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The Role of Dexmedetomidine for the Prevention 
of Acute Kidney Injury in Critical Care

Abstract
Acute kidney injury (AKI) occurs in up to 50% of patients admitted to the intensive care unit 
and is associated with increased mortality. Currently, there is no effective pharmacotherapy for 
prevention or treatment of AKI. In animal models of sepsis and ischaemia-reperfusion, α2-agonists 
like dexmedetomidine (DEX) exhibit anti-inflammatory properties and experimental data indicate a 
potential protective effect of DEX on renal function. However, clinical trials have yielded inconsistent 
results in critically ill patients. This review discusses the pathophysiological mechanisms involved in 
AKI, the renal effects of DEX in various intensive care unit-related conditions, and summarises the 
available literature addressing the use of DEX for the prevention of AKI.  

 

INTRODUCTION 

Acute kidney injury (AKI)  is  defined by a 
rapid  rise  in serum creatinine,  a drop  in urine 
output, or both, and  occurs in up to 15% of 
patients who are hospitalised and up to 50% 
of patients admitted to the  intensive care unit 
(ICU).1  Major surgery, cardiac surgery, sepsis, 
cardiorenal, and hepatorenal syndrome are 
among the most frequent risk factors in critically 
ill patients.  AKI is  often  part  of  a  syndrome 
rather than a single pathophysiological 
entity,  and  the  pathophysiology varies 
according to the underlying causes and  pre-
existing  conditions.  Renal hypoperfusion  can 
occur  due to  hypovolaemia, systemic 

vasodilatation, increased vascular resistance, 
cardiac dysfunction,  or  increased  intra-
abdominal pressure  leading to venous 
congestion.  Renal hypoperfusion  activates 
adaptive mechanisms  such as  vascular 
autoregulation  and  stimulation  of the 
sympathetic nervous system and  the 
renin-angiotensin-aldosterone system 
to maintain  glomerular filtration rate 
(GFR).  With prolonged  hypoperfusion 
or  inadequate  adaptive  mechanisms, GFR 
initially drops without  structural damage  to  the 
renal parenchyma.  However,  ischaemic 
acute tubular necrosis occurs  if renal 
perfusion  remains  compromised.  Likewise, 
nephrotoxic drugs and endogenous 
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toxins  like  myoglobin  and  uric 
acid  can  have a direct cytotoxic effect, 
compromise intrarenal haemodynamics, and cause 
precipitation of crystals  or metabolites.2  Nearly 
two-thirds of AKI cases resolve within a week and 
in such patients,  12-month survival is over 90%. 
However,  if  AKI does not resolve,  hospital 
mortality  is significantly increased  (47%) and 
12-month survival is only 77%.3 Currently, there is 
no effective pharmacotherapy for prevention or 
treatment of AKI. Prevention bundles emphasise  
risk stratification and avoidance of 
hypotension,  hypoperfusion,  and  refrainment 
from nephrotoxic substances.4 

Dexmedetomidine  (DEX)  is  a  centrally 
acting,  highly-selective  α2-adrenergic 
agonist  and  has become an 
increasingly  popular  sedative agent  in  critical 
care due to its sedative, anxiolytic, sympatholytic, 
and analgesic-sparing effects,  with  minimal 
depression of  the  respiratory  drive.5  Side 
effects comprise hypertension, hypotension, 
bradycardia resulting from vasoconstriction, 
sympatholytic effects, and baroreflex-induced  
parasympathetic activation.6,7

DEX  is rapidly distributed and is mainly 
hepatically metabolised into inactive metabolites 
by glucuronidation and hydroxylation. Compared 
with classic  sedatives  like  propofol and 
benzodiazepines,  DEX provides lighter levels 
of sedation and  supplemental  analgesic 
effects.8  Patients remain easily rousable 
with minimal influence on respiratory drive. 
Moreover, DEX attenuates stress responses, 
creating a more stable haemodynamic profile 
during stressful events such as surgery 
or anaesthetic induction.9-12 Finally, DEX improves 
sleep efficiency and quality.13-14

The main  advantage  of DEX in patients 
in the ICU is  reduction  in  the incidence 
of delirium15  and  duration of  mechanical 
ventilation.16  The use of  DEX  has been 
recommended over benzodiazepines in patients 
who are mechanically ventilated as it may be 
associated with improved outcomes.8,17-19 Clinical 
trials have also demonstrated that DEX-based 
sedation provides some advantages over 
usual care, typically with propofol, lorazepam, 
or midazolam. These advantages include a 
reduction in the duration of sedation and ICU stay 
and a possible effect on reducing the duration 

of delirium.8,20-22  The  Maximizing Efficacy of 
Targeted Sedation and Reducing Neurological 
Dysfunction (MENDS) trial  compared DEX with 
lorazepam.21 Sedation with DEX resulted in more 
time at the targeted level of sedation and more 
days alive without delirium or coma (median days: 
7.0 versus 3.0; p=0.01) and a lower prevalence of 
coma (63% versus 92%; p<0.001). The Safety and 
Efficacy of Dexmedetomidine Compared with 
Midazolam (SEDCOM) trial  compared DEX to 
midazolam.22 The prevalence of delirium was 54% 
in the DEX group versus 76.6% in patients treated 
with midazolam, for a difference of 22.6% (95% 
confidence interval: 14–33%; p<0.001). Median 
time to extubation was 1.9 days shorter 
in  the DEX group  (3.7 days versus 5.6 days; 
p=0.01). The multicentre, double-blind, placebo-
controlled  Dexmedetomidine versus Midazolam 
or Propofol for Sedation During Prolonged 
Mechanical Ventilation (MIDEX and PRODEX 
trials),8  compared  DEX  with midazolam and 
propofol and demonstrated the safety and 
non-inferiority of  DEX  as a first-line sedative in 
patients who were critically ill and on ventilation. 
Median duration of ventilation was shorter 
with DEX (123 hours; interquartile range [IQR]: 
67–337]) versus midazolam (164 hours; IQR: 
92–380; p=0.03) but not with DEX (97 hours; 
IQR: 45–257) versus propofol (118 hours; IQR: 
48–327; p=0.24).8  Finally, the pivotal  Sedation 
Practice in Intensive Care Evaluation (SPICE 
III) trial23  randomised 4,000 patients to receive 
either DEX as the sole or primary sedative or 
to receive usual care (propofol, midazolam, or 
other sedatives). Sedation  with DEX  did not 
affect overall mortality or mortality in key clinical 
predefined subgroups.  However, it showed 
statistically significant heterogeneity of treatment 
effect according to age:  DEX-based sedation 
appeared to increase 90-day mortality in patients 
below the median age of 63.7 years (relative risk 
increase of 23.7%) and to decrease mortality in 
patients older than the median trial age (relative 
risk reduction of 11%).24 

α2-agonists  like DEX  exhibit  anti-inflammato-
ry properties and have been ascribed respirato-
ry, cardiac, neurologic, and renal protective ef-
fects.25  Moreover,  DEX inhibits the antidiuretic 
action of vasopressin,26 enhances osmolal clear-
ance, and preserves cortical blood flow by de-
creasing renal cortical release of noradrena-
line  (Figure 1).27  However,  the relevance  and 
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effect of these effects  on  clinical  outcomes  re-
mains uncertain.  In this narrative review the au-
thors address the putative reno-protective ef-
fects of DEX and summarise the results from 
clinical and animal studies addressing the use of 
DEX for the prevention of AKI. 

THE ANTI-INFLAMMATORY EFFECTS 
OF DEXMEDETOMIDINE 

DEX  inhibits  toll-like receptor-4/NFκB  pathway 
activation and therefore decreases the 
production of proinflammatory cytokines 
such as  TNF-α and  IL-6.28-30  These actions 
are mainly mediated by α2-adrenergic receptor 
subtypes29,31 although other adrenergic-receptor-
independent mechanisms,28  vagomimetic,  and 
humoral pathways contribute to the anti-
inflammatory effect.32-34  DEX also reduces 
oxidative stress by attenuating the formation 
of reactive oxygen species, increasing 
glutathione levels, inhibiting oxygen 
consumption, and improving mitochondrial 
dysfunction.35,36  Finally, DEX has been reported 
to promote resolution of inflammation 
through activation of so-called specialised 
pro-resolving  lipid  mediators.37  Among these, 

lipoxin A4 is one of the most important, and its 
biosynthesis depends on 5-lipoxygenase and 
adrenergic receptor activity. Lipoxygenase-5 
and lipoxin A4 expression are increased in DEX-
treated animals with sepsis, providing evidence 
that DEX not only inhibits the generation of 
excessive inflammation but also enhances  
its resolution.38

DEXMEDETOMIDINE FOR THE 
PREVENTION OF ACUTE KIDNEY 
INJURY IN CARDIAC SURGERY 

AKI  affects up to 30% of patients undergoing 
cardiopulmonary bypass (CPB) surgery and 
is the second most common cause of AKI in 
the  ICU.39  Patients  undergoing cardiac surgery 
are particularly at risk, as factors like non-pulsatile 
perfusion during CPB, hypothermia, coagulopathy, 
haemolysis, activation of cytokines, complement 
pathways and the renin-angiotensin-aldosterone 
system, and pituitary secretion of  arginine-
vasopressin in response to low-flow states result 
in microcirculatory and renal vasoconstriction.   
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Figure 1: Overview of the renal effects of dexmedetomidine.

ROS: reactive oxygen species; SPM: specialised pro-resolving mediators. 
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Moreover, release of aortic cross-clamping leads 
to reperfusion injury and further cellular damage.1

Clinical and animal studies point towards a pro-
tective effect  of DEX against AKI  in this set-
ting.  In rodent models of ischaemia-reperfusion 
(I-R), intraperitoneal administration of DEX  at 
doses between 10 and 100 µg/kg  reduced in-
flammation and histomorphological  signs of re-
nal injury.31,34,40-45 However, these protective ef-
fects  could not be replicated  in studies where 
DEX was given intravenously (dose range: 1–3 
µg/kg/hour).46,47 Nevertheless, in patients under-
going cardiac surgery, DEX appears to decrease 
the incidence of postoperative AKI. Several clin-
ical trials have assessed the effect of DEX in this 
patient population, and DEX improves tradition-
al48  and modern renal biomarkers49,50  and re-
nal function in most studies.51,52 A meta-analysis 
and trial sequential analysis of nine  randomised 
controlled trials (RCTs) with a total of 1,308 pa-
tients  found robust evidence that DEX  signifi-
cantly reduced the incidence of AKI after cardiac 
surgery  (risk ratio: 0.60; 95% confidence inter-
val: 0.41–0.87; p=0.008).53  The  protective effect 
on AKI was most evident when DEX was admin-
istered  pre-  or  intraoperatively and  in  patients 
aged  over  60 years.  DEX  also reduced  time to 
extubation and incidence of delirium. There were 
no significant differences in other postoperative 
complications, urine output, length of ICU  stay, 
and mortality. Compared to the earlier meta-anal-
yses,54,55  summarised in Table 1,53-56 the study by 
Peng et al.53 used a more  robust  and  transpar-
ent  methodology.  However,  as  the studies in-
cluded in this systematic review covered  near-
ly a decade, different definitions  of AKI  were 
used. Therefore, the effect of DEX on incidence of 
AKI after cardiac surgery under a common defi-
nition remains unclear.  

Several factors need to be considered when 
interpreting the results of trials and meta-analyses 
addressing the role of DEX for prevention 
of AKI.  Many patients  undergoing cardiac 
surgery  have pre-existent renal dysfunction 
or  comorbidities  that  make the kidneys more 
vulnerable to injury.  As outlined above,  the 
CPB procedure itself, aortic cross-clamping 
time, transfusion of blood products, high doses 
of vasopressors,  and inotropes all contribute to 
the development of postoperative AKI. Therefore, 
any baseline variability regarding these factors 
between  trial participants  may significantly 

undermine the value of a meta-analysis. The 
potential protective role of DEX in AKI can only 
be appreciated when timing and dose of the 
intervention, type and duration of surgery, patient 
characteristics, and perioperative therapeutic 
strategies are considered. 

DEXMEDETOMIDINE FOR THE 
PREVENTION OF ACUTE KIDNEY 
INJURY IN NON-CARDIAC SURGERY 

Postoperative AKI affects approximately one-
fifth of patients after major surgery.57  Major 
surgery is among the most common risk 
factors for AKI, as it frequently implicates 
significant shifts in intravascular volume, 
transient hypotension,  and the exposure to 
nephrotoxic substances  including  contrast 
media, antibiotics, and non-steroidal anti-
inflammatory drugs. Increased levels of 
circulating cytokines and reactive oxygen species 
due to endotoxins from compromised visceral 
perfusion and  I-R  injury contribute to renal 
injury.58  Furthermore, advanced age and  pre-
existing  comorbidities  including  diabetes, 
chronic renal failure, and heart failure increase 
the risk for developing AKI,1  and  complex 
surgical interventions are performed in older and 
sicker  individuals, thus increasing numbers  of 
patients at risk.59  

Experimental and clinical data on the effect of 
DEX on postoperative AKI in non-cardiac surgery 
are rare  (an overview of relevant studies in 
humans is given in Table 2).20,60-63 In a rat model of 
orthotopic liver transplantation,  intraperitoneal 
DEX (10 µg/kg) decreased blood urea nitrogen 
(BUN) and serum creatinine levels and reduced 
histopathological kidney injury.29  However, in a 
single-centre retrospective cohort study of 1,207 
patients, the use of intraoperative DEX was not 
associated with a decline in AKI after lung cancer 
surgery. A pilot RCT of 89 patients undergoing 
laparoscopic radical prostatectomy found that, 
compared to normal saline, an intravenous bolus 
of 1 µg/kg DEX at the start of  surgery lowered 
the incidence of AKI and serum level of renal 
biomarkers like BUN, creatinine, and cystatin C.60 

https://www.emjreviews.com/
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Study Patient 
population 

N Studies included Primary outcome Main results 

Peng et al.53 2020 Adult cardiac 
surgery 

1,308 9 RCTs Incidence of AKI DEX reduced 
incidence of AKI   
(RR: 0.60; 95% 
CI: 0.41–0.87; 
p=0.008)

Liu et al.54 2018 Adult cardiac 
surgery 

1,575 10 RCTs Incidence of AKI   
within 7 days

DEX reduced 
incidence of AKI 
(OR: 0.65; 95% 
CI: 0.45–0.92; 
p=0.02)  

Shi and Tie55 2017 Adult cardiac 
surgery

19,266 3 RCTs  
4 observational 

Incidence of AKI DEX reduced 
incidence of AKI 
in the RCTs 
(RR: 0.44; 95% 
CI: 0.26–0.76; 
p=0.003) and 
cohort studies 
(RR: 0.74; 95% 
CI: 0.63–0.86; 
p=0.0001)    

Li et al.56 2018 Paediatric cardiac 
surgery

1,851 5 RCTs  
4 observational 

Postoperative 
junctional ectopic 
tachycardia and 
AKI 

No difference in 
AKI  
(OR: 0.44; 95% CI: 
0.19–1.04; p=0.06) 
AKI reported in 
73/233 patients 
(31.3%) among 
one RCT and one 
observational 
study

AKI: acute kidney injury; CI: confidence interval; DEX: dexmedetomidine; N: number of patients; OR: odds ratio; RCT: 
randomised controlled trial; RR: risk ratio. 

Table 1: Summary of published meta-analyses on the effect of dexmedetomidine on acute kidney injury. 

Reference Study design Patient 
population 

N Blinding Dose Timing Control  
group

Primary 
outcome 

Main results 

Kawazoe 
et al.20 
2017 

RCT Sepsis and 
mechanical 
ventilation for 
>24 hours 

201 No 0.1–0.7 µg/
kg/hour IV 

After 24 
hours

Propofol/ 
midazolam 

Mortality 
and 
ventilator-
free days 
at Day 28 

No 
difference 
in 
(secondary) 
renal 
outcomes 
(urinary 
output, 
creatinine, 
eGFR, BUN) 

Table 2: Characteristics of relevant studies on the effect of dexmedetomidine on acute kidney injury in non-cardiac 
surgery patients. 
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However, this was a small, underpowered  pilot 
study  and  the overall incidence of AKI was 
low  (4.5% in the DEX group and 13.3% in the 
control group), thus increasing the risk of a Type-I 
error. In a recent double-blind placebo-controlled 

RCT in 134 women undergoing caesarean section 
for pre-eclampsia,  intravenous DEX (0.4 µg/kg/
min for 10 minutes before surgery) resulted in 
lower β2-microglobulin, kidney injury molecule-1, 
and urine protein,  but  not in  significant 

AKI: acute kidney injury; BUN: blood urea nitrogen; β2-MG: β2-microglobulin; CI: confidence interval; DEX: 
dexmedetomidine; eGFR: estimated glomerular filtration rate; ICU: intensive care unit; IV: intravenous; KIM-1: kidney injury 
molecule-1; N: number of patients; NA: not applicable; NaCl: sodium chloride; NR: not reported; OR: odds ratio; RCT: 
randomised controlled trial.  

Table 2 continued. 

Reference Study design Patient 
population 

N Blinding Dose Timing Control  
group

Primary 
outcome 

Main results 

Liu et al.78 
2015

RCT Septic 
shock and 
mechanical 
ventilation 

200 NR 1 µg/kg 
bolus, then 
0.2–0.3 
μg/kg/
hour IV

From ICU 
admission 
until Day 
5 

Propofol NR Incidence 
of AKI 
38.1% in the 
DEX group 
versus 
59.6% in 
controls 
(OR: 0.76; 
95% CI: 
0.13–0.77; 
p=0.046) 

Wu et al.60 
2019

RCT Laparoscopic 
radical 
prostatectomy 

89 Double-
blind 

1 µg/kg 
bolus, then 
0.5 μg/kg/
hour IV

During 
surgery 

0.9% NaCl  Incidence 
of AKI 

AKI in the 
DEX group 
2/44 (4.5%) 
versus 6/45 
(13.3%) in 
controls 
(p=0.281). 

Zhang et 
al.61 2019

RCT Pre-eclampsia 
undergoing 
caesarean 
section 

134 Double-
blind 

Intrathecal: 
0.6–0.4 
μg/kg/min  

IV: 0.4 μg/
kg/min

During/
before 
surgery 

0.9% NaCl NR β2-MG, 
KIM-1, 
and urine 
protein 
lower in 
the DEX 
group. No 
significant 
difference 
in BUN, 
creatinine, 
or urine 
output. 

Moon et 
al.85 2002

Retrospective 
observational 

Elective 
lung cancer 
surgery 

1,207 NA 0.2–0.7 
μg/kg/
hour 

NR No DEX Incidence 
of AKI 

Incidence 
of AKI 

7% in the 
DEX group 
versus 8.4% 
in controls 
(p=0.45) 
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differences  in BUN, serum creatinine, or  
urine output.61 

DEXMEDETOMIDINE FOR THE 
PREVENTION OF ACUTE KIDNEY 
INJURY IN SEPSIS 

AKI occurs in up to 50% of patients with sepsis, one-
third of whom do not survive.64 Although sepsis is 
the most common cause of severe AKI in patients 
in the ICU,  the  exact mechanisms  are  still 
under investigation.65  An increased  level of 
inflammatory cytokines and leukocyte activity 
can lead to the capillary microthrombi resulting 
in microvascular dysfunction.  Redistribution of 
intrarenal  blood flow  due to  abnormal  vascular 
tone and shunting,  renal  inflammation,  and 
oedema  can decrease capillary  perfusion  and 
oxygen delivery.  Sepsis-induced hypotension  in 
addition to  the  microcirculatory dysfunction 
can further impair perfusion and oxygen delivery 
to the kidneys  due to  renal medullary tissue 
hypoperfusion and hypoxia.66,67  Early onset of 
renal medullary hypoxia and tissue ischaemia 
occurs hours before the development of AKI, 
despite elevated or unchanged renal blood flow, 
renal oxygen delivery, and renal cortical perfusion 
and oxygenation.68-70

The reno-protective effects of DEX in 
animal models  have  been related to its 
anti-inflammatory properties, which can 
attenuate sepsis-induced microcirculatory 
dysfunction.71  Both clonidine and DEX reduce 
the levels of pro-inflammatory cytokines 
(TNF-α and IL-6), while preserving the levels of 
an anti-inflammatory cytokine (IL-10) in septic 
sheep with  AKI.72,73  In rodent models, DEX 
protects against AKI, although treatment was 
given either intraperitoneally35,72-74 or prior to 
sepsis.38,77-79 A single-centre clinical trial in 200 
patients with sepsis found reductions in plasma 
inflammatory cytokines (TNF-α and IL-1), 
serum creatinine, and urinary injury biomarkers 
in patients receiving DEX (1 µg/kg bolus at ICU 
admission, and then 0.2–0.3 μg/kg/hour for 
5 days) compared with propofol.62  However, 
the findings of this trial must be interpreted 
with caution as the primary outcome was not 
clearly defined, no sample size calculation was 
provided, the study protocol was not published 
a priori, and blinding and randomisation were 
not described.  

In agreement with experimental findings, renal 
medullary tissue hypoxia has recently been 
indirectly demonstrated  in humans with 
sepsis  by measurable declines in bladder 
urinary oxygenation.81  Administration 
of  noradrenaline  can aggravate  renal 
medullary ischaemia and hypoxia.68,69,82 
In patients with sepsis, co-
administration  of  DEX  reduces  noradrenaline 
requirements to attain  the  target  blood 
pressure,83  an effect associated with 
preservation of renal medullary perfusion, 
renal medullary oxygenation, and kidney 
function.73 In the Dexmedetomidine for Sepsis 
in Intensive Care Unit (DESIRE) trial  (N=201 
patients) DEX did not significantly affect renal 
outcomes or 28-day mortality.20  However, a 
recent sub-group analysis of 104 patients with 
severe sepsis (Acute Physiology and Chronic 
Evaluation II scores of ≥23) found lower serum 
creatinine  levels, improvements in 
renal  Sequential  Organ  Failure  Assessment 
(SOFA) sub-scores, and a  decrease  in 28-day 
mortality (22% versus 42%) in the DEX group.84

Despite  the  current lack of convincing 
clinical evidence to prove the renal benefits 
of  DEX  in  patients with  sepsis,  data from 
animal studies support  strategies that protect 
the kidneys from  I-R injury.85 Although  it is 
conceivable that DEX provides  a  protective 
effect in the evolution of AKI, its effect on long-
term outcomes remains unknown. In a rat model, 
Liu et al.42  demonstrated that  DEX improved 
histological signs of renal injury up to 8 weeks 
after renal clamping. However, most randomised 
clinical trials found either only a transient effect 
on  renal  parameters or  provided only short-
term follow up in the range of a couple of days. 
The  DESIRE trial20  showed no difference in 
AKI, a secondary outcome,  after 28 days  and 
the above-mentioned  sub-group analysis  by 
Nakashima  et al.84  found  significantly lower 
serum creatinine but no difference in urinary 
output in the first 14 days.  

CONCLUSIONS AND FUTURE 
DIRECTIONS 

Numerous  animal studies suggest a reno-
protective effect of DEX after a controlled 
insult such as I-R injury or experimental sepsis. 
These effects  are  more reproducible with 
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NEPHROLOGY  •  July 2021	 EMJ104

intraperitoneal injection of DEX, compared to 
the more clinically relevant intravenous route. In 
clinical practice, three meta-analyses confirm a 
beneficial effect  of DEX  on renal function 
in patients after cardiac surgery.  However, 
the evidence for similar benefits in patients 
with sepsis or in non-cardiac surgery is 
less convincing. An important difference 
between these  trials  is the timing  of  DEX 
administration relative to  the noxious insult. 
While in cardiac surgery  the onset of CPB 
is predictable,  it  is impossible  to predict 
the exact time of onset of  sepsis, massive 
blood loss, or hypotension.  Importantly,  due 
to  its sympatholytic properties, DEX 
may aggravate haemodynamic instability, raising 
concern for additional renal hypoperfusion with 
its use.  However, in their systematic review, 
Peng et al.53 did not find any differences in 
hypotension or bradycardia or the need for 
vasopressors with DEX use, and, in patients with 
sepsis, DEX may actually decrease vasopressor 
requirements.83 Moreover, a high inter-individual 
variability in  DEX  pharmacokinetics has been 
described, especially in patients in the ICU and 
body size,  liver  function, plasma albumin, and 
cardiac output  all  have a significant impact 

on DEX pharmacokinetics.5 As outlined above, 
any baseline variability regarding these factors 
among trial participants must be considered 
when interpreting the results of clinical trials.  

The assessment of the incidence of AKI 
in different patient populations has been 
complicated by the various definitions for AKI 
used over time.85  The challenges in applying 
diagnostic criteria in the critically ill patient 
are considerable. If the true baseline creatinine 
level is not available and a ‘baseline’ creatinine 
level is obtained only after a significant amount 
of intravenous fluid has been administered, AKI 
diagnosis may be falsely common because the 
‘baseline’ creatinine value may be falsely low due 
to haemodilution is these settings.86 Moreover, 
ongoing fluid  administration  can decrease 
serum creatinine concentration and thereby 
conceal loss of GFR in such patients. Finally, the 
widespread use of diuretics and intravenous 
fluids in the perioperative period may render 
urine output an unreliable indicator of true renal 
function. Future trials are needed to determine 
the dose and timing of  DEX  in improving 
outcomes  in different patient populations, 
especially in patients with decreased baseline 
kidney function.
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