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Summary

Infection by Mycoplasma pneumoniae has been iden-
tified as a preceding factor of Guillain–Barr�e–Stohl
syndrome. The Guillain–Barr�e–Stohl syndrome is
triggered by an immune reaction against the major
glycolipids and it has been postulated that M. pneu-
moniae infection triggers this syndrome due to bac-
terial production of galactocerebroside. Here, we
present an extensive comparison of 224 genome
sequences from 104 Mycoplasma species to charac-
terize the genetic determinants of galactocerebroside
biosynthesis. Hidden Markov models were used to
analyse glycosil transferases, leading to identifica-
tion of a functional protein domain, termed
M2000535 that appears in about a third of the stud-
ied genomes. This domain appears to be associated
with a potential UDP-glucose epimerase, which con-
verts UDP-glucose into UDP-galactose, a main sub-
strate for the biosynthesis of galactocerebroside.
These findings clarify the pathogenic mechanisms
underlining the triggering of Guillain–Barr�e–Stohl
syndrome by M. pneumoniae infections.

Introduction

Mycoplasma species are bacteria representing the small-
est free-living organisms on earth. They include several
pathogens infecting human, animals and plants. Myco-
plasma is characterized by the lack of a cell wall, reason
for which glycolipids of the membrane are exposed to
the host’s immune system upon an infection. Myco-
plasma pneumoniae is a human respiratory pathogen
causing atypical (or walking) pneumonia, accounting for
approximately 20–30% of all types of pneumonia world-
wide (Liu et al., 2009; Varma-Basil et al., 2009; Waites &
Talkington, 2004; Zhang et al., 2016; Waites et al.,
2017). Diagnosis of M. pneumoniae infections is cur-
rently performed mostly by PCR tests but remains com-
plicated at an early stage of infection (Miyachi et al.,
2009). Since about a decade, research to improve early
diagnosis has focused on glycolipid antigens present on
the membrane of M. pneumoniae (Matsuda, 2015). The
percentage of glycolipids in M. pneumoniae’s membrane
varies between 6% and 10% of total lipids (Gaspari
et al., 2019).
For long, M. pneumoniae has been suspected as a

potential preceding factor of Guillain–Barr�e–Stohl syn-
drome (GBS) (Ang et al., 2002; Yuki, 2007), which
occurs at a frequency of about 5% of the total cases of
past M. pneumoniae infections (van den Berg et al.,
2014; Meyer Sauteur et al., 2016). The GBS is an
autoimmune neurological disorder that is potentially life
threatening. Campylobacter jejuni is the first microorgan-
ism that was associated with post-infectious outbreak of
GBS (Rees et al., 1995) and has been found to perform
galactocerebroside biosynthesis (Hao et al., 1998).
Galactocerebroside has been shown to be immunogenic
to a low degree in M. pneumoniae infections (Kusunoki
et al., 2001; Susuki et al., 2004), and it is postulated that
M. pneumoniae triggers GBS by inducing anti-galacto-
cerebroside IgG (Meyer Sauteur et al., 2018; Smolders
et al., 2019). In a clinical study about, a third of patients
with central nervous system infections by M. pneumo-
niae revealed anti-GalC antibodies indicating that Myco-
plasma pneumoniae also might induce other CNS
symptoms by other mechanisms (Christie et al., 2007).
Galactocerebroside, also called galactosylceramide, is

a sphingolipid, more specifically a cerebroside,

Received 20 June, 2020; accepted 22 February, 2021.
For correspondence. *E-mail erika.gaspariwur@gmail.com; Tel.
+31647889939. **E-mail maria.suarezdiez@wur.nl.
Microbial Biotechnology (2021) 14(3), 1201–1211
doi:10.1111/1751-7915.13794
Funding information
This work has received funding from European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation program under grant agreement n. 634942 (MycoSyn-
Vac), as well as from TTW‐NWO project SafeChassis, grant agree-
ment n.15814.

ª 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

bs_bs_banner

https://orcid.org/0000-0003-3354-9721
https://orcid.org/0000-0003-3354-9721
https://orcid.org/0000-0003-3354-9721
https://orcid.org/0000-0001-8172-8981
https://orcid.org/0000-0001-8172-8981
https://orcid.org/0000-0001-8172-8981
https://orcid.org/0000-0001-9133-0280
https://orcid.org/0000-0001-9133-0280
https://orcid.org/0000-0001-9133-0280
https://orcid.org/0000-0002-2352-9017
https://orcid.org/0000-0002-2352-9017
https://orcid.org/0000-0002-2352-9017
https://orcid.org/0000-0001-5845-146X
https://orcid.org/0000-0001-5845-146X
https://orcid.org/0000-0001-5845-146X
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/


characterized by a galactosyl head group. A similar com-
pound is glucocerebroside, alias glucosylceramide,
which instead consists in a cerebroside where the
monosaccharide head group is glucose. Glycosphin-
golipids such as galactocerebroside and glucocere-
broside are typically synthetized in bacteria by the
enzymes, ceramide galactosyltransferase (or galactosyl-
ceramide synthase – reaction EC 2.4.1.47) and cera-
mide glucosyltransferase (or glucosylceramide synthase
– reaction EC 2.4.1.80) of the glycosyltransferase family.
The enzyme ceramide galactosyltransferase appears in
viruses and cellular organisms; it synthetizes the biosyn-
thesis of galactocerebroside by binding UDP-galactose
to a ceramide molecule, releasing UDP.
The glycosyltransferase of M. pneumoniae, encoded

by gene mpn483, has been shown to synthesize galacto-
sylceramide (most likely the beta-variant) using ceramide
and UDP-glucose as substrates, both with phosphatidyl-
glycerol or cardiolipin as activators. M. pneumoniae has
access to ceramide and galactose. It imports ceramide
both from in vitro growth in axenic medium and from the
host in vivo during infection (Klement et al., 2007). In addi-
tion, it can use the fatty acid chains from incorporated cer-
amide in other lipids to build up ceramide-based
glycolipids. Moreover, M. pneumoniae favours the import
of glucose in vivo, albeit not in vitro, in which galactose is
preferred (Plackett et al., 1969). Finally, it is postulated
but not confirmed that M. pneumoniae contains a poten-
tial epimerase converting UDP-glucose into UDP-galac-
tose (Dandekar et al., 2000).
Characterization of the galactocerebroside biosynthe-

sis pathway in M. pneumoniae will further clarify patho-
genic mechanisms and can greatly impact the
development of methods early detection and diagnosis
of GBS. Moreover, these data are essential for the
design of alternative metabolic pathways for M. pneumo-
niae avoiding galactocerebroside formation and to iden-
tify alternative Mycoplasma species devoid of
galactocerebroside for biomedical applications.
We present here a comparative analysis investigation

of 9 strains of M. pneumoniae and additional 103 cur-
rently genome-sequenced Mycoplasma species. The
goal is to identify the genetic determinants of galacto-
cerebroside biosynthesis and to further characterize the
proteins in this pathway.

Experimental procedures

All available and complete Mycoplasma genome
sequences were retrieved from the NCBI Genome reposi-
tory. Overall, 224 genome sequences were obtained,
belonging to 104 species that are listed in File S1. All gen-
ome sequences were re-annotated using the SAPP pipe-
line (Koehorst et al., 2017). Gene prediction was

performed using Prodigal 2.6.3 (Hyatt et al., 2010), and
protein sequences were annotated using InterProScan
5.36.75.0 (Jones et al., 2014) to assign functional
domains. Annotation data were stored in a triple-store
(GraphDB) (G€uting, 1994) in a linked data format using
the GBOL ontology as schema (van Dam et al., 2019) and
systematically queried using SPARQL.
Hidden Markov Models (HMMs) were built and

searched for with HMMER v3.3 (Eddy, 1998) – through
commands hmmbuild and hmmsearch – on multiple
sequence alignments (MSAs) performed with Clustal
Omega 1.2.4 (Sievers et al., 2011; Madeira et al., 2019).
Sequence logos have been generated with WebLogo

version 3 (Crooks et al., 2004).

Results

We studied the functionalities associated with the
M. pneumoniae genome, through an analysis of protein
domains, to describe the biosynthesis pathway that
leads to the formation of galactocerebroside and com-
pare it to the pathways found in other mycoplasmas.
Therefore, we analysed 224 genomes of 104 Myco-
plasma species (given in File S1), comprising 213
strains. To ensure uniform annotation and a consistent
comparison, all genomes were re-annotated.
The synthesis of glycosphingolipid such as galacto-

cerebroside, in bacteria, needs a glycosyltransferase
enzyme, linking a sugar (galactose) to a phospholipid
(ceramide) and building the glycosyl bond. Our functional
analysis identified 4 genes containing a glycosyltrans-
ferase domain in M. pneumoniae. These have been
found in the 9 analysed strains and correspond to locus
tags mpn028, mpn483, mpn075 and mpn064 in
M. pneumoniae M129. While mpn064 (deoA) codes for
a thymidine phosphorylase (EC 2.4.2.2) that contains a
‘glycosyl transferase family 3’ domain with InterPro iden-
tifier IPR000312, mpn028, mpn483 and mpn075 contain
a ‘glycosyltransferase 2-like’ domain, ( IPR001173),
associated with proteins that have been linked to gly-
cosphingolipids biosynthesis pathways and, specifically,
to proteins that have been proven to own glycosyltrans-
ferase activity (Sobhanifar et al., 2016). Their lengths
and E-values of associated glycosyltransferase are

Table 1. The three enzymes MPN_028, MPN_075 and MPN_483
of Mycoplasma pneumoniae M129 matching the InterPro domain
IPR001173 (“Glycosyltransferase 2-like”), with E-values and gene
length.

Mycoplasma pneumoniae
M129 Enzyme

E-value: glycosyltrans-
ferase 2-like domain

Gene
length (bp)

MPN_028 2.7 9 10-26 899
MPN_483 1.2 9 10-25 1025
MPN_075 1.2 9 10-21 899
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shown in Table 1. The glycosyltransferase with more
significant E-value is MPN_028, while the one known to
synthetize galactocerebroside is MPN_483 (Klement
et al., 2007).
The InterPro IPR001173 domain comprises two Pfam

domains: ‘Glyco_trans_2_3’ (PF13632) and ‘Glyco_-
transf_2’ (PF00535); this last is found in two glycosyl-
transferases of C. jejuni, with E-values of 10-29 (Putative
galactosyltransferase – UniProtKB Q8KWR2) and 10-27

(Beta-1,3-galactosyltransferase coded by gene cgtB –
UniProtKB Q5DT13). Focusing on the Mycoplasma spe-
cies, we therefore assumed the protein sequences con-
taining the Pfam domain PF00535 to be the ones
associated with galactocerebroside synthesis. Thus, we
continued our analysis focusing on PF00535 and dis-
carded further analysis of PF13632. The distribution of
the E-values of this signature, presented in Fig. 1, shows
a bimodal distribution. The presence of two peaks sug-
gests two similar but distinct domains. Thus, we re-built
HMMs on the two separate groups obtaining two new
domains, M100535 and M200535. Then, E-values for
these domains on the sequences were re-calculated, as
indicated in Fig. 1. This approach results in two groups
of protein sequences each matching its corresponding
motif with much higher significance, that is much lower
E-values. All the strains of M. pneumoniae contain only
the second motif M200535. The HMM for M200535 motif
is provided in File S2. The two glycosyltransferases of
C. jejuni match M200535 with much higher significance
than PF00535: the beta-1,3-galactosyltransferase with E-
value 10-43 and putative galactosyltransferase with E-
value 10-42. An additional glycosyltransferase family 2
protein matching M200535 with E-value 10-42 was identi-
fied in C. jejuni, and full results are given in File S3.
The two new M100535 and M200535 motifs show

some substantial differences: the sequence alignments
of the proteins carrying the domains reveal M200535 to
be almost a twice as long as M100535. Most differences
between the two motifs are present in the first part of the
domain, where M200535-containing sequences show a
predominance of aspartic acid in positions 344, 348,
428, 430, 436 and 455 (Fig. 2). Consensus sequences
for both M100535 and M200535 are provided in File S4.
Occurrences of the domains M100535, M200535, here

defined, and of domains PF00534, PF13439 or PF13641
associated with alternative glycosyltransferases are sum-
marized in Table 2. In total, 73 out of the 104 Mycoplasma
species analysed match at least one glycosyltransferase
domain. It should be noted that any genome containing
either M100535 or M200535 also contains PF00535.
In silico functional analysis on M. pneumoniae reveals

that mpn257 contains Pfam domain ‘GDP-mannose 4,6
dehydratase’ (PF16363) comprised in the InterPro
domain IPR016040 (E-value: 2.4 10-46), found in

sequences annotated as UDP-6-glucose 4-epimerases
that interconvert UDP-glucose into UDP-galactose.
Therefore, we assume M. pneumoniae has the ability of
converting UDP-glucose into UDP-galactose.
We can conclude the pathway for galactocerebroside

synthesis in Mycoplasma pneumoniae in vivo is most
likely as represented in Fig. 3.
Domain Pfam PF01370 is associated with a function-

ally equivalent epimerase. Interestingly, analysis of all
Mycoplasma species shows that almost only the species
containing at least one domain, M200535 matched the
UDP-glucose-epimerase domains Pfam PF16363 and/or
PF01370 (Fig. 4). Exceptions are M. sp. Bg1 (not con-
taining any glycosyltransferase domain but matching an
epimerase domain) and Mycoplasma iowae (containing
a glycosyltransferase domain different from M200535).

Discussion

Our results show that all strains of M. pneumoniae anal-
ysed have at least three glycosyltransferases encoded in
the genome (in M. pneumoniae strain M129 these are
MPN_075, MPN_028 and MPN_483) that can potentially
perform the synthesis of galactocerebroside. The highly
significant match of M200535 with C. jejuni galactosyl-
transferases indicates that the sequences responsible of
galactocerebroside synthesis contain the functional
domain M200535, which, in this study, was found to be a
distinctive motif with specific feature, while previously
included in the Pfam domain PF00535. The Mycoplasma
species and strains containing at least a protein with the
functional domain M200535 are the only Mycoplasma
(with the two exceptions M. iowae and the taxonomically
not yet defined M. sp. Bg1) showing concomitant pres-
ence of a UDP-glucose epimerase domain, which con-
verts UDP-glucose into UDP-galactose. UDP-galactose is
used in the galactocerebroside synthesis and favoured,
over UDP-glucose, as a substrate by the glycosyltrans-
ferase operating the linkage. In fact, M200535 contains
conserved aspartic acid residues, which in other
microorganisms such as E. coli have been found to be cat-
alytically essential for glycosyltransferase to exploit their b-
transferase activity on UDP-sugars (Griffiths et al., 1998).
Our analysis pinpoints that almost all the Mycoplasma

species infecting humans contain the domain M200535
(Fig. 4). Other Mycoplasma species without the func-
tional domain M200535 show an absence of UDP-glu-
cose epimerase. About half of them lack any domain
associated with glycosyltransferase function; therefore,
this set of species would be most likely unable to syn-
thesize galactocerebroside that triggers GBS. Among the
human-related Mycoplasma species, those with no gly-
cosyltransferase domain are M. hominis and M. orale,
while among respiratory tract-related species, present in
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organisms other than humans, are the calves’ M. dispar,
the swine’s M. flocculare and M. hyopneumoniae, the
caprine´s M. ovipneumoniae, dog´s M. spumans and tur-
tle’s M. testudineum. The rest of the species without
functional domain M200535, and therefore lacking UDP-
glucose epimerase, comprise Mycoplasma species with
one or more glycosyltransferase enzymes containing
domains. Glycosyltransferases with domains such as
M100535 do not show conserved presence of aspartic
acid residues, indicating they might be unable to use
UDP-sugars as substrate and, in consequence, to per-
form the synthesis of galactocerebroside. Human Myco-
plasma species with glycosyltransferases lacking the
domain M200535 have not been detected, while the fol-
lowing non-human respiratory tract-related species have
been identified with glycosyltransferase and absence of
M200535: tortoise´s M. agassizii, domestic animal´s M.
arginine, bovine M. bovirhinis and M. canadense, wild
bird´s M. buteonis, goat´s M. capricolum, pigeon´s M.
columborale, canine M. cynos, pig´s M. hyorhinis,
chicken´s M. iners and M. synoviae, turkey´s M. mela-
gridis, dog´s M. molare, mink´s M. mustelae, seal´s M.
phocidae and M. phocirhinis, avian M. pullorum and lion´
s M. simbae.
Our work leads to the suggestion of genetic modifica-

tions that would validate the hypotheses formulated by
computational analysis. The characterization of the path-
way indeed suggests which genes should be a primary
target for genetic modifications to avoid biosynthesis of
galactocerebroside in M. pneumoniae. The most intuitive
strategy would be the knock-out of the genes encoding
for the glycosyltransferases blocking the transfer of
galactose to ceramide. However, this seems to be non-
trivial: in a global transposon mutagenesis inactivation
experiment of M. genitalium, the gene encoding for the
glycosyltransferase MG_517, homologous of MPN_483
in M. pneumoniae (Klement et al., 2007), remained
untouched suggesting the gene encoding for this
enzyme is essential (Glass et al., 2006). Although it is
proven that mg517 and mpn483 share 77% of gene
sequence similarity, the enzymatic activities slightly differ
in terms of specificity (Andr�es, 2011). The essentiality of
mpn483, not excluded by gene transposon analysis
(Lluch-senar et al., 2015), is expected as M. pneumo-
niae uses this enzyme to perform synthesis of many
other lipids in the membrane (Klement, 2007), which we

know are crucial for its survival (Gaspari et al., 2020). In
the same way, the gene transposon analysis conducted
by Lluch-Senar et al. suggests mpn075 and mpn257,
respectively, coding for the glycosyltransferase

Fig. 1. Top centre) Distribution of number of expected hits of all the Mycoplasma protein sequences to the Pfam domain PF00535 (‘Glyco_-
transf_2’). Expected hits are reported with correspondent -Log10(E-value). The histogram shows two different peaks: new HMMs were built on the
two groups of sequences. The first group, -Log10 (E-value) lower or equal to 13.4, is marked in orange and contains 178 sequences and the sec-
ond group, -Log10(E-value) higher or equal to 13.6, is marked in blue and contains 227 sequences. The 4 sequences with -Log10(E-value) equal to
13.5 (comprised in the green bar) are used in both groups. Lower) distribution of matches to the two new motifs. The two new motifs obtained are
called M100535 (left) and M200535 (right) and have amino acids lengths M = 341 and M = 349 respectively.

Fig. 2. Sequence logo of protein domains M200535 from sequence
position 320 to 458. M200535 is abundant in aspartic acid (D) in
positions 344, 348, 428, 430, 436 and 455.
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Table 2. Number of glycosyltransferases found in each Mycoplasma species analysed for domains M100535, M200535, PF00534, PF13439
and PF13641.

Species

N. glycosyltransferases found with domain

M100535 M200535 PF00534 PF13439 PF13641

M. agalactiea 1 1/2 0 0 1
M. agassizii 1 0 1 0 0
M. alligatoris 1 2 0 0 1
M. alvi 5 3 5 0 2
M. amphoriforme 0 5 1 0 0
M. anatis 1 1 0 0 0
M. anseris 1 0 0 0 0
M. arginini 1 0 0 0 0
M. arthritidis 1 0 0 0 0
M. bovigenitalium 2 2 1 1 2
M. bovirhinis 1 0 0 0 0
M. bovis 1 1 0 0 1
M. bovoculi 0 2 0 0 0
M. buteonis 1 0 0 0 0
M. californicuma 1/2 1 1 1 2
M. canadense 1 0 0 0 0
M. canis 1 0 0 0 0
M. capricolum 1 0 0 0 1
M. cloacale 1 0 0 0 0
M. collis 1 1 1 0 0
M. colombinum 1 0 0 0 0
M. columborale 1 0 0 0 0
M. conjunctivae 0 1 1 1 0
M. cricetuli 1 0 0 0 0
M. crocodyli 1 2 0 0 1
M. cynos 1 0 0 0 0
M. elephantisb 2/3 2/3 0 0 0
M. falifaucium 1 0 1 1 0
M. felis 1 0 0 0 0
M. fermentans 1 1 1 1 1
M. gallinarum 1 1 0 0 1
M. gallisepticum 1 1 0 0 0
M. gallopavonis 1 0 0 0 0
M. genitaliuma 1 2/3/4 0 0 0
M. girerdii 2 0 0 0 0
M. glycophylum 1 0 0 0 0
M. hyorhinis 1 0 0 0 0
M. imitans 0 1 0 0 0
M. iners 1 0 0 0 0
M. iowae 2 0 0 0 1
M. leachii 1 0 0 0 0
M. leonicaptivi 1 0 0 0 0
M. lipofaciens 1 1 0 0 0
M. melagridis 1 0 0 0 0
M. moatsii 2 6 2 0 1
M. mobile 1 2 1 0 0
M. molare 1 0 0 0 0
M. mustelae 1 0 0 0 0
M. mycoides 1 2 0 0 3
M. penetrans 0 3 0 0 1
M. phocidae 1 0 0 0 0
M. phocirhinis 1 0 1 1 0
M. pirum 2 9 4 1 1
M. pneumoniae 0 3 0 0 0
M. primatum 0 3 0 0 0
M. pullorum 1 0 0 0 0
M. pulmonis 1 0 0 0 0
M. putrefaciens 1 0 0 0 0
M. simbae 1 0 1 1 0
M. sp. 5H 0 3 1 0 0
M. sp. Bg1 0 0 0 0 0
M. sp. CAG:472 1 1 2 3 0
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MPN_075 and the epimerase MPN_257, might be
essential, at the contrary of mpn028, coding for the third
glycosyltransferase, which is reported to be non-essen-
tial. A validation of our computational analysis would

consist in knocking out mpn028 and replacing mpn483
and mpn075 with genes coding for glycosyltrans-
ferases that do not possess the motif M200535. To facili-
tate the genetic modification, genes coding for

Table 2. (Continued)

Species

N. glycosyltransferases found with domain

M100535 M200535 PF00534 PF13439 PF13641

M. sp. CAG:611a 0 2/3 3 2 1
M. sp. CAG:776 1 9 3 2 2
M. sp. CAG:877 1 6 5 4 0
M. sp. CAG:956 3 7 2 1 1
M. sp. G5847 3 1 0 0 1
M. sp. PE 1 2 1 0 0
M. sp. UBA710 2 4 0 0 0
M. sturni 1 0 0 0 0
M. subdolum 1 0 0 0 0
M. synoviae 1 0 0 0 0
M. testudinis 2 7 4 0 0
M. yeatsii 1 0 0 0 0

a. The number of glycosyltransferases among the different strains of the same species, else the same number must be considered for all the
strains of the indicated species.
b. One of the glycosyltransferase domains matches both M100535 and M200535.

Fig. 3. In vivo galactocerebroside biosynthesis pathway in Mycoplasma pneumoniae according to functional analysis. M. pneumoniae favours
the import on glucose over galactose in vivo. Once in the cytosol, UDP-glucose in converted into UDP-galactose by the epimerase containing
the functional domain PF16363, encoded by gene mpn257. UDP-galactose is then used by one of the glycosyltransferases encoded by
mpn028, mpn483 or mpn075, all containing the functional domain M200535. The import of ceramide and the synthesis of galactocerebroside
are supported by experimental evidences.
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glycosyltransferases of other mycoplasmas should be cho-
sen, among the ones not containing the motif M200535
(Fig. 4). However, the essentiality of genes mpn075 and
mpn257 remains to be clarified, due to the uncertainty of
the gene transposon analysis method in establishing gene
essentiality. Moreover, the essentiality of the gene arises
only after several strain passages (Lluch-Senar et al.,
2015). The knock-out of mpn257, coding for the UDP-glu-
cose epimerase, would indeed constitute and additional
layer of safety: the limited import of galactose in vivo is not
a sufficient condition for assuming limiting quantities for
biosynthesis of galactocerebroside, as the bacterium could
take the needed amount of galactose from glucose conver-
sion.
M. pneumoniae is the Mycoplasma species which

metabolome, transcriptome and proteome are among
the best-studied, hence, giving access to profound
basic research opportunities and development of novel
approaches in biotechnology and biomedicine (Yus
et al., 2009; Maier et al., 2013; Chen et al., 2016; Trus-
sart et al., 2017; Yus et al., 2019), among which live

attenuated vaccines (www.mycosynvac.org) and respira-
tory tract-related live biotherapeutics (www.pulmobio.c
om). Therefore, an experimental application of our com-
putational results would represent a suitable approach
to render this bacterium safe in its numerous applica-
tions. In fact, other attempts to avoid biosynthesis of
galactocerebroside seem to be not trivial: it would not
be possible to knock-out genes involved in sphingolipid
transporter since this transporter would not only import
ceramide but also very important lipids such as sphin-
gomyelin that were shown to be essential to the sur-
vival of M. pneumoniae (Gaspari et al., 2020). Instead,
the introduction of a ceramidase, disassembling cera-
mide into its sphingosine backbone and fatty acids
chains, is another potential strategy to integrate. In bac-
teria, this enzyme has been found in Pseudomonas
aeruginosa (Kita et al., 2000; Okino et al., 1998) and
Mycobacterium tuberculosis (Okino et al., 2010) to be
neutral (Tani et al., 2004) and reversible (Ito et al.,
2014), so not always favouring degradation of ceramide
but also its synthesis, according to the environmental

Fig. 4. Venn diagram of the three glycosyltransferase-representing groups of mycoplasmas (no glycosyltransferase – 31 species – in grey, at
least one glycosyltransferase with domain M200535 – 36 species – in green, other glycosyltransferases with domains different from M200535 –
37 species – in blue) intersecting the group of Mycoplasmas containing at least one UDP-glucose epimerase (28 species – in red). Except for
M. sp. Bg1 and M. iowae, only species with M200535 show presence of UDP-glucose epimerase (26 species).
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and cytosolic conditions. However, M. pneumoniae
affinity for sphingomyelin is unique, therefore, the
degradation of ceramide into sphingosine and fatty
acids could be of advantage for M. pneumoniae to build
up sphingomyelin, which it typically imports unchanged
from the medium (Worliczek et al., 2007). The in silico
characterization of the protein domain that might be
responsible of the galactocerebroside biosynthesis has
potential impact as a target for drugs related to post-in-
fectious GBS: the elucidation of the pathway and its
analysis on mycoplasmas could be used to assess the
risk of post-infectious GBS development, helping in the
development of therapeutical strategies for early diag-
nose and/or control of GBS.
Moreover, in this manuscript we report a group of

mycoplasmas that lacks both UDP-glucose epimerase,
converting UDP-glucose into UDP-galactose, and any
glycosyltransferase domain, therefore unable to complex
lipids with sugars. This group consists of M. alkalescens,
M. auris, M. dispar, M. feriruminatoris, M. flocculare, M.
gallinaceum, M. haemobos, M. haemocanis, M.
haemofelis, M. haemolamae, M. haemominutum, M.
hominis, M. hyopneumoniae, M. hyosynoviae, M. opales-
cens, M. orale, M. ovipneumoniae, M. ovis, M. parvum,
M. phage, M. phocicerebrale, M. salivarum, M. spumans,
M. suis, M. testudineum, M. virus, M. wenyonii and the
uncharacterized Mycoplasma species named 237IA, Bg2
and HU2014. Lacking the whole machinery for galacto-
cerebroside synthesis, this group of Mycoplasma species
may be considered suitable for biomedical applications
in terms of reducing the risk of post-infectious GBS.

Conclusion

All Mycoplasma pneumoniae strains have genes encod-
ing for glycosyltransferases, of which at least two are
essential and at least one has been proved to encode for
an enzyme (MPN_483 in M129) that can synthetize gly-
cosphingolipids such as galactocerebroside. Most likely,
MPN_028 and MPN_075 perform the same synthesis, as
they show high significant match for motif M200535. This
motif was found as well in C. jejuni, the first microorgan-
ism linked to GBS through galactocerebroside biosynthe-
sis. While the access of M. pneumoniae to galactose
in vivo, when the import of glucose is at higher rate,
remains unclear, the presence of a UDP-glucose epimer-
ase MPN_257, converting UDP-glucose into UDP-galac-
tose, could make the synthesis of galactocerebroside
possible. We can conclude that all wild-type strains of
M. pneumoniae are potentially capable of synthetizing
galactocerebroside and will most likely be able to do so
even with substitution or knock-out of the galactosyltrans-
ferase MPN483 or the epimerase MPN_257, which will be
problematic for certain medical applications, that is human

vaccines and live biotherapeutics. Similarly, this will be
the case for Mycoplasma species with the functional
domain M200535, presenting also a UDP-glucose epi-
merase domain. Our data show a set of Mycoplasma spe-
cies that could serve as alternatives for such biomedical
applications or that could provide pathway genes to mod-
ify M. pneumoniae accordingly.
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