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Abstract: Bloodstream infections (BSI) are a severe complication of antineoplastic chemotherapy or
hematopoietic stem cell transplantation (HSCT), especially in the presence of antibiotic resistance
(AR). A multinational, multicenter retrospective study in patients aged ≤ 18 years, treated with
chemotherapy or HSCT from 2015 to 2017 was implemented to analyze AR among non-common skin
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commensals BSI. Risk factors associated with AR, intensive care unit (ICU) admission and mortality
were analyzed by multilevel mixed effects or standard logistic regressions. A total of 1291 BSIs
with 1379 strains were reported in 1031 patients. Among Gram-negatives more than 20% were
resistant to ceftazidime, cefepime, piperacillin-tazobactam and ciprofloxacin while 9% was resistant
to meropenem. Methicillin-resistance was observed in 17% of S. aureus and vancomycin resistance
in 40% of E. faecium. Previous exposure to antibiotics, especially to carbapenems, was significantly
associated with resistant Gram-negative BSI while previous colonization with methicillin-resistant
S. aureus was associated with BSI due to this pathogen. Hematological malignancies, neutropenia
and Gram-negatives resistant to >3 antibiotics were significantly associated with higher risk of ICU
admission. Underlying disease in relapse/progression, previous exposure to antibiotics, and need
of ICU admission were significantly associated with mortality. Center-level variation showed a
greater impact on AR, while patient-level variation had more effect on ICU admission and mortality.
Previous exposure to antibiotics or colonization by resistant pathogens can be the cause of AR BSI.
Resistant Gram-negatives are significantly associated with ICU admission and mortality, with a
significant role for the treating center too. The significant evidence of center-level variations on AR,
ICU admission and mortality, stress the need for careful local antibiotic stewardship and infection
control programs.

Keywords: antibiotic resistance; intensive care admission and mortality; bloodstream infections;
pediatric patients; chemotherapy; allogeneic stem cell transplant

1. Introduction

Infections represent important complications in pediatric patients receiving antineo-
plastic chemotherapy, or allogeneic hematopoietic stem cell transplantation (HSCT). The in-
troduction of empirical antibacterial therapy with the combination of an anti-pseudomonal
beta-lactam and an aminoglycoside in febrile neutropenic cancer patients has significantly
decreased mortality [1,2]. Following the results of a recent a meta-analysis [3] monotherapy
with beta-lactams active against Gram-negatives (including P. aeruginosa) is now recom-
mended for the management of febrile neutropenia in pediatric patients with cancer [4]
for institutions where resistance rates in Gram-negative isolates are low. However, this
approach requires careful epidemiologic surveillance and continual re-evaluation of em-
piric antibiotic regimens in light of evolving institutional microbial resistance patterns [4,5].
Antibiotic resistance is a worldwide problem, although geographic and institution-level dif-
ferences are observed (https://atlas-surveillance.com/#/heatmap/resistance) (access on
4 March 2021). This phenomenon also affects pediatric patients receiving antineoplastic
chemotherapy or allogeneic HSCT [6] who become at risk of receiving an inadequate initial
empirical therapy of febrile neutropenia, with an increased likelihood of complicated clini-
cal course [7–13]. Knowledge of the epidemiology of antibiotic resistant bacterial infections
and their consequences in pediatric cancer and HSCT patients is therefore mandatory in
order to identify the best management strategies.

Aims of the present study were to describe the proportion of antibiotic resistant
non-common skin contaminants causing bloodstream infections (BSI) in pediatric patients
receiving antineoplastic treatments or HSCT, to describe clinical risk factors associated
with development of antibiotic resistance and to the risk of complicated clinical course, i.e.,
intensive care unit (ICU) admission and death.

2. Materials and Methods

The study was a retrospective chart review conducted in centers located in Australia
(n = 1), Brazil (n = 1), Canada (n = 1), Chile (n = 1), Germany (n = 3), Italy (n = 4), Russian
Federation (n = 1) and Switzerland (n = 3). The research ethics board approval was obtained
at each site where it was required, according to local regulations.

https://atlas-surveillance.com/#/heatmap/resistance
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Inclusion criteria were a BSI diagnosed between 1 January 2015 and 31 December
2017 in patients aged ≤ 18 years, with a disease treated with chemotherapy or allogeneic
HSCT, and due to Gram-positive (S. aureus, E. faecalis and E. faecium, viridans streptococci)
or Gram-negative rods or yeasts. Episodes due to common skin contaminants (https:
//www.cdc.gov/nhsn/XLS/Common-Skin-Contaminant-List-June-2011.xlsx) (access on
4 March 2021) were excluded in order to avoid the bias of possible cases of contaminated
blood cultures erroneously classified as infections and consequently to know the real
impact of antibiotic resistance among “true pathogens” causing BSI.

For each BSI episode, patient-level demographic and disease-related variables were
age (years), sex, type of underlying disease and the possible presence of relapse/progression,
reception of autologous or allogeneic HSCT and post-transplant phases (pre-engraftment,
presence of acute or chronic graft versus host disease). The type of underlying disease was
classified into three major groups: (1) hematologic malignancy (HM) including acute lym-
phoblastic leukemia, acute myeloid leukemia, non-Hodgkin lymphoma, hemophagocytic
lymphohistiocytosis and other leukemias; (2) solid tumors (ST) including neuroblastoma,
bone or soft tissue sarcoma, central nervous system tumor, Hodgkin disease and other
solid tumors; (3) non-malignant diseases (NMD) receiving allogeneic HSCT (bone marrow
failure, primary immunodeficiency, and inborn errors of metabolism). Episode-level vari-
ables were administration of antibiotics (prophylaxis or therapy) in the 30 days preceding
the episode, bacterial infection or colonization by the same pathogen causing the BSI in the
three months preceding the episode, presence of neutropenia (absolute neutrophil count
(ANC) < 500/µL) at diagnosis of the episode, administration of anti-pseudomonal em-
pirical therapy for febrile neutropenia (piperacillin/tazobactam, ceftazidime or cefepime,
monotherapy or combined with an aminoglycoside) at the time of BSI, ICU admission for
BSI, and death within 30 days from the episode.

For each isolated strain’s antibiotic, susceptibility to the following drugs was reg-
istered: S. aureus: methicillin, vancomycin, daptomycin, linezolid, tigecycline, ceftaro-
line or ceftobiprole; E. faecalis and E. faecium: ampicillin, vancomycin, teicoplanin, dap-
tomycin, linezolid, tigecycline; viridans streptococci: ampicillin or penicillin; Gram-
negatives: meropenem or other carbapenems, colistin, amikacin, gentamycin, tobramycin,
ciprofloxacin, ceftazidime, cefepime, piperacillin-tazobactam, tigecycline, ceftolozane-
tazobactam and ceftazidime-avibactam; Candida spp.: fluconazole, caspofungin and mi-
cafungin. Pathogens were recorded as susceptible or resistant according to the local
microbiology laboratory classifications following EUCAST or CLSI methodologies and cri-
teria [14,15], since the minimum inhibitory concentrations were not consistently available.
In the case of the definition of intermediate or dose-dependent susceptibility, the strain
was recorded as susceptible.

Data were collected at each center by trained personnel and registered in a secure
web-based database using the Research Electronic Data Capture (REDCap) platform
(www.project-redcap.org) (access on 4 March 2021) [16].

Statistical Analysis

Categorical variables were reported as absolute frequencies and percentages. Continu-
ous data were reported as the median and interquartile range (IQR), due to their non-normal
(Gaussian) distribution. Percentages of antibiotic-resistant infections by pathogen were
calculated with a 95% confidence interval (CI) and reported with the robust estimator of
variance allowing for intra-group correlation due to centers. The association between binary
outcome variables (antibiotic resistant BSI, ICU admission or death) and independent vari-
ables was assessed by multilevel (three or two levels) mixed effects logistic regressions [17],
or by standard logistic regression and reported in terms of the odds ratio (OR) and 95% CI.
The three-level model had two random-effects equations, the first was a random intercept at
the center level, and the second was a random intercept at the patient level (nested in the cen-
ter level). Multivariable regressions for the likelihood of antibiotic resistance were focused
on groups or single pathogens more representative in terms of the tested susceptibility and

https://www.cdc.gov/nhsn/XLS/Common-Skin-Contaminant-List-June-2011.xlsx
https://www.cdc.gov/nhsn/XLS/Common-Skin-Contaminant-List-June-2011.xlsx
www.project-redcap.org


Antibiotics 2021, 10, 266 4 of 14

frequency of antibiotic resistance. The demographic and clinical characteristics of patients
at the time of the BSI were entered into the multivariable models. For the likelihood of ICU
admission and death, the antibiotic resistance of the Gram-negatives was also included con-
sidering their resistance to 1, 2–3 and 4–5 drugs among meropenem, amikacin, ciprofloxacin,
ceftazidime, and piperacillin-tazobactam. A likelihood-ratio test (LR) was used to measure
the effect of each predictor and to compare multilevel mixed effects logistic model versus
standard logistic regression that was performed in case of a statistically insignificant LR test.
All tests were two-tailed and a p value < 0.05 was considered statistically significant. All
analyses were performed using Stata (StataCorp. Stata Statistical Software, Release 13.1,
College Station, TX, USA, StataCorporation, 2013).

3. Results

A total of 1340 BSIs were registered, but 49 (3.6%) were not eligible since they occurred
in patients > 18 years old (n = 18), or after December 31, 2017 (n = 24); age > 18 and
year > 2017 (n = 1) or pathogen were not recorded (n = 6). The analysis was therefore
performed on 1291 BSIs observed in 1031 patients, 840 (81.5%) with a single episode,
149 (14.4%) with two episodes and 42 (4.1%) with ≥ three episodes. BSIs were observed in
756 (58.6%) males and the median age at BSI was eight (IQR 3–13) years. The most frequent
underlying condition was HM (n = 838, 64.9%), mainly acute lymphoblastic leukemia
(n = 457, 54.5%), while in 320 (24.8%) BSIs followed HSCT, mainly allogeneic (83.1%).
Supplementary Table S1 reports demographic and clinical characteristics at the time of
BSI. Overall, 1210 (93.7%) episodes were single-agent (723 Gram-negatives, 402 Gram-
positives and 85 fungi) and 81 (6.3%) polymicrobial (74 two-agent and 7 three-agents) for a
total of 1379 strains. Among the strains recorded 1289 (93.5%) were bacteria, 831 (64.5%)
Gram-negatives, 458 (35.5%) Gram-positives, and 90 (6.5%) fungi. A complete list of the
isolated pathogens is available in Supplementary Table S2. E. coli (20.5%) was the most
frequently isolated pathogen, followed by S. aureus (13.5%), K. pneumoniae (12.8%), viridans
streptococci (12.0%) and P. aeruginosa (10.2%). A. baumannii complex (2.2%), S. maltophilia
(2.5%), B. cepacia (0.5%), and anaerobes (0.1%) were rare. Candida (90.0%) was the most
frequently isolated yeast genus and C. parapsilosis (30.0%) was the most frequently isolates
species. No case of C. auris was registered.

3.1. Resistance to Anti-Infectives

Table 1 summarizes the proportions of antibiotic-resistant Gram-negatives and Gram-
positives, while data for specific pathogens and antibiotics are shown in Figures 1 and 2 and
detailed in Supplementary Table S3. Among Gram-negatives, the proportion of resistant
strains was similar for ceftazidime, cefepime, and ciprofloxacin (29.5%, 25.8% and 25.5%,
respectively) and a little lower for piperacillin-tazobactam (21.8%). The overall amikacin
resistance was 7.5% but was higher for P. aeruginosa (15.4%), A. baumannii complex (30.4%) and
K. pneumoniae (14.6%). Globally, meropenem resistance was 9.0%, with higher proportions
for P. aeruginosa (27.3%), A. baumannii complex (25.0%), and K. pneumoniae (15.9%). Among
the 489 Enterobacteriales tested, resistance was 5.9% (n = 29) (supplementary Table S3). As for
Gram-positives, methicillin resistance was 16.8% for S. aureus (MRSA) without any resistance
to vancomycin. Among enterococci, vancomycin resistance was 26.8%, but it was highest
in E. faecium (39.5%). Among Candida strains, fluconazole resistance was 27.0% (95% CI
16.2–41.5). Data on yeast resistance to antifungal are detailed in Supplementary Table S3.

Tables 2 and 3 report on risk factors for Gram-negative and Gram-positive antibiotic
resistant BSIs, respectively. Previous exposure to antibiotics or previous infectious episode
due to the same Gram-negative were significantly associated with a higher risk of resis-
tance to all antibiotics except gentamycin (Table 2). Previous exposure to carbapenems
was significant for resistance for many antibiotics, and especially to meropenem. No
effect was observed for previous colonization on the development of a resistant Gram-
negative BSI, except for piperacillin-tazobactam. A center-level variation was observable
for all antibiotics, while variation for patients nested within the center was observable for
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meropenem, gentamycin, ceftazidime, and piperacillin-tazobactam (Table 2). Conversely,
among Gram-positives (Table 3), previous colonization was significantly associated with
a higher risk of MRSA BSI. A significant effect of the treating center was observable for
MRSA or ampicillin-resistant enterococci (Table 3). Supplementary Figures S1 and S2 show
proportions of antibiotic-resistant strains stratified by treating center.

Table 1. Proportions of strains resistant to the antibiotics most frequently used against Gram-
negatives and for specific Gram-positives.

Resistant, n % Resistance (95% CI)

Gram-negatives, n = 797
Meropenem 72 9.0 (3.7–20.5)

Amikacin 60 7.5 (3.1–17.0)
Gentamycin 173 21.7 (11.8–36.5)
Ceftazidime 235 29.5 (14.2–51.4)

Cefepime 206 25.8 (10.0–52.4)
Piperacillin-tazobactam 174 21.8 (16.8–27.8)

Ciprofloxacin 203 25.5 (14.2–41.4)

S.aureus, n = 131
Methicillin 22 16.8 (7.9–32.1)

Enterococci, n = 127
Ampicillin 73 57.5 (28.0–82.4)

Vancomycin 34 26.8 (13.4–46.4)

Viridans streptococci
Penicillin, n = 143 40 28.0 (18.7–39.6)
Ampicillin, n = 58 24 41.4 (28.1–56.1)
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Figure 1. Distribution of resistant antibiotic bacteremia by pathogen type (details in Supplementary Table S3) of Gram-negative isolates. Black box represents per-
centages of resistant bacteremia, gray box represents susceptible bacteremia, and white box for bacteremia not tested. 
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Figure 1. Distribution of resistant antibiotic bacteremia by pathogen type (details in Supplementary Table S3) of Gram-negative isolates. Black box represents percentages of resistant
bacteremia, gray box represents susceptible bacteremia, and white box for bacteremia not tested.
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Table 2. Multivariable logistic regression models for BSI due to antibiotic resistant Gram-negatives (n = 797).

Odds Ratio (95% Confidence Interval)

Factors Meropenem * Amikacin ** Gentamycin * Ciprofloxacin ** Ceftazidime * Cefepime ** Piperacillin-Tazobactam *

Sex, p-value 0.768 0.981 0.327 0.204 0.316 0.296 0.013
Male vs. female 0.9 (0.4–1.9) 1.0 (0.5–1.8) 1.3 (0.7–2.3) 1.3 (0.9–1.9) 0.7 (0.4–1.3) 1.3 (0.8–2.0) 0.6 (0.3–0.9)

Age at bloodstream infections, years, p-value 0.9 (0.8–1.1), 0.062 1.0 (0.9–1.1), 0.383 1.0 (0.9–1.1), 0.344 1.0 (1.0–1.1), 0.017 1.0 (0.9–1.1), 0.324 1.0 (0.9–1.1), 0.120 1.0 (0.9–1.1), 0.654

Underlying disease, p-value 0.038 0.015 0.706 0.061 0.195 0.438 0.476
NMD vs. HM 4.0 (1.1–14.0) 3.5 (1.5–8.0) 1.5 (0.6–3.7) 2.0 (1.0–3.7) 1.4 (0.5–3.5) 1.2 (0.6–2.4) 1.6 (0.7–3.5)

ST vs. HM 0.8 (0.3–2.4) 1.0 (0.4–2.4) 1.0 (0.5–2.1) 0.8 (0.5–1.4) 0.6 (0.3–1.2) 0.7 (0.4–1.3) 1.2 (0.7–2.2)

Allogeneic stem cell transplant, p-value 0.533 0.611 0.199 0.773 0.927 0.443 0.382
Yes vs. no 1.3 (0.5–3.3) 0.8 (0.4–1.8) 1.8 (0.9–3.7) 0.9 (0.6–1.6) 1.0 (0.5–2.1) 0.8 (0.4–1.4) 1.3 (0.7–2.4)

Relapse/ progression, p-value 0.279 0.438 0.150 0.099 0.218 0.008 0.467
Yes vs. no 1.6 (0.7–3.9) 1.3 (0.7–2.6) 1.6 (0.8–3.0) 1.4 (0.9–2.2) 1.5 (0.8–2.9) 2.0 (1.2–3.3) 1.2 (0.7–2.1)

BSI, p-value 0.768 0.298 0.668 0.392 0.216 0.280 0.028
Single agent vs. polymicrobial 0.8 (0.1–4.0) 0.5 (0.1–1.8) 0.8 (0.3–2.1) 1.4 (0.6–3.4) 0.5 (0.2–1.4) 0.6 (0.2–1.5) 0.4 (0.2–0.9)

Previous antibacterial exposure
(prophylaxis/therapy)1, p-value

<0.001 <0.001 0.138 0.008 0.009 0.215 <0.001

Standard regimen vs. none 5.1 (1.5–17.4) 4.5 (1.8–11.4) 2.1 (1.1–4.2) 1.7 (1.0–2.8) 2.2 (1.1–4.6) 1.7 (0.9–2.9) 3.3 (1.7–6.3)
Carbapenems vs. none 31.5 (5.1–193.4) 7.3 (2.6–20.1) 2.0 (0.8–4.7) 2.5 (1.4–4.7) 3.8 (1.4–10.2) 1.9 (0.9–3.8) 3.4 (1.5–7.4)

Fluoroquinolones/β-lactams/Combination
2/Others vs. none

5.8 (1.3–25.7) 2.2 (0.7–6.9) 1.4 (0.6–3.3) 2.1 (1.1–3.7) 1.4 (0.6–3.5) 1.4 (0.7–2.9) 2.3 (1.1–4.9)

Neutropenia, p-value 0.016 0.494 0.485 0.427 0.872 0.190 0.048
Yes vs. no 3.1 (1.1–8.9) 1.3 (0.6–2.7) 1.3 (0.7–2.4) 1.2 (0.8–1.9) 0.9 (0.5–1.8) 1.4 (0.8–2.4) 1.7 (1.0–3.0)

Previous colonization, p-value 0.120 0.257 0.895 0.891 0.421 0.653 0.035
No vs. yes 2.2 (0.8–5.7) 1.6 (0.7–3.5) 1.0 (0.5–2.2) 1.0 (0.6–1.8) 1.4 (0.6–2.9) 1.1 (0.6–2.0) 2.0 (1.0–3.8)

Previous infection, p-value 0.161 0.040 0.280 <0.001 <0.001 <0.001 0.031
No vs. yes 1.9 (0.8–5.0) 2.2 (1.1–4.6) 1.5 (0.7–3.3) 2.6 (1.5–4.4) 3.9 (1.7–8.9) 3.6 (1.8–6.9) 2.0 (1.1–3.7)

Random effect, variance component, centre 2.0 (0.4–9.1) 1.6 (0.4–6.2) 1.1 (0.3–3.7) 1.8 (0.7–4.7) 4.4 (1.3–14.6) 8.4 (2.9–24.9) 0.7 (0.2–2.6)

Random effect, variance component, patient 1.8 (0.1–28.9) NA 2.9 (0.7–11.0) NA 2.7 (0.6–12.5) NA 1.3 (0.2–7.0)

LR test vs. logistic regression, p-value *** <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0001

* Three-level mixed effects logistic regression with random effects for patients nested within centers. ** Two-level mixed effects logistic regression with random effects for centers. *** If p-value of likelihood-
ratio test (LR) test comparing multilevel mixed effects logistic model versus standard logistic regression was not statistically significant, standard logistic regression was adopted. 1 Due to low numbers,
Fluoroquinolones, β-lactams not active vs. P. aeruginosa, combination and other previous exposure were grouped together. 2 Combination of two or more of the following fluoroquinolone/β-lactams not active vs.
P. aeruginosa/Standard regimen active vs. P. aeruginosa/carbapenem. NMD: Non-malignant disease receiving allogeneic stem cell transplant; HM: hematologic malignancy; ST: solid tumors; NA: not applicable.
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Table 3. Multivariable logistic regression models for models for BSI due to antibiotic resistant among Gram-positives.

Odds Ratio (95% Confidence Interval)

Factors Methicillin-Staphylococcus
aureus, n = 131 *

Penicillin-Viridians
Streptococci, n = 143 **

Ampicillin-Viridians
Streptococci, n = 58 **

Ampicillin-Enterococcus
(faecalis & faecium), n = 127 *

Vancomycin-Enterococcus
(faecalis & faecium), n = 127 **

Sex, p-value 0.760 0.792 0.228 0.490 0.197
Male vs. female 1.2 (0.3–4.9) 0.9 (0.4–2.0) 0.4 (0.1–1.7) 1.5 (0.5–4.5) 1.9 (0.7–5.1)

Age at bloodstream infections, years, p-value 1.0 (0.9–1.1), 0.868 0.9 (0.8–1.1), 0.107 0.9 (0.8–1.1), 0.118 1.0 (0.9–1.1), 0.790 1.0 (0.9–1.1), 0.790

Underlying disease, p-value 0.462 0.418 0.947 0.072 0.570
NMD vs. HM 1.4 (0.2–9.7) 1.0 (0.1–9.8) NA 0.1 (0.0–1.2) 0.4 (0.1–4.9)

ST vs. HM 2.7 (0.5–13.6) 0.4 (0.1–1.8) 0.9 (0.1–5.8) 0.4 (0.1–1.6) 0.7 (0.2–2.9)

Allogeneic stem cell transplant, p-value 0.324 0.693 0.461 0.046 0.796
Yes vs. no 2.9 (0.3–24.4) 1.3 (0.4–4.6) 2.2 (0.5–19.5) 5.2 (0.9–29.2) 1.2 (0.3–4.4)

Relapse/ progression, p-value 0.278 0.890 0.498 0.282 0.550
Yes vs. no 0.3 (0.1–2.4) 0.9 (0.3–2.7) 0.5 (0.1–3.1) 2.0 (0.6–7.4) 1.3 (0.5–3.6)

BSI, p-value 0.176 0.447 0.879 0.895 0.925
Single agent vs. polymicrobial 0.1 (0.0–2.4) 0.6 (0.2–2.0) 1.2 (0.2–8.5) 1.1 (0.2–6.1) 0.9 (0.2–4.8)

Previous antibacterial exposure
(prophylaxis/therapy), p-value 0.004

Yes vs. no NA NA 7.7 (1.7–35.5) NA NA

Previous antibacterial exposure
(prophylaxis/therapy) 1, p-value

0.068 0.489 0.396 0.083

Standard regimen vs. no one 6.4 (1.1–39.5) 1.8 (0.6–5.6) NA 1.1 (0.2–7.1) 3.2 (0.4–25.5)
Carbapenem vs. no one NA 1.6 (0.4–6.1) NA 1.3 (0.2–8.2) 8.7 (0.8–90.7)

Fluoroquinolones/β-lactams/Combination 2/Others
vs. no one 4.5 (0.8–26.7) 2.2 (0.7–6.7) NA 3.6 (0.5–24.5) 2.5 (0.2–25.2)

Neutropenia, p-value 0.656 0.840 0.617 0.047 0.048
Yes vs. no 0.7 (0.2–3.1) 1.1 (0.3–4.4) 0.6 (0.1–4.1) 3.7 (0.9–14.5) 3.5 (1.1–11.1)

Previous colonization, p-value 0.013 0.414 0.918 0.346 0.073
Yes vs. no 6.7 (1.4–31.3) 0.3 (0.1–4.6) 0.9 (0.1–10.8) 2.2 (0.4–11.9) 2.6 (0.9–7.4)

Previous infection, p-value 0.556 0.725 0.021 0.726
Yes vs. no NA 1.5 (0.4–6.4) 0.6 (0.1–7.9) 5.7 (1.1–28.8) 0.8 (0.2–2.7)

Random effect, variance component, centre 2.7 (0.3–22.7) NA NA 1.5 (0.3–7.0) NA

LR test vs. logistic regression, p-value *** 0.0255 0.5326 1.000 0.0002 0.6495

* Two-level mixed effects logistic regression with random effects for centers. ** Standard logistic regression *** If p-value of likelihood-ratio test (LR) test comparing multilevel mixed effects logistic model versus
standard logistic regression was not statistically significant, standard logistic regression was performed. 1 Due to low numbers, Fluoroquinolones, β-lactams not active vs. P. aeruginosa, combination and other
previous exposure were grouped into one group. 2 Combination of two or more of the following fluoroquinolone/β-lactams not active vs. P. aeruginosa/Standard regimen active vs. P. aeruginosa/carbapenem.
NMD: Non-malignant disease receiving allogeneic stem cell transplant; HM: hematologic malignancy; ST: solid tumors; NA: not applicable.
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3.2. Admission in Intensive Care Unit and Mortality

Table 4 reports risk factors for ICU admission or death. A total of 171 (13.2%) episodes
required ICU admission. HM had a greater risk of ICU admission as well as BSI in the
presence of neutropenia, previous exposure to carbapenems and BSI due to Gram-negatives
resistant to >3 antibiotics. Overall, death was reported for 99 (7.7%) episodes and in 67
(67.7%) it was attributed to BSI. The underlying disease in relapse/progression, a previous
exposure to antibiotics (mainly carbapenems or combination therapy), and a need for
ICU admission for BSI were significantly associated with mortality. Patient-level variation
showed a greater impact on ICU admission and mortality than center-level variation.

Table 4. Multivariable logistic regression models for ICU admission or mortality during BSI.

Factors Odds Ratio (95% Confidence Interval)

ICU Admission * Mortality *

Sex, p-value 0.302 0.724
Male vs. female 0.7 (0.4–1.3) 0.9 (0.4–1.9)

Age at bloodstream infections, years, p-value 1.0 (0.9–1.1), 0.210 0.9 (0.8–1.1), 0.068

Underlying disease, p-value 0.018 0.098
NMD vs. HM 0.8 (0.3–2.2) 3.6 (1.0–13.4)

ST vs. HM 0.3 (0.1–0.8) 1.2 (0.4–3.3)

Relapse/ progression, p-valueYes vs. no 0.2701.5 (0.7–2.9) 0.0045.3 (1.7–16.5)

Allogeneic stem cell transplant phase, p-value 0.5778 0.089
Pre-engraftment vs. no allogenic-HSCT 1.3 (0.5–3.0) 0.8 (0.2–2.9)

Acute GvHD vs. no allogenic-HSCT 2.1 (0.5–8.9) 1.7 (0.3–10.8)
Chronic GvHD vs. no allogenic-HSCT 1.8 (0.3–11.3) 7.0 (0.9–51.6)

Post-engraftment vs. no allogenic-HSCT 0.6 (0.1–2.1) 4.2 (1.0–17.8)

Neutropenia, p-value 0.023 0.327
Yes vs. no 2.5 (1.2–5.3) 1.6 (0.6–4.1)

Previous antibacterial exposure (prophylaxis/therapy)1, p-value 0.267 0.002
Fluoroquinolones vs. no one/β-lactams 1.4 (0.3–6.8) 2.5 (0.3–21.0)
Standard regimen vs. no one/β-lactams 1.4 (0.7–2.8) 0.9 (0.3–2.7)

Carbapenem vs. no one/β-lactams 2.8 (1.2–6.7) 3.8 (1.1–13.5)
Combination 2 vs. no one/β-lactams 1.1 (0.1–8.4) 9.1 (1.1–77.8)

Others vs. no one/β-lactams 2.0 (0.6–6.6) 8.2 (1.6–41.9)

Previous colonization, p-value 0.193 0.265
Yes vs. no 0.6 (0.2–1.3) 1.8 (0.6–5.3)

Previous infection, p-value 0.835 0.095
Yes vs. no 0.9 (0.4–2.0) 2.7 (0.8–8.9)

BSI, p-value 0.936 0.441
Single agent vs. polymicrobial 0.9 (0.3–2.8) 0.5 (0.1–2.6)

Gram-negatives antibiotic resistance, p-value <0.001 0.167
Gram-negatives resistant to 1 antibiotic 3 vs. susceptible 0.3 (0.1–0.8) 3.4 (0.8–13.9)

Gram-negatives resistant to 2 or 3 antibiotics 3 vs. susceptible 0.7 (0.3–1.9) 3.7 (1.0–13.7)
Gram-negatives resistant to 4 or 5 antibiotics 3 vs. susceptible 18.0 (3.7–87.2) 4.5 (1.0–20.0)

Not applicable vs. susceptible 0.8 (0.4–1.6) 2.3 (0.8–6.5)

ICU for bloodstream infection, p-value Yes vs. no NA <0.001,44.4 (7.6–258.5)

Random effect, variance component, center 1.8 (0.5–6.6) 0.8 (0.2–5.9)

Random effect, variance component, patient 4.4 (0.9–20.2) 3.8 (0.7–19.7)

LR test vs. logistic regression, p-value ** <0.0001 0.0172

* Three-level mixed effects logistic regression with random effects for patients nested within centers. ** If p-value of likelihood-ratio test
(LR) test, comparing multilevel mixed effects logistic model versus standard logistic regression, was not statistically significant, standard
logistic regression was performed. 1 β-lactams not active vs. P. aeruginosa was considered as reference group due to no observed events in
this group. 2 Combination of two or more of the following fluoroquinolone/β-lactams not active vs. P. aeruginosa/Standard regimen active
vs. P. aeruginosa/carbapenem. 3 Meropenem, amikacin, ciprofloxacin, ceftazidime and piperacillin-tazobactam. NMD: Non-malignant
disease receiving allogeneic stem cell transplant; HM: Hematologic malignancy; ST: Solid tumors; NA: Not applicable.
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4. Discussion

In this multicenter, multinational retrospective study, we collected 1291 BSIs due to
non-common skin contaminants occurring in pediatric patients treated with chemotherapy
or allogeneic HSCT to study proportions of resistant strains and risk factors for antibiotic
resistance, ICU admission, or death.

Resistance to antibiotics was high among Gram-negatives being approximately 25%
for ceftazidime and cefepime and near 20% for piperacillin-tazobactam. Resistance to
meropenem was < 10%, but was higher for K. pneumoniae (15.9%), P. aeruginosa (27.3%), and
A. baumannii complex (25.0%), the 3rd, 5th, and 9th most frequently reported pathogens,
respectively. These proportions of resistant strains are worrisome since they regard the
antibiotics generally recommended as monotherapy for empirical treatment of febrile
neutropenia in pediatric patients [2,4], with the consequent non-negligible risk of treatment
failure. Previous exposure to antibiotics, with a highest risk for carbapenems [18,19],
was significantly associated with antibiotic-resistant Gram-negative BSI, as reported in
adults [20]. Finally, a BSI due to Gram-negatives resistant to >3 antibiotics was significantly
associated with ICU admission and death. It is noteworthy that a previous colonization
or infection by the same pathogen did not affect ICU admission or death, perhaps since
the choice of empirical therapy in case of febrile neutropenia in a colonized patient could
have been guided by this information. The study also showed that about 25% of Gram-
negatives were resistant to ciprofloxacin. This finding indicates the need for a rethink on
the fluoroquinolone prophylaxis of febrile neutropenia, which, despite some effectiveness
during chemotherapy courses (but not pre-engraftment neutropenia), has been associated
with increased antibiotic resistance [21–24]. In this regard, it should be noted that in the
most recent pediatric guidelines this procedure has received a weak recommendation about
its use [25]. Multilevel mixed-effects logistic regressions showed an evident center-level
variation on antibiotic resistance among Gram-negatives. Taken together, all of these
observations emphasize the need for the establishment at the local level of antimicrobial
stewardship and infection prevention and control programs [4,5,25–27], which could also
have a favorable impact on the management of infectious episodes and their complications.
S.aureus was the second most frequently reported pathogen, with MRSA detected in near
1/6 of cases; VRE represented near 40% of E.faecium strains, but was about 4% in E.faecalis,
while penicillin/ampicillin resistance was frequent among viridans streptococci (28 and
41.4%, respectively). MRSA colonization was a significant risk factor for resistant BSI,
similarly to what is generally observed for surgical site infections [28]. Finally, yeasts
represented an infrequent cause of BSI in this patient population.

Conditions related to the underlying disease and its treatment also had a significant im-
pact on ICU admission and mortality: HM was significantly associated with the risk of ICU
admission, as well as a BSI developing during neutropenia alongside a relapsing/resistant
disease or ICU admission was associated with an increased risk of death.

This study represents the largest available series on antimicrobial susceptibility of non-
common skin-contaminant bacteria causing BSI in pediatric patients receiving chemother-
apy or HSCT collected from different parts of the world and provides important informa-
tion on the burden of antibiotic resistance in this patient population and its relationship
with complicated clinical course, but it also has important limitations. The choice of not
collecting data on BSI due to common skin contaminants permitted a better understanding
of the phenomenon of antibiotic resistance and its consequences, but could have biased the
results at least partially, especially after observations of infections due to multidrug resis-
tant coagulase-negative staphylococci [29]. Moreover, we do not know if the carbapenem
resistance we observed was due to carbapenemases (and if so, which ones) or other mecha-
nisms. Knowledge of this aspect could have important implications since new antibiotics
as ceftazidime-avibactam or meropenem-vaborbactam [30,31] are not effective against
some carbapenemases frequently identified in pediatric patients [26], while ceftolozane-
tazobactam could have some effectiveness against these strains [32]. Unfortunately, while
some pediatric pharmacological data are available for ceftazidime-avibactam [33] and
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ceftolozane-tazobactam [34,35], they are scarce and fragmented, when not available at all,
for meropenem-vaborbactam [36], cefiderocol [37], and cefepime-zidebactam [38], drugs
that could be effective against bacteria resistant to the other antibiotics. We do not have
data on the in vitro effectiveness of the new antibiotics in our patient population since they
were tested in a negligible proportion of strains, if any, maybe because of scarce availability
and/or the restriction or absence of authorizations in pediatrics. This is another limitation.
Due to the multinational nature of the study, we were reliant on local antimicrobial cultures,
susceptibility testing techniques, and reporting. While this variation could impact our
results, the large number of episodes involved maintains the generalizability of the results.

Finally, this study showed the significant effect of local conditions on the development
of antibiotic resistant BSI and unfavorable outcomes. Local antimicrobial stewardship and
adherence to infection control programs are mandatory in order to reduce the spread of
resistant pathogens and the unnecessary use of antibiotics, as well as studies on new antibi-
otics in order to quickly offer the best therapeutic strategies in children with underlying
diseases that could expose the patient to severe infections and their complications.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-638
2/10/3/266/s1, Table S1: demographic and clinical characteristics at time of BSI, Table S2 reports a
complete list of isolated pathogens, Table S3 reports data on yeast resistance of specific pathogens
to antibiotics and antifungals; Figures S1 and S2 show proportions of antibiotic resistant strains
stratified by treating center.
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