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1 Introduction

The motion of heavy probe particles is a classic tool for extracting information about the
microscopic properties of an interacting statistical system. In heavy ion collision exper-
iments, one manifestation of this philosophy is to inspect how efficiently heavy flavours
(charm and bottom quarks) participate in hydrodynamic flow (cf., e.g., ref. [1]). In cosmol-
ogy, assuming that dark matter is made of weakly interacting massive particles, it would be
important to know for how long they stay in kinetic equilibrium with the other particles,
as this may affect, amongst others, structure formation (cf., e.g., ref. [2]).

To be concrete, consider a particle whose mass M is much larger than the tempera-
ture T . Given that the average (equilibrium) velocity is below unity, v2 ∼ 3T/M � 1, and
the (equilibrium) density is exponentially suppressed, n ∼

(
MT
2π

)3/2
e−M/T , we find our-

selves in a non-relativistic dilute regime. Thinking of a single such particle, and assuming
that it carries the gauge charge g, the classical Lorentz force acting on it reads

dpµ

dt = gFµνvν , (1.1)

where pµ is the four-momentum and vµ ≡ (1,v) is the velocity. The Lorentz force contains
an electric part (∼ gE) and a magnetic one (∼ gv ×B). It has thus been argued that at
zeroth order in v, heavy quarks are affected by colour-electric forces [3, 4], whereas at first
order in v, corrections originate from colour-magnetic ones [5]. For dark matter, we could
similarly consider the forces originating from the weak gauge group.

Being a classical description, eq. (1.1) is guaranteed to hold only at large time scales
where phase decoherence has taken place, t � 1/(α2T ), where α = g2/(4π). Due to their
large inertia, the time scale associated with the kinetic equilibration of heavy particles is
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∼M/(α2T 2) [6]. For M � T , there should thus be a broad range of time scales for which
eq. (1.1) is valid. At the same time, thermal effects break Lorentz invariance and distinguish
between electric and magnetic fields, modifying the respective couplings (cf. eq. (2.5)). In
fact, we recover an unmodified eq. (1.1) only in vacuum,1 where the decoherence argument
does not apply, but M � ΛMS still provides for a hierarchy of time scales (cf. eq. (3.22)).

Given that colour interactions are strong in QCD, their effects should be investigated up
to the non-perturbative level. For colour-electric forces, large-scale lattice simulations have
indeed been carried out in recent years [8–13], whereas for the colour-magnetic corrections,
the challenge lies ahead of us. In preparation for this task, the goal of the current study
is to clarify the renormalization of the colour-magnetic part of eq. (1.1). Specifically, we
show how a divergence found in ref. [5], cf. eq. (7.6), gets cancelled after the inclusion of
the proper matching coefficient.

2 Outline of a procedure

Let us consider the vector current, JQCD
µ = ψ̄γµψ, associated with one heavy flavour in

QCD.2 The spatial integral over the zeroth component,
∫

x J
QCD
0 , measures the net number

of this species (particles minus antiparticles), and is conserved in the absence of weak in-
teractions. In contrast, the spatial components,

∫
x J

QCD
i , are not conserved. They measure

velocities, and velocities can be changed by elastic reactions.
Following eq. (1.1), our focus here is on time derivatives of velocities, i.e. accelerations.

The QCD operator that we are interested in can formally be expressed as ∂0
∫

x J
QCD
i . In

a vacuum setting, we could take matrix elements of this operator in the presence of a
background gauge field Ā(Q) [14], where Q = (q0,q) is a four-momentum. As we are
aiming at an infrared (IR) description, Q is considered small compared with other energy
scales. Schematically, then, we could consider matrix elements like〈

p1

∣∣∣∣∣
[
∂0

∫
x
JQCD
i

]
Ā(Q)

∣∣∣∣∣p2

〉
' δ(3)(p2 + q − p1)AQCD

i [Ā(Q)] +O(q2
0,q2,v2) , (2.1)

〈
p1

∣∣∣∣ ∫
x
JQCD

0

∣∣∣∣p2

〉
' δ(3)(p2 − p1)NQCD

0 +O(v2) , (2.2)

where the precise way to extract the external states will be discussed presently, and v is
the heavy-quark velocity in the medium rest frame.

The matrix elements in eqs. (2.1) and (2.2) are subject to wave function renormaliza-
tion, which drops out in the ratio

aQCD
i ≡ AQCD

i

NQCD
0

. (2.3)

1There is a famous history of quantum-mechanical derivations of the Lorentz force, cf. e.g. ref. [7].
2We do not elaborate on the overall factors ±i,±1 of the various operators, on one hand because these

play no role in the end, on the other because we work in Euclidean spacetime, with Euclidean Dirac matrices,
and then additional factors may originate from the time coordinate, temporal gauge field components,
spatial Dirac matrices, and raising/lowering of indices. It would be a distraction to discuss all of them.
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It is for the cause of such an acceleration, multiplied by a (thermally corrected) pole
mass M , that we would like to find an operator reminiscent of the Lorentz force.

Before proceeding, we note that for the thermal effects that we are mostly concerned
with, the notion of matrix elements such as eqs. (2.1) and (2.2) is ambiguous. Therefore, we
generalize the definitions to certain “partition functions”, defined in configuration space.
Let the Euclidean time coordinate be τ and a generic spatially averaged operator O(τ).
The time direction is compact and is chosen to lie in the interval τ ∈

(
−β

2 ,
β
2

)
, where

β ≡ 1
T is the inverse temperature. In this language, we may consider the 3-point correlator〈

Tr
{∫

y
ψ

(
β

2 ,y
)
e−ip1·y [O(0)]Ā(Q)

∫
x
ψ̄

(
−β2 ,x

)
eip2·x

}〉
T ,c

, (2.4)

where 〈. . .〉T ,c is a thermal average, and c stands for connected contractions. We take a
trace in Dirac space, given that the operator we are interested in, cf. eq. (2.5), is spin-
independent. The part of this correlator proportional to e−βM originates from the single
heavy quark sector of the Hilbert space, and gives the effects that we are interested in. In
a vacuum setting, we may replace β/2→ +∞ and −β/2→ −∞. The leading asymptotics
picks up the desired states in this case, and matrix elements analogous to eqs. (2.1), (2.2)
are obtained as coefficients of the exponential fall-off, up to overall factors that drop out
in eq. (2.3).

Let now θ represent a non-relativistic 2Nc-component spinor, defined in the sense of
Heavy Quark Effective Theory (HQET) (cf., e.g., refs. [15–17] and references therein). This
brings in two new ways to define the acceleration. The first is that we consider compo-
nents of the Noether current, which now read JHQET

0 = θ†θ, JHQET
i = −θ†(i←→D i)θ/(2M) +

O(1/M2), and then compute matrix elements of ∂0
∫

x J
HQET
i and

∫
x J

HQET
0 , just like in

eqs. (2.1) and (2.2).
However, one can envisage a more radical reduction, to which we refer as an infrared

(IR) description. This involves an operator reminiscent of the Lorentz force in eq. (1.1),

F IR
i ≡ − igB θ

†
{
ZE Fi0V0 + ZB FijVj

}
θ , (2.5)

where gB denotes the bare gauge coupling, −igBFµν ≡ [Dµ, Dν ] is a field strength, and
V = (i,v) is the (Euclidean) heavy-quark velocity. It is important to stress that in the
static picture of eq. (2.5), the velocity v appears as an “external” parameter, whose thermal
distribution is fixed later on from separate considerations (cf. section 7).

Defining matrix elements on the IR side as〈
p1

∣∣∣∣∣
[∫

x
F IR
i

]
Ā(Q)

∣∣∣∣∣p2

〉
' δ(3)(p2 + q − p1)F IR

i [Ā(Q)] +O(q2
0,q2,v2) , (2.6)

〈
p1

∣∣∣∣ ∫
x
JHQET

0

∣∣∣∣p2

〉
' δ(3)(p2 − p1)N IR

0 +O(v2) , (2.7)

the goal would be to find matching coefficients ZE,B such that (up to possible signature
issues)

MAQCD
i

N QCD
0

= F
IR
i

N IR
0
. (2.8)

– 3 –
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This establishes the principal viability of a dynamics like that in eq. (1.1).3 Such dynamics
has already been employed for deriving purely gluonic 2-point imaginary-time correlators,
permitting to study features of heavy quark diffusion and kinetic equilibration [3–5].

3 QCD vacuum contribution

The purpose of the present section is to see how the objects of eqs. (2.1)–(2.3) look like at
1-loop level in vacuum QCD. Physically speaking, this amounts to accounting for the heavy
quark mass scale, M . Even if the result will be quite simple (cf. eq. (3.22)), we hope that
a detailed exposition can set the technical stage for the subsequent sections. The inverse
of a heavy quark propagator is denoted by

∆P ≡ P 2 +M2 , (3.1)

and P normally denotes an on-shell four-momentum, i.e. P 2 = −M2.
To get going, we evaluate the 3-point correlator of eq. (2.4) at leading order (LO), with

the sink and source placed at β/2→ y0 and −β/2→ x0, respectively. For the denominator,
the operator reads O(0) =

∫
x ψ̄γ0ψ. The Wick contractions yield

δ(3)(p1 − p2)
∫
ω1,ω2

ei(ω1y0−ω2x0) Tr [(−i /P1 +M)γ0(−i /P2 +M)]
(ω2

1 + ε2p1)(ω2
2 + ε2p2)

, (3.2)

where εp ≡
√
p2 +M2 and

∫
ωi
≡
∫∞
−∞ dωi/(2π). Sending y0 → +∞, x0 → −∞, the

integrals over ω1,2 pick up the poles at

ω1 = iεp1 , ω2 = iεp2 , (3.3)

respectively. As momentum conservation sets the two momenta equal, we denote p ≡
p1 = p2. The asymptotic wave functions e−εpy0 × eεpx0 are factored out, and this defines
what we mean by the remaining matrix element. Taking the trace and expanding to leading
order in v ≡ p/εp, in accordance with eq. (2.2), we then obtain

NQCD,vac
0 = 2 +O(g2

B) , (3.4)

multiplied by a unit matrix in colour space that is suppressed from the notation.
Proceeding to the numerator, the operator can be expressed in momentum space as

∂0

∫
x
JQCD
i =

∫
P3,P4

i(ω4 − ω3) ψ̄(P3)γiψ(P4) δ(3)(p4 − p3) , Pi = (ωi,pi) . (3.5)

The diagrams to be computed are shown on the first row of figure 1. The key feature is
that, after contracting the momenta to the external ones, i.e. P1 and P2, the prefactor
ω4−ω3 = q0 +ω2−ω1 in eq. (3.5) is of O(Q), but there is an internal propagator (between

3As alluded to above and demonstrated explicitly in the later sections, the cancellation of singular
propagators from the numerator and denominator separately requires the inclusion of thermal corrections
in the pole massM , however these effects are power-suppressed by g3T/M or g2T 2/M2, and in fact irrelevant
for the definition of ZE,B , which comprise of corrections only suppressed by g2.
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Figure 1. The LO and NLO graphs contributing to the 3-point correlator in full QCD. A solid line
denotes a heavy quark, a curly line an external gauge field, a wavy line a dynamical gauge field, a
grey blob a 1-loop gauge field self-energy, a solid circle a mass counterterm, open squares a source
and a sink, and a cross the operator related to the conserved current or its time derivative.

the external gauge field and the operator) which is of O(1/Q). These leading singularities
cancel, leaving over terms of O(1):

q0 + ω2 − ω1
∆P1−Q

= 1
q0 − iεp1 − iεp2

,
q0 + ω2 − ω1

∆P2+Q
= 1
q0 + iεp1 + iεp2

. (3.6)

Here we made use of the overall momentum constraint p1 = p2 + q and put the states
on-shell according to eq. (3.3). Subsequently we can insert

p1 = p + q
2 , p2 = p− q

2 , εp1 ≈ εp + v · q
2 , εp2 ≈ εp −

v · q
2 , (3.7)

and Taylor-expand to first order in q0, q and v. For future convenience, we split electric
fields into two parts, introducing (while being again unconventional about factors of i)4

E(A)
i ≡ iqiĀ0 , E(B)

i ≡ iq0Āi , v×Bi ≡ qiv · Ā− Āiv · q . (3.8)

Factoring out the same wave functions as above eq. (3.4), this leads to

M AQCD,vac
i = − 2igB

[
E(A)
i − E

(B)
i + v×Bi

]
+O(g3

B) . (3.9)

Up to overall signature, the ratio of eqs. (3.9) and (3.4) yields a Lorentz force like in
eq. (1.1).

The task then is to proceed to next-to-leading order (NLO). For N0, the computation
is relatively straightforward. To remain consistently within the perturbative expansion, the
1-loop correction is evaluated at the location of the tree-level poles, i.e. terms proportional
to P 2

1 +M2 or P 2
2 +M2 are omitted. Here we simply state the result,

NQCD,vac
0

2 = 1− g2
BCF

∫
R

[
4M2

R2∆2
P−R

+
(

2
∆P−R

− D − 2
2M2

)(
1

∆P−R
− 1
R2

)]
+O(g4

B) ,

(3.10)
4As depicted in figures 1–3, we compute to linear order in the external gauge field Āµ ≡ ĀaµT a, whereby

only the Abelian part appears in the external field strength. Here T a are Hermitean generators of SU(Nc).

– 5 –
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where CF ≡ (N2
c − 1)/(2Nc), D = 4− 2ε is the dimension of spacetime, R is a gluon four-

momentum, and P is an on-shell heavy quark four-momentum, with P 2 = −M2. Noting
that scaleless integrals vanish in dimensional regularization, and inserting non-vanishing
master integrals from eq. (3.20), the explicit expression reads

NQCD,vac
0

2 = 1 + g2
BCF µ

−2ε

(4π)2

(
1
ε

+ ln µ̄2

M2 + 4
)

+O(εg2
B, g

4
B) , (3.11)

where µ̄2 ≡ 4πµ2e−γE is the scale parameter of the MS scheme.
For the NLO computation of the numerator, let us give some more details. The

diagrams are shown in figure 1. Actually, the gluon self-energy diagram is not needed,
as it contains scaleless integrals after the Taylor expansion in Q, and therefore vanishes
in dimensional regularization. The only exception is the loop containing the heavy quark
itself. The effect from here amounts to the contribution that the heavy quark gives to the
running of the gauge coupling. As the low-energy side of our matching is a theory without
the heavy quark, and we normally refer to the gauge coupling of that theory, this effect is
trivially included.

Carrying out colour contractions in the other diagrams, there are two parts, one pro-
portional to CF and the other to CA ≡ Nc. The part proportional to CF is quite IR
sensitive: whereas at leading order there is one propagator of O(1/Q), now there are two
such propagators. These poles cancel only by working in the pole mass scheme, whereby
the mass counterterm is chosen as (M2

B = M2 + δM2)

δM2 = −g2
BCF

∫
R

[
4M2

R2∆P−R
+ (D − 2)

(
1
R2 −

1
∆P−R

)]
+O(g4

B) . (3.12)

We denote again the on-shell momenta of the external legs by P1 and P2, with Pi =
(ωi,pi); the dynamical gluon momentum by R; and the external gluon momentum by Q.
After taking the Dirac trace, the first step is to eliminate scalar products like R · Pi or
Q · R, by completing squares and cancelling against denominators. The key issue is to
verify that, after including the mass counterterm from eq. (3.12), all singular propagators,
1/∆Pi

and 1/∆Pi±Q, drop out. To achieve this it is important to make use of the fact the
certain differences are of O(Q) and cancel against would-be poles, notably

1
∆P1−Q

[
1

∆P1−Q−R
− 1

∆P2−R

]
= − ω1 + ω2 − q0 − 2r0

(ω1 + ω2 − q0) ∆P1−Q−R ∆P2−R
, (3.13)

1
∆P2+Q

[
1

∆P2+Q−R
− 1

∆P1−R

]
= − ω1 + ω2 + q0 − 2r0

(ω1 + ω2 + q0) ∆P2+Q−R ∆P1−R
, (3.14)

where the right-hand sides are non-singular. After the elimination of the singular propa-
gators, the non-singular ones (1/∆Pi−R, 1/∆Pi±Q−R) can be Taylor-expanded in Q, with
the leading terms given by 1/∆P−R. The gluonic propagator 1/(Q − R)2 can likewise be
expanded. Left over are tensor integrals of the type∫

R

RµRν

(R2)i1∆i2
P−R

= Ai1i2δµν +Bi1i2PµPν ,

∫
R

Rµ

(R2)i1∆i2
P−R

= Ci1i2Pµ , (3.15)

– 6 –
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contracted with four-vectors like Ā(Q), V or Q, or with δµi, where the index i originates
from the operator. The tensor integrals can be reduced to scalar ones with the usual
Passarino-Veltman reduction, e.g.

Ai1i2 =
ci1−1,i2
D − 1 +

ci1−2,i2 − 2ci1−1,i2−1 + ci1,i2−2
4(D − 1)M2 , (3.16)

Bi1i2 =
ci1−1,i2

(D − 1)M2 +
D(ci1−2,i2 − 2ci1−1,i2−1 + ci1,i2−2)

4(D − 1)M4 , (3.17)

Ci1 =
ci1,i2−1 − ci1−1,i2

2M2 , (3.18)

where
ci1,i2 ≡

∫
R

1
(R2)i1∆i2

P−R
. (3.19)

Negative powers of i1 can be dealt with by completing squares, e.g. c−1,i2 = −2M2c0,i2 +
c0,i2−1. After this reduction, we are faced with the integrals c0,1, c0,2, c0,3, c1,1 and c1,2. In
dimensional regularization, these are related by

c0,1 =
M2c0,2

1− D
2
, c0,3 =

(
1− D

4

)
c0,2

M2 , c1,1 =
c0,2
D − 3 , c1,2 = −

c0,2
2M2 , (3.20)

where c0,2 = Γ
(
2− D

2

)
/(4π)

D
2 /(M2)2−D2 .

After inserting the relations between the masters integrals, we find that all gauge
dependence cancels (i.e. terms proportional to 1/ξ, ξ, ξ2). Moreover all terms proportional
to CA cancel inD dimensions. Terms proportional to CF do not cancel, but they come in the
same combination of electric and magnetic fields as the LO result in eq. (3.9). Furthermore
the relative correction,

MAQCD,vac
i = − 2igB

[
E(A)
i − E

(B)
i + v×Bi

]{
1− g2

BCF

∫
R

1
∆2
P−R

D − 5
D − 3

}
+O(g5

B) ,

(3.21)
exactly matches that obtained from eq. (3.10) after inserting the relations between the
masters from eq. (3.20). Therefore the ratio defined in eq. (2.3) receives no correction
at NLO,

MAQCD,vac
i

NQCD,vac
0

= −igB

[
E(A)
i − E

(B)
i + v×Bi

]
+ O(g5

B) . (3.22)

4 QCD thermal contribution

The next step is to repeat the computation of section 3 at finite temperature. Much
remains unchanged, notably the diagrams, the Dirac contractions, and algebraic steps such
as completions of squares. What changes is that the gluon four-momentum is now thermal,
R = (rn, r), where rn is a bosonic Matsubara frequency. Integration over R gets replaced
by a Matsubara sum-integral, denoted by ∑∫

R
. As a consequence of the different measure,

“scaleless” sum-integrals no longer vanish, as the temperature sets a new scale. In addition,

– 7 –
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the symmetry group that permits to eliminate numerators from sum-integrals is smaller.
Most of this section concerns how to evaluate these new master sum-integrals.

The first important issue, however, is to note that care is needed when Taylor expanding
with respect to the external gluon four-momentum, which at finite temperature takes
the form Q = (qn,q), where qn is a bosonic Matsubara frequency. It is well-known, for
instance from the context of Hard Thermal Loop effective theories [18–21], that after
carrying out the Matsubara sum over rn, gluon loops ∼ 1/[R2(R−Q)2] turn into structures
like ∼ nB(r)/{r[iqnr ± q · r + O(Q2)]}. We could carry out an analytic continuation to
Minkowskian frequencies, iqn → q0. It is then clear that the result is non-analytic, e.g.
with a branch cut in the domain q > |q0|, leading physically to the phenomenon of Landau
damping. Even though the same non-analyticities arise on the IR side of matching, it is
extremely tedious to track them in an already complicated computation. These problems
are absent from the Matsubara zero mode sector, qn = 0. In the language of the Euclidean
formulation, non-zero Matsubara modes ∼ 2πnT carry large energies, and therefore cannot
be expanded in; the low-energy mode qn = 0 suffers from no such problem. All in all, we
therefore restrict to the Matsubara zero mode of the external gauge field in the thermal
computations, viz.

qn = 0 . (4.1)
We note from eq. (3.8) that, consequently, the electric field denoted by E(B)

i is not available,
but this represents no problem, because the counterpart E(A)

i remains present. To avoid
confusion, let us stress again that the four-momentum of the dynamical (non-external)
gauge field, denoted by R, does carry all its Matsubara frequencies.

After this elaboration, let us turn to the sum-integrals present, obtained after carrying
out the Taylor expansion in q and v. There are three classes of them: those sensitive only
to the gluon four-momentum (R); those sensitive only to the heavy quark four-momentum
(P −R); and those containing both types of propagators. We discuss these in turn.

The structures only containing the gluon propagator, ∼ 1/R2, vanish in vacuum as
scaleless integrals, but are non-zero at finite temperature. Any spatial momenta appearing
in the numerator can be eliminated by Passarino-Veltman type reduction but applied in d =
3− 2ε dimensions. Dimensional regularization permits also to relate a number of integrals,
such as

∫
r

r2

(R2)i1 = d
2(i1−1)

∫
r

1
(R2)i1−1 . The remaining 1-loop sum-integrals can be solved in

terms of the Riemann ζ-function, and expansions in ε yield familiar expressions, e.g.

∑∫
R

1
R2 =

2T Γ
(
1− d

2

)
(4π)d/2

ζ(2− d)
(2πT )2−d = T 2

12 +O(ε) , (4.2)

∑∫
R

1
R4 =

2T Γ
(
2− d

2

)
(4π)d/2

ζ(4− d)
(2πT )4−d = µ−2ε

(4π)2

[1
ε

+ 2 ln
(
µ̄eγE

4πT

)
+O(ε)

]
, (4.3)

∑∫
R

1
R2r2 =

∫
r

1
2 + nB(r)

r3

= −
2T Γ

(
1− d

2

)
(4π)d/2

ζ(4− d)
(2πT )4−d = 2µ−2ε

(4π)2

[1
ε

+ 2 ln
(
µ̄eγE

4πT

)
+ 2 +O(ε)

]
. (4.4)

– 8 –
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The sum-integral in eq. (4.4) originates in connection with mixed structures (see below),
and we have shown a representation in terms of the Bose distribution nB for later conve-
nience.

The second class contains only heavy quark propagators,∑∫
R

RµRν . . .

∆i1
P−R

. (4.5)

After substituting R → P − R, we are faced with a fermionic Matsubara sum. Carrying
it out, the thermal part of the result comes with the Fermi distribution nF, which is
exponentially suppressed by ∼ e−M/T . Therefore, eq. (4.5) can be replaced by its vacuum
part,

∫
RRµRν . . ./∆

i1
P−R, and it then evaluates to the same value as in section 3.

The third class contains mixed structures. To see what happens with them, we
note that∑∫

R

φ(r)
(R2 + λ2)∆P−R

=
∫
R

φ(r)
(R2 + λ2)∆P−R

+
∫

r

nB(εr)
2εr

[
φ(r)

ε2pr − (iωn + εr)2 + φ(r)
ε2pr − (iωn − εr)2

]
(4.6)

−
∫

r

nF(εpr)
2εpr

[
φ(r)

ε2r − (iωn + εpr)2 + φ(r)
ε2r − (iωn − εpr)2

]
,

where we denoted P = (ωn,p), εr ≡
√
r2 + λ2 and εpr ≡

√
(p− r)2 +M2. Taking deriva-

tives with respect to λ2 and M2 permits to generate powers of propagators. The first term
on the right-hand side of eq. (4.6) is a vacuum integral, and reproduces the effects found
in section 3. The last term is exponentially suppressed like the thermal effects originat-
ing from eq. (4.5), and can be omitted. Relevant contributions originate from the middle
term of eq. (4.6). The same exercise can be repeated for the case that rn appears in the
numerator, and then the middle term reads∑∫

R

φ(r) rn
(R2 + λ2)∆P−R

⊃
∫

r

nB(εr)
2εr

[
φ(r) iεr

ε2pr − (iωn + εr)2 −
φ(r) iεr

ε2pr − (iωn − εr)2

]
. (4.7)

Subsequently, we set the heavy quarks on-shell, ωn → iεp like in eq. (3.3),5 and expand
the result in v = p/εp and T/M , where the temperature originates from the fact that
εr ∼ T , as dictated by the Bose distribution. In this way we find that, effectively,

c0 + c1 rn
∆P−R

mixed term−−−−−−→ c0 r · v + c1 iε
2
r

Mε2r
+ . . . , (4.8)

c0 + c1 rn
∆2
P−R

mixed term−−−−−−→ c0 + c1 2ir · v
2M2ε2r

+ . . . , (4.9)

c0 + c1 rn
∆3
P−R

mixed term−−−−−−→ c0 3r · v + c1 iε
2
r

4M3ε4r
+ . . . , (4.10)

appearing together with
∫

r nB(εr)/(2εr) that was factored out in eqs. (4.6) and (4.7).
5The precise justification for this in the thermal context is provided in section 5.
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A few further remarks are in order. First, we note that if r2
n appears in the numerator,

it can be written as r2
n = R2 + λ2 − ε2r , and thus represented as a linear combination of

the structures that were already considered. A case to watch out for is if the function
φ(r), perhaps in combination with the right-hand sides of eqs. (4.8)–(4.10), leads to a
spatial momentum squared, e.g. rirj → δijr

2/d. We may now write r2 = ε2r − λ2. If this
appears in a structure with a quadratic gluon propagator, 1/R4 = − limλ→0 d/dλ2{1/(R2+
λ2)}, then the derivative can act on the numerator as well, implying that r2/[R4(ε2r)i1 ]→
1/[R2(ε2r)i1 ] + 1/[R4(ε2r)i1−1].

To summarize, when we send λ → 0, thermal parts of mixed sum-integrals can be
represented in terms of eqs. (4.2)–(4.4). After inserting all this to the diagrams of figure 1,
we obtain results for the contribution from thermal scales. We postpone their discussion till
the end of section 5, where the main result, given in eq. (5.21), is obtained in a different way.

5 Non-relativistic determination of the thermal contribution

The purpose of this section is to re-derive the result of section 4 in a different way. For
practical applications, there is thus nothing new; however, on the formal side, we hope
that an independent derivation can serve as a crosscheck and an illustration of the general
methodology. Moreover this approach brings us in several ways rather close to section 6.

The idea is to use a non-relativistic effective theory for the computation. Whereas full
QCD has two scales that we treated separately, M in section 3 and T in section 4, the scale
M has essentially been eliminated from the effective theory. This permits to simplify some
aspects of the computation (for instance, spin plays a trivial role and Dirac matrices do
not appear), even if there is also an overhead, namely an increased number of elementary
vertices.

The Euclidean action of the non-relativistic theory reads

SE =
∫
X
θ†
(
D0 +M − D2 + cB gBσ ·B

2M + . . .

)
θ , (5.1)

where
∫
X ≡

∫
dτ
∫

x, and cB = 1+O(g2
B) is a matching coefficient. Spin-dependent effects are

mass-suppressed and do not contribute to our actual computation, however we have shown
the term multiplied by cB because it is needed in section 7. Even if we mentioned above
that the scale M has essentially been eliminated, it is important for thermal computations
to keep the rest mass explicit in eq. (5.1), as otherwise Boltzmann factors e−M/T go amiss.

The reason for an increased number of vertices is that eq. (5.1) contains not only a
linear appearance of gauge fields, as is the case in the heavy-quark part of the QCD action,
but higher powers as well. Likewise, the spatial Noether current,

JHQET
i = − θ

†(i←→Di )θ
2M +O

( 1
M2

)
, (5.2)

involves terms with and without gauge fields. We note that all terms of O(1/M) and
O(v/M) need to be included, as the acceleration is multiplied by M in eq. (2.8).
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In the non-relativistic theory, free propagators take the form

〈θ(P1) θ†(P2)〉 = δ̄(P1 − P2)
ΩP1

, ΩP1
≡ iω1n + εp1

, (5.3)

where P1 = (ω1n,p1), ω1n denotes a fermionic Matsubara frequency, εp1 = M +p2
1/(2M)+

. . . , and ∑∫
P1̄
δ(P1) = 1. We assume all dependence on 1/M to be Taylor-expanded to a

given order. In the end, propagators therefore appear in a static form, i.e. as inverses of

ΛP1
≡ iω1n +M . (5.4)

Let us start with LO computations. For the denominator, where the operator reads∫
x θ
†(0,x)θ(0,x) = ∑∫

P3, P4
θ†(P3)θ(P4)δ(3)(p3 − p4), eq. (2.4) leads to

T
∑
ω1n

e
iβω1n

2 T
∑
ω2n

e
iβω2n

2
2 δ(3)(p1 − p2)

(iω1n +M)(iω2n +M) +O
( 1
M

)
. (5.5)

The Matsubara sums yield e−M/T . Factoring out this exponential, as well as δ(3)(p1−p2),
the “amplitude” corresponding to eq. (2.2) is now extracted as

N HQET
0 = 2 +O(g2

B) . (5.6)

For the numerator, the momentum space operator becomes

∂0

∫
x
JHQET
i =

∑∫
P3,P4

i(ω4n − ω3n) θ†(P3) p3i + p4i
2M θ(P4) δ(3)(p4 − p3) (5.7)

−
∑∫

Q,P3,P4

i(qn + ω4n − ω3n) θ†(P3) gAi(Q)
M

θ(P4) δ(3)(q + p4 − p3) + . . . ,

where corrections start at O(1/M2). We get a contribution from three diagrams at leading
order, illustrated on the first rows of figures 1 and 2. There is an issue with singulari-
ties, similar to that discussed around eq. (3.6), but with non-relativistic propagators the
cancellation is simpler,6

qn + ω2n − ω1n
ΩP1−Q

= i ,
qn + ω2n − ω1n

ΩP2+Q
= −i . (5.8)

After inserting the small-momentum approximations from eq. (3.7), setting qn = 0
for the external gauge field as explained around eq. (4.1), Taylor-expanding, factoring out
external states like around eq. (5.6), and making use of the notation in eq. (3.8), we find

M AHQET
i = 2gB

[
E(A)
i + v×Bi

]
+O(g3

B) . (5.9)

The ratio of eqs. (5.9) and (5.6) yields a structure similar to the Lorentz force in eq. (1.1).
6To justify the use of on-shell conditions here, i.e. ωin = iεpi

, we note that by adding and subtracting
a term, e.g. ω1n/(iω1n + εp1

) = −i + iεp1
/(iω1n + εp1

) in the term containing 1/ΩP2+Q, we are left with
a Matsubara sum like in eq. (5.5), but with one of the terms (here, −i) being independent of one of the
summation variables (here, ω1n). These terms vanish in connection with the exponentials.
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Figure 2. The additional LO and NLO graphs contributing to the 3-point correlator in the non-
relativistic description of section 5. The notation is the same as in figure 1. We note that in a
thermal medium, gluon tadpoles give a finite contribution, proportional to T 2, and must thus be
included.

Proceeding to NLO, we start with the denominator, deferring the discussion of technical
details to the numerator. Evaluating the NLO correction at the tree-level on-shell point,
the final result reads

N HQET
0
2 = 1− g2

BCF

∑∫
R

[
1

R2Λ2
P−R

+ 1− ξ
R4

]
+O(g4

B) , (5.10)

where Λ is the inverse static propagator from eq. (5.4), and ξ is a gauge parameter. After
the insertion of master sum-integrals from eqs. (4.3), (4.4) and (5.18), we obtain

N HQET
0
2 = 1− g2

BCF µ
−2ε

(4π)2

{
(3− ξ)

[1
ε

+ 2 ln
(
µ̄eγE

4πT

)]
+ 4

}
+O(εg2

B, g
4
B) . (5.11)

The gauge parameter appears because eq. (2.4) is not explicitly gauge invariant, and its
ultimate cancellation serves as an important crosscheck of the computation.

Turning to the numerator, let us first discuss the mass counterterm. In order to
cancel all singular propagators (1/ΩPi

, 1/ΩPi±Q), the mass counterterm needs to be chosen
such that we are in an on-shell scheme. In the non-relativistic theory, the counterterm is
analogous to that in eq. (3.12) but now with a thermal sum-integral (MB = M + δM),

δM = −g2
BCF

∑∫
R

[
1

R2ΩP−R
+ D − 1

2MR2

]
+ O(g4

B) . (5.12)

In the main computation it is convenient to use this in unexpanded form, in order to guar-
antee that the cancellation outlined in eqs. (5.15), (5.16) takes place at an early stage, but
we note in passing that if we wanted an explicit value, we could expand the propagator as

∑∫
R

1
R2ΩP−R

=
∑∫
R

1
R2

(
1

ΛP−R
− r2

2M
1

Λ2
P−R

)
+O

(
v2,

T 3

M2

)
. (5.13)
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The sums can be performed (cf. eqs. (5.17), (5.18)) and subsequently related to that in
eq. (4.2). The upshot is that the vacuum pole mass is shifted by a well-known thermal
correction [22],

M |T = M |T = 0 + g2T 2CF

12M . (5.14)

With the mass counterterm from eq. (5.12), the cancellation of singular propagators
requires the use of identities analogous to eqs. (3.13) and (3.14). In the non-relativistic
theory, their form is simplified to

1
ΩP1−Q

[
1

ΩP1−Q−R
− 1

ΩP2−R

]
= − 1

ΩP1−Q−R ΩP2−R
, (5.15)

1
ΩP2+Q

[
1

ΩP2+Q−R
− 1

ΩP1−R

]
= − 1

ΩP2+Q−R ΩP1−R
. (5.16)

After the cancellation of singularities, we can Taylor-expand the non-singular propa-
gators, obtaining powers of 1/ΛP−R. As explained around eq. (4.1), the Taylor expansion
of the gluon propagator 1/(Q−R)2 is sensible only with respect to spatial momentum q,
so we restrict to the Matsubara zero mode qn = 0. In order to handle the large number
of diagrams, shown in figures 1 and 2, and the many terms generated by their Taylor
expansions, we have made extensive use of FORM [23].

As far as the Matsubara sums go, we need to replace eq. (4.6) with its non-relativistic
counterpart. The sum now reads

T
∑
rn

1
(R2 + λ2)ΛP−R

= T
∑
rn

1
(r2
n + ε2r)[i(ωn − rn) +M ]

= 1
(iωn +M)2 − ε2r

{
iωn +M

εr

[1
2 + nB(εr)

]
−
[1

2 − nF(M)
]}

.

(5.17)

Taking a derivative with respect to M and going subsequently on-shell, ωn → iM , leads to

T
∑
rn

1
(R2 + λ2)Λ2

P−R

∣∣∣∣
ωn=iM

= 1
ε2r

[ 1
2 + nB(εr)

εr
+ n′F(M)

]
. (5.18)

For M � T , the term proportional to n′F is exponentially suppressed, so after λ → 0 we
are left over with the purely bosonic term in eq. (4.4). For non-trivial numerators, e.g.∑∫

R

rirj

(R2)i1Λi2P−R
, (5.19)

the discussion in the paragraph below eq. (4.10) applies.
As a final technical remark, we note that gluon self-energy contributions, shown on

the second rows of figures 1 and 2, do not need to be included. The reason is that they
yield precisely the same contribution as in the IR description, whose graphs are shown in
figure 3. Therefore the self-energy contribution drops out in the matching step, discussed
in section 7.
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Figure 3. The LO and NLO graphs contributing to the 3-point correlator in the IR description of
section 6. The notation is the same as in figure 1.

All in all the thermal NLO result for the numerator can be expressed as

MAHQET
i

2 = gB

[
E(A)
i + v×Bi

]1− g2
BCF

∑∫
R

[
1

R2Λ2
P−R

+ 1− ξ
R4

]
+ g3

BCA

2
∑∫
R

{[
1

R2Λ2
P−R

+ (d− 3)(ξ − 1)− 2
R4

]
E(A)
i +

[
1− 2

d

R2Λ2
P−R

−
2
d

R4

]
v×Bi

}

+ (gluon self-energy) + O(g5
B) .

(5.20)
The term proportional to CF agrees with eq. (5.10), and thus drops out in the ratio consid-
ered in eq. (2.8). The coefficient of v×Bi on the second row of eq. (5.20) cancels exactly,
given that the sum-integrals in eqs. (4.3) and (4.4) differ by a factor d/2 − 1. When the
same relation is inserted into the coefficient of E(A)

i , the result does not cancel but is pro-
portional to d − 3. Because the coefficient function has a pole ∼ 1/ε, this leaves over a
finite contribution,

MAHQET
i

N HQET
0

= gB

{
E(A)
i

[
1 + g2

BCA(3− ξ)
(4π)2

]
+ v×Bi

}
+ (gluon self-energy) + O(εg3

B, g
5
B) . (5.21)

Amusingly, a finite term proportional to 3 − ξ is familiar from rescalings discussed in the
context of the effective potential for Ā0, cf. eqs. (3.17)–(3.18) of ref. [24].

6 Infrared side of the matching

In the preceding sections, we have computed the contributions of the vacuum (∼ M) and
thermal (∼

√
MT, T ) scales to the left-hand side of eq. (2.8). The last ingredient needed

for matching is to determine the right-hand side of eq. (2.8), by making use of the IR
description. This is defined by restricting to a strictly static HQET action,

SE ≡
∫
X
θ† (D0 +M) θ . (6.1)
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Consequently heavy quark propagators are straight Wilson lines in the time direction. In
momentum space, the inverse propagator takes the form of eq. (5.4).

We note that the IR physics of the thermal gluon sector is non-trivial, leading to
non-analyticities as discussed around eq. (4.1) and requiring resummations in order to
generate a consistent weak-coupling series. However, since we are matching two different
computations, these IR issues drop out, as long as they have been treated in the same
way on both sides of the matching. We implement this by restricting to qn = 0 and by
carrying out unresummed computations throughout. Even after these simplifications, nice
crosschecks do remain, in particular that the gauge-dependent electric field normalization
visible on the second row of eq. (5.20) is reproduced in d dimensions (cf. eq. (6.5)).

The operator for the denominator reads
∫

x θ
†θ, and that for the numerator

∫
x F

IR
i ,

where F IR
i is given in eq. (2.5). As discussed below eq. (2.5), in this description v appears

as an external parameter, whose value is fixed later on from a separate consideration (cf.
section 7).

For calibration, we may once again start with LO results. For the denominator,
eqs. (5.5) and (5.6) continue to hold, i.e. N IR

0 = 2 +O(g2
B). For the numerator, extracting

external states like between eqs. (5.5) and (5.6), the amplitude from eq. (2.6) evaluates to

F IR
i = 2gB

[
E(A)
i + v×Bi

]
+O(g3

B) . (6.2)

The ratio of eq. (6.2) and N IR
0 yields a Lorentz force like in eq. (1.1).

Proceeding to NLO, let us start by elaborating on the issue of the mass counterterm,
which previously played an important role in cancelling singular propagators ∼ O(1/Q).
The counterterm takes a form obtained from the M →∞ limit of eq. (5.12), viz.

δM = −g2
BCF

∑∫
R

1
R2ΛP−R

+ O(g4
B) . (6.3)

The Matsubara sum can be extracted from eq. (5.17). At the on-shell point, ωn → iM ,
and omitting exponentially small terms ∼ e−M/T , this yields

δM = −g2
BCF

∫
r

1
2ε2r

+ O(g4
B) . (6.4)

Recalling that after resummation the temporal gauge field components, which are responsi-
ble for eq. (6.3), carry a thermal mass mD, eq. (6.3) corresponds to a well-known correction
to a heavy-quark mass, M |T ⊃ −g2CFmD/(8π) [18]. However, as explained above, we
do not need to carry out resummation in our actual computation. Therefore the mass
counterterm gives no contribution in dimensional regularization.

With this framework, the denominator remains at the value of eq. (5.10), viz. N IR
0 =

N HQET
0 . The numerator is determined by the graphs in figure 3. Many terms proportional

to CF vanish, for the same reason that the mass counterterm does not contribute. The gluon
self-energy can be set aside, as it agrees with that on the high-energy side and therefore
drops out in the matching. The other diagrams on the second row of figure 3 produce a
non-vanishing contribution proportional to CA.
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The sum-integrals obtained after a Taylor expansion are in the same class as those
discussed in section 5. Writing ZE,B = 1 + δZE,B where δZE,B ∼ O(g2

B), we are left with

F IR
i

2 = gB

[
E(A)
i + v×Bi

]1 − g2
BCF

∑∫
R

[
1

R2Λ2
P−R

+ 1− ξ
R4

]
+ g3

BCA

2
∑∫
R

{[
1

R2Λ2
P−R

+ (d− 3)(ξ − 1)− 2
R4

]
E(A)
i +

[
1

R2Λ2
P−R

− 4
R4

]
v×Bi

}

+ gB E
(A)
i δZE + gB v×Bi δZB + (gluon self-energy) + O(g5

B) . (6.5)

The correction proportional to CF agrees with that in eq. (5.10), and therefore drops out in
the ratio of eq. (2.8). Inserting the values of the master sum-integrals from eqs. (4.3), (4.4)
and (5.18), finally yields

F IR
i

N IR
0

= gB E
(A)
i

{
1 + δZE + g2

BCA(3− ξ)
(4π)2

}

+ gB v×Bi

{
1 + δZB −

g2
BCA µ

−2ε

(4π)2

[1
ε

+ 2 ln
(
µ̄eγE

4πT

)
− 2

]}
+ (gluon self-energy) + O(εg3

B, g
5
B) (6.6)

7 Result and discussion

In the preceding sections we have computed the objects appearing in eq. (2.8) in three
different ways: in vacuum, whereby would-be loop effects originate from the scale ∼M but
all cancel in the end (cf. section 3); at finite temperature, by making use of a Noether current
and its time derivative, thereby incorporating effects from the thermal scales ∼

√
MT, T

(cf. sections 4 and 5); and in an IR description, which makes use of a Lorentz force operator
rather than a Noether current (cf. section 6). By requiring that the results agree, we can
determine the renormalization constants of the Lorentz force operator, defined through
eq. (2.5). Concretely, a comparison of eqs. (5.21) and (6.6) yields

ZE = 1 + δZE = 1 +O(g4) , (7.1)

ZB = 1 + δZB = 1 + g2CA

(4π)2

[1
ε

+ 2 ln
(
µ̄eγE

4πT

)
− 2

]
+O(g4) , (7.2)

where we have replaced the bare coupling g2
B by its renormalized value, viz.

g2
B µ
−2ε = g2 + g4

(4π)2
2Nf − 11Nc

3ε +O(g6) . (7.3)

It is a little bit subtle to see which scales have been integrated out through the matching
steps that we have presented. Indeed, even though T appears inside the logarithm in
eq. (7.2), it has not been fully eliminated, but still affects the low-energy observables that
could be measured with eq. (2.5), such as eq. (7.4). Rather, what has been eliminated are
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the heavy quark spatial momenta. These appear explicitly in the HQET Noether current,
JHQET
i , which contains derivatives acting on θ† and θ, but are absent from eq. (2.5), where

v appears as an external parameter. In a 2-point correlator, the velocity appears in the
form 〈v2〉. It has been pointed out in ref. [4] that a field-theoretic interpretation for this
average is given by the τ -independent part of the 2-point imaginary-time correlator of the
vector current,7

∫
x J

QCD
i , normalized to the susceptibility. This quantity has been computed

up to NLO in eqs. (3.4), (3.5), (4.1) and (4.5) of ref. [25]. It accounts for the dynamics
at the momentum scale p ∼

√
MT , and is finite after mass renormalization, indicating

that this physics does not mix with the renormalization of the magnetic field at this order.
The present computation has thus accounted for thermal gauge modes kicking the heavy
quarks in spatial directions, and left over are thermal gauge modes not involved in such
momentum transfer.

Given the subtle interpretation, it is comforting that the 1/ε-parts of eqs. (7.1) and (7.2)
can be compared with literature. In the thermal context one considers 2-point correlators
of the Lorentz force, normalized to the 2-point correlator of the Noether charge (i.e. sus-
ceptibility). For the magnetic field this leads to [5]

GB(τ) ≡ g2
B

∑
iReTr 〈U(β; τ)Bi(τ)U(τ ; 0)Bi(0) 〉

3ReTr 〈U(β; 0)〉 , (7.4)

where U is a timelike Wilson line and the trace is now in colour space. The imaginary-time
correlator is conveniently viewed in a spectral representation,

GB(τ) =
∫ ∞

0

dω
π
ρB(ω)

cosh
[
ω
(
β
2 − τ

)]
sinh

[
ωβ
2

] . (7.5)

For the electric counterpart, a general argument [4] as well as a 1-loop computation [26]
show that the spectral function ρE is rendered finite through gauge coupling renormaliza-
tion, and this is consistent with eq. (7.1).8 In contrast, for GB, a 1-loop computation [5]
shows that after gauge coupling renormalization, the spectral function is not finite, but
rather reads

ρB(ω) = g2CFω
3

6π

[
1− g2CA

(4π)2
2
ε

+ (finite)
]

+O(g6) . (7.6)

We now see from eq. (7.2) that multiplying the magnetic fields by ZB, i.e. considering the
correlator Z2

B GB(τ), the divergence in eq. (7.6) duly cancels.
A completely different crosscheck originates from vacuum computations, concerning

the operator multiplied by cB in eq. (5.1), known as the chromomagnetic moment. In our
notation, the 1-loop result for cB [28] can be expressed as

cB = 1 + g2

(4π)2

{
CA

[
1
ε

+ ln µ̄2

M2 + 2
]

+ 2CF

}
+O(g4) . (7.7)

7Or, in real frequency space, by the area under the transport peak in the corresponding spectral function.
8In lattice regularization, a finite renormalization factor of O(g2) is however needed [27].
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Even if the chromomagnetic moment concerns spin-dependent effects, the magnetic field
appears in the same form in eqs. (5.1) and (2.5), ∼ gBB. Indeed the anomalous dimension
visible in eq. (7.7) agrees with that in eq. (7.2).

Going to higher orders, we could possibly profit from the fact that the anomalous
dimension of the chromomagnetic moment has been determined up to 2-loop [29, 30] and
3-loop level [31]. Furthermore, non-perturbative renormalization in terms of a renormal-
ization group invariant (RGI) operator has been worked out [32], corresponding to µ̄→∞.
After such a non-perturbative renormalization, results should be run down to the MS scale
µ̄ ' 4πTe1−γE ≈ 19.179T according to eq. (7.2). Given that no pole mass ambiguity
appears, unlike in eq. (7.7), and that there is a large numerical prefactor, a reasonable
precision could be hoped for.

To summarize, all ingredients needed for estimating the influence of magnetic interac-
tions on heavy quark diffusion should now be available, at least in an approximate form.
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