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In a quantitative synthesis of studies via meta-analysis, it is possible that some
studies provide a markedly different relative treatment effect or have a large
impact on the summary estimate and/or heterogeneity. Extreme study effects
(outliers) can be detected visually with forest/funnel plots and by using statisti-
cal outlying detection methods. A forward search (FS) algorithm is a common
outlying diagnostic tool recently extended to meta-analysis. FS starts by fit-
ting the assumed model to a subset of the data which is gradually incremented
by adding the remaining studies according to their closeness to the postulated
data-generating model. At each step of the algorithm, parameter estimates, mea-
sures of fit (residuals, likelihood contributions), and test statistics are being
monitored and their sharp changes are used as an indication for outliers. In this
article, we extend the FS algorithm to network meta-analysis (NMA). In NMA,
visualization of outliers is more challenging due to the multivariate nature of
the data and the fact that studies contribute both directly and indirectly to the
network estimates. Outliers are expected to contribute not only to heterogeneity
but also to inconsistency, compromising the NMA results. The FS algorithm was
applied to real and artificial networks of interventions that include outliers. We
developed an R package (NMAoutlier) to allow replication and dissemination of
the proposed method. We conclude that the FS algorithm is a visual diagnostic
tool that helps to identify studies that are a potential source of heterogeneity and
inconsistency.
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1 INTRODUCTION

In most healthcare conditions, we have to evaluate several competing interventions. Network meta-analysis (NMA) is an
extension of pairwise meta-analysis that allows for multiple treatment comparisons by synthesizing direct and indirect
evidence.1-5 Transitivity is a fundamental assumption in NMA, stating that the distribution of effect modifiers is similar
across treatment comparisons.1 The statistical manifestation of transitivity is the consistency assumption, implying that
direct and indirect evidence agree.
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An outlier is defined as a study with a markedly different intervention effect estimate for a given treatment
comparison.6 A study that influences aspects of the model such as parameter estimates, heterogeneity, inconsistency is
defined as an influential study. A study that is an outlier is not necessarily an influential one (eg, an extremely large effect
from a very small study has little influence on the results of the model) and vice versa.

In a pairwise meta-analysis, we can visually detect extreme study effects through forest and funnel plots. Several
statistical methods have been suggested to accommodate the results from outliers within a meta-analysis by allowing for
flexible distributions of the random effects. Lee and Thompson argued that normality might be a restrictive assumption for
the random-effects model and they provided alternative distributions with heavier tails.7 Baker and Jackson also suggested
alternative distributions that downweigh outlying studies, such as long-tailed distributions8 and marginal distributions
with additional parameters to model skewness and heavier tails.9 A random-effects variance shift outlier model is also
capable of identifying and downweighing outliers.10 Beath proposed a method that considers a mixture of outlying and
nonoutlying studies and downweighs the former.11 Most of the outlier detection techniques are extensions of methods
that have been applied to regression models. Alternative heterogeneity measures in meta-analysis have recently been
proposed by Lin et al that are robust in the presence of outliers.12 Viechtbauer and Cheung extended standard outlier
deletion diagnostic measures in the context of meta-analysis13 and included them in the R package metafor.14,15

In NMA, the extreme study effect can be visualized with a comparison-adjusted funnel plot16 (eg, if the study markedly
differs from the others for a given treatment comparison). The effect size can be rendered as aberrant not only by its
mere magnitude but also by its size conditional on the comparison of the study and/or the corresponding effect derived
from indirect evidence. For example, a null effect might be aberrant if all other studies in the same comparison have
large effects or if the indirect evidence for that comparison suggests a large effect. Outlying and influential studies may
be responsible for large heterogeneity and/or inconsistency in NMA compromising the validity of results.

Within the Bayesian NMA framework, Lu and Ades proposed the use of residual deviance,17 Zhang et al18 provided
four measures for the detection of outlying studies by fitting the Bayesian hierarchical NMA model, and Zhao et al19

extended several outlier detection measures for generalized hierarchical models to detect influential and outlying studies
in NMA. Within a frequentist framework, Noma et al recently provided outlier diagnostics for the NMA model using
multivariate random-effects meta-regression.20

Backward algorithms are widely used to detect outlying observations and can be potentially used in NMA. They start
by removing observations according to some criterion (eg, largest residual) and stop when some other criterion is met
(eg, all residuals are smaller than a threshold value).21 The main drawback of backward methods is that in the presence
of a cluster of outliers it is likely that results would be affected to such a degree that outliers will not be identified as such
(masking). According to Atkinson, there are several deletion methods employed in backward methods that fail to detect
outlying observations due to masking.22

In this article, we propose a forward search (FS) algorithm to detect studies with extreme results in the NMA model.
The FS algorithm was initially developed as an outlier detection tool for the estimation of covariance matrices23 and regres-
sion models.24,25 It was subsequently extended to standard multivariate methods,26 factor analysis,27 and item response
theory models28 and was recently applied in meta-regression.29 FS starts by fitting the hypothesized data generating model
to a subset of the data which is gradually incremented by adding the remaining studies according to their closeness to the
postulated model. In each step of the FS algorithm, parameter estimates, measures of fit, and goodness-of-fit test statistics
are monitored, and sharp changes indicate the outlying behavior of the studies or observations entering the initial subset.
An R package (NMAoutlier)30 has been developed that allows the reproduction of our results and the application of the
method to other data.

The article is organized as follows: Section 2 discusses motivating examples; Section 3 discusses the random effects
NMA model using graph-theoretical methods as introduced by Rücker31; Section 4 outlines the methodological extension
of the FS algorithm to the NMA model; Section 5 presents an application of the proposed methodology in published NMAs
and simulated datasets; Section 6 discusses the main findings and provides directions for using the proposed diagnostic
methodology for NMA; and Section 7 contains our conclusion.

2 MOTIVATING EXAMPLES

The first example comprises four interventions to aid smoking cessation.17,32 Twenty-four studies (N = 24), including 22
two-arm trials and two three-arm trials, compared the relative effects of four smoking cessation counseling programs
(n = 4): defined as no contact (A), self-help (B), individual counselling (C), and group counselling (D). The outcome
was whether an individual successfully stopped smoking at 6 to 12 months (binary) and the odds ratio was used as a
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summary measure. The dataset with arm-level data is included in the R package netmeta33 and the corresponding R
code to calculate odds ratios with the pairwise function is provided in Appendix A1. The study-level data and the odds
ratios are provided in Table A1.

Figure 1 (left side) shows the comparison-adjusted funnel plot16 with interventions within comparisons ordered
according to effectiveness: (1) no contact (A), (2) self-help (B), (3) group counseling (D), and (4) individual counseling
(C). We can see that studies 3 and 7 lie far away from the bulk of the data judging from the large effect sizes given their
sizes. However, these deviations could be genuine or due to chance and heterogeneity. Figure 2 (left side) provides the
network plot for smoking cessation data.

In the second example, Gupta and Paquet34 compared placebo and eight active interventions (denoted as treatments
1-9) for actinic keratosis. Thirty-five studies (N = 35), including three three-arm trials, compared the relative effects of
placebo and eight active interventions. The outcome was participant complete clearance or equivalent and the odds ratio
was used as a summary measure. The dataset and the actual treatments are provided in Table A2. Figure 1 (right side)
provides the comparison-adjusted funnel plot16 with interventions within comparisons ordered from treatment 1 to 9.
We can see that study 28 with treatment comparisons 1 vs 6 vs 8 has a large effect size given its size for the treatment
comparison 1 vs 6. Figure 2 (right side) provides the network plot for the actinic keratosis data.

F I G U R E 1 Comparison-adjusted funnel plot16 for smoking cessation data (left)17,32 and actinic keratosis34 (right side).
Comparison-adjusted funnel plot produced in R15 from netmeta package.33 The y-axis provides the SE, and the x-axis provides the odds ratio
centered at comparison-specific effect [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 2 Network plot for smoking cessation data17,32 (left side) and actinic keratosis34 (right side) [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 1 Notation for the methodology of the FS algorithm in NMA

Data: Studies i = 1, … .,N Treatments 1, … .,n Observed pairwise comparisons 1, … .,m Observed pairwise effect sizes
y = (y1, y2, … , ym)′ and corresponding observed standard errors s = (s2

1, s2
2, … , s2

m)′

Matrix of NMA model: X the design m × n matrix X̃ the reduced design matrix with dimensions (n − 1) × n W the m × m
diagonal weight matrix L+the Moore-Penrose pseudoinverse n × n matrix of X L+ = (L − J∕n)−1 + J∕n where J is a n × n
matrix with all elements equal to 1 In the case of di(> 2)arms of study i L+ = − 1

2d2
i
X′XVX′X where V is a di × di symmetric

matrix with the observed variances of all comparisons. X̃L+X̃
′
the (n − 1) × (n − 1) variance-covariance matrix of n − 1 relative

treatment estimates

Estimated model parameters Treatment effects 𝝁̂ Heterogeneity variance 𝜏2 𝝁̃ the n − 1 relative treatment estimates compared
with the reference

FS algorithm notation: l = max(n, 0.2 × N) the size of the initial subset Pa large number of randomly chosen initial subsets of
size l p = 1, … ,P each candidate initial subset of size l j = 1, … .,N − l each iteration of the FS algorithm

Steps of FS algorithm: For selecting the initial basic set: Dl
p each candidate initial subset p = 1, … .,P of l studies (𝝁̂Dl

p
, 𝜏2

Dl
p
)

estimates corresponding to the subset Dl
p median(f (yi, si,Xi, 𝝁̂Dl

p
, 𝜏2

Dl
p
)) is the objective function with observations yi, si,Xi of the

entire dataset. For the first iteration j = 1 ∶ Dlinitial basic set, (Dl)c nonbasic set (𝝁̂Dl , 𝜏2
Dl ) subset-specific estimates for the initial

basic set Dl f (yi, si,Xi, 𝝁̂Dl , 𝜏2
Dl ) objective function with observations yi, si,Xi 𝜖 (Dl)c For iterations j = 2, … .N − l: Dl+j basic set,

(Dl+j)c nonbasic set (𝝁̂Dl+j , 𝜏2
Dl+j ) subset-specific estimates for the basic set Dl+j f (yi, si,Xi, 𝝁̂Dl+j , 𝜏2

Dl+j ) objective function with
observations yi, si,Xi 𝜖 (Dl+j)c

Outlier diagnostics measures: Standardized residuals 𝜀stand
i =

√
1

s2
i +𝜏2 (yi − Xi𝝁̂) for the ith two-arm study 𝜀stand

i = mean(𝜺̂stand
i ),

where 𝜺̂
stand
i =

⎛⎜⎜⎝𝜀
1,stand
i , … , 𝜀

(
di2

)
,stand

i

⎞⎟⎟⎠
′

in case of di(> 2)arms of study i Cook’s statistic

Cj = (𝝁̃Dl+j − 𝝁̃Dl+j−1 )′(X̃Dl+j L+
Dl+j X̃

′
Dl+j )−1(𝝁̃Dl+j − 𝝁̃Dl+j−1 ) at iteration j = 1, … ,N − l The ratio of the determinants of the

variance-covariance matrix COVRATIOj =
det(X̃Dl+j L+

Dl+j X̃
′
Dl+j )

det(X̃Dl+j−1 L+
Dl+j−1 X̃

′
Dl+j−1 )

at iteration j to iteration (j − 1)

Abbreviations: FS, forward search; NMA, network meta-analysis.

In the third example, Sciarretta et al35 provided a synthesis of 26 studies (N = 26), comparing antihypertensive
strategies for heart failure prevention (Figure A1, left side).

3 NMA MODEL

We use the frequentist random-effects NMA model as presented by Rücker,31 which uses all pairwise comparisons within
multiarm trials by reducing their weight in the NMA.36 We briefly describe the approach that has been implemented in
the R package netmeta33; for more details see articles.31,36,37 The notation used is summarized in Table 1.

Suppose that we have N studies and each study has di arms, i = 1, … ,N. Let m denote the number of observed pair-

wise comparisons (m =
∑N

i=1

(
di
2

)
and m = N if di = 2, i = 1, … ,N). Let us denote with n the total number of treatments.

Let 𝝁 represent the vector with the n absolute treatment effects. Let y = (y1, y2, … , ym)′ be the vector with the observed
effect sizes from the N studies and s = (s2

1, s2
2, … , s2

m)′ the vector with the corresponding observed standard errors.
Assuming a common heterogeneity variance 𝜏2 across pairwise comparisons, the random effects NMA model is

written as

y = X𝝁 + 𝜹 + 𝜺, 𝜹 ∼ N(0,𝚫), 𝜺 ∼ N(0, S)

where S is a block diagonal within-study variance-covariance matrix with data entries s2
1, … ., s2

m in the diagonal and X
is the m × n design matrix that describes the structure of the network, with rows denoting the observed pairwise com-
parisons and columns the treatments being compared within each comparison.31,36 We consider the true variances to be
equal to the observed sample variances, an assumption that holds when sample sizes are reasonably large. 𝚫 denotes a
block diagonal between-study variance-covariance matrix with the heterogeneity variances 𝜏2 in the diagonal and is esti-
mated from the data. The between-study variance is estimated using a special case of the generalized DerSimonian-Laird
estimator.38,39
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Let W be a m × m diagonal weight matrix with a vector of weights in its diagonal to be the observed inverse study
variance of all existing comparisons. The Laplacian n × n matrix is given by L = X′WX.31,36 To estimate treatment effects,
the Moore Penrose pseudoinverse n × n matrix L+of the Laplacian matrix L is constructed.31,36 In the case of multiarm
studies (di > 2), standard errors are recalculated (increased) with a back-calculation adjustment as described in Rücker
and Schwarzer,36 s2

adjusted,i, and new reduced weights are derived. In that case, the Laplacian matrix is given with L+ =
− 1

2d2
i
X′XVX′X having V to be a di × di symmetric matrix with the observed variances of all comparisons.

We define the vector 𝝁̂ of dimension n that represents the effects of the interventions and a vector 𝝁̃ of dimension n − 1
that represents the relative effects of the interventions to a reference treatment. The (n − 1) × (n − 1) variance-covariance
matrix of 𝝁̃ is X̃L+X̃

′
where L+ is the Moore-Penrose pseudoinverse n × n matrix of L and X̃ is the reduced design matrix

of dimensions (n − 1) × n referring to the interventions reported in 𝝁̃ (all but the reference one).
Table 1 provides the notation for the FS algorithm in NMA.

4 EXTENSION OF THE FS ALGORITHM TO NMA

Most methods used for outlier detection opt to divide the data into two parts: a large clean part and the outliers. FS starts by
selecting candidate subsets of likely outlier-free studies and proceeds by adding one-by-one studies until all are included.
FS consists of three stages (choice of the initial subset, progression of the search, monitoring of the search).

In the first stage, FS chooses the initial subset of studies by selecting a candidate subset of likely outlier-free studies.
We conventionally refer to this subset as the initial subset or the “basic” set at the beginning of the search. Studies not
included in this basic set constitute the “nonbasic” set. A data generating (hypothesized) model is assumed to fit the data
in the initial subset.

In the stage of progression of the search, the method gradually adds studies, one-by-one, from the nonbasic to the
basic subset based on how close the study in the nonbasic set is to the hypothesized model in the basic set using some
objective functions. This process is repeated until all studies are included in the basic set.

In the monitoring stage, estimated model parameters, measures of model fit, and goodness-of-fit test statistics are
monitored in each step/iteration. A sharp change in the monitoring measures can be an indication of an outlying study.
Moreover, ordering the studies based on how close they are to the basic set makes outlying studies more likely to be
entered in the last iterations.

Below we present each step of the algorithm in detail.

4.1 Choice of the initial subset

When selecting studies for the initial subset we need to ensure that all n treatments are included and that the resulting
network is connected. The requirement of network connectivity for each candidate subset of studies is evaluated with the
netconnection function in the netmeta package.33

Selecting the size l of the initial subset. The number of parameters in a NMA with n treatments is n (n − 1 relative
treatment effects estimates and a single heterogeneity parameter). We require the initial subset to include all n treatments.
Inclusion of the number of studies equal to the number of treatments or the number of treatments minus 1 suffices if there
are only two-arm studies included. The requirement can be satisfied with fewer studies in the case of multiarm studies and
for some network structures with two-arm studies (eg, consider a network of studies that compare the treatments A, B, C
with study comparisons A vs B and A vs C). Large initial sets can save computation time and prevent large fluctuations
in the parameter estimation during the first steps of the search, but at the same time increase the chance of including
outliers in the initial subset. This is not necessarily a drawback but, in such cases, it is useful to repeat the search a couple
of times from random starting points. We choose to set the size equal to the maximum of the number of treatments and
20% of the total number of studies; that is, l = max (n, 0.2 × N). Other rules can be adopted.

Selecting the studies to include in the initial subset. We start with a subset of studies that ideally is outlier-free to use
as the initial subset. We consider a large number of potential sets (P) of randomly chosen initial subsets of studies
each of size l. We require each chosen initial subset of studies to be a connected subnetwork including all comparative

interventions. If the total number of potential subsets
(

N
l

)
is not very large, we can provide an exhaustive search of all

subsets of studies aiming to identify the subset that is the most likely subset to be outlier-free. Alternatively, for large
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networks, an exhaustive analysis is prohibitive and practically unnecessary. In such cases, we may explore a large num-
ber of initial subsets (the larger the network, the larger the number of subsets to investigate for example, 100). We can
measure the fit of the NMA model for each candidate initial subset of studies using an objective function. The objective
function evaluates candidate subsets and returns a measure of their fit. The better the fit of a subset, the more likely it is
outlier-free.

Let us denote with Dl
p each candidate initial subset p = 1, … ,P of size l. We obtain the subset-specific estimates

(𝝁̂Dl
p
, 𝜏2

Dl
p
) of each subset Dl

p and calculate the objective function median(f (yi, si,Xi, 𝝁̂Dl
p
, 𝜏2

Dl
p
)) with observations

yi, si,Xi, i = 1, … .,N from the complete dataset.
Examples of objective functions can be defined as the median of the absolute standardized residuals or the median of

the absolute log-likelihood contributions given by the median (f (yi, si,Xi, 𝝁̂Dl
p
, 𝜏2

Dl
p
)) with where 𝜀i,Dl

p
is the standardized

residual for each study defined below, log(wi) − (𝜀i,Dl
p
)2 is the log-likelihood contribution (a proof of Equation (2) is given

in Appendix B1), wi = 1∕(s2
i + 𝜏2

Dl
p
) is the weight for each comparison in each study and s2

i is adjusted to take account of a
multiarm study (di > 2). Alternatively, we may consider the mean or some other quantile of f . We considered the median
because it resembles the median least of squares regression suggested by Rousseeuw40 (and it is a robust alternative to
the classical least squares estimator) and it was also considered by Atkinson and Riani24 in the FS development. Either
way, our goal is to optimize the objective function defined.

The standardized residual of a pairwise comparison for a two-arm study is given by.
𝜀i,Dl

p
=
√

1
s2

i +𝜏
2
Dl

p

(yi − Xi𝝁̂Dl
p
), i = 1, … .,N. For a multiarm study, we take the arithmetic mean of the standardized

residuals or the log-likelihood contributions of all pairwise comparisons in this study, that is, for standardized residuals

we take 𝜀i,Dl
p
= mean(𝜺̂i,Dl

p
) with 𝜺̂i,Dl

p
=
⎛⎜⎜⎝𝜀

1
i,Dl

p
, … , 𝜀

(
di2

)
i,Dl

p

⎞⎟⎟⎠
′

denoting the vector of all standardized residual terms within a

di-arm study. For log-likelihood contributions, in the case of a multiarm study, we take log(wi) − (𝜀i,Dl
p
)2 = mean(log(wi) −

(𝜺̂i,Dl
p
)2) with wi =

⎛⎜⎜⎝w1
i , … ,w

(
di2

)
i

⎞⎟⎟⎠
′

and 𝜺̂i,Dl
p
=
⎛⎜⎜⎝𝜀

1
i,Dl

p
, … , 𝜀

(
di2

)
i,Dl

p

⎞⎟⎟⎠
′

.

Among the P candidate subsets Dl
p, the subset that optimizes the objective function is considered as the initial subset

(eg, minimize the median of Equation 1 or maximize the median of Equation 2).

4.2 Progressing in the search

For brevity, we drop the subindex p from the initial set Dl
p and we denote the initial basic set with Dl+j and

the complementary nonbasic set with (Dl+j)c at iteration j = 1, 2, … .N − l. In the first step of the algorithm
(j = 1), we calculate the objective function median(f (yi, si,Xi, 𝝁̂Dl+1 , 𝜏2

Dl+1)) for each study in the initial nonbasic
set yi, si,Xi 𝜖 (Dl+1)c using 𝝁̂Dl+1 , 𝜏2

Dl+1 estimated from the basic set Dl+1. This measures the closeness between the
basic set Dl+1 and each study of the nonbasic set that is a candidate for addition to the basic set. The study
optimizing the objective function (the median of Equation 1 or the median of Equation 2) is added to the
basic set.

We proceed with the algorithm for j = 2, … .N − l until all studies are included in the basic set. At iteration j, there
are l + j studies in the enlarged basic set denoted as Dl+j and N − l − j studies in the nonbasic set denoted by (Dl+j)c. For
the basic set Dl+j, the subset-specific estimates are denoted by (𝝁̂Dl+j , 𝜏2

Dl+j). For each iteration j, we compute the objec-
tive function median(f (yi, si,Xi, 𝝁̂Dl+j , 𝜏2

Dl+j)), the median of absolute standardized residuals (1) or the median of absolute
log-likelihood contributions (2), for each observation yi, si,Xi 𝜖 (Dl+j)c.

4.3 Monitoring the search

In each iteration, parameter estimates, model diagnostic statistics, ranking metrics that provide treatment hierarchy, het-
erogeneity, and inconsistency are monitored using a plot (forward plot). Forward plots visually convey the influence of
each study.
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4.3.1 Outlier case diagnostics measures

The standardized residual for the pairwise comparison of a two-arm study i is given by 𝜀stand
i =

√
1

s2
i +𝜏2 (yi − Xi𝝁̂). In

the case of a multiarm study with di (> 2) arms, i = 1, … .,N, the standardized residual is calculated as an arith-
metic mean of the standardized residuals of all pairwise treatment comparisons, 𝜀stand

i = mean(𝜺̂stand
i ), where 𝜺̂

stand
i =⎛⎜⎜⎝𝜀

1,stand
i , … , 𝜀

(
di2

)
,stand

i

⎞⎟⎟⎠
′

denoting the vector of all standardized residual terms within a di-arm study.

To explore the impact of adding a study on summary relative treatment estimates we define modified Cook’s statistics
for NMA (in analogy to those described in pairwise meta-analysis13) as

Cj = (𝝁̃Dl+j − 𝝁̃Dl+j−1)′(X̃Dl+j L+
Dl+j X̃

′
Dl+j)−1(𝝁̃Dl+j − 𝝁̃Dl+j−1)

where 𝝁̃Dl+j and 𝝁̃Dl+j−1 are the relative treatment estimates at iteration j, j − 1, respectively. A general rule provided in the
bibliography for a cut-off value of Cook’s statistic is that the study j is considered an outlier and/or influential if Cj > 1.41,42

The influence of a study can also be assessed by the change that incurs to model fitting. We can compute the ratio of
the determinants of the variance-covariance matrix of relative treatment estimates at iteration j to iteration (j − 1)13 for
NMA as

COVRATIOj =
det(X̃Dl+j L+

Dl+j X̃
′
Dl+j)

det(X̃Dl+j−1 L+
Dl+j−1 X̃

′
Dl+j−1)

.

A proof showing that these definitions (Cook’s distance, ratio of determinants of the variance-covariance matrix of
treatment estimates) generalize the classical measures to NMA is given in Appendix B2.

4.3.2 Heterogeneity and inconsistency measures

Based on the fixed effects model and assuming homogeneity and consistency in the whole network, the generalized
Cochran’s Q statistic is given by Krahn et al43

Qtotal = (y − X𝝁̂)′W(y − X𝝁̂)

Qtotal can be decomposed into two parts43:

• a part coming from within designs (heterogeneity between studies that compare the same set of treatments), Qhet

• a part coming from between designs (inconsistency between studies that compare different sets of treatments), Qinc
FE

where the design of a study is called the set of treatments compared within the study in the context of NMA.2,44 For
the FS procedure, we monitor generalized Cochran’s Q (Qtotal) and the Q statistic within designs (Qhet). Moreover, the Q
statistic (Qinc) is monitored to assess consistency under the assumption of a full design-by-treatment interaction model
with random effects.45

The assumption of consistency can also be tested by comparison of direct and indirect estimates of the relative treat-
ment effects.46 We monitor the z − values of disagreement between direct and indirect evidence for each comparison to
derive indirect estimates.3

4.4 Backward search

We briefly describe the backward search method, which is compared with the FS method in the examples. The backward
search starts by fitting the complete network and gradually deletes studies until some criterion is met. For instance,
it starts by fitting the hypothesized model to all studies, calculates an objective function given by the median of
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(Equation 1) or (Equation 2) (eg, median absolute standardized residuals) and the study with the worst value
(maximum of the median absolute standardized residual) is deleted. We proceed until some criterion is met (eg, all
absolute standardized residuals are less than 2).

5 ILLUSTRATIVE EXAMPLES

We study the performance of the FS in detecting outlying studies using a simulated dataset as well as two real data
examples.

5.1 Simulated dataset

We simulate a single NMA dataset with n = 4 treatments (A, B, C, and D) and N = m = 8 two-arm studies (Table A3).
Treatment A is chosen as the reference treatment, the true relative effects are set 𝜇𝛼𝛽 = 0.3, 𝜇𝛼C = 0.4, 𝜇𝛼D = 0.5 and the
between-study variance is 𝜏2 = 0.12. Following Kontopantelis and Reeves47 and Brockwell and Gordon,48 variances of
individual studies are generated from 𝜎2

i ∼ X2
1∕4, i = 1, … 8 with values restricted to the interval (0.009, 0.6). Results

from seven studies are generated from yi,XY ∼ N(𝜇XY, 𝜎
2
i + 𝜏2), i = 1, … ., 7 where XY = (AB,AC,BC,BD,AD,CD,CD),

and according to the assumption of consistency, that is, 𝜇XY = 𝜇AY − 𝜇AX. We then create a study with extreme effect size
that compares the treatments C and D, y8,CD ∼ N(𝜇CD + 4SD(y), 𝜎2

8 + 𝜏2), where SD(y) is the sample SD of the effect sizes
from the first seven studies y = (y1,AB, … , y7,CD).49-51

The FS is conducted using R function NMAoutlier in R package NMAoutlier.30 The median of absolute standard-
ized residuals and the absolute standardized residuals (Equation 1) are used for choosing the initial basic subset and for
progressing in the FS, respectively. The initial basic subset was selected among P = 100 candidate subsets of size l each,
equal to the number of treatments, l = max (4, 0.2 × 8) = 4 studies. The initial subset consisting of studies 1, 3, 5, and 7,
gave the lowest median absolute standardized residual. Table 2 gives the steps of the FS until all studies are included in
the basic set. Based on the absolute value of the residuals, the studies entered in the following order: study 6 with an
absolute residual of 2.64, study 2, study 4, and finally study 8. Figure A2 (left side) in Appendix provides the forward plot
of standardized residuals for each iteration produced with fwdplot(). Study 8 has a large, standardized residual com-
pared with the other studies and, thus, was detected as outlying. The backward search was also conducted and study 8
was the only one deleted.

We also added two more studies with extreme effect sizes (studies: 9, 10) which were generated with y9,AB ∼ N(𝜇AB +
4SD(y), 𝜎2

9 + 𝜏2) and y10,CD ∼ N(𝜇CD + 6SD(y), 𝜎2
10 + 𝜏2) with 𝜎2

9 , 𝜎
2
10 ∼ X2

1∕4 restricted to the interval (0.009, 0.6). For this
simulation scenario (artificial extreme studies 8, 9, and 10 included in the data), FS was conducted using the same criteria
with the case only one artificially outlier was included. Study 8 entered at iteration 5, study 10 at iteration 6, and study 9
at the last iteration. Moreover, studies 8, 9, and 10 provide large, standardized residuals compared with the other studies
(Figure A2, right side) and, thus, were detected as outliers.

5.2 Application 1: Interventions to aid smoking cessation

We applied the proposed FS to the network comparing interventions to aid smoking cessation.17,32 The corresponding
R code with the NMAoutlier30 package is provided in Appendix A2 allowing the reproducibility of results. The initial
basic subset was selected among P = 100 possible subsets of size l = 5 each using the absolute residual criterion. The FS
steps were completed in 27 seconds*. Table 3 summarizes which studies were part of the initial basic subset (studies: 18,
21, 9, 20, 15) and the progression steps. The FS method was completed in 20 iterations and study 3 entered in the last
iteration.

Confidence intervals of summary relative treatment effects between treatments B and C broaden in the last iteration
(Figure A3) due to the estimated 𝜏2, which increased substantially in this iteration (Table 3). The forward plot (Figure 3,
right side) shows that the ratio of variances increased rapidly in the last iteration. However, the full interaction model
does not provide evidence for inconsistency (Qinc = 4.66, p = 0.7). We monitored a large increase in estimated 𝜏2, Qhet,
and Qnet, but a reduction in Qinc in the final iteration (Table 3); inconsistency in the whole network is masked due to the
large heterogeneity.



5650 PETROPOULOU et al.

T A B L E 2 Initial set and study entered into the basic set of FS algorithm, simulated dataset

Studies yi (si) Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Residual values
of the nonbasic set

Residual values of
the nonbasic set

Residual values
of the nonbasic set

1 −0.0820
(0.5091)

study 1 entered

2 0.3198
(0.0125)

18.47 0.27 study 2 entered

3 0.2171
(0.2437)

study 3 entered

4 0.2100
(0.0153)

26.67 0.47 3.86 study 4 entered

5 0.4926
(0.1928)

study 5 entered

6 −0.8612
(0.4800)

2.64 study 6 entered

7 0.4115
(0.1007)

study 7 entered

8 2.7639
(0.4604)

5.11 5.24 5.57 study 8 entered

Note: The study with the smallest residual (in absolute value) is the next to enter. The smallest residual is denoted with bold letters.
Abbreviation: FS, forward search.

F I G U R E 3 Forward plots for Cook’s distance (left side) and the ratio of variances (right side) for smoking cessation data17,32 [Colour
figure can be viewed at wileyonlinelibrary.com]

Study 3 entered in the last iteration of the FS and, most importantly, produced sharp changes in the estimated hetero-
geneity. Furthermore, study 3 has an important impact on the estimated summary odds ratios; its inclusion resulted in
𝜇AB =1.52 (0.74, 3.09), 𝜇AC =2.07 (1.34, 3.18), and 𝜇AD = 2.45(1.09, 5.47) (iteration 20 of the FS algorithm) in comparison
to 𝜇AB = 1.30 (0.84, 2.03), 𝜇AC = 1.59 (1.20, 2.07),and 𝜇AD = 1.91 (1.12, 3.28) when study 3 is not included (iteration 19 of
the FS algorithm). We observed sharp changes in the monitoring statistics through the FS search for study 3 (Figure 3).

Although the overall Qinc statistic did not suggest any inconsistency in the whole network, we noticed a sharp
increase in Qinc when study 1, which compares A, C, and D, enters the basic set at iteration 15 (Table 3). A sharp change
in Cook’s distance was detected when study 1 entered at iteration 15 (Figure 3, left-hand side). The forward plot of

http://wileyonlinelibrary.com


PETROPOULOU et al. 5651

T A B L E 3 Initial set and progression of the FS algorithm for smoking cessation data17,32

Iterations Study entering Qtotal Qinc Qhet 𝝉2

1 18, 21, 9, 20, 15 (initial basic set) 0.86 0.00 0.86 0.00

2 13 0.87 0.00 0.87 0.00

3 11 1.00 0.12 0.87 0.00

4 16 1.48 0.33 1.14 0.00

5 4 2.48 0.27 2.21 0.00

6 14 4.71 0.11 4.60 0.00

7 12 5.70 0.03 5.67 0.00

8 5 6.42 0.00 6.42 0.00

9 17 8.48 0.00 8.48 0.00

10 6 11.17 0.00 11.16 0.00

11 8 15.03 0.00 15.02 0.02

12 10 18.45 0.42 17.69 0.03

13 19 29.12 0.14 28.67 0.07

14 7 43.96 0.21 43.42 0.13

15 1 53.44 6.84 43.42 0.16

16 24 53.45 6.84 43.42 0.15

17 2 55.39 7.61 43.42 0.14

18 23 58.44 7.92 45.17 0.15

19 22 61.21 9.57 45.17 0.15

20 3 202.62 4.66 187.40 0.59

Note: Q statistics (Qtotal,Qinc,Qhet) and heterogeneity estimator 𝜏2 for each iteration of the FS algorithm.
Abbreviation: FS, forward search.

z − values (Figure 4) shows that study 1 is associated with large differences between direct and indirect evidence for “A
vs D” and “C vs D” comparisons (zA vs D = 1.50, zC vs D = 2.20, at iteration 15). We conclude that study 1 influences the
model substantially as it is responsible for design inconsistency in “A vs D” and “C vs D” effect sizes between the two-arm
and three-arm studies. We observed negligible changes in inconsistency measures when the other three-arm study, study
2 with treatment arms B, C, and D, entered (iteration 17). This agrees with the conclusion given by Higgins et al2 that
there is a design inconsistency in effect sizes between two-arm and three-arm studies.

The changes incurred by studies 1 and 3 in the monitoring measures differ substantially from the changes incurred in
the FS process by the other studies in the smoking cessation data. We also conducted a backward search method which
completed within one iteration by deleting study 3. Study 1 was not identified as an aberrant study by backward methods.
This gives a nice example of how the aberrant studies can be identified even if they do not have an extreme effect size or
do not enter in the last iterations of the FS. It is common practice in the FS literature to check the robustness of results by
repeating the FS search from random starting points (initial subsets). We repeated the FS 100 times from random starting
points using P = 1 for each run. During monitoring, we noticed that study 3 entered in the last iteration of the FS 82 times,
it was included in the initial subset 15 times and entered in an intermediate iteration 3 times. In these three instances,
we noticed sharp changes in the monitoring measures when study 3 entered the search. When study 3 is included in the
initial subset, we observed peculiar patterns in the monitoring statistics (such as the heterogeneity estimator) in the FS
procedure. For example, the estimated heterogeneity for the initial subset was large and was subsequently reduced as
the FS progresses (Figure A4, left side). Moreover, Figure A4 right side shows that the standardized residual for study
3 decreased and got far away as other studies entered the search. For completeness, we employed variations of the FS
algorithm (different methods for selecting the initial subset, progressing and statistics monitored) but all methods led to
the same conclusions. In addition, repeating the FS whilst including study 1 in the initial set did not affect the outlying
diagnosis for study 3.
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F I G U R E 4 Forward plot of z-values that compare relative treatment effects estimated from direct and indirect evidence for smoking
cessation data17,32 [Colour figure can be viewed at wileyonlinelibrary.com]

5.3 Application 2: Interventions for actinic keratosis

The FS is also applied to the network of 35 studies for actinic keratosis.34 The design-by-treatment interaction model
(Qinc = 23.05, df = 7, p = 0.001) showed statistically significant inconsistency. The between-designs Qinc statistic indi-
cated that the dataset provides evidence of consistency when the design including treatments 1 vs 6 vs 8 (observed
only in study 28) was detached (Qinc = 10.18, df = 5, p = 0.07) (Table A4). The initial subset was selected among P =
100 subsets of size l = 9 each using the smallest absolute residual criterion. The FS was completed after 27 itera-
tions at 59 seconds. A sharp increase in the Qinc statistic (from 3.68 to 23.05) occurred when study 28 entered in the
last iteration (Figure A5) indicating that study 28 is a potential source of inconsistency. Sharp changes occurred in
the forward plots for Cook’s distance and the ratio of variances when study 28 entered the search (Figure A6). After
removing study 28 from the dataset, the design-by-treatment interaction model (Qinc = 3.68, df = 5, p = 0.59) indicated
no statistically significant inconsistency. The FS and the backward search led to different conclusions this time. The
backward search removed studies 24, 23, 22, and 21 in turn until all included trials had absolute standardized resid-
uals less than 2. This is an example of a case where forward and backward methods give different results. Study
28 is mainly responsible for inconsistency and a study with effects different than those estimated indirectly for the
respective comparisons does not necessarily have a large residual and cannot, therefore, be detected by backward
methods.

5.4 Application 3: Antihypertensive strategies for heart failure

We applied the FS method to the network of 26 studies comparing antihypertensive strategies for heart failure.35 Noma
et al20 applied their proposed outlier diagnostics to this dataset and found three studies with aberrant behavior (studies 23,
24, and 26). According to the FS method, study 26 entered at the last iteration (iteration 19), study 24 entered at iteration
16, and study 23 at iteration 17. Sharp changes in the ratio of variances are seen when studies 23 and 26 entered the FS
(Figure A1, right side). Therefore, studies 23 and 26 have an impact as they increase the variance and influence the model
parameters by giving less precise results.

http://wileyonlinelibrary.com
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6 DISCUSSION

In NMA, there is a lack of visual tools to identify extreme study effects. Overall, the FS provides a practical set of visual
diagnostic tools that can help us not only identify outliers but also those studies responsible for differences between direct
and indirect estimates. For transparency and reproducibility purposes, we developed the R package NMAoutlier.30 Many
decisions are required to apply the algorithm: the size of the initial subset, the number of initial subsets to be examined,
criteria for choosing the initial subset, criteria of progressing in the search, and the statistics to be monitored. We ran
many FSs for the examples presented in the article, using several combinations of the methods available, and we found
results to be robust.

Three common criticisms to the method are: (i) why not employ the more popular backward selection methods, (ii)
what happens if an outlier is included in the initial subset or does not enter in the last iterations, and (iii) how do we
know a change in the monitored statistics is not due to chance?

Regarding the first criticism, backward methods are known to behave poorly in the presence of multiple outliers that
may affect mean values to such a degree that they do not seem to be outliers anymore (masking effect). In the meta-analysis
literature, a common strategy is to exclude all studies, one at a time, and see the impact on results (parameter estimates,
heterogeneity, inconsistency, and so on). Hence, the computational burden is bigger than the FSs, the method is sensitive
to masking, and it is not known whether monitored changes are due to chance or not. In addition, we saw in the actinic
keratosis example that the backward method failed to identify the study responsible for the inconsistency in the network.
Deletion diagnostics that are not based on residual values could have potentially located the problematic study, but it is
overall time-consuming and complicated to apply several deletion strategies. The FS provides a breadth of information
regarding the structure of the data and the impact of each study on various aspects of the NMA model. A careful investi-
gation of the search and its repetition from random starting points can help identify atypical studies irrespectively of the
stage at which they enter the search.

Regarding the second criticism, we argue that even if outlying studies do not enter towards the last iterations of the
search, we may be still able to spot them through sharp changes in the forward plots of estimated heterogeneity and
standardized residuals. For example, when an outlier enters the initial subset, it is common to start with large hetero-
geneity estimates that gradually decrease. Another benchmarking technique we can use concerning this criticism is to
run the FS several times from random starting points as a sensitivity analysis. The running time for the FS algorithm
depends on how large the network and the initial subset are. We also suggest that, once we consider some studies to be
aberrant, the FS should be repeated but this time forcing the aberrant studies to be included in the initial subset. When
outliers are included in the initial subset, it is typical to see some “undesirable” statistics at the beginning (eg, large
heterogeneity/inconsistency) that then improve as studies are included in the “basic” set.

The most serious concern is the third: how do we know that changes in the forward plots are not due to chance?
One method suggested in the literature is the construction of simulation envelopes that give, at each iteration of the FS,
the bands within which we expect statistics to lie if there are no outliers in the data. To construct these bands through
simulation, we would need to run the FS hundreds of times, increasing the computational time. There is currently a
lot of work in constructing these bands without simulation and we aim to equip the FS for NMA with this capability
in the future. Johansen et al provided the asymptotic distribution of scaled forward residuals52 offered in R package
ForwardSearch.53 Of course, the same problems apply also to the backward methods.

A challenging issue is to delineate the relationship of outlying studies with heterogeneity and/or inconsistency. Out-
liers may cause heterogeneity/inconsistency, but they can also be masked by them. If a comparison is not informed by
both direct and indirect evidence, then it is judged merely by the magnitude of the reported effect sizes.

Throughout this article, we have focused on detecting outliers at the study level. Studies give aggregate measures,
which may have been influenced by the presence of outliers or data extraction errors within the study. The FS algorithm
can also be extended to meta-analysis with multiple outcomes, a meta-analysis of diagnostic accuracy studies, or
individual participants’ data meta-analysis.

6.1 Recommendations

The proposed method aims to detect outlying and influential studies and should be used cautiously, recognizing that it is
a diagnostic method and not to be used for throwing out studies depending on results. We give some guidance on how to
interpret results from applying the FS algorithm.
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Make a priori decisions for technical aspects of the FS algorithm. Technical aspects of the FS algorithm should
be defined in advance. These are: the size of the initial subset, the number of initial subsets P to be examined, criteria for
choosing the initial subset, criteria of progressing in the search, and the statistics to be monitored.

Run the FS algorithm and monitor the forward plots. Proceed in applying the FS algorithm with the a priori
decisions taken. NMAoutlier package has sensible defaults for some of these technical settings (these are: the number
of initial subsets to be P = 100, the median of the absolute standardized residuals for the criteria for choosing the initial
subset and the criteria of progressing in the search). The main results for the FS algorithm are the ordering of the studies
that enter the search and several monitoring statistics. Depending on the technical aspects of the search, it is likely that the
method can produce different output results. But even if we proceed with the same criteria (those for choosing the initial
subset, criteria of progressing in the search), FS can provide different ordering of the studies entering at each iteration
and accordingly different results of the monitoring measures in each run. We have observed that in most cases outliers
enter at the last iterations. However, there are exceptions and outliers may enter at any iteration (even included in the
initial subset). By monitoring various statistics (eg, Cook distance, the ratio of variance, residuals, Q statistics, model
parameters), we can look for sharp changes or other patterns that will be indicative of the same potential outliers at any
FS run at any step of the search. We can also look at forward plots of residual values. If an outlier enters early in the search
or is included in the initial subset, we expect that its residual values will keep increasing as studies that are very different
(and not outlying) enter the search. We also expect that heterogeneity will keep decreasing in such a case.

Run the FS algorithm from different random starting points and compare the results. We suggest rerunning
the FS 5 to 10 times from random starting points (initial subsets) to explore the robustness of the ordering and to avoid
results driven by chance. Even when outliers are included in the initial subset, it is typical to see large changes in statistics
at the beginning of the search (eg, large heterogeneity/inconsistency) that then improve as studies are included in the
“basic” set.

Run the FS algorithm using different criteria. We suggest rerunning the FS with smaller or larger initial sample
sizes or using a different method for progressing in the search to explore the robustness of results.

Have a closer look at potentially outlying studies that the FS algorithm identified and interpret the results.
There is not a definite “decision pathway” for the interpretation of the results; instead, one should critically review the
potentially outlying studies as indicated by the FS algorithm and have a look at the original data and/or the graphical
tools (eg, comparison-adjusted funnel plot). One should think of a broad range of possible explanations, from a possible
data extraction error (for data or eligibility) to factors that could introduce heterogeneity or inconsistency. We can further
use inconsistency diagnostics (eg, node/side-splitting or net heat plot) and explore whether outliers are responsible for
inconsistency.

7 CONCLUSION

In conclusion, we argue that the method can be employed as a diagnostic tool to provide a comprehensive outlier detection
analysis as it can offer information about the data and detect extreme study effects responsible for heterogeneity and
inconsistency.
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