lead field matrix, assum-

ing a spatial smoothing of 6 mm FWHM and a cluster connection

radius of 8.5 mm. For clusters of at least 19 nodes, the output indi-

cated a node-level false positive probability of p < .001 for a cluster-

level likelihood of p < .05.

3 | RESULTS

3.1 | Behavioural results

The behavioural results are reported in Figure 2. Detailed behavioural

results can be found in Table S1.

3.2 | Response time

All groups showed a main effect of Cue (Table 2), driven by a gradual

increase in RT as the probability of having a NoGo signal increased

(Figure 2a). As the assumption of normality was not consistently met

in the GPi group, we verified the result with a Friedman non-

parametric repeated measures ANOVA on the Cue factor. It also

reached significance, χ2(2) = 6.00, p = .05. Additionally, the STN

group showed a main effect of Stimulation (Table 2), reflecting higher

RTs for OFF versus ON.

Because the Cue x Stimulation interaction effect was non-

significant in both groups, and because it was our effect of interest,

we conducted Bayesian statistics using the jsq module in Jamovi, in

order to assess the evidence in favour of the null hypothesis. By

entering the main effects as nuisance variables (Wagenmakers

et al., 2018), we could observe moderate evidence in support of the

null hypothesis (STN: BF01 = 5.1; GPi: BF01 = 3.3). Table S2 provides

additional between-groups analyses comparing the results of the NO

group with both DBS groups separately when the stimulator is

ON. The results show no difference and thus, are consistent with the

view that DBS has limited impact on proactive inhibition.

3.3 | Neurophysiological results

3.3.1 | NO group

At the scalp level, the one-way repeated measures ANOVA (Cue [CG;

MS; LS]) on GMD revealed a period of topographic dissimilarities

between 195 and 257 ms post-cue signal, and no periods of differ-

ence for GFP (Figure 3a,b). Source estimation localised this difference

within the right temporal areas. In this area, current density was

higher following MS cues compared to CG and LS cues (Figure 3c).

However, the MS versus LS post-hoc test did not survive the Holm-

Bonferroni correction (p = .048 uncorrected). Detailed source estima-

tion results can be found in Table S3.

3.3.2 | STN group

At the scalp level, the repeated measures ANOVAs (Stimulation [ON;

OFF] � Cue [CG; MS; LS]) on GMD revealed three periods of main

effect of Cue, and two periods of main effect of Stimulation (Figure 4).
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Regarding the main effect of Cue, the first period (201–272 ms),

was accompanied by a corresponding period of significant GFP effect

(223–293 ms). Source estimation localised this difference within the

bilateral occipital cortex, the bilateral medial frontal gyrus, and

the right inferior parietal lobule. The occipital cluster showed lower

current density following MS cues compared to CG and LS cues. The

frontal and parietal clusters showed higher current density following

CG cues compared to MS and LS cues (Figure 5a). Detailed source

estimation results can be found in Table S4.

Source estimation for the second period (383–431 ms) localised

the difference centred around bilateral posterior areas, the thalamus,

the left insula, and the right orbitofrontal gyrus and putamen

(Table S4). The posterior and thalamus cluster, and the insula cluster

showed stronger activation following LS cues as compared to CG and

F IGURE 2 Behavioural
results. Response times (a) and
false alarm rates (b) for each
group and condition. Thick
horizontal lines represent the
mean, and the grey dots
represent the individual data.
Post-hoc t tests detailing the
main effects of Cue are shown

in A (Holm-Bonferroni
corrected). ***p < .001;
**p < .01; *p < .05; �p = .051

TABLE 2 ANOVA results for measures of Response Time

NO group STN group GPi group

F df p-val ηp2 εa F df p-val ηp2 εa F df p-val ηp2 εa

Cue 8.73 2,22 .002 0.44 — 12.40 1.3,16.5 .002 0.49 0.64 6.91 2,12 .010 0.54 —

Stimulation — — — — — 4.49 1,13 .046 0.27 — 1.06 1,6 .343 0.15 —

Cue a stimulation — — — — — 0.86 1.2,16.0 .389 0.06 0.61 0.56 2,12 .585 0.09 —

aGreenhouse–Geisser Epsilon reported for effects violating sphericity assumption and corrected using Greenhouse–Geisser estimates of sphericity.
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MS cues. The occipital cluster showed a gradual increase in activation

as the probability of having a NoGo signal increased. The frontal and

basal ganglia cluster showed stronger activity following CG cues as

compared to MS cues (Figure 5a).

Source estimation for the third period (512–546 ms) localised the

difference within the right precentral gyrus, and the left inferior parie-

tal lobule. The precentral cluster showed stronger activation following

LS cues as compared to CG and MS cues. The parietal cluster showed

stronger activation following CG cues as compared to MS and LS cues

(Figure 5a).

Regarding the main effect of Stimulation, source estimation for

the first period (100–129 ms) localised the difference within the bilat-

eral anterior cingulate cortex, posterior cingulate cortex, and supple-

mentary motor area, the left inferior frontal gyrus and insula, and the

right superior temporal gyrus (Table S4). For all clusters, activation

was stronger in the ON versus OFF condition (Figure 5b).

Source estimation for the second period (453–508 ms) indicated

stronger activation in the ON versus OFF condition within the

bilateral anterior and posterior cingulate cortices, the left occipital cor-

tex, and the right inferior parietal lobule (Table S4). Activation was

stronger in the OFF versus ON condition within the left frontal and

motor cortices, while the other areas showed stronger activity in the

ON versus OFF condition (Figure 5b).

3.3.3 | GPi group

Analysis in the GPi group showed no periods of significant difference

for neither GFP nor GMD (Figure 6).

4 | DISCUSSION

We aimed at characterising the functional correlates of proactive

inhibition. We examined the effects of the electrical stimulation of

the STN and GPi subcortical structures on proactive inhibitory

F IGURE 3 Neuroimaging results for the NO group. (a) Global statistics over the Global Field Power and the Global Map Dissimilarity, with
curves indicating the significant time-points (1-p value) for the main effect of Cue. The yellow to red colour scale represents the p-values for
periods satisfying the duration threshold. The electrode-wise comparison graph represents for each time-point the percentage of electrodes
showing a significant main effect of Cue. (b) Waveforms of two electrodes (Fz and Pz) and the Global Field Power for each condition. Scalp
topographies for each condition, averaged over all time-points of the period of significance over the Global Map Dissimilarity. (c) Results of
source estimation for the period of significance. The graph on the right depicts current densities. Thick horizontal lines represent the mean, and
the grey dots represent the individual data. Holm-Bonferroni corrected post-hoc t tests detailing the main effects of Cue are shown (*p < .05)

DE PRETTO ET AL. 7



control, and its electrophysiological correlates with ERP during a cued

go/no-go task. Behaviourally, we found no specific effect of either

STN or GPi DBS on measures of proactive inhibition, despite an

improvement with DBS ON of motor performance in the STN group,

as indexed by reaction times reduction. The absence of a behavioural

effect was confirmed by Bayesian analysis and reflected in the EEG

results.

However, similarly to the NO group, the STN group showed mod-

ulations of EEG topographies (independently from the stimulation

condition) depending on the preparedness to stop. In this group,

source localisation suggests the involvement of an attentional net-

work and of a right lateralized fronto-basal network, the latter more

specifically involved with proactive inhibition, and compatible with

the recruitment of the indirect pathway. A later activation of the

F IGURE 4 Scalp level neuroimaging results for the STN group. (a) Global statistics over the Global Field Power and the Global Map
Dissimilarity, with curves indicating the significant time-points (1-p value). The yellow to red colour scale represents the p-values for periods
satisfying the duration threshold. The electrode-wise comparison graph represents for each time-point the percentage of electrodes showing a
significant effect. (b) Waveforms of two electrodes (Fz and Pz) and the Global Field Power for each contrast showing significant effects. Scalp
topographies for each condition, averaged over all time-points of each period of significance over the Global Map Dissimilarity for the main
effects of Cue and of Stimulation
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hyperdirect pathway is made possible by the activation of the right

precentral gyrus.

4.1 | No evidence of DBS effects on proactive
inhibition

Based on previous models, we expected that both STN and GPi DBS

could decrease an excessive ‘tonic’ proactive inhibition, resulting in

motor facilitation (Aron et al., 2007b; Jahanshahi et al., 2015;

Jahanshahi & Rothwell, 2017). For both targets, the effects were diffi-

cult to predict, but we speculated that an excessive proactive inhibi-

tion is restored to normal levels by DBS. However, we predicted an

impairment of the capacity to adapt the restraint on the likelihood of a

stop signal to come. Depending on the main circuit involved, we antic-

ipated a different magnitude of this effect. If proactive inhibition is

mainly regulated by the hyperdirect pathway, a stronger effect should

be observed after STN versus GPi-DBS. Alternatively, the modulation

of proactive inhibitory control occurs through the indirect pathway –

in this case the effects would be more readily caused by GPi-DBS.

F IGURE 5 Source estimation
results for the STN group. Results
of source estimation for each
periods of significance for main
effects of Cue (a) and of
Stimulation (b). The graph depicts
current densities. Thick horizontal
lines represent the mean, and the
grey dots represent the individual

data. Holm-Bonferroni corrected
post-hoc t tests detailing the main
effects of Cue are shown
(***p < .001; **p < .01;
*p < .05; �p = .052)
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Although our predictions were based on theoretical models and

on (limited) previous experimental evidence, we could find no effect

of DBS on proactive inhibition at the behavioural level. The absence

of any effect could be explained by three main reasons: insufficient

statistical power, experimental task design, and model inaccuracies.

Collecting sufficient data from clinical populations is always chal-

lenging, particularly so when the inclusion criteria are stringent and

the suitable population is limited, as is the case in studies on DBS

patients. It is therefore likely that increasing the number of patients

could have unveiled more robust results, but the Bayesian analyses

performed seem to confirm the validity of our results. Moreover, our

cohort is similar to or larger than previous studies addressing this

topic (Kohl et al., 2015; Mirabella et al., 2013; Obeso et al., 2013).

Our findings are in line with previous experimental work, which

did not find significant effects either (Mancini et al., 2019; Mirabella

et al., 2012). Proactive inhibition is a complex function, and our (sim-

ple) task probably does not capture all the involved components. For

instance, the timing of proactive inhibition implementation and

release appears to be particularly important. In Parkinson's disease

(PD), plan updating of a prepared motor action occurs in part after

movement initiation, perhaps due to deficits in proactive inhibition

release (Leis et al., 2005). STN-DBS appears to restore this function to

more physiological levels (Mirabella et al., 2013).

A recent paper could demonstrate that STN-DBS induces a longer

stopping time of a continuous ongoing movement, a different

approach than testing the suppression of planned, incumbent actions

before their execution, as it is normally the case in SSRT or GNG tasks

(Lofredi et al., 2020). In future experiments, it will be interesting to

test whether this effect occurs through an impairment of proactive

inhibition.

Although our task was not designed to capture the release of pro-

active inhibition during an ongoing movement (Lofredi et al., 2020), or

after movement initiation (Leis et al., 2005; Mirabella et al., 2013), we

are confident it recorded the most determinant aspects of the cogni-

tive mechanisms underlying the preparation to movement inhibition.

The validity of our behavioural findings is strengthened by the results

F IGURE 6 Scalp level neuroimaging results for the GPi group. (a) Global statistics over the Global Field Power and the Global Map
Dissimilarity, with curves indicating the significant time-points (1-p value). No period of significance reached the duration threshold. The
electrode-wise comparison graph represents for each time-point the percentage of electrodes showing a significant effect. (b) Waveforms of two
electrodes (Fz and Pz) and the Global Field Power for each condition
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of the EEG analyses, as we found no interaction between the stimula-

tion and proactive inhibition conditions, in both DBS groups.

DBS is thought to remove the antikinetic effect of STN gluta-

matergic projections by inactivating neuronal somata as in a functional

lesion (Chiken & Nambu, 2016). According to the model proposed by

Frank (Frank, 2006; Wiecki & Frank, 2013), one of STN functions

would be to send a general ‘stop’ signal to ongoing motor programs,

in the presence of conflicting external stimuli. From a cognitive per-

spective, it would ‘buy time’ for other structures to elaborate appro-

priate responses to external stimuli (‘hold your horses’). The sudden

increase of STN antikinetic activity and the modulation of its thresh-

old are thought to be key in reactive and proactive inhibition,

respectively.

Areas of STN mediating inhibition are likely far from the elec-

trode, and only slightly affected by the stimulation. This assumption is

in line with the known organisation of STN, which is constituted by

sub-areas with different functional specialisation (Accolla et al., 2016).

We speculate that the associative areas of STN are more involved in

motor inhibition than pure motor areas, which are the target of DBS

electrode implantation. This has been recently demonstrated in a task

during intraoperative recordings (Mosher, Mamelak, Malekmoha

mmadi, Pouratian, & Rutishauser, 2021). This is also compatible with

the observation that DBS impairs motor inhibition only in high conflict

situations (Georgiev, Dirnberger, Wilkinson, Limousin, &

Jahanshahi, 2016) or under speed pressure (Pote et al., 2016), and

that there is a role for the electrode localisation (more ventral within

the STN; Hershey et al., 2010; Rodriguez-Oroz et al., 2011). A

recently described direct connection between IFC and ventral STN

confirms this interpretation (Chen et al., 2020). We did not recon-

struct the electrode localisation due to a limited access to imaging for

this project, but we assume that stimulating contacts were located in

the latero-dorsal STN, given the preoperative planning and the good

clinical outcome of the intervention (Horn, Neumann, Degen,

Schneider, & Kühn, 2017).

4.2 | STN stimulation enhances attentional
processes

We observed an improvement of RT under the STN-DBS condition,

compared to the OFF state. However, this improvement occurred

with a comparable magnitude in all cue conditions, and was thus not

related to an effect of DBS on proactive inhibition mechanisms. We

interpret this finding as a general motor improvement effect. Note

that our task did not allow for differentiating reaction times from

movement times.

At the EEG level, we found two epochs of effect of stimulation

alone after cue presentation. The source localisation shows that this

early effect is strongly left lateralised. This localization is compatible

with the fact that in our protocol, we turned the stimulator ON and

OFF only on one side (the left one for all except one left-handed

patient).

The first effect occurred very early, at 100–120 ms after cue pre-

sentation a latency probably corresponding to modulation of primary

sensory or attentional processes. We could speculate that STN DBS

promotes an increased reactivity immediately after cue presentation

(unrelated to the semantic content of the cue), and maybe that this

translates into a faster motor response later on: source localisation

was consistent with a brain executive attention network called

‘cingulo-opercular network’ in fMRI studies (Neta, Nelson, &

Petersen, 2017), involving the anterior cingulate and anterior insula.

At a latency of 450 ms, a second effect of STN stimulation may

be related to a preparatory phase of task execution, but unrelated to

cue meaning. This activity could be related to the beginning of the

expectation of the probe presentation, to the preparatory phase of

decision making, or both. At this latency, left frontal and motor areas

were more strongly activated in the OFF condition, when response

times were slower. This might be explained by the detrimental effect

of over-anticipating the upcoming signal (De Pretto, Sallard, &

Spierer, 2016).

4.3 | Internal globus pallidus (GPi)

We did not obtain any relevant results in the GPi-DBS population,

which of course does not exclude a role of this structure in proactive

inhibition, neither a related behavioural effect of GPi-DBS. While the

limited number of patients in this group call for a cautious interpreta-

tion, our findings suggest that STN DBS does not affect proactive

inhibition mechanisms, and this is probably true for GPi-DBS as well.

From a clinical point of view, our observations are rather

reassuring in terms of the safety of both STN and GPi-DBS because

they confirm that the stimulation does not impair proactive inhibition

capacities.

4.4 | Electrical neuroimaging: A proactive
inhibition network? Main effects of cue

In the STN group, we found a main effect of cue at three different

time windows after cue presentation, at 200–270 ms, 380–430 ms,

and 510–550 ms, respectively. A topographic ERP modulation very

similar to the first one is also observed in the non-operated group

(200–260 ms). This finding gives important insights into the neuro-

physiology of proactive inhibition. The fact that the source estima-

tion results do not align with the behavioural results (e.g., gradual

increase in reaction time, while at the current density level, the MS

condition is often at odds with the other two conditions) reflects the

fact that if current densities represent engagement of a given area,

behavioural performance are the result of all brain processes at once.

Additionally, we must highlight that here, ERPs are time-locked to

the cue and thus reflect processing of the Cue meaning and/or antici-

pation of the response, and not the motor execution of the command

itself.
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4.5 | Main effect of cue (STN: 200–270 ms; NO:
200–260 ms)

At around 200 ms, both the NO and the STN groups showed that the

‘maybe stop’ condition differed from the ‘certainly go’ and ‘likely
stop’ conditions. In the NO group, scalp topographies and ERP wave-

forms indicate a delay in latency for the MS condition at the beginning

of the N2-P3 complex (frontal to posterior positivity; Figure 3b). In

the STN group, the difference lies fully within the N2 component

(frontal negativity, Figure 4b). However, the ERP waveforms indicate

a lower amplitude (or latency delay) in the MS condition. Thus, even

though the source estimations are different, the effects observed in

both groups most likely reflect the same processing. The right tempo-

ral effect observed in the NO group might be related to the fact that

the CG and LS time windows are at the start of N2.

In reactive inhibition studies (response to a Go or NoGo stimu-

lus), the N2 and P3 components have been associated with conflict

monitoring and decision making (Falkenstein, 2006; Hartmann, Sal-

lard, & Spierer, 2016; Manuel, Grivel, Bernasconi, Murray, &

Spierer, 2010; Verbruggen & Logan, 2015). Earlier latencies have

been associated with improved neural efficiency after training

(Benikos, Johnstone, & Roodenrys, 2013), and may reflect a better

association between stimulus and response (De Pretto et al., 2017;

Spierer, Chavan, & Manuel, 2013). Here, it is possible that the MS cue

was considered by the participants as most uncertain regarding the

upcoming Go or NoGo stimulus, increasing the time to decide

whether to anticipate a go or an inhibition response. Indeed, even

though the probability of having a NoGo stimulus after an MS cue

was the same as the probability of having a Go stimulus after an LS

cue, the participants might have considered the MS cue as an in-

between, uncertain, condition. This interpretation remains highly

speculative, as unfortunately we did not ask them feedback questions

on how they perceived the cues. In the STN group however, the

parieto-occipital cluster that distinguishes MS from CG and LS has

been involved in visual and attentional processes (Spay et al., 2018),

and fits with this interpretation.

4.6 | Direct, indirect and hyperdirect pathway in
proactive inhibition

It is worth underscoring that localised source estimation within deep

brain structures must be interpreted with caution (Cohen, Cavanagh, &

Slagter, 2011; Seeber et al., 2019). Even more so given the inhomoge-

neity of our population. We tentatively interpret our results within

the framework of known cortico-subcortical circuitry.

At around 400 ms (380–430 ms) after cue presentation, the pres-

ence or absence of proactive inhibition per se could play a role in the

observed recordings. At this moment, in the CG condition, and to a

lesser extent in the LS condition the P3 component is almost at its

peak, whereas it still lies at the transition between N2 and P3 follow-

ing the MS cues (Figure 4b). This shift in latency is consistent with our

interpretation of MS being more indecisive. The P3 component has

been associate with the implementation of the inhibition command

(De Pretto et al., 2017; Spierer et al., 2013). Here, it might reflect pro-

active inhibition mechanisms, such as best illustrated by the right

superior (temporo-) occipital cluster. This cluster showed an increase

in current density as the probability of a NoGo signal increases. Simi-

larly, the posterior-thalamic cluster and the left insula showed stron-

ger activation in the LS conditions. Within the right fronto-basal

cluster, activation was stronger in the CG condition.

At around 510–550 ms, an additional significant peak was found.

Its topography was consistent with an increased activation of right

pre-central gyrus in the LS condition, and of a left parietal region in

the CG condition (Figure 5a).

As stated above, subcortical source localization must be inter-

preted with caution and likewise, our conclusions about involved

pathways or circuits definitely need further confirmation. We here

propose that the peak at around 400 ms from cue presentation corre-

sponds to the engagement of the indirect pathway in proactively

adjusting inhibition reactivity, in preparation for the upcoming probe

signal. The higher activation of the right putamen, possibly of the right

caudate and of the thalamic regions in the CG vs MS condition

(Figure 5a, orange panel) could be interpreted as an early release of

proactive inhibition, assuming striatum as a globally prokinetic struc-

ture within the direct pathway. Later on, at around 500 ms, the hyper-

direct pathway mediates a further release of inhibition, by reducing

the relative activity in the right precentral gyrus: the pattern of activa-

tion is consistent with a lower activity in conditions when the proba-

bility of a Go signal, thus of an upcoming movement, was higher.

The cluster located in the right temporo-occipital region (peak at

around 400 ms) and in the left parietal regions (�500 ms) are harder

to interpret, but could be related to anticipated movement planning

(Manuel et al., 2010).

Previous studies have not identified specific brain areas responsi-

ble for governing proactive inhibition. Most of the evidence suggests

that proactive inhibition acts through the modulation of the reactive

inhibition network, pre-SMA and SMA being the most likely areas tun-

ing its activation threshold (Stuphorn & Emeric, 2012). A recent fMRI

study with dynamic causal modelling (DCM) analyses attempted at

differentiating among reactive and proactive inhibition (Zhang &

Iwaki, 2019). A network involving right DLPFC, left caudate, and right

IFG was found to be more specifically related to proactive inhibition.

On the contrary, a network involving IFG – SMA – STN – M1 was a

common pathway shared by both inhibition modalities. Although not

conclusive, our data seem to confirm the central role of the indirect

pathway in proactive inhibitory control, the direct and hyperdirect

pathway possibly intervening at a later stage, releasing inhibition

immediately before the go/no-go signal if chances of stopping

are low.

Our task was designed to be easily understood and performed by

patients, and to specifically unveil a prolongation of reaction times

linked to the presence of proactive inhibition. It consistently

succeeded in capturing this effect in all groups, even though inter-

group differences in terms of duration of disease, dopaminergic medi-

cation and cognition were – as expected – pronounced in our cohort,
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and motivated us to analyse groups separately. Despite this premise,

several limitations must be acknowledged. In our experimental design,

intervention was limited to turning OFF and ON only one stimulation

side, the left one in all cases but one. This might have limited our

capacity to find relevant behavioural effects of stimulation. However,

this choice was dictated by several considerations. We wanted to limit

the discomfort caused by the off state, particularly in STN patients;

this was also instrumental for keeping populations comparable, as GPi

stimulation is often particularly effective on tremor and dyskinesias

(Williams et al., 2014) but is less effective on bradykinesia and rigidity,

and allows for a lesser reduction of dopaminergic medication

(as confirmed in our cohort, see Table 1): a bilateral OFF is milder in

GPi-DBS than in STN-DBS patients.

Another potential limitation is that our EEG analyses were time-

locked to the cue presentation. Interesting information might be

retrieved from analyses of the response-locked ERPs. However, the

signal-to-noise ratio of the response-locked signal might be unbal-

anced given the short delay between the Go signal and the response,

and the variable response times depending on the Cue.

The similar behavioural results associated with dissimilar ERP

results might suggest unreliable EEG results. However, to our view,

this phenomenon is better explained by different brain processes,

either due to different neurophysiological mechanisms, or due to dif-

ferent strategies. Regarding the ERPs, the NO group, for which the

duration of the disease is much shorter than the other groups, and

which does not have DBS implanted, shows average ERPs (Figure 3)

very similar to what might be observed in healthy participants

(Angelini et al., 2016; De Pretto, Hartmann, Garcia-Burgos, Sallard, &

Spierer, 2019). In the STN group, the ERP components are less pro-

nounced (see Figure 4). However, the topographic maps indicate clear

periods of stable brain states.

Results regarding the GPi population should be interpreted with

particular caution. This group was difficult to recruit, given that this

target is rarely chosen for implantation. Moreover, among the reasons

to choose GPi, some cognitive and psychiatric considerations might

have been taken into account at the time of surgery, which may influ-

ence both the intergroup and the GPi within-group subject variability

(Figure 6). Thus, the absence of a Cue effect in the GPi group may be

related to a lack of power due to the low number of participants, as

illustrated by the noisy average ERPs.

Finally, the small number of trials is probably the main limiting

factor affecting the robustness of our results. A pilot phase with lon-

ger experiment duration was rapidly interrupted when it was clear

that patients fatigue grossly impaired performance, particularly in the

GPi group.For most of our patients, the task was performed with

the dominant hand (the right one in all cases but one), while turning

on and off the stimulator only on the contralateral side. This means

that the right STN was for most of the subjects always stimulated.

The inhibition network is thought to be at least partially right

lateralized (Aron & Poldrack, 2006; Lofredi et al., 2020). However,

recent experimental work shows that the effects on inhibition

are only observed when bilateral stimulation is active (Mancini

et al., 2019).

5 | CONCLUSIONS

Our results suggest that proactive inhibitory control has dedicated

brain networks, distinct from those governing reactive inhibition.

Together with previous evidence, our findings support the hypothesis

that the indirect pathway is the main involved circuit, and that the

hyperdirect pathway has likely a secondary role. Further studies are

needed to confirm this interpretation, also considering that our elec-

trical neuroimaging approach is relatively novel in this field and needs

further confirmatory studies.

Despite being remarkably effective on the motor symptoms of

Parkinson's disease, both STN and GPi stimulation do not appear to

interfere with the mechanisms responsible for adapting the threshold

of motor inhibition deployment. Our findings confirm the general

safety of DBS, with few effects on executive functions despite the

remarkable motor improvement. Future research work will be tasked

to investigate if proven behavioural side effects of DBS - mostly cau-

sed by electrode misplacement (i.e., hypomania) are accompanied by

impairment of proactive inhibitory control.
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