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Abstract

Background: The COVID-19 global health crisis has led to an exponential surge in published scientific literature. In an attempt
to tackle the pandemic, extremely large COVID-19–related corpora are being created, sometimes with inaccurate information,
which is no longer at scale of human analyses.

Objective: In the context of searching for scientific evidence in the deluge of COVID-19–related literature, we present an
information retrieval methodology for effective identification of relevant sources to answer biomedical queries posed using natural
language.

Methods: Our multistage retrieval methodology combines probabilistic weighting models and reranking algorithms based on
deep neural architectures to boost the ranking of relevant documents. Similarity of COVID-19 queries is compared to documents,
and a series of postprocessing methods is applied to the initial ranking list to improve the match between the query and the
biomedical information source and boost the position of relevant documents.

Results: The methodology was evaluated in the context of the TREC-COVID challenge, achieving competitive results with the
top-ranking teams participating in the competition. Particularly, the combination of bag-of-words and deep neural language
models significantly outperformed an Okapi Best Match 25–based baseline, retrieving on average, 83% of relevant documents
in the top 20.

Conclusions: These results indicate that multistage retrieval supported by deep learning could enhance identification of literature
for COVID-19–related questions posed using natural language.
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Introduction

Background
In parallel with its public health crisis with vast social and
economic impacts, the COVID-19 pandemic has resulted in an
explosive surge of activities within scientific communities and
across many disciplines [1]. In turn, it has led to an
overabundance of information online and offline — a
phenomenon described as an infodemic [2-4] — with often
negative impacts on the population [5]. Since early 2020 when
the pandemic was officially announced, the number of
publications related to COVID-19 has had exponential growth
[6]. In addition to the volume and velocity of the generated data,
the heterogeneity as a result of the typical variety of concept
naming found in the biomedical field, spelling mistakes, and
the different source types [7] make searching and discovery of
relevant literature within the COVID-19 corpora an important
challenge [2].

With the sheer quantity of COVID-19 information continuously
produced, researchers, policy makers, journalists, and ordinary
citizens, among others, are unable to keep up with the
fast-evolving body of knowledge disseminated. As knowledge
about the pandemic evolves, study results and conclusions may
be improved, contradicted, or even proven wrong [3]. Combined
with relentless media coverage and social media interactions,
this fast-changing and massive amount of information leads to
confusion and desensitization among audiences (eg, as in the
case of school opening guidelines and mask-wearing and social
distancing recommendations) [5,8]. They also fuel deliberate
attempts to create information disorders, such as misinformation,
disinformation, malinformation, and fake news [9], reducing
the effectiveness of public health measures and endangering
countries’ ability to stop the pandemic, ultimately having a
negative impact on live costs [10,11].

To support states and relevant actors of society to manage the
COVID-19 infodemic, the World Health Organization (WHO)
has published a framework containing 50 recommendations, of
which more than 20% are related to strengthening the scanning,
review, and verification of evidence and information [2]. To
help actors involved with the pandemic find the most relevant
information for their needs, effective information retrieval
models for the COVID-19–related corpora became thus a
prominent necessity [12]. The information retrieval community,
in turn, has responded actively and quickly to this extraordinary
situation and has been aiming to address these challenges. To
foster research for the scientific communities involved with the
pandemic, the COVID-19 Open Research Dataset (CORD-19)
[13] collection was built to maintain all the related publications
for the family of coronaviruses. This dataset helped research in
various directions, and several tasks are built around it, including
natural language processing (NLP)–related tasks, like question
answering [14] and language model pretraining [15], and
information retrieval challenges in Kaggle [16] as well as the
TREC-COVID [17,18].

The TREC-COVID [18-20] challenge ran in 5 rounds, each
asking for an incremental set of information needs to be
retrieved from publications of the CORD-19 collection. In a

TREC-COVID round, participants were asked to rank
documents of the CORD-19 corpus in decreasing order of
likelihood of containing answers to a set of query topics. At the
end of the round, experts provided relevance judgments for the
top-ranking documents submitted by different participants using
a pooling strategy [21]. Although limited to the first several top
submissions of the participating teams, these relevance
judgments enable the evaluation of the different models and are
valuable examples to train retrieval models for the subsequent
rounds of the challenge.

To improve search and discovery of COVID-19 scientific
literature, in this work we aimed to investigate an information
retrieval model supported by deep language models to enhance
findability of relevant documents in fast-evolving corpora.

More than 50 teams participated in the TREC-COVID challenge
worldwide, developing new information retrieval and NLP
methodologies to tackle this complex task [22-27]. Having
participated in the TREC-COVID challenge, in this paper we
detail our retrieval methodology, which brought us competitive
results with the top-ranking teams. Particularly, we used a
multistage retrieval pipeline, combining classic probabilistic
weighting models with novel learning to rank approaches made
by ensemble of deep masked language models. We present our
results and analyze how the different components of the pipeline
contribute to providing the best answers to the query topics.

Related Work

Two-Stage Information Retrieval
Currently, 2 main methodologies are used to rank documents
in information retrieval systems: (1) the classic query-document
probabilistic approaches, such as Okapi Best Match 25 (BM25)
[28] and probabilistic language models [29], and (2) the
learning-to-rank approaches, which usually postprocess results
provided by classic systems to improve the original ranked list
[30,31]. When there are sufficient training data (ie, queries with
relevance judgments for the case of information retrieval),
learning-to-rank models often outperform classic one-stage
retrieval systems [30,32]. Nevertheless, empiric results have
also shown that the reranking step may degrade the performance
of the original rank [33]. Progress on learning-to-rank algorithms
has been fostered thanks to the public release of annotated
benchmark datasets, such as the LETOR [34] and Microsoft
Machine Reading Comprehension (MS MARCO) [35].

Learning-to-rank approaches can be categorized into 3 main
classes of algorithms — pointwise, pairwise, and listwise —
based on whether they consider 1 document, a pair of
documents, or the whole ranking list in the learning loss
function, respectively [30-32,36]. Variations of these
learning-to-rank algorithms are available based on neural
networks [31,36] and other learning algorithms, such as boosting
trees [37]. More recently, pointwise methods leveraging the
power of neural-based masked language models have attracted
great attention [38,39]. These learning-to-rank models use the
query and document learning representations provided by the
masked language model to classify whether a document in the
ranked list is relevant to the query. While these two-stage
retrieval methods based on neural rerankers provide interesting
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features, such as learned word proximity, in practice, the first
stage based on classic probabilistic retrieval algorithms is
indispensable, as the algorithmic complexity of the reranking
methods makes them often prohibitive to classify the whole
collection [32].

Recent advances in text analytics, including question answering,
text classification, and information retrieval, have indeed mostly
been driven by neural-based masked language models. A
seminal effort in this direction is the Bidirectional Encoder
Representations from Transformers (BERT) model [38], which
shows significant success in a wide range of NLP tasks. BERT
uses a bidirectional learning approach based on the transformer
architecture [40] and is trained to predict masked words in
context. Since the introduction of BERT, several works tried
to augment its performance. A successful work in this direction
is the robustly optimized BERT approach (RoBERTa) [41],
using larger and more diverse corpora for training as well as a
different tokenizer. While RoBERTa needs larger computing
power, it often improves the performance of BERT across
different downstream tasks. Another similar effort is the XLNet
model [42], which uses a permutation-based masking, showing
also consistent improvement over BERT.

TREC-COVID Retrieval Efforts
Recently, the specific case of retrieval of COVID-related
scientific publications has been addressed in several efforts
[22-27]. These works follow mostly the aforementioned
two-stage retrieval process. Among the first efforts is the
SLEDGE system [22], where the authors detailed their solutions
for the first round of the TREC-COVID challenge using a
BM25-based ranking method followed by a neural reranker. An
important difficulty for the first round of the challenge is the
absence of labelled data. To overcome this limitation, the authors
lightly tuned the hyperparameters of the first-stage ranking
model using minimal human judgments on a subset of the topics.
As for the second stage, they used the SciBERT model [43],
which is pretrained on biomedical texts, and fine-tuned on the
general MS MARCO set [35] with a simple cross-entropy loss.
CO-Search [24] uses a slightly different approach, wherein they
incorporated semantic information, as captured by
Sentence-BERT [44], also within the initial retrieval stage.
Moreover, they used the citation information of publications in

their ranking pipeline. In the work of Covidex [23], the authors
provided a full-stack search engine implementing a multistage
ranking pipeline, where their first stage is based on the Anserini
information retrieval toolkit [45], complemented by different
neural reranking strategies. They addressed the issue of length
variability among documents with an atomic document
representation using, for example, paragraph-level indexing.

Methods

In this section, we describe the corpus and query set and our
methodology for searching COVID-19–related literature in the
context of the TREC-COVID challenge. We start by introducing
the CORD-19 dataset, which is the corpus used in the
competition. We then describe the challenge organization and
assessment queries. Then, we detail our searching methodology,
based on a multistage retrieval approach. Finally, we present
the evaluation criteria used to score the participants’
submissions. For further details on the TREC-COVID challenge,
see [19,20].

The CORD-19 Dataset
A prominent effort to gather publications, preprints, and reports
related to the coronaviruses and acute respiratory syndromes
(COVID-19, Middle East respiratory syndrome [MERS], and
severe acute respiratory syndrome [SARS]) is the CORD-19
collection of the Allen Institute for Artificial Intelligence (in
collaboration with other partners) [13]. Figure 1 describes the
size and content origin of the corpus for the different
TREC-COVID rounds. As we can see, this is a large and
dynamically growing semistructured dataset from various
sources like PubMed, PubMed Central (PMC), WHO, and
preprint servers like bioRxiv, medRxiv, and arXiv. The dataset
contains document metadata, including title, abstract, and
authors, among others, but also the full text or link to full-text
files when available. A diverse set of related disciplines (eg,
from virology and immunology to genetics) are represented in
the collection. Throughout the challenge, the dataset was
updated daily, and snapshot versions representing its status at
a certain time were provided to the participants for each round.
In the last round of the TREC-COVID challenge, the corpus
contained around 200,000 documents, coming mostly from
Medline, PMC, and WHO sources.
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Figure 1. Evolution of the CORD-19 corpus across the TREC-COVID rounds stratified by source. PMC: PubMed Central; WHO: World Health
Organization.

The TREC-COVID Challenge
To assess the different information retrieval models, the
TREC-COVID challenge provided a query set capturing relevant
search questions of researchers during the pandemic. These
needs are stated in query topics, consisting of 3 free-text fields
— query, question, and narrative — with an increasing level of
context, as shown in the examples in Table 1. The challenge
started with 30 topics in round 1 and added 5 new topics in each
new round, thus reaching 50 topics in round 5.

In each round, the participants provided ranked lists of candidate
publications of the CORD-19 collection that best answered the

query topics. Each list was generated by a different information
retrieval model, so called run, with up to 5 runs in the first 4
rounds and 7 runs in the last round per team. At the end of the
round, domain experts examined the top k candidate publications
(where k is defined by the organizers) from the priority runs of
the teams and judged them as “highly relevant,” “somehow
relevant,” or “irrelevant.” Then, based on the consolidated
relevance judgments, the participants were evaluated using
standard information retrieval metrics (eg, normalized
discounted cumulative gain [NDCG], precision). Judged
documents for a specific topic from previous rounds were
excluded from the relevance judgment list.

Table 1. Examples of TREC-COVID topics with the fields query, question, and narrative.

NarrativeQuestionQueryTopic

Seeking a range of information about the SARS-CoV-2 virus’s origin,
including its evolution, animal source, and first transmission into hu-
mans

What is the origin of COVID-19?Coronavirus origin1

Looking for information on biomarkers that predict disease outcomes
in people infected with coronavirus, specifically those that predict
severe and fatal outcomes

Which biomarkers predict the severe clinical
course of 2019-nCOV infection?

Coronavirus
biomarkers

25

Looking for studies specifically focusing on mRNA vaccines for
COVID-19, including how mRNA vaccines work, why they are
promising, and any results from actual clinical studies

What is known about an mRNA vaccine for
the SARS-CoV-2 virus?

mRNA vaccine
coronavirus

50

Proposed Multistage Retrieval Methodology
Figure 2 shows the different components of our information
retrieval pipeline for the COVID-related literature. These
components can be divided into 3 main categories: (1) first-stage
retrieval using classic probabilistic methods, (2) second-stage
(neural) reranking models, and (3) rank fusion algorithms. Given
a corpus containing metadata information, such as title and

abstract, and full text, when available, documents are stored
using directed and inverted indexes. Then, transformer-based
and classic learning-to-rank models trained using relevance
judgments are used to classify and rerank pairs of
query-document answers. The ranked list obtained from the
different models are further combined using the reciprocal rank
fusion (RRF) algorithm.
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Figure 2. Multistage retrieval pipeline, where light green indicates first-stage retrieval, light and dark blue indicate second-stage retrieval, and M1-M7
denote the different models used to create the respective runs 1-7 in round 5. BERT: Bidirectional Encoder Representations from Transformers; BM25:
Okapi Best Match 25; DFR: divergence from randomness; L-MART: LambdaMART model; LMD: language model Dirichlet; Logistic: logistic regression
model; RoBERTa: robustly optimized BERT approach; RRF: reciprocal rank fusion.

First-Stage Retrieval
For the first-stage retrieval, we assessed 3 variations of the
classic query-document probabilistic weighting models: BM25
[46], divergence from randomness (DFR) [47], and language
model Dirichlet (LMD) [48].

Our first classical model, Okapi BM25 [28], is based on the
popular term frequency-inverse document frequency (tf-idf)
framework. In the tf-idf framework, term-weights are calculated
using the product of within term-frequency tf and the inverse
document frequency idf statistics. Denote f(t,d) as the number
of times a term t appears in a document d within a collection
D, BM25 calculates the term-weight w as:

where |d| is the length of the document, |D| is the size of the
collection, avgl is the average length of the documents in the
collection, nt is the number of documents containing the term
t, and k1 and b are parameters of the model associated with the
term frequency and the document size normalization,
respectively.

The second model, DFR, extends the basic tf-idf concept by
considering that the more the divergence of the term frequency
tf from its collection frequency cf (cf ≈ df), the more the
information carried by the term in the document [47]. Thus, for
a given model of randomness M, in the DFR framework, the
term-weight is inversely proportional to the probability of
term-frequency within the document obtained by M for the
collection D:

w(t,d,D) = k·logpM (t   d|D),

where pM is a probabilistic model, such as binomial or geometric
distributions, and k is a parameter of the probabilistic model.

The third model, LMD, uses a language model that assigns
probabilities to word sequences with a Dirichlet-prior smoothing
to measure the similarity between a query and a document [48].
In a retrieval context, a language model specifies the probability
that a document is generated by a query, and smoothing is used
to avoid zero probabilities to unseen words and improves the
overall word probability accuracy. In the LMD algorithm,
term-weight is calculated using the following equation:

where p(t|d) denotes the probability of a term in a document,
p(t|D) is the probability of a term in the collection, and μ is the
Dirichlet parameter to control the amount of smoothing.

In our pipeline, the BM25, DFR, and LMD implementations
are based on the Elasticsearch framework. The model parameters
were trained using the queries and relevance judgments of round
4 in a 5-fold cross-validation setup.

Second-Stage Reranking
The models used in the first-stage ranking were based on the
bag-of-words statistics, where essentially we looked at the
histogram of query terms and their document and collection
statistics but neglected the sequential nature of text and word
relations. To mitigate these limitations and improve the initial
rankings, after the first-stage retrieval, we used neural masked
language models trained on the relevance judgments from
previous rounds so that syntactic and semantic relations can be
better captured [49,50]. As shown in Figure 2, we assessed 3
masked language models based on the transformer architecture:
BERT, RoBERTa, and XLNet.

Figure 3 shows the general idea of how we used the BERT
language model to match documents to a query topic. Given a
topic and a document associated with it as input and a relevance
judgment as the label for the query-document association
(relevant or not), the model was trained or fine-tuned in the
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BERTology parlance, as it had been previously pretrained on
a large corpus, to predict whether the document is relevant to
the query. In the input layer of the pretrained model, the topic
and candidate publication were tokenized and separated by the
language model [SEP] token (stands for sentence separation).
Moreover, to enforce the sequential structure of text, positional
embedding as well as sentence embeddings were added to the

main embeddings for each token. These embeddings were then
fed to the transformer layers of BERT, which were updated
during the fine-tuning step. Finally, the output of the special
[CLS] token (stands for classification) was used to determine
the relevance of the candidate publication to the queried
information topic.

Figure 3. Neural masked language model for document relevance classification. As inputs to the pre-trained masked language model, the topics and
candidate publications are separated by the [SEP] tag. Inputs are tokenized using subword tokenization methods (grey boxes); segment embeddings
(yellow boxes) represent the difference between a topic and a document input; position embeddings (green boxes) enforce the sequential structure of
text; the transformer and classification layers are updated in the training phase using the relevance judgments; and the output of the special [CLS] token
is finally used to determine the relevance of the candidate publication to the queried information topic.

Using the query topics from a preceding round (round 4 for the
results presented here) and their respective list of relevance
judgments, we fine-tuned the BERT model to rescore the initial
association of the query-document pair between (not relevant)
and (very relevant). For this, we used the score associated with
the [CLS] token position. We limited the input size of the query
and document to 512 tokens (or subwords). Then, at the
second-stage re-ranking step, we classified the top k publications
retrieved by the first stage models using the fine-tuned BERT
model (we set k=5000 in our experiments).

Identical training strategies were used for the RoBERTa and
XLNet language models. The main difference for the RoBERTa
model is that it was originally pretrained on a corpus with an
order of magnitude bigger than that of BERT (160 GB vs 16
GB). Moreover, it uses dynamic masking during the training
process, that is, at each training epoch, the model sees different
versions of the same sentence with masks on different positions,
compared to a static mask algorithm for BERT. Last, RoBERTa
uses a byte-level Byte-Pair-Encoding tokenizer compared to
BERT’s WordPiece. As BERT and its variants (eg, RoBERTa)

neglect the dependency between the masked positions and suffer
from a pretrain-finetune discrepancy, XLNet adopts a
permutation language model instead of masked language model
to solve the discrepancy problem. For downstream tasks, the
fine-tuning procedure of XLNet is similar to that of BERT and
RoBERTa.

We used the BERT (base - 12 layers), RoBERTa, and XLNet
model implementations available from the Hugging Face
framework. The models were trained using the Adam optimizer
[51] with an initial learning rate of 1.5e–5, weight decay of
0.01, and early stopping with a patience of 5 epochs.

Combining Model Results
We used the RRF algorithm [52] to combine the results of
different retrieval runs. RRF is a simple, yet powerful technique
to rescore a retrieval list based on the scores of multiple retrieval
lists. Given a set of documents D to be sorted and a set of
ranking files R = {r1…rn}, each with a permutation on 1…|D|,
RRF computes the aggregated score using the following
equation:
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where r(q,d) is the rank of document d for the query q in the
ranking file ri and k is a threshold parameter, which was tuned
to k=60 using data from previous rounds.

Second-Step Learning-to-Rank
To exploit the features (relevance score) created by the different
bag-of-words and masked language models, we added a
second-step learning-to-rank pass to our pipeline. Using the
similarity scores s computed by the BM25, DFR, LMD, BERT,
RoBERTa, and XLNet as input features and the relevance
judgments of previous rounds as labels, we trained 2
learning-to-rank models: LambdaMART and a logistic
regression classifier. While the language models exploit the
sequential nature of text, they completely neglect the ranking
provided by the bag-of-words models. Thus, we investigated
the use of the LambdaMART [31] algorithm, which uses a
pairwise loss that compares pairs of documents and tells which
document is better in the given pair. Moreover, we trained a
simple pointwise logistic regression to consider the similarity
measures computed by the first- and second-stage retrieval
models. We used the pyltr and scikit-learn implementations for
the LambdaMART and logistic regression, respectively. For
the LambdaMART model, we trained the learning rate and the
number of estimators, and for the logistic regression model, we
trained the solver and regularization strength parameters.

First-Stage Retrieval: Preprocessing, Querying
Strategies, and Parameter Tuning
In the first-stage retrieval step, we applied a classical NLP
preprocessing pipeline to the publications (indexing phase) and
topics (search phase): lower-casing, removal of
nonalphanumerical characters (apart from “-”), and Porter
stemming. Additionally, a minimal set of COVID-related
synonyms, such as “covid-19” and “sars-cov-2,” were created
and used for query expansion.

The queries were then submitted to the index in a combinatorial
way using the different topic fields and document sections. This
means that, for each query, question, and narrative field of a
topic, we submitted a query against the index for each of the
title and abstract sections of the publications (abstract + full
text in case of the full-text index). Additionally, the whole topic
(query + question + narrative) was queried against the whole
document. This querying strategy led to 7 queries for each topic,

and the final score was computed by summing up the individual
scores. Moreover, as the first public announcement of a
coronavirus-related pneumonia was made in January 2020, we
filtered out all publications before December 2019.

We defined the best query strategy and fine-tuned the basic
parameters of the bag-of-words models using the relevance
judgments of the previous round in a 5-fold cross-validation
approach. As an example, to tune the b and k parameters of the
BM25 model in round 5, we took the topics and relevance
judgment from round 4 and submitted them to the index in round
5, optimizing the P@10 metric. For round 1, we used default
parameter values.

Evaluation Criteria
We used the official metrics of the TREC-COVID challenge to
report our results: precision at K documents (P@K), NDCG at
K documents (NDCG@K), mean average precision (MAP),
and binary preference (Bpref) [19]. For all these metrics, the
closest the result is to 1, the better the retrieval model. They
were obtained using the trec_eval information retrieval
evaluation toolkit.

Results

We used 7 models from our pipeline to create the 7 runs
submitted for the official evaluation of the TREC-COVID
challenge (labels M1 to M7 in Figure 2). Our first model —
bm25 — based on the BM25 weighting model against the
metadata index provided the baseline run. Our second model
— bow + rrf — was a fusion of the BM25, DFR, and LMD
weighting models computed against the metadata and full-text
indices and combined using the RRF algorithm. Model 3 —
mlm + rrf — used the RRF combination of the BERT,
RoBERTa, and XLNet models applied to the top 5000
documents retrieved by model 2. Model 4 — bow + mlm + rrf
— combined the results of models 2 and 3 using the RRF
algorithm. Then, model 5 — bow + mlm + lm — reranked the
results of runs 2 and 3 using the LambdaMART algorithm
trained using the similarity scores of the individual models 2
and 3. Similarly, model 6 — bow + mlm + lr — was based on
a logistic regression classifier that uses as features the similarity
scores of runs 2 and 3 to classify the relevance of the
query-document pairs. Finally, model 7 — bow + mlm + lr +
rrf — combined runs 2, 3, and 6 using the RRF algorithm. For
all RRF combinations, the parameter k was set to 60. All models
and parameters were trained using round 4 relevance judgments.
Table 2 summarizes the submitted runs.
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Table 2. Summary of the submitted runs. Refer to Figure 2 for a pictorial description.

DescriptionNameRun

Run based on the baseline BM25a model using the metadata indexbm251

An RRFb combination of BM25, DFRc, and LMDd models computed against the metadata and full-text indicesbow + rrf2

An RRF combination of BERT, RoBERTae, and XLNet models applied to run 2mlm + rrf3

An RRF combination of runs 2 and 3bow + mlm + rrf4

A LambdaMART-based model using features from the individual models used to create runs 2 and 3bow + mlm + lm5

A logistic regression model using features from the individual models used to create runs 2 and 3bow + mlm + lr6

An RRF combination of runs 2, 3, and 6bow + mlm + lr + rrf7

aBM25: Okapi Best Match 25.
bRRF: reciprocal rank fusion.
cDFR: divergence from randomness.
dLMD: language model Dirichlet.
eRoBERTa: robustly optimized BERT approach.

Official Evaluation Results
Table 3 shows the official results of the TREC-COVID
challenge for the 7 submitted runs. As we can see, the best
results are provided by model 7 (bow + mlm + lr + rrf), apart
from the metric Bpref, which is the highest for model 5 (bow
+ mlm + lm). Comparing the NDCG@20 metric, model 7
improved 16.4 percentage points against the baseline model
(26.0% relative improvement). On average, almost 17 of the

top 20 documents retrieved by model 7 were pertinent to the
query. Model 3 was able to retrieve 6.6% more relevant
documents compared to the baseline model (6963 vs 6533 of a
total of 10,910 documents judged relevant for the 50 queries).
On the other hand, it showed a relative improvement in precision
of 22.1% for the top 20 documents. Therefore, it not only
improved the recall but also brought relevant documents higher
in the ranking list. These results show that the use of the masked
language models had a significant positive impact in the ranking.

Table 3. Performance of our models in round 5 of the TREC-COVID challenge.

# releMAPdBprefcP@20bNDCG@20aModel

65330.27070.50210.64400.6320bm25

66950.27780.51740.66500.6475bow + rrf

69630.34680.56800.78800.7716mlm + rrf

70060.37190.56160.80500.7826bow + mlm + rrf

68340.30680.57590.74600.7297bow + mlm + lm

69760.34390.57190.74500.7375bow + mlm + lr

69390.37890.56590.82600.7961bow + mlm + lr + rrf

aNDCG@20: normalized discounted cumulative gain at 20 documents.
bP@20: precision at 20 documents.
cBpref: binary preference.
dMAP: mean average precision.
e# ref: total number of relevant documents retrieved by the model for the 50 queries.

Table 4 shows the official best results for the different metrics
for the top 10 teams participating in round 5 of TREC-COVID
(NDCG@20 metric taken as reference). Comparing the
NDCG@20 metric, the best model submitted by our team
(risklick) was ranked 4 of the 28 teams participating in round
5, 5.4 percentage points below the top-performing team
(Unique-ptr). For reference, the best-performing model in the
challenge retrieves on average 17.5 relevant documents per

query in the top 20 retrieved documents compared to 16.5 for
our model. If we consider a reference baseline made by the
median of the participating teams’ best values, our pipeline
outperforms the baseline by 11.7%, 14.6%, 16.7%, and 25.0%
for the MAP, P@20, NDCG@20, and Bpref metrics,
respectively. All data and results of the TREC-COVID challenge
can be found here: [17].
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Table 4. Official leaderboard of the top 10 teams in the final round of the TREC-COVID challenge.

MAPdBprefcP@20bNDCG@20aTeam

0.47310.63780.87600.8496unique_ptr

0.39220.53300.84600.8311covidex

0.41690.62840.83400.8100Elhuyar_NLP_team

0.37890.57590.82600.7961risklick (ours)

0.36820.55550.82700.7930udel_fang

0.39830.57350.83200.7921CIR

0.39010.57090.84200.7921uogTr

0.33480.44880.84400.7859UCD_CS

0.40610.60780.82100.7789sabir

0.39030.58730.81100.7759mpiid5

aNDCG@20: normalized discounted cumulative gain at 20 documents.
bP@20: precision at 20 documents.
cBpref: binary preference.
dMAP: mean average precision.

Model Performance Analyses
Figure 4 shows the relative improvement of the different models
in the pipeline in relation to the baseline (model 1 – bm25)
according to the NDCG@20 metric. The most significant
contribution to the final performance came from the inclusion
of the masked language models in the pipeline — model 3: mlm
+ rrf and model 4: bow + mlm + rrf — adding a relative
performance gain to the results of 22.1% and 23.8%,
respectively. The classic learning-to-rank models — model 5

and model 6 — actually jeopardized the performance when
compared to their previous model in the pipeline (model 4).
However, when model 6 was combined with model 4, a 2.1
percentage point gain was achieved on top of model 4, leading
to the best model (model 7: bow + mlm + lr + rrf). Indeed, it is
important to notice the consistent benefit of combining models
using the RRF algorithm. Interestingly, the effect of
LambdaMART seemed to be significantly detrimental for P@20,
NDCG@20, and MAP, but marginally beneficial for Bpref, for
which it is the best model.

Figure 4. Relative contribution of each model for the normalized discounted cumulative gain at document 20 (NDCG@20) metric compared to the
baseline model bm25.
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The performance of the individual masked language models is
shown in Table 5. Surprisingly, they are similar to the baseline
model, with small performance reductions for BERT and
RoBERTa models and a small performance gain for the XLNet
model. However, when combined, they provide the significant
performance improvement shown in Figure 4. Our assumption
is that they retrieve different documents as relevant and their

combination using RRF ends up aligning these documents in
the top rank. Indeed, looking at the top 3 documents for query
1 retrieved by these models, for example, there is no overlap
between the documents, with 8 relevant and 1 unjudged (out of
the 9 documents). This result clearly shows the beneficial effect
of using an ensemble of masked language models, as well as
the success of RRF in fusing their retrievals.

Table 5. Performance of the individual masked language models and their combination using reciprocal rank fusion (RRF).

# releMAPdBprefcP@20bNDCG@20aModel

68790.28970.55880.64300.6209BERTf

69450.29460.55300.64400.6261RoBERTag

69260.30640.56440.65700.6436XLNet

69630.34680.56800.78800.7716mlm + rrf

aNDCG@20: normalized discounted cumulative gain at 20 documents.
bP@20: precision at 20 documents.
cBpref: binary preference.
dMAP: mean average precision.
e# ref: total number of relevant documents retrieved by the model for the 50 queries.
fBERT: Bidirectional Encoder Representations from Transformers.
gRoBERTa: robustly optimized BERT approach.

Topic Performance Analyses
The performance analyses for the individual topics shows that
our best model had a median value of 0.9000 for the P@20
metric (max=1.0000, min=0.3000), which demonstrates
successful overall performance. However, as shown in Figure
5, for some topics, notably 11, 12, 19, 33, and 50, less than 50%
of documents in the top 20 retrieved are relevant. For topics 11,
12, and 19, which searched for “coronavirus hospital rationing,”
“coronavirus quarantine,” and “what alcohol sanitizer kills
coronavirus” information, respectively, all our models have
poor performance, and indeed, the combination of the different
models in the pipeline managed to boost the results. On the
other hand, for topics 33 and 50, which searched for
“coronavirus vaccine candidates” and “mRNA vaccine
coronavirus” information, respectively, it was the combination
with the logistic regression model that lowered the performance
(notice in Figure 5 that model 4: bow + mlm + rrf has a

significantly better performance compared to model 7 for those
queries).

The difference in performance per topic between our best model
and the median of the submitted runs in round 5 for all teams
for the P@20 metric is shown in Figure 6. Indeed, topics 11,
12, and 19 seemed hard for all the models participating in the
TREC-COVID challenge to retrieve the correct documents.
Even if our best model had poor performance for those topics,
it still outperformed most of the runs submitted to the official
evaluation. In particular, topic 19 had only 9 relevant or
somewhat relevant documents in the official relevance
judgments, which means that its max performance can be at
most around 50% for the P@20 metric. For our worst
performing topics compared to the other participants — topics
33 and 50 — better tuning between the ranking weights of the
bag-of-words, masked language, and logistic regression models
could have boosted the results.
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Figure 5. Per topic precision at rank 20 (P@20) in round 5 of TREC-COVID per each run. The baseline run1 and the best-performing run7, which
benefits from neural language models, are highlighted with dashed lines. Note that for most topics, the transformer-based runs have significantly
improved performance.

Figure 6. Per topic performance difference between our best model (model 7) and the median of all official submissions for the precision at document
20 (P@20) metric in round 5.
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Time-Dependent Relevance Analyses
Given the dynamics of the COVID-19 pandemic, with a
relatively well-defined starting period, a particularly effective
technique to remove noise from the results, also adopted by
some other participating teams [22], is filtering documents based
on their publication dates. For our first-stage retrieval models,
we filtered out publications before December 2019 when the
outbreak was first detected. This led to a small negative impact
on recall but highly improved the precision of our models.

To better understand how the document relevance varied over
time, we analyzed the publication date of the official relevance
judgments for the 5 rounds of TREC-COVID. As we can see

in Figure 7, there is a clear exponential decay pattern in the
number of relevant articles over time for all the rounds, with a
faster decay in the first rounds and a longer tail for the later
ones. We noticed that more recent publications closer to the
round start, when the snapshot of the collection was created and
queries were submitted, tended to have a higher probability of
being relevant to the information need, with a half-life of around
20 days for round 1. This is somehow expected. First, as the
documents found in previous query rounds were explored and
are no longer relevant, only the most recent data are interesting,
particularly in the gap between rounds. A second explanation
is that in the case of a pandemic, new evidence arrives at an
explosive rate, possibly refuting older knowledge.

Figure 7. Distribution of the publication dates of the “highly relevant” articles for each of the TREC-COVID rounds.

Discussion

To support effective search and discovery of COVID-19–related
relevant literature in the COVID-19 infodemic, we explored the
use of a multistage retrieval pipeline supported by bag-of-words
models, masked language models, and classic learning-to-rank
methods. The proposed methodology was evaluated in the
context of the TREC-COVID challenge and achieved
competitive results, being ranked in the top 4 of 126 runs among
28 teams participating in the challenge. The use of the multistage
retrieval approach significantly improved the search results of
COVID-related literature, leading to a gain in performance of
25.9% in terms of the NDCG@20 metric compared to a
bag-of-words baseline. Particularly, the ensemble of masked
language models brought the highest performance gain to the
search pipeline. Indeed, ensembles of language models have
proved to be a robust methodology to improve predictive
performance [53-55].

The COVID-19 pandemic has led to a huge amount of literature
being published in the most diverse sources, including scientific
journals, grey repositories, and white reports, among others. As
the pandemic continues, the number of scientific publications
grows at an unprecedented rate causing an infodemic within
many of the different disciplines involved [3]. Finding the most
relevant information sources to answer different information
needs within the huge volume of data created had become of
utmost necessity [2]. By enabling the discovery of relevant
information sources to complex user queries, effective retrieval
models as proposed in this work may help to tackle the spread
of misinformation. Such models empower experts with a
minimal cost to search and discover information sources within
a massive and fast-evolving corpus. Indeed, our model provides
relevant information sources for more than 8 documents in the
top-10 rank. Thus, continuous active search methods could be
put in place to monitor and discover sources of evidence to
certain query topics of relevant public health interest (eg,
“coronavirus origin”) in a timely manner. This in turn, would
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enable experts to analyze, identify, and curate both sources of
the best evidence at the time and sources of misinformation.
The former would foster the creation among others of living
systematic reviews [56,57], which is one of the
recommendations of the WHO to tackle the COVID infodemic
[2]. On the other hand, the latter could help fight, for example,
the spread of scientific fake news by early retraction of
misinforming articles, particularly in preprint servers, and thus
limiting their exposition.

Looking at the boost in performance of model 3 (mlm + rrf)
alone, one could be tempted to argue that masked language
models could be the main component in a retrieval system.
However, 2 issues may arise: algorithmic complexity and search
effectiveness. The former is related to the high complexity of

masked language models (O(n2 · h), where n is the sentence
length and h is the number of attention heads), which makes it
prohibitive to classify a whole collection, often containing
millions of documents, for every given query. The latter is
related to the effectiveness of the individual models themselves.
As shown in Table 5, individually, the performance of the
language models is not significantly different from the baseline
BM25 model. Thus, we believe it is the combination of models
with different properties that can provide a successful search
strategy in complex corpora, such as the one that originated
from the COVID-19 infodemic.

In terms of practical implications, by effectively processing
natural language, the methodology proposed can help biomedical
researchers and clinicians to find the COVID-19 papers that
they need. The efficient literature discovery process fostered
by our methods may lead to faster publication cycles when
required, for example reducing from weeks to days the drafting
time of COVID-19 reviews [58], but also to less costly creation
of curated living evidence portals, which will inform clinicians
and public health officers with the best available evidence [59].
Indeed, as shown in [27,60], these methodologies outperform
commercially available tools for searching and discovering
COVID-19–related literature. Moreover, as they are data-driven,
it is expected that they can be extrapolated to other types of
corpora, such as clinical trial protocols and biomedical metadata
datasets [60,61], enabling thus a more comprehensive
identification of scientific evidence. Equally important, as the
COVID-19 infodemic is not the first and unlikely the last
[62,63], our methodology and findings could be extended to
help tackling future epi-, pan-, and infodemics by supporting
relevant actors to scan large and fast-changing collections to
create timely reviews and curated evidence and apply localized
infodemic management approaches.

With the rapid surge of published information and the variety
of topics and sources related to COVID-19, it became hard for
professionals dealing with the pandemic to find the correct
information for their needs. While the automation discussed in
this work can support more effective search and discovery, some
high-level topics are still challenging. Indeed, some topics
assessed in the TREC-COVID challenge were shown to be
particularly hard for the retrieval models. For example, for topic
11, which searched for documents providing information on
“guidelines for triaging patients infected with coronavirus,” our

best model prioritized documents providing information about
indicators for diagnosis (eg, “early recognition of coronavirus,”
“RT-PCR testing of SARS-CoV-2 for hospitalized patients
clinically diagnosed”). On the other hand, it missed documents
including passages such as “telephone triage of patients with
respiratory complaints.” Similarly, for topic 12, which searched
information about the “best practices in hospitals and at home
in maintaining quarantine,” our model prioritized documents
providing information about “hospital preparedness” (eg,
“improving preparedness for,” “preparedness among hospitals”)
and missed documents containing information about
“home-based exercise note in Covid-19 quarantine situation.”

The methodology proposed has some limitations. First, it fails
to explore transfer learning of learning-to-rank datasets. While
the top-ranked teams all used multistage retrieval approaches,
confirming the value of such methodology in modern retrieval
models [18,23], the reranking strategy within the different
pipelines varied slightly among the participants. For example,
the top-ranked team used transfer learning from the MS
MARCO learning-to-rank dataset and from a zero-shot learning
approach. Other teams in the top 3 used transfer learning from
a silver collection, based on the known item search technique
[64]. Second, while we explored the combination of different
topic items to build our queries, we failed to work on the
document indexing unit, leaving all the normalization work to
the probabilistic weighting models. As the COVID-19 literature
comes from heterogeneous collections, containing sometimes
only title and sometimes large full text, even with good
finetuning of the model parameters, such variation in size and
content poses a challenge to the first-stage retrieval model.
Indeed, some strategies that explored decomposing the indexing
unit into small structures, such as sentences and paragraphs,
have achieved more competitive results [23].

Another limitation of our work was the ability to explore the
freshness of the corpus. The TREC-COVID challenge dynamics,
running throughout a sequence of rounds with new incremental
search topics added on each round, provides an interesting
setting for evaluating retrieval models in an infodemic context.
It simulates typical search and discovery workflows, in which
evolving queries are posed against an evolving body of
knowledge over time, and already discovered documents in
previous searches are no longer relevant [65,66]. A successful
strategy in this case is to filter out results according to a cut-off
date, thus reducing noise in the retrieval set. However, in
retrospect, we noticed that another useful technique, which is
very natural to an infodemic case, could be to decay the score
of publications by their distance to the present time or explore
their recency or freshness [67,68], as highlighted in Figure 7,
rather than a hard cut-off (ie, December 2019 in our case) for
all the rounds. We leave exploring such a strategy as future
work.

To conclude, we believe our information retrieval pipeline can
provide a potential solution to help researchers, decision makers,
and medical doctors, among others, search and find the correct
information in the unique situation caused by the COVID-19
pandemic. We detailed the different components of this pipeline,
including the traditional index-based information retrieval
methods and the modern NLP-based neural network models,

J Med Internet Res 2021 | vol. 23 | iss. 9 | e30161 | p. 13https://www.jmir.org/2021/9/e30161
(page number not for citation purposes)

Teodoro et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


as well as insights and practical recipes to increase the quality
of information retrieval of scientific publications targeted to the
case of an infodemic. We grounded our results in the
TREC-COVID challenge, where around 50 different teams

participated in the 5 rounds of the competition. We showed very
competitive results as judged by the official leaderboard of the
challenge. Apart from the COVID-19 case, we believe our
solutions can also be useful for other potential future infodemics.
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