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Abstract 

Purpose - In the last three decades, Synchrotron Microbeam Radiation Therapy (S-MRT) has been 

shown to achieve both good tumour control and normal tissue sparing in a range of pre-clinical animal 

models. However, the use of S-MRT for the treatment of lung tumours has not yet been investigated. 

This study is the first to evaluate the therapeutic efficacy of S-MRT for the treatment of lung carcinoma, 

using a new syngeneic and orthotopic mouse model.  

Methods and materials - Lewis Lung carcinoma-bearing mice were irradiated with two cross-fired 

arrays of S-MRT or Synchrotron Broad-Beam (S-BB) radiotherapy. S-MRT consisted of 17 microbeams 

with a width of 50 µm and centre-to-centre spacing of 400 µm. Each microbeam delivered a peak 

entrance dose of 400 Gy while S-BB delivered a homogeneous entrance dose of 5.16 Gy (corresponding 

to the S-MRT valley dose).  

Results - Both treatments prolonged the survival of mice relative to the untreated controls (CTR). 

However, mice in the S-MRT group developed severe pulmonary oedema around the irradiated 

carcinomas and did not have improved survival relative to the S-BB group. Subsequent post-mortem 

examination of tumour size revealed that the mice in the S-MRT group had notably smaller tumour 

volume compared to the S-BB group, despite the presence of oedema. Mice that were sham-implanted 

did not display any decline in health following S-MRT, experiencing only mild and transient oedema 

between 4 days and 3 months post-irradiation which disappeared after 4 months. Finally, a parallel 

study investigating the lungs of healthy mice showed the complete absence of radiation-induced 

pulmonary fibrosis 6 months after S-MRT.  

Conclusions - S-MRT is a promising tool for the treatment of lung carcinoma, reducing tumour size 

compared to mice treated with S-BB and sparing healthy lungs from pulmonary fibrosis. Future 

                  



experiments should focus on optimising S-MRT parameters to minimise pulmonary oedema and 

maximise the therapeutic ratio. 
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Introduction 

Lung cancer is the deadliest type of cancer, responsible for 1.8 million deaths worldwide in 2020.1 

Radiotherapy is indicated for around three-quarters of all patients with lung cancer,2 however, 

minimising acute and late radiation-induced side effects while controlling tumour growth remains a 

major challenge. Radiation-induced pneumonitis (RIP) is the most relevant acute toxic effect after 

conventional radiotherapy to the thorax,3 while the most prominent long-term toxicity is radiation-

induced pulmonary fibrosis (RIPF), which has an incidence of up to 28%.4 RIPF is not only detrimental to 

quality-of-life, but can also lead to fatal respiratory insufficiency.5 

 

Stereotactic Body Radiation Therapy (SBRT) is a cutting-edge radiotherapy approach for the treatment 

of early-stage non-small cell lung cancer (NSCLC) and is associated with excellent rates of local disease 

control.6 However, SBRT can induce severe collateral effects including pneumonitis, rib fracture, and 

esophagitis, especially when treating centrally located lung tumours.7 For this reason, SBRT is 

predominantly applied to small peripheral lesions. 

 

                  



Synchrotron Microbeam Radiation Therapy (S-MRT) is an innovative technique that employs the spatial 

fractionation of a synchrotron-generated X-ray beam into microbeams, typically between 20 and 100 

µm wide. This geometry exploits dose-volume effect, where the tissue tolerance-dose increases as the 

proportion of irradiated tissue decreases.8 Additionally, S-MRT utilises ultra-high dose-rates, most often 

providing the capability of delivering treatments in less than 200 ms9 and thereby triggering a FLASH 

normal tissue sparing effect. This combination of the FLASH effect and spatial fractionation makes S-

MRT a unique cancer treatment tool.  

 

A vast body of pre-clinical research demonstrates that S-MRT effectively delays tumour growth or even 

ablates malignancies whilst being very well tolerated by normal tissue.10 So far, S-MRT has been studied 

using a limited number of cancer types, most commonly in vivo models of brain tumours.11,12 Mammary 

tumours,13 melanoma,14 and squamous cell carcinoma15 have also been investigated. Mechanisms 

underlying the tumoricidal efficacy of S-MRT are (i) direct cellular radiation damage in the path of the 

microbeams,16 (ii) selective disruption of immature vessels,17 and (iii) enhancement of immune-cell 

recruitment.14 Together with excellent tumour control, S-MRT shows pronounced tissue-sparing effects 

in several organs such as the skin,18 central nervous system,19 and mature vasculature.20 Results from 

these studies are highly encouraging, but additional cancer types must be investigated to promote 

clinical translation. 

 

The first S-MRT feasibility study for lung irradiation was recently published, demonstrating that the 

C57BL/6 mouse model is well suited to explore the potential of S-MRT for the treatment of lung 

cancer.21 The lungs of healthy mice were irradiated with a peak S-MRT dose of 400 Gy or 40 Gy using 

microbeams with a width of 50 µm and a centre to centre spacing of 400 µm.21 Moreover, preliminary 

                  



(unpublished) data from our group indicates that S-MRT causes only low-grade lung fibrosis in rats up to 

12 months after irradiation. Given its superior tumour control and observed sparing of the normal lung, 

S-MRT could be a novel alternative for treating lung tumours, including central and ultra-central 

malignancies and cases where complete tumour resection is not possible.22  

 

Here we show, for the first time, the successful application of S-MRT in a new pre-clinical mouse model 

of lung carcinoma. Tumour-bearing lungs were irradiated with either two cross-fired arrays of S-MRT or 

Synchrotron-Broad Beam (S-BB) radiation, with a control group receiving no treatment. In addition, S-

MRT-induced changes in sham-injected lungs of healthy mice were observed with in vivo CT scans up to 

6 months following irradiation. In parallel, the presence of fibrosis was also examined in S-MRT- 

irradiated lungs of naïve mice at the same time point. 

 

Methods and Materials 

Animals 

Animal experimental procedures were performed under the XXXX license XXXX and the permits XXXX 

and XXXX approved by the XXXX Animal Ethics Committee. C57BL/6J female mice were purchased from 

the Animal Resources Centre (XXXX). Mice were 8 weeks old on arrival and were acclimatised for two 

weeks at the Medical beamline (XXXX) animal facility of the XXXX Synchrotron. Mice were housed at 

23°C with a 12-hour light/12-hour dark cycle and had access to food and water ad libitum. For the 

survival study, animals were culled upon reaching interruption criteria. These criteria were assessed for 

each mouse on a daily basis using a score sheet. A composite score was calculated based on the 

domains of weight loss, overall appearance, passive behaviour and behaviour after stimulation. Severe 

                  



loss of weight (more than 15% from the day of irradiation), evident breathing problems, no reaction 

after stimulation, or a radiological tumour volume greater than 100 mm3 based on in vivo CT, were 

criteria for immediate euthanasia. 

 

Cell line 

The murine Lewis Lung carcinoma (LLC1, also known as LL/2) cell line was purchased from the American 

Type Culture Collection (ATCC® CRL-1642™). Cells were cultured in Dulbecco's Modified Eagle's Medium 

(DMEM) supplemented with 10% (v/v) Foetal Bovine Serum (FBS) and kept at 37°C in a humidified 

incubator with 5% CO2. Lewis Lung carcinoma is a type of NSCLC and KRAS-mutated tumour.23 This cell 

line is clinically relevant because NSCLC accounts for 85% of all lung cancers24 and KRAS –mutations are 

the most common in patients with lung adenocarcinoma.25 It was chosen because it was originally 

derived from C57BL/6 mice lungs and therefore allowed the development of a syngeneic and orthotopic 

mouse model, immunologically compatible with the organism.26 Cells were utilised before the seventh 

passage. On the day of tumour implantation, cells were detached from the flasks with a Trypsin solution 

(0.25%) and counted with a disposable Haemocytometer C-Chip (Model: DHC-N01, NanoEntek Inc., 

Seoul, South Korea). Cells were finally re-suspended in FBS-free DMEM at a concentration of 1 x 104 

LLC1 cells per 3 µl. 

 

LLC1 inoculations 

The protocol for tumour inoculation was adapted from Mordant and colleagues.27 Paracetamol in 

drinking water (2 mg/ml) was given 48 hours prior to implantation. Each mouse was weighed and 

anaesthetised with an intraperitoneal (IP) injection of an anaesthetic cocktail comprising of Fentanyl 

(0.05 mg/kg of body weight (BW)), Midazolam (5 mg/kg BW) and Medetomidine (0.5 mg/kg BW) in 

                  



sterile water. The body temperature of each mouse was maintained at 37°C during the whole 

procedure. Each mouse was laid on its left side exposing its right flank. The area of implantation (under 

the right-scapular region) was shaved with a trimmer and disinfected with a Chlorhexidine solution (2%). 

To provide local anaesthesia, a solution of Lidocaine (0.5%) was injected subcutaneously (SC) at the site 

of inoculation. To identify the injection site, a superficial imaginary line (subsequently referred to as the 

mid-axillary line), was drawn along the mid-sagittal plane. A skin incision of approximately 5 mm was 

made with surgical scissors along the mid-axillary line and the cutaneous maximus and latissimus dorsi 

muscles were gently separated to visualise the rib cage. LLC1 cells were injected with a Hamilton syringe 

between the third and the fourth rib. A 3 µl volume of cell culture medium containing 1 x 104 cells was 

supplemented with 2 µl of Thrombin solution (18 U/ml) immediately before the injection. The total 

injection volume was 5 µl. After the inoculation, the incision was closed with two interrupted sutures 

using a 6/0 polyamide monofilament non-absorbable surgical suture. A solution of Buprenorphine (0.1 

mg/kg BW) was injected SC on the right flank to provide systemic analgesia. Anaesthesia was reversed 

with an IP injection of Flumazenil (0.5 mg/kg BW) and Atipamezole (2.5 mg/kg BW) in sterile water. Two 

mice were sham-injected: the animals underwent the whole surgical procedure but received an injection 

with no tumour cells. 

 

Irradiation set-up  

Irradiations were performed 11 days after LLC1 inoculations in Hutch 2B on the XXXX at the XXXX 

Synchrotron. After induction of anaesthesia (same protocol as used for the LLC1 inoculations), mice 

were orally intubated with a modified catheter under fibre optic guidance (Kent Scientific, Torrington, 

CT). Mice were then fixed with surgical tape onto a Perspex positioning frame and transferred onto the 

DynamicMRT small-animal irradiation stage.28,29 A Physiosuite (Kent Scientific) ventilator/monitor 

                  



calculated the tidal volume and respiratory rate from the weight of the mouse. Mice were aligned to the 

synchrotron beam using an established image guidance system.29 Deep inspiration breath-hold was 

employed for both imaging and irradiation to ensure correct alignment of the lung tumours to the 

beam. Mice were irradiated with either two cross-fired S-MRT arrays (13 mice) or two cross-fired S-BB 

fields (13 mice). Breath-hold, image guidance and irradiation were controlled from outside the 

irradiation hutch. S-MRT and S-BB were delivered using two anterior-oblique fields, centred on the 

tumour and separated by an angle of 25°. This angle was chosen to spare the spinal cord and the heart 

of the mouse. Mice were then disconnected from the ventilator, removed from the Perspex frame and 

given an IP injection of reversal cocktail (same as used for the tumour inoculations). Thirteen carcinoma-

bearing mice were used as a non-irradiated control group (CTR). In addition, 14 healthy mice were 

irradiated with two cross-fired S-MRT arrays; six mice were culled 12 hours post-irradiation to verify that 

the microbeams were delivered correctly to the tumour via yH2AX staining and eight mice were culled 6 

months post-irradiation to evaluate lung fibrosis. A further two sham-injected mice underwent periodic 

in vivo CT imaging to evaluate changes in the lungs up to 6 months post-irradiation.  

 

Dosimetry  

S-MRT and S-BB were delivered during operation at 3 GeV and with a ring current of 200 mA. The doses 

delivered to the tumour for both modalities were determined from Monte Carlo simulations using a 

phantom representative of the mouse and the plastic holder used for the irradiations. The mouse was 

modelled as a rectangular prism (100 mm long x 30 mm wide x 15 mm deep) composed of water, lying 

on a plastic plate (200 mm long, 150 mm wide, 5 mm deep) composed of poly-methyl-methacrylate. 

Mice were scanned vertically through a 2 mm high beam-slice using the DynamicMRT stage to deliver 

the prescribed doses to a total field size of 7 mm x 7 mm. Reference dosimetry was performed with a 

                  



PTW (Freiburg, Germany) Pinpoint 31014 ionisation chamber under broad-beam conditions at both the 

S-MRT and S-BB energy spectrums. For S-MRT (average energy 93 keV) each field delivered a peak 

entrance dose of 400 Gy (valley entrance dose = 2.86 Gy), equating to a peak and valley dose to the 

tumour (depth of 8.5 mm) of 353.6 Gy and 4.76 Gy, respectively. Each S-MRT field consisted of 17 

microbeams of 50 µm width with 400 µm centre-to-centre spacing. The in-slice peak MRT dose-rate was 

991.7 Gy/s at tumour depth (in-slice delivery time of 361 ms). The vertical scan speed of the mouse 

through the beam was 5.63 mm/s, leading to a total delivery time of 1.24 seconds for the entire field. 

For S-BB (average energy 124 keV), each field delivered an entrance dose of 5.16 Gy and a dose to the 

tumour of 4.76 Gy. The in-slice S-BB dose-rate was 37.0 Gy/s at 8.5 mm depth (in-slice delivery time of 

129 ms) and the vertical scan speed was 15.63 mm/s. The total time to deliver the prescribed dose to 

the entire field was 447 ms. The uncertainties (k=1) associated with the delivered doses to the tumour 

were 4.1%, 3.9% and 8.5% for S-MRT (peak), S-MRT (valley) and S-BB, respectively.  

The S-MRT valley dose matched the S-BB dose delivered to the tumour in order to distinguish the 

advantage of high peak doses in conjunction with those of homogenous radiation. 

 

 

In vivo CT scans 

In vivo lung CT scans were performed using a Siemens Inveon multi-modality scanner at the XXXX 

Biomedical Imaging facility (XXXX, XXXX). Scans were performed in step-and-shoot mode with 360 

projections at 80 kV and 500 µA with a 180 ms exposure for each projection for a total scan time of 5 

minutes. The image field-of-view was 38.63 x 33.64 mm with an effective pixel size of 40 µm. Animals 

were anaesthetised with isoflurane (2-2.5%) in 100% oxygen throughout the scan. 

                  



 

Tumour growth curve 

The tumour growth curve for the LLC1 carcinoma model was obtained by measuring the tumour size 

from the in vivo CT scan images. Measurements were taken at day 8 and day 12 post-implantation and 

every third day thereafter. The maximum dimensions of the tumour in the sagittal, coronal, and 

transverse planes were recorded. Tumour volume (in mm3) was calculated with the formula:  

 

𝑉 =  
4

3
𝜋 ×  

𝑎

2
 ×  

𝑏

2
 ×  

𝑐

2
 

 

where a, b, and c are the maximum recorded lengths of the tumour in the sagittal, coronal, and 

transverse planes, respectively. Tumour doubling times were calculated between days 8-12, 12-15, 15-

18 and day 18-21 post-implantation. Tumour doubling time was calculated with the formula: 

 

𝐷𝑜𝑢𝑏𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = (𝑡2 − 𝑡1) ∙  
ln(2)

ln (
𝑉2
𝑉1

)
 

 

where V2 and V1 are the tumour volumes at the later (t2) and earlier (t1) time points, respectively. 

 

                  



Survival curves  

Kaplan-Meier survival curves were generated and analysed using Prism version 9.0.1 (GraphPad 

Software, San Diego, CA). 

 

Post-mortem micro-CT scans 

Mice were euthanised with an IP injection of Sodium Pentobarbital (200mg/kg BW) and lungs were fixed 

with 4% PFA post-mortem. Fixation was followed by either critical point drying in the case of the model 

characterization study or paraffin embedding for the lungs coming from the survival study. Samples 

were imaged on a Bruker SkyScan 1272 high-resolution micro-tomography machine (Bruker micro-CT, 

Kontich, Belgium). The X-ray source was set to a tube voltage of 50.0 kV and a tube current of 200.0 µA, 

the x-ray spectrum was not filtered prior to incidence onto the sample. A set of 962 projections of 2452 

x 1640 pixels were recorded every 0.2° over a 180° rotation for each sample. Every individual projection 

was exposed for 273 ms and 5 projections were averaged to reduce image noise. This resulted in scan 

times of approximately 55 minutes and an isometric voxel size of 8.0 µm in the final data sets. The 

projection images were subsequently reconstructed into a 3D stack of images with NRecon version 

1.7.4.2 (Bruker microCT, Kontich, Belgium). Lung carcinomas were manually segmented from the 3D 

stack and their volumes were calculated with Imaris image version 9.3 (Bitplane, Zürich, Switzerland). 

 

Immunohistochemistry  

Mice lungs were instilled with a 2% paraformaldehyde solution through a post-mortem tracheotomy.21 

The harvested lungs were fixed in 4% paraformaldehyde for 24 hours, dehydrated in ethanol and finally 

embedded in paraffin. Immunohistochemistry was performed on 5 μm thick paraffin sections of the 

                  



lungs using rabbit polyclonal antibodies against pan Cytokeratin (Bioss Antibodies, Woburn, MA), CD31 

(Abcam, Cambridge, UK) and rabbit monoclonal antibody against Ki67 (Clone SP6) (ThermoFisher 

Scientific, Fremont, CA). Deparaffinised sections underwent antigen retrieval using Tris-EDTA buffer (pH 

9) for CD31, EDTA buffer (pH 8) for pan Cytokeratin and citrate buffer (pH 6) for Ki67. After a blocking 

step (3% skimmed bovine milk with 2.5% goat serum), the sections were incubated with the primary 

antibody (1 hour at 37°C). Endogenous peroxidase activity was blocked with 0.6% hydrogen peroxide in 

methanol. ImmPRESS® goat anti-rabbit IgG (Vector Laboratories, Burlingame, CA) was used to detect the 

primary antibodies binding to CD31, pan Cytokeratin, and Ki67. For CD31 and pan Cytokeratin, the 

Biotin-Free Tyramide Signal Amplication System (DAKO, Carpinteria, CA) was used. The sections were 

stained with NovaRed (Vector Laboratories) and cell nuclei were counterstained with haematoxylin. 

Stained sections were evaluated and photographed in an IMAGER.M2 light microscope (Carl Zeiss 

Microscopy GmbH, Jena, Germany).  

 

Quantification of Ki67 nuclear immunoreactivity 

To quantify Ki67 nuclear immunoreactivity of tumour cells, the sections stained with anti-Ki67 antibody 

were analysed. Two to 4 different areas per section were chosen using a 20x objective. The images 

obtained were analysed with ImageJFiji software,30 version 2.0.0-rc-69/1.52p. One or two regions of 

interest (ROIs) per image were defined so that each ROI contained at least 200 to 400 tumour cells. ROIs 

were defined within 500 µm from the edge of the tumour. Ki67 positive and negative tumour cells in 

each ROI were manually counted using the ImageJ Plugin Cell counter.31 Ki67 immunoreactivity was 

expressed as a percentage of positive cells over the total number of tumour cells analysed. Data were 

analysed with Prism version 9.0.1 (GraphPad Software).  

 

                  



Immunofluorescence 

Twelve hours following S-MRT, normal mouse lungs were harvested, fixed in PFA and embedded in 

paraffin as described above. After deparaffinisation (protocol described above), the tissue sections 

underwent antigen retrieval (citrate buffer, pH 6). Sections were then incubated with 2% BSA/PBS/0.3% 

Triton for 15 minutes and a second blocking solution (4.5 ml PBS-Triton 0.3%, 0.5 ml donkey serum, 0.15 

g milk powder) for 1 hour at room temperature. Sections were incubated overnight at 4°C with the 

primary Ab, rabbit anti-gamma H2A.X-phospho S139 (Abcam) in blocking solution. On the morning of 

the following day, sections were incubated with a donkey anti-rabbit Alexa Fluor488 secondary antibody 

(Life Technologies, Carlsbad, CA), and DAPI in blocking solution for 6 hours at 4°C. Images were acquired 

with a Zeiss LSM 880 confocal microscope (Carl Zeiss Microscopy GmbH, Jena, Germany). 

 

Quantification of lung fibrosis 

The lungs of irradiated normal mice were harvested 6 months following S-MRT irradiation, fixed in 4% 

PFA, and embedded in paraffin as described above. Five sets of paraffin-embedded lungs were randomly 

selected for processing and analysis. The lungs were cut coronally from caudal to cranial. Then, 5 μm 

thick sections were obtained from five different locations separated by 200 μm throughout the tissue. 

Only the most caudal portion of the remaining 3 lungs were examined. Sections were deparaffinised and 

stained with Masson-Goldner trichrome.32,33 Lung fibrosis was scored in all sections according to the 

method described by Hübner et al.34 Grade 0 corresponds to the absence of any fibrotic alteration in the 

lungs. Grade 1 to 8 describe progressive lung fibrosis where Grade 1 indicates minimal fibrosis and 

Grade 8 total fibrosis with destruction of the lung structure. 

 

                  



Results 

The LLC1 model 

The tumour growth curve for the LLC1 model is shown in Fig. 1A. Tumour doubling times were 1.62 

days, 1.89 days, 2.55 days and 4.19 days for the intervals between day 8-12, 12-15, 15-18 and 18-21 

post-irradiation, respectively. Reconstructed 3D images from post-mortem micro-CT scans of the whole 

lungs at 11 (Fig. 1B) and 14 (Fig. 1C) days post-irradiation showed solid tumours localised in the caudal 

lobe of the right lung. The choice of controlled tumour placement by injection over a spontaneous 

tumour model allowed for tumour development at a sufficient distance from the central airways and the 

heart. 

 

Pan-cytokeratin staining at all time points (11, 14 and 17 days post-implantation) revealed a well 

circumscribed tumour with well-defined pushing borders, but not surrounded by a fibrous capsule 

isolating it from the adjacent lung tissue (Fig. 2A-C). Staining for the CD31 protein (also known as 

PECAM-1), a marker for endothelial cells of blood vessels, showed the tumours were well vascularised 

with regularly distributed intra-tumoural micro-vessels (Fig. 2D-F). Tumours stained for the Ki67 nuclear 

protein showed a homogenous proliferative pattern at all the evaluated time points (Fig. 2G-I). The ratio 

of proliferating cells, calculated as the percentage of Ki67 positive cells over the total number of 

carcinoma cells within the tumour slice, was statistically significant between day 11 and day 17 post-

implantation (p=0.0419) and increased over time (Fig. S2). 

 

                  



Dosimetry and irradiation set-up  

A schematic representation of the irradiation set-up is shown in Fig. 3A. Gafchromic EBT-XD films 

(Ashland, Bridgewater, NJ) confirmed the microbeam configuration (50 µm beam width and 400 µm on-

centre spacing) as well as the angle of 25° between the two cross-fired S-MRT arrays (Fig. 3B) and S-BB 

fields (Fig. 3C). Immunofluorescent γH2AX staining for DNA damage on lung slices corroborated the 

correct delivery of the two cross-fired S-MRT arrays through the whole right lung at 12 hours post-

irradiation (Fig. 3D). The same staining was performed in S-BB irradiated lung slices (Fig. 3E). A table 

summarizing dosimetry parameters is reported in Fig. 3F. 

 

Survival 

Kaplan-Meier Survival curves (Fig. 4A) demonstrated that both S-MRT and S-BB significantly increased 

the survival of the carcinoma-bearing mice relative to the CTR group. There were no statistically 

significant differences in survival between the S-BB and S-MRT groups (p=0.3173). Median survival times 

were 7, 11 and 12 days for the control, S-BB and S-MRT groups, respectively (Fig. 4B). 

 

Radiological evaluation of LLC1 carcinomas with in vivo CT imaging 

In vivo CT imaging of mice from the CTR group confirmed the presence of a well-defined pulmonary 

mass, identified as the LLC1 carcinoma, in the right lung from 3 days prior to irradiation to day 10 post-

irradiation (Fig. 5A). The increased contrast and defined borders of the pulmonary mass allowed for 

precise measurements of the tumour volume. This was also the case for mice in the S-BB treated group 

(Fig. 5B). However, the CT images of mice belonging to the S-MRT group started to show fluid opacity 

surrounding the carcinomas from day 4 post-irradiation, which became evident on days 7 and 10 (Fig. 

                  



5C). The radiological finding of fluid opacity is attributable to pulmonary oedema. The presence of 

oedema hindered the identification of the tumour borders and the ability to measure tumour size for 

the S-MRT group. Finally, RIP cannot be excluded from the CT imaging of the S-MRT group.   

 

Post-mortem evaluation of tumour size with micro-CT imaging and histological analysis 

Lungs from the same mice shown in Fig. 5A-C were harvested at 10 days post-irradiation after reaching 

the experimental endpoints. Post-mortem perfusion to remove blood and dehydration (post-fixation) of 

the lungs allowed for visualisation of the tumour mass only, using micro-CT imaging, without the 

oedema (Fig. 5D-F). These images clearly demonstrated that the LLC1 carcinomas subjected to S-MRT 

were the smallest of the three groups. The calculated post-segmentation volumes for these carcinomas 

were 45.49 mm3, 24.5 mm3 and 3.04 mm3 for the CTR, S-BB and S-MRT groups, respectively. Histological 

examination with haematoxylin and eosin confirmed the reduced tumour size in the S-MRT group 

compared to S-BB and CTR tumours (Fig. 5D-F).The proliferation ratio at this time point (10 days post-

irradiation) also appeared lower for the S-MRT treated tumour compared to the S-BB irradiated and 

non-irradiated tumours (Fig. S3), however, this difference was not statistically significant.  

 

The observation of a smaller size for the S-MRT treated tumour was also made in mice sacrificed upon 

reaching experimental endpoints at day 7 (CTR) and day 8 (S-BB and S-MRT) following irradiation. 

Macroscopic pictures and histological evaluation (via haematoxylin and eosin staining) confirmed that 

the size of the tumour receiving S-MRT was clearly smaller compared to those receiving S-BB or no 

irradiation (Fig. S4). 

 

                  



Evaluation of long-term side effects with CT imaging 

In vivo CT images for the sham-implanted and S-MRT irradiated mice, from scans taken periodically over 

the course of 6 months, are shown in Fig. 6. An opacity attributable to a moderate form of liquid 

effusion was observed from day 4 up to 3 months post-irradiation (Fig. 6C-F). However, this opacity was 

no longer detectable four months post-irradiation (Fig. 6G). No health impairments were detected in 

either of these mice throughout the six-month follow-up period. 

 

Evaluation of long-term fibrosis 

In the 8 healthy mice subjected to S-MRT, staining of lung sections with Masson-Goldner trichrome at 6 

months post-irradiation revealed a score 0 on the Hübner scale for all samples, corresponding to the 

absence of fibrotic changes (Fig. 6I).  

 

Discussion  

Previous S-MRT research demonstrates amelioration of survival and exceptional tumour control in pre-

clinical models of glioma, melanoma, and mammary carcinoma10. The present study adds to this body of 

research by showing, for the first time, the efficacy of S-MRT for the treatment of lung carcinoma. 

Although we did not demonstrate a significant increase in survival time after S-MRT relative to S-BB (Fig. 

4), port-mortem analysis found that S-MRT was the most effective modality for reducing tumour size 

(Fig. 5D-F and Fig. S4). However, because this was designed as a survival study, there was an insufficient 

number of samples harvested at pre-established time points to confirm whether this observation was 

statistically significant. For this purpose, future mechanistic studies should be performed.  

 

                  



A further key finding of this study was the development of oedema, and possible acute RIP around the 

tumours, following S-MRT (Fig. 5). The detrimental effects of pulmonary oedema on respiratory function 

and overall well-being is likely to be the reason why there was no survival advantage for the S-MRT 

group compared to the S-BB group. In contrast, serial in vivo CT scans of the sham-implanted mice 

showed only a minor and transient form of liquid effusion following S-MRT. A similar observation of 

mild, transient oedema was made previously in a study of normal rat brains irradiated with doses up to 

1000 Gy by an S-MRT array of 25 µm wide microbeams with a centre-to-centre spacing of 211 µm.35 

Taken together, these observations suggest that the presence of the malignancy itself was a critical 

contributor to the extent of the observed pulmonary oedema in the S-MRT group. It has been 

demonstrated that the vascular toxicity and consequent vascular disruption caused by S-MRT depends 

on the stage of vessel maturation.17, 20 Tumours have immature vasculature, and therefore would be 

more susceptible to significant tumour capillary disruption and pulmonary oedema following S-MRT.  

 

Importantly, the present study also demonstrated that S-MRT did not cause long-term lung fibrosis, 

even after delivering a high total peak dose (400 Gy x 2 = 800 Gy). This suggests that there may be a 

potential benefit for patients who require aggressive radiation treatment that might otherwise 

significantly deteriorate their long-term quality of life. Future experiments should aim to prevent the 

formation of oedema while maintaining the demonstrated tumour control and long-term absence of 

fibrosis. The concomitant administration of S-MRT with other strategies known to reduce pulmonary 

oedema should be considered, including supplemental oxygen or pharmacological treatment with 

Glyceryl trinitrate or furosemide.36 In addition, careful selection of S-MRT delivery parameters, such as 

peak dose, microbeam width and spacing, dose-rate and temporal fractionation, may also be crucial for 

the success of S-MRT for treating lung carcinoma. 

                  



 

A peak-dose of 400 Gy was chosen for this study based on the demonstrated therapeutic efficacy of this 

S-MRT dose for several other pre-clinical cancer models.10 However, for these previous studies, a smaller 

microbeam centre-to-centre spacing of 200 µm was used.10 To compensate for the use of a 400 µm 

centre-to-centre microbeam spacing – the only available configuration at the XXXX Synchrotron – we 

chose to cross-fire two S-MRT arrays, each delivering 400 Gy, for a total peak dose of 800 Gy peak to the 

tumour and adjacent areas of surrounding normal lung tissue. In retrospect, this very high total dose 

may have exceeded the structural tolerance of the lung tissue, contributing to the observed pulmonary 

oedema. For future experiments, the total peak-dose could be reduced and the use of multiple cross-

fired S-MRT arrays avoided, if a smaller centre-to-centre spacing between the microbeams is used.  

 

Increasing the S-MRT dose-rate further may also contribute to diminishing the acute oedema observed 

in the tumour-bearing mice. There is evidence that the FLASH normal tissue sparing effect is 

proportional to the applied dose-rate.37,38 Therefore, using a dose-rate even higher than 991.7 Gy/s (in-

slice delivery time of 361 ms for S-MRT) could help to reduce, or even prevent, the basal fluid effusion 

from normal lung tissue which was observed in the sham-implanted mice and could have contributed to 

the pulmonary oedema in the tumour-bearing mice. Increasing the dose-rate, in combination with 

employing a narrower collimator and a reduced total peak dose, could help to balance effective vascular 

disruption in the tumor with sparing of the surrounding normal lung tissue. Repeating these 

experiments at the XXXX Synchrotron Radiation Facility (XXXX), where dose-rates of up to 16000 Gy/s 

can be employed, will allow for an evaluation of the contribution of dose-rate amplitude to the 

prevention of acute pulmonary oedema following S-MRT. 

 

                  



Finally, an additional strategy that should be adopted in future experiments is temporal fractionation of 

the total S-MRT dose. A recent study showed that fractionating the dose with respect to time by 

administering S-MRT as three consecutive daily doses of 133 Gy resulted in a 50% rate of complete 

tumour remission in a mouse model of melanoma.39 This approach is likely to favour the therapeutic 

efficacy of S-MRT on lung cancer by also reducing the risk of pulmonary oedema.  

 

For future in vivo studies, S-MRT parameters should be carefully determined by considering the 

sensitivity of the treated organ bearing the malignancy. For the treatment of lung carcinoma we propose 

the use of a microbeam centre-to-centre spacing of 200 µm, a total peak dose of 400 Gy administered 

daily over two to three consecutive days (e.g. 2 x 200 Gy or 3 x 133 Gy), and an ultra-high dose-rate in 

the order of 1 x 104 Gy/s. These considerations aim to reduce collateral effects – particularly pulmonary 

oedema in lung cancer models – and may increase the therapeutic effect of S-MRT in the treatment of 

other unexplored tumours types. 

 

Conclusions 

In the present study, we have made a significant step towards using S-MRT for the treatment of lung 

cancer by successfully targeting and treating a localised lung carcinoma in a pre-clinical model. We have 

demonstrated that S-MRT increases survival compared to non-irradiated controls and reduces the size 

of tumours whilst not causing fibrotic changes up to six months post-irradiation. Optimising S-MRT 

parameters to reduce the risk of pulmonary oedema will maximize its therapeutic potential and clinical 

translation for the treatment of lung malignancies.   
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Figure captions 

 

Fig. 1 – LLC1 tumour model growth dynamics. (A) LLC1 tumour growth curve in the absence of 

treatment. 3D reconstructed post-mortem micro-CT images of the lungs of tumour-bearing mice at 11 

(B) and 14 days post-implantation (C). The ventral view is shown. Black arrows indicate the carcinomas. 

 

                  



 

Fig. 2 – Histological characterisation of the LLC1 tumour model. Pan Cytokeratin staining (NovaRed) 

showed clear localisation of the carcinomas in the lung tissue at 11 (A), 14 (B), and 17 (C) days post-

                  



implantation. Higher magnification images of pan Cytokeratin staining revealed the tumour borders 

(dotted line in A', B' and C'). Images of tumours stained for CD31 (NovaRed) showed well-vascularised 

tumours with regular blood vessel distribution at 11 (D, D’), 14 (E, E’) and 17 days post-implantation (F, 

F’). Images for Ki67 staining (NovaRed) demonstrated persistent proliferative activity at 11 (G, G’), 14 (H, 

H’) and 17 days post-implantation (I, I’).  

 

 

Fig. 3 – S-MRT irradiation set-up. (A) Schematic representation of the mouse thorax (axial view) with the 

two cross-fired S-MRT arrays targeting the tumour. Gafchromic films confirmed the geometry of the two 

                  



microbeams arrays (B) and of the S-BB fields (C). (D, D’) Immunofluorescent staining for γH2AX (positive 

green nuclei) in irradiated normal lungs harvested at 12 hours post-irradiation verified the successful 

delivery of the two cross-fired S-MRT arrays to the right lung. (E) The same staining at 12 hours post-

treatment confirmed the S-BB delivery. (F) Table summarizing dosimetry parameters. 

 

 

Fig. 4 – Post-irradiation survival. (A) Kaplan-Meier survival curves and (B) median survival times for the 

control (CTR, black), S-BB (green) and S-MRT (purple) groups. The Log-rank (Mantel-Cox) test showed 

that the differences in survival between CTR vs S-BB (** p=0.0014) and CTR vs S-MRT (**** p˂0.0001) 

were statistically significant. The difference in survival between S-BB vs S-MRT was not statistically 

significant.  

 

                  



 

Fig. 5 – Monitoring of tumour development. In vivo CT imaging of carcinomas three days prior to 

irradiation and 1, 4, 7 and 10 days post-irradiation for tumours in CTR (panels A to A''''), S-BB (panels B 

                  



to B'''') and S-MRT (panels C to C’’’’) groups. Extensive pulmonary oedema was observed only in the S-

MRT group (asterisks, panel C’’ to C’’’’). The tumours depicted by the in vivo CT images at 10 days post-

irradiation were subsequently evaluated by post-mortem micro-CT and manually segmented; CTR (D, 

D’), S-BB (E, E’), S-MRT (F, F’). Histological evaluation (haematoxylin and eosin staining) of the same 

tumours is shown in panel D’’ (CTR), E’’ (S-BB) and F’’ (S-MRT). Histology and post-mortem micro-CT 

revealed substantially smaller lesions for S-MRT compared to both S-BB and CTR groups at 10 days post-

irradiation.  

 

                  



 

Fig. 6 – Long-term study of healthy lungs following irradiation. Sham-implanted mice which received S-

MRT were evaluated over 6 months by in vivo CT scans. Scans were performed 3 days prior to irradiation 

                  



(A), then at day 1 (B), day 4 (C), day 7 (D), day 37 (E), 3 months (F), 4 months (G) and 6 months (H) post-

irradiation. Fluid opacity is indicated with yellow arrowheads in C, D, E and F. (I to I’’’’) Masson-Goldner 

trichrome stained lung sections at increasing magnification demonstrate no evidence of lung fibrosis at 

6 months post-irradiation. Panel I’’’’ is part of I’’’. Panels I’’’ and I’’ are parts of I’, that is part of I. 
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