Communication Patterns During Routine Patient Care in a Pediatric Intensive Care Unit: The Behavioral Impact of In Situ Simulation

Francis F. Ulmer, MD, Head of Pediatric Simulation {1}, Andrea M. Lutz, MD {2}, Fabienne Müller, RN {1}, Thomas Riva, MD {2}, Lukas Bütkofer, PhD {3}
Robert Greif, MD, Professor of Anesthesiology {2, 4}

None of the authors have any conflicts of interest to declare.

{1} Department of Pediatrics, Section of Pediatric Critical Care, Bern University Hospital, University of Bern, Switzerland
{2} Department of Anesthesiology and Pain Therapy, Bern University Hospital, University of Bern, Switzerland
{3} CTU Bern, University of Bern, Switzerland
{4} School of Medicine, Sigmund Freud University Vienna, Vienna, Austria

Corresponding author:
Andrea M Lutz, Master of Medicine
Department of Anesthesiology and Pain Therapy
Bern University Hospital, University of Bern, Switzerland
Inselspital, Freiburgstrasse, 3010 Bern
Tel +41 79 733 06 14
lutzand@outlook.com

For information regarding this article, E-mail: lutzand@outlook.com

Parts of the study were presented as abstracts at the International Pediatric Simulation Society (IPSSW) Conference in Amsterdam: May 14 - 16, 2018.
ClinicalTrials.gov identifier: NCT03600298.
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

Key words: Patient safety - simulation - communication – pediatric intensive care unit
ABSTRACT

Objectives: Effective communication minimizes medical errors and leads to improved team-performance while treating critically ill patients. Closed loop communication (CLC) is routinely applied in high-risk industries but remains underutilized in healthcare. Simulation serves as an educational tool to introduce, practice and appreciate the efficacy of CLC.

Methods: This observational before-and-after study investigates behavioral changes in communication among nurses brought on by simulation team training in a pediatric intensive care unit (PICU). The communication patterns of PICU nurses, who had no prior simulation experience, were observed during routine bed-side care before and after undergoing in-situ simulation.

One month before and 1 and 3 months after simulation (intervention), 2 trained raters recorded nurse communications relative to call-outs, uttered by the sender, and call-backs, reciprocated by the recipient. The impact of simulation on communication patterns was analyzed quantitatively.

Results: Among the fifteen PICU nurses included in this study significant changes in communication behavior were observed during patient care following communication focused in-situ simulation. PICU nurses were significantly less likely to let a call-out go unanswered during clinical routine. The effect prevailed both 1 month ($p = 0.039$) and 3 months ($p = 0.033$) after the educational exposure.

Conclusions: This observational before-and-after study describes the prevalence and pattern of communication among PICU nurses during routine patient care and documents PICU nurses transferring simulation acquired communication skills into their clinical environment after a single afternoon of in-situ simulation. This successful transfer of simulation-acquired skills has the potential to improve patient safety and outcome.
INTRODUCTION

In the United States an estimated 210,000-400,000 people die annually as a consequence of medical errors.\(^1\) Joint Commission data indicated that more than 70% of all reported errors in sentinel events are caused by ineffective communication.\(^2\) Recent Joint Commission data confirmed that communication failures are account for more than half of the causes of sentinel events.\(^3\) Communication difficulties between physicians and nurses in the intensive care unit frequently relate to weak safety culture and human errors.\(^4,5\) Miscommunication leads to everyday mishaps, medical errors and adverse events.\(^6-8\) Non-technical skills team training can increase directed commands.\(^9\) A recent randomized case-control study found a correlation between team performance and directed commands during cardiac arrest.\(^10\) The quality of resuscitation performance correlates with the quality of communication during the event.\(^11\)

Closed Loop Communication (CLC) involves the exchange of information between a sender and a recipient with confirmation that the sender's message has been received and interpreted as intended.\(^12,13\) Specifically, CLC is comprised of the following steps: 1) the sender initiates a message, 2) the recipient receives the message, interprets it, and confirms its receipt (figure 1). Some authors add a third step in which the sender verifies that the message was received and interpreted as intended.\(^13,14\) This standardized communication scheme strives to catch the attention of all team members by increasing awareness of what has already been done and what still needs to be done.\(^15,16\) Ultimately CLC aims to enhance clarity in communication and to reduce the risk of errors.\(^17,18\)

Landmark studies have linked simulation in medical education to both enhanced team performance and improved patient outcome.\(^19-24\) This is in concert with the introduction of crew resource management in aviation increasing flight safety operations.\(^25,26\) Simulation aids in perfecting the use of CLC and when practiced regularly strengthens the unimpeded transfer of information during hectic and critical situations.\(^13,27\) Blindfolding the team leader is an effective intervention for practicing CLC, as it forces simulation participants to focus on
communication skills and role clarity.28 Residents who were blindfolded during simulation code training found the exercise beneficial for improving communication.29–31

Kirkpatrick’s four-level taxonomy evaluation model is used to evaluate the effectiveness of training programs.32 Most simulation-based educational studies aiming to improve communication skills are at Kirkpatrick level 1-2a (reaction and learning)33–35 while studies investigating the behavioral impact of simulation at the bedside remain scarce.36 A recent hospital survey on patient safety concluded that training that involved the adoption of team behaviors was correlated with perceived safety culture.37

This observational before-and-after study investigates the extent to which the benefits of simulation can be transferred to the bedside and measures the impact on staff behavior during clinical routine (Kirkpatrick level 3). Specifically, we investigated whether full scale in-situ simulation focusing on communication is able to change communication behavior promoting reliable - and discouraging unreliable communication. We observed communication patterns among pediatric intensive care unit (PICU) nurses during routine patient care before and after the introduction of PICU embedded simulation.
METHODS

Ethics

The study was approved by the Cantonal Ethics Committee of Bern (Req-2017-00202) and registered at ClinicalTrials.gov (NCT03600298).

Study population

Written informed consent was obtained from 15 PICU nurses of Bern University Children’s Hospital prior to enrolment into the study. Inclusion criteria: PICU nurses unfamiliar with in-situ simulation, scheduled to participate in PICU simulation during the six-month observation period and having consented to being observed during routine patient care. Participants with previous simulation experience were excluded from the study.

Study design

In this before and after observational trial, participating PICU nurses were observed during day and evening shifts while caring for patients at three points in time: one month before simulation exposure (phase I), one month after (phase II) and three months after (phase III) the simulation (Figure 2).

The study was carried out over a six-month period and coincided with the introduction of in-situ simulation to the PICU. Leading up to this study, simulation training was not established in the department of pediatrics and virtually unheard of among the entire nursing staff.

In Situ Simulation

The simulation sessions lasted 4.5 hours and consisted of a 1 hour introduction and three clinical scenarios that were each followed by a video assisted debriefing. Applying the flipped classroom38-41 approach, team members were emailed two Crisis Resource Management (CRM) reading assignments,42,43 our own literature derived list of CRM key points and asked
to watch a team concepts training video prior to the simulation. During simulation introduction, non-technical skills, including CLC were reviewed and practiced as a group activity. The importance of applying CRM skills in every clinical situation including acute-critical and routine situations was stressed throughout all sessions.

During the 3 scenarios, teams consisted of three registered nurses (all of whom were completely unfamiliar with in-situ simulation and had never participated in a scenario), a PICU attending physician (team leader) and a pediatric or anesthesia resident. The latter two did not participate in the study, as they previously participated in simulation sessions. They were also unaware of the fact that some of the nurses were participating in the study.

Simulations were comprised of three scenarios: The first case covered hyperkalaemia with ensuing ventricular tachycardia in a neonate. Following the debriefing of the first scenario, participants were once again subjected to the identical scenario, with the succinct difference being that the team leader, attending physician, was blindfolded. All simulation participants had no prior knowledge of this additional communication challenge. This was done with the intention of prompting team members to use effective and clear communication, preferably CLC. The subsequent debriefing focused on how blindfolding impacted the application of CRM, communication in particular. The final scenario dealt with an infant suffering from hemolytic uremic syndrome accompanied by his distraught parent. The main goal of the in-situ simulation course was to provide an opportunity to practice CRM in a familiar environment accentuated with an unexpected challenge to their communication, namely a blindfolded team leader.

Measurements

Participant characteristics including gender, age and work experience were recorded. Two trained raters, members of the study team, simultaneously yet independently monitored
communication between the study participants and other healthcare professionals in the PICU.

Study participants (PICU nurses) were aware that they were being observed but did not know what they were being observed for. Conversations between study participants and patients, their relatives, interpreters as well as phone calls were not recorded.

The communication patterns were recorded as graphically illustrated in figure 1 but limited to the nurses that had consented to participate in the study. Nurses were observed until sixty minutes of communication per study participant had been recorded. Each communication separated by more than 1 minute of silence was counted as a new communication, referred to as “communication unit” in this study. The tallied communications had to amount to at least one hour of communication for each observed nurse. Communication was defined as a “call-out” when information was transferred from a sender to a recipient and as a “call-back” when reciprocated by a recipient to a sender.13,17 Call-outs were classified as either directed or non-directed. Communication was defined as a “call-out” when information was transferred from a sender to a recipient and as a “call-back” when reciprocated by a recipient to a sender.13,17 Call-outs were classified as either directed or non-directed.46 Non-directed call-outs were distinguished from directed call-outs by assessing whether the call-out had been directed to a specific person by uttering their name or function or by employing nonverbal clues including eye contact, gaze direction, gestures, vocal nuances, facial expression and posture ensuring that the recipient was unequivocally recognizable.6,9,46–49 Directed call-outs were subcategorized as commands/suggestions, questions, observations/information.17,46 Call-backs were subcategorized as (1) no call-back (no response to sender’s call-out), (2) nonverbal response (recipient acknowledged sender’s call-out nonverbally or executed the commanded task,46 e.g., call-out „Shall I get the code cart?“ – call-back „Aha“ or nodding), (3) verbal response (recipient answered sender’s call-out without repeating it,46 and (4) read-back (recipient repeated sender’s call-out literally or analogously).46 We defined the former two as unreliable communication and the latter two as reliable communication (Figure 1). Communication
patterns included directed and non-directed call-outs, as well as the four different call-back subcategories and the percentage of call-backs per directed call-out. Each participant’s verbal utterance was counted as either coming from or responding to a sender. This meant that call-outs uttered by a study participant, when acting as a sender, were recorded separately from the call-backs the same study participant uttered when acting as a recipient. Communication patterns were also recorded and coded according to the stress intensity of the clinical situation (1=daily routine, 2=enhanced activity, 3=acute/critical situation),

Statistics and data analysis

Due to the observational nature of the study, the available convenience sample of simulation participants was used as the study population. No formal sample size calculation was conducted.

The primary outcome call-back is a multinomial outcome with 4 levels: read-back, verbal, nonverbal, and no call-back. We used a fully parametrized multinomial logistic regression model with call-out, phase, sender, and all possible interactions among the three as explanatory variables, with a cluster-robust variance estimation within participant to correct for potential correlation of responses within the same participant. Presented proportions and 95% confidence intervals (CI) were calculated form this model, due to the hierarchical structure of the data.

In a second step, we fitted binomial logistic regression models to each call-back category, including call-out, phase, sender, and all possible interactions among the three as explanatory variables, with a cluster-robust variance estimation within participant to correct for potential correlation of responses within the same participant. We tested for a change in overall call-back pattern (based on the multinomial model) and for each call-back category (based on the logistic models) over all three phases and pairwise between each phase. We repeated this procedure within sender and recipient and within each call-out category within sender or recipient. P-
values were adjusted for multiplicity by controlling the false discovery rate based on the procedure of Benjamini-Hochberg.50 With a cut-off of 0.05 on the adjusted p-values the false discovery rate will be controlled at 5%.

The secondary outcome directed call-outs was analyzed using binomial logistic regression with sender, phase and their interaction as explanatory variables and a cluster-robust variance estimation within participant. We calculated proportions and 95% CI from the model and tested for differences over all phases and pairwise between each phase. P-values were adjusted for multiplicity by controlling the false discovery rate based on the procedure of Benjamini-Hochberg.

Multinomial and binomial logistic regressions were calculated using Stata 14.2 (StataCorp, College Station, TX, USA). Adjustment for multiplicity and figures were done in R version 3.5.3 (R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/).
RESULTS

Fourteen females and one male nurse participated in the study. No physicians were included, as all had previously participated in simulation. Mean-age was 40 years (SD 8.1), with an average of 17 years (SD 6.9) of professional 10.5 years (SD 8.1) of PICU experience.

Two raters observed 848 communication units over a period of 122 hours gathering 60 minutes of communication per study participant.

Directed call-outs were recorded 15 to 30 times more often than undirected call-outs. During the observation period the prevalence of directed call-outs increased significantly from an average of 94% to an average of 97% (p = 0.023).

A significant overall change in communication behavior was noted over the three observation phases (p = 0.006) with the most noticeable impact occurring between phases I and II (p = 0.004). The changes were mirrored by the significant overall reduction in no call-back responses (p = 0.028) observed between phases I and II (from 5 to 2%, p = 0.039) and between phases I and III (from 5 to 1%, p = 0.033). See Table 1.

The described overall changes in communication behavior observed over the three phases were significant for senders (p < 0.001) and recipients (p = 0.044). They were observed between phases I and II for both senders (p = 0.028) and recipients (p = 0.009) but only for senders between phases I and III (p < 0.001). Among Senders this was paralleled by a significant reduction in no call-back responses between phases I and II (from 6 to 2%, p= 0.005) and between phases I and III (from 6 to 2%, p < 0.001). See Table 2.

DISCUSSION

This study investigated the communication patterns of PICU nurses during patient care before and after first -time simulation exposure. Following communication focused in-situ simulation, PICU nurses were significantly less likely to let a call-out go unanswered (a so-called “no call-
back”-response). This effect prevailed 1 and 3 months after the educational exposure during simulation (Table 1 indicating that the effect was not merely transient. Sub-analyses found the reduction in no call-backs to be present among both senders and recipients, but statistical significance was only reached among senders (Table 2).

These results demonstrate simulation having a remarkable and lasting effect on the communication pattern among simulation naïve nurses in the clinical setting by which an unreliable form of communication was discouraged following simulation exposure. Detailed sub-analyses revealed this effect to be significantly pronounced among senders. Recipients also showed a decrease in no call-back-responses, however due to the limited number of observations statistical significance could not be demonstrated.

In the clinical setting the observed nurses acted both as senders and as recipients of call outs, whereas during simulation, call-outs usually originated from the team leading physicians rendering nurses more likely to be on the receiving end of a call-out in which they were the recipients, rather than the senders of call outs. Following simulation, we observed that nurses showed increasing success at discouraging no call-backs (Table 1), especially when in the role of a sender (Table 2). This is likely a translational effect, in which participating nurses, who primarily functioned as recipients of call-outs during the simulation appeared to discourage no call-backs in the subsequent clinical settings.

The no call-back rate overall as well as among only senders showed increasing significance over time pertaining to the differences between phases I and II compared to the differences between phases I and III (Tables 1 and 2). This might be explained by the fact that during the introduction of in-situ simulation to the PICU, simulation sessions were also ongoing among staff that was not participating in the study, leading to a growing number of more than 60 PICU nursing staff becoming “inoculated” with communication and other non-technical skills. Over time, the PICU staff as a whole became increasingly familiar with CLC allowing for a
contagious “herd-immunity-like” effect to occur by which the non-study participating PICU staff influenced the study participating portion of PICU staff and vice-versa. This study does not answer how soon after simulation, non-technical communication skill training should be refreshed, but suggests the interval may be shorter than with technical skills, such as resuscitation skills which have been shown to deteriorate 6 months after training or sooner.51–57 Teamwork and decision making benefit from CLC initiated by the team leader,58 whereas bad timing and poor direction of communication lead to task overload and poor team performance.59 Blindfolding mitigates sensory overload and encourages the adoption of CLC and other non-technical skills.29,36 In the current study the physician team leader was blindfolded during simulation with the intention of prompting the non-blindfolded team members to change communication behavior promoting the use of more reliable - and discouraging the use of unreliable communication and to see if this exercise would translate into clinical practice. The observed study participants (nurses) themselves were never blindfolded, but were instead challenged to respond to a blindfolded team leader during simulation which constituted the study intervention. The design of this study did not permit differentiation between the effect yielded by blindfolding the team leader and first-time the exposure to in-situ simulation itself. The current findings strengthen the assertion that simulation is suitable to teach and rehearse communication. Simulation discourages unreliable communication (Figure 1) and enables an efficient transfer of acquired effective communication skills into clinical practice. Communication studies have shown how CLC can make clinical teamwork more efficient and effective.18,58 Standardizing communication reduces the number of miscommunications in the operating room,60 leads to better task completion,9 and reduces errors during neonatal resuscitation.61 Simulation-based training improves CLC17,28,29,36,62,63 in simulated settings, which constitute Kirkpatrick level-2.33,34,64 This study shows the impact of simulation-based communication training on routine patient care in a PICU. The successful transfer of acquired
communication skills into the clinical setting following simulation intervention demonstrates a measurable impact on health care provider behavior, which satisfies a recent call for more evidence based Kirkpatrick level 3 simulation research.17,29,32,35,36,62,63,65 Future simulation studies will need to focus on how simulation influences clinical outcome at Kirkpatrick level 4.

Few studies have compared the ratio of directed to non-directed call-outs and most were conducted in simulated settings. In the clinical setting of our study communication was dominated by directed call-outs by a factor 15 to 30. Davis et al.46 reported a 1:1 ratio of non-directed to directed call-outs during code simulation sessions with at least 5 persons present. This difference can be explained by the staged nature of a simulated setting and the stress load imposed by a code scenario. By contrast the current study observed participants during daily clinical routine in which 97\% of observations occurred during low stress intensity (level 1), whereas stress levels during code training are best compared to this study’s level 3 “acute and critical situation”, which did not occur during any of the observations. In simulated environments directed communication is associated with increased response rates9 and increased read-backs.46 Following teamwork-specific simulation training, the ratio of directed to non-directed communication has been shown to increase9 in simulated environments. This is likely to hold true in clinical environments as well, but more evidence is needed to render a definitive conclusion.

The rate of read-back responses in this study was in the 4-5\% range and did not increase significantly throughout the observation period. Read-backs to directed call-outs during simulation have been reported at rates of 15-18\%,18,46 which are substantially higher than the overall read-back rates recorded in this study (Tables 1 and 2). We attribute this discrepancy to the different stress intensity levels and the study settings (simulated vs. clinical).
A limitation of this study is the small number of study participants at a single study site which was due to the limited number of simulation naïve PICU nurses. Given the fact that observations occurred during real time patient care, investigators were limited by the constraints imposed by staffing, scheduling and the challenge to coordinate simulation training. Another limitation was determined by the circumstance that only very little stress level 2 acuity communication was observed. Observations were governed by the capacity of the raters to observe study participants and the relatively low incidence of critical and acute care clinical situations. Furthermore, observations were limited to nurses and did not include other health care providers. This was due to scheduling conflicts.

A strength of this study is that it follows up an entire cohort of simulation naïve PICU nurses over a 6-month period, while observing their ability to transfer acquired communication skills into clinical practice. Their unfamiliarity with simulation allowed us to study the effects of first time in-situ simulation training on communication. This novelty distinguishes this study from other observational studies conducted in both clinical and simulated environments. More studies examining communication during acute or critical patient care situations in the clinical setting with larger multiprofessional cohorts are needed to further understand which components of communication should be stressed during simulation training to improve patient safety and care.

CONCLUSION

This observational before-and-after study documents how pediatric intensive care unit nurses were able to translate simulation acquired communication skills into their clinical environment after a single afternoon of in-situ simulation training emphasizing closed-loop communication. This successful transfer of simulation-acquired competencies has the potential to improve patient care and outcome.
ACKNOWLEDGMENT:

We would like to thank Benjamin Wälchli, Fabian Bürgi, Christine Riggenbach, Gian Twerenbold, Nina Kasper, for their engagement in the observations and rating, Adrian Zurca, Fiona Hefti and participating PICU staff.

Parts of the study were presented as abstracts at the International Pediatric Simulation Society (IPSS) Conference and the Society in Europe for Simulation Applied to Medicine (SESAM) conference.

None of the authors has to declare competing interests related to this study.
47. Härgestam M. Negotiated knowledge positions: communication in trauma teams. Umeå, Sweden: Department of nursing, Umeå University: Department of surgical and perioperative sciences, Umeå University; 2015.
64. Kirkpatrick JD, Kirkpatrick WK. *Kirkpatrick’s four levels of training evaluation*. Alexandria, VA: ATD Press; 2016:238.

Closed loop communication involves two steps: 1. the sender initiates a message (call-out) 2. the recipient receives the message, interprets it, and acknowledges its receipt (call-back). A call-out can either be directed to a person or non-directed “out in the air”. Directed call-outs are categorized into five subcategories. Call-backs are categorized into two reliable and two unreliable subcategories.
Figure 2 Participating PICU nurses were observed during day and evening shifts while caring for patients at three points in time: one month before simulation exposure (phase I), one month after (phase II) and three months after (phase III) the simulation.
Table 1: Proportion (in %) of read-backs, verbal call-backs, nonverbal call-backs or no call-backs over the three phases with 95% confidence intervals (CI). P-values were adjusted for multiplicity using the false discovery rate.

<table>
<thead>
<tr>
<th></th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>overall change</th>
<th>I vs II</th>
<th>I vs III</th>
<th>II vs III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td>0.006</td>
<td></td>
<td>0.039</td>
<td>0.033</td>
</tr>
<tr>
<td>read-back</td>
<td>4 (2 to 5)</td>
<td>5 (3 to 6)</td>
<td>5 (4 to 6)</td>
<td>0.52</td>
<td>0.30</td>
<td>0.52</td>
<td>0.80</td>
</tr>
<tr>
<td>verbal</td>
<td>75 (71 to 79)</td>
<td>78 (75 to 82)</td>
<td>76 (72 to 79)</td>
<td>0.21</td>
<td>0.11</td>
<td>0.70</td>
<td>0.19</td>
</tr>
<tr>
<td>nonverbal</td>
<td>17 (13 to 21)</td>
<td>15 (11 to 20)</td>
<td>18 (15 to 21)</td>
<td>0.20</td>
<td>0.14</td>
<td>0.99</td>
<td>0.17</td>
</tr>
<tr>
<td>no call-back</td>
<td>5 (3 to 6)</td>
<td>2 (1 to 2)</td>
<td>1 (1 to 2)</td>
<td>0.028</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Proportion (in %) of read-backs, verbal call-backs, nonverbal call-backs or no call-backs over the three phases with 95% confidence intervals (CI) for sender and recipients, respectively. P-values were adjusted for multiplicity using the false discovery rate.

<table>
<thead>
<tr>
<th></th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>overall change</th>
<th>I vs II</th>
<th>I vs III</th>
<th>II vs III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
<td>0.028</td>
<td><0.001</td>
<td>0.57</td>
</tr>
<tr>
<td>read-back</td>
<td>4 (2 to 7)</td>
<td>5 (3 to 6)</td>
<td>5 (4 to 7)</td>
<td>0.70</td>
<td>0.50</td>
<td>0.52</td>
<td>0.98</td>
</tr>
<tr>
<td>verbal</td>
<td>74 (68 to 80)</td>
<td>80 (77 to 84)</td>
<td>78 (73 to 83)</td>
<td>0.29</td>
<td>0.14</td>
<td>0.34</td>
<td>0.24</td>
</tr>
<tr>
<td>nonverbal</td>
<td>15 (10 to 20)</td>
<td>13 (9 to 16)</td>
<td>15 (11 to 20)</td>
<td>0.35</td>
<td>0.25</td>
<td>0.86</td>
<td>0.25</td>
</tr>
<tr>
<td>no call-back</td>
<td>6 (3 to 9)</td>
<td>2 (1 to 3)</td>
<td>2 (1 to 2)</td>
<td><0.001</td>
<td>0.005</td>
<td><0.001</td>
<td>0.96</td>
</tr>
<tr>
<td>Recipient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td>0.044</td>
<td>0.009</td>
<td>0.80</td>
<td>0.57</td>
</tr>
<tr>
<td>read-back</td>
<td>3 (2 to 5)</td>
<td>4 (3 to 6)</td>
<td>5 (4 to 6)</td>
<td>0.54</td>
<td>0.34</td>
<td>0.76</td>
<td>0.70</td>
</tr>
<tr>
<td>verbal</td>
<td>75 (71 to 78)</td>
<td>76 (72 to 79)</td>
<td>73 (69 to 77)</td>
<td>0.33</td>
<td>0.19</td>
<td>0.80</td>
<td>0.31</td>
</tr>
<tr>
<td>nonverbal</td>
<td>19 (15 to 23)</td>
<td>19 (15 to 23)</td>
<td>20 (16 to 24)</td>
<td>0.19</td>
<td>0.15</td>
<td>0.86</td>
<td>0.28</td>
</tr>
<tr>
<td>no call-back</td>
<td>3 (2 to 5)</td>
<td>1 (1 to 2)</td>
<td>1 (0 to 2)</td>
<td>0.50</td>
<td>0.30</td>
<td>0.52</td>
<td>0.84</td>
</tr>
</tbody>
</table>