19. 4. 2024

.org/10. 48350/ 158380 | downl oaded:

https://doi

source:

Corinna Rutschi and Jens Dibbern
6 Transforming and recombining routines to
scale the implementation of software robots

Abstract: With the increasing potential to automate business processes using software
robots, companies face the challenge of scaling the implementation of such robotic
systems in order to enable their efficient evolution. The implementation of software
robots is based on the often time consuming work carried out by the project team,
which often leads to higher than expected costs and time delays. This can be made
more efficient by scaling the extension of the robot’s functionalities. However, scal-
ing can only take place once one has understood what can be scaled, how it can be
scaled, and to what extent. Routine theoretical concepts help us better understand
the extent to which processes previously carried out by humans can be transformed
and transferred to robots. We build on literature on routine dynamics as well as dig-
ital scaling to understand the mechanisms required to scale the implementation of
software robots. Therefore, based on an empirically illustrated theoretical conceptu-
alization of scaling the software robot implementation, we elaborate in this chapter
how routines evolve and dynamically influence each other in order to explain how
scaling can be approached when implementing software robots. In doing so, we rely
on data from two case studies. In one case study a chatbot was contextually expanded
over time. In the second case study a series of robotic process automation (RPA) robots
were implemented.

Keywords: Software robots, robotic process automation, chatbot, software implemen-
tation, digital scaling, routine theory

6.1 Introduction

Companies are increasingly introducing software robots to automate some of their
business processes. They often start with implementing software robots in a specific
area or department, such as customer support (Willcocks and Lacity, 2016). Based
on such initial experiences, they may identify additional departments or contexts in
which they could implement additional robots. However, if they start from scratch
for each new robhot to be programmed this results in high costs and time expenditure.
Accordingly, companies may ask themselves how they could speed up the robot im-
plementation process. Ideally, robots are implemented with the intention of extending
their scope and reach, which simultaneously poses the challenge of scaling their im-
plementation. While the initial development and programming of robots often mirrors
an innovative process, which requires exploration and experimentation, their further
development can be made more efficient by drawing from scaling mechanisms. Such

https://doi.org/10.1515/9783110676693-006

112 — C.Rutschiand]. Dibbern

scaling should allow for a more efficient implementation of software robots since it
allows for extending functionality of current robots or developing additional robots
in novel contexts, without significant additional costs. As a result, the conditions for
scaling the implementation of software robots are an important area of inquiry.

Prior research on software robot implementations has mainly focused on the
above-mentioned one-time implementation process. Thereby, drawing on routine
theory, the implementation of software robots has been viewed as the transfer of rou-
tines from humans to robots (D’Adderio, 2011; Rutschi and Dibbern, 2019, 2020). This
has led to initial insights into the steps to be taken and the underlying conditions
for automating particular (business) processes (Rutschi and Dibbern, 2019, 2020). It
was shown that the basis of automation requires an understanding of the structure
of both, existing business processes to be automated and the operating principle of a
robot, i. e., one needs to think like a robot.

In this study, we seek to develop a better understanding of the robot implemen-
tation process to consider how it changes when companies already implemented soft-
ware robots that can be taken as a basis to develop additional robots. Thereby, we seek
to close the gap in understanding the dynamic evolution of software robots by devel-
oping some foundational knowledge on the scaling of the implementation of software
robots. The notion of scaling has recently been gaining increased interest in the IS lit-
erature, when it comes to understanding the exponential growth of digital startups
and entrepreneurs. Such digital growth often rests on the creation and recombination
of digital resources, which has also been referred to as the scaling of digital infras-
tructures (Henfridsson and Bygstad, 2013). In a like vein, an existing software robot
may also be viewed as a digital resource that serves as the basis for scaling the process
of software robot implementations. However, little is known about what this process
of scaling actually looks like in the context of software robots. Accordingly, we aim
at investigating how the implementation of software robots can be accelerated. In or-
der to gain insights into how such acceleration or scaling can be achieved, we need
to understand what can be scaled (i. e., scaling resources), how it can be scaled (i. e.,
scaling mechanisms), and to what extent it can be scaled (conditions for contextual
growth). In line with existing research on software robot implementations (Rutschi
and Dibbern, 2019, 2020), we draw on routine theory (D’Adderio, 2011; Leonardi, 2011)
as a basis for understanding how human-executed business processes can be trans-
formed into robot-automated processes. Specifically, we draw on recent advances in
routine theory that explain how the performance of routines to achieve particular ends
leads to the generation of means that can be reused to achieve new ends (Dittrich and
Seidl, 2018; Howard-Grenville, 2005). By reusing generated means, the overall pace
of achieving a specific end can be accelerated. A similar dynamic can be observed in
the implementation of software robots, where certain components can be created that
can subsequently be reused, which may result in scaling the implementation process.
Such digital scaling may be described as a dynamic reinforcing process by which the
reach of a software robot is extended either through expanding its functionalities or

6 Transforming and recombining routines to scale =— 113

by transferring its functionalities to additional software robots that may reuse part of
its components (Henfridsson and Bygstad, 2013). In order to better understand digital
scaling in the context of software robot implementations, we formulate the following
research question: How can the implementation of software robots be accelerated and
thus the transfer of routines to software robots be scaled?

We seek to address this research question by taking a dynamic perspective and by
exploring the generative mechanisms that help in scaling the transfer of routines to
robots, i. e., the robot implementation process. Our overarching objective is to explain
what digital scaling means in relation to transferring routines to robots. Routine the-
oretical concepts help us better understand the extent to which processes previously
carried out by humans can be transformed and transferred to robots not only once,
but concurrently. We build on literature on routine dynamics as well as digital scal-
ing to understand the conditions for scaling the implementation of software robots.
Therefore, based on an empirically illustrated theoretical conceptualization of scaling
the software robot implementation, we elaborate how routines evolve and dynami-
cally influence each other in order to explain how scaling can be approached when
implementing software robots. In doing so, we rely on data from two case studies that
we use for an illustrative purpose in this chapter. In one case study a chatbot was
implemented. In the second case study RPA robots were implemented.

6.2 Scaling as a process of routine emergence

For a successful evolution of software robots, the process of enlarging its reach and
functionalities over time must be understood. In an information systems (IS) perspec-
tive, scaling means extending an IS in size and/or scope within the same or a new en-
vironment. In relation to software robots, an environment could describe the setting
(or context) in which a software robot acts involving all surrounding actors. Thus, scal-
ing describes practices that allow a technology to be “spread, enhanced, scoped, and
enlarged” (Sahay and Walsham, 2006, p. 43). In contrast, the term scale refers to the
size and scope of an IS that can be achieved by scaling (Sahay and Walsham, 2006).
Up to now, scaling has mainly been used to achieve economies of scale through stan-
dardization (Chandler, 1990). Scaling may thereby lead to different outcomes, such as
an increased user base (Huang et al., 2017) or a successfully evolved digital infrastruc-
ture (Henfridsson and Bygstad, 2013). The implementation of software robots essen-
tially describes the transformation of human-executed processes to such carried out
by a robot (D’Adderio, 2011; Rutschi and Dibbern, 2019, 2020). Such processes could
be associated with routines. A routine can thereby be described as a series of inter-
dependent actions performed on a pattern basis whereby various actors can be in-
volved (Feldman and Pentland, 2003; Feldman et al., 2016). Routines are composed
of ostensive and performative aspects. The ostensive aspect refers to formal rules and

114 =— C.Rutschiand]. Dibbern

procedures that can be described as the “guidelines” of how to perform the routine.
The performative aspect refers to the actual performance of these rules and proce-
dures. Both the performative and ostensive aspects of a routine influence each other
if the routine is performed by a human (D’Adderio, 2011; Feldman et al., 2016; Pent-
land and Feldman, 2005). To illustrate this using an example, consider an employee
A who must prepare a monthly report. Since employee A must prepare the report in the
same way every month following certain guidelines, we can characterize this process
as a routine. The guidelines describe the ostensive aspect of the routine. The actual
preparation of the report describes the performative aspect of the routine. Each time
employee A prepares the report, he or she could potentially identify means to prepare
the report in a better way or more efficiently next time. This would cause the performa-
tive aspect of the routine (i. e., the way of preparing the report) to change. Over time,
employee A could thus deviate from the original guidelines. This would also cause
the ostensive aspect to change. Thus, employee A has an influence on both the os-
tensive and the performative aspects of the routine of preparing the monthly report.
Suppose employee A hands over the task of preparing the report to another employee
B. Employee A would have to explain to employee B how to prepare the report (i. e.,
ostensive aspect) before employee B could actually prepare the report (i. e., performa-
tive aspect). Eventually, employee B will bring in his or her own way of doing things
and thus change the performative aspect of the routine, which may lead to a change
in the ostensive aspect as well.

Humans do not always perform routines in the same way. They can change rou-
tines due to changing contexts or circumstances (Dittrich and Seidl, 2018; Howard-
Grenville, 2005). Thus, humans can influence and change the performative as well
as the ostensive aspect of a routine. Routine theory helps to unlock the black box of
how humans perform routines (Leonardi, 2011). Before routines can be transferred to
robots at all, an understanding of how the routine is composed and the extent to which
it has previously been performed by humans must first be gained. An understanding
must be gained of both the ostensive and performative aspects of the routine as it is
performed by a human.

Once such an understanding has been established, one must comprehend the
dynamics of software robots and the extent to which robots are capable of perform-
ing routines. One must think like a robot to understand how a routine previously
performed by a human can be adequately translated so that the robot can later under-
stand and perform it (D’Adderio, 2011; Rutschi and Dibbern, 2019, 2020). Our focus
here lays on software robots that execute rule-based processes and are not able to
learn autonomously. Such robots are developed by humans (for example the devel-
opers) by means of programming within a given software environment. The software
robot then determines how a certain routine must look for the robot to perform it.
Thus, the robot can initially influence the ostensive aspect of the routine. Once imple-
mented, however, the robot cannot influence the routine itself anymore but executes

6 Transforming and recombining routines to scale =— 115

it according to the implemented guidelines (i.e., the ostensive aspect). Unlike hu-
mans, software robots execute routines by strictly following the given guidelines.
Consequently, when a robot executes a routine, no reciprocity between the ostensive
and the performative aspect can be observed, rather the ostensive aspect corresponds
with the performative aspect.

Rutschi and Dibbern (2020) explain the phenomenon of automating processes by
means of software robots and introduce an iterative framework of routine automation,
which they use to explain to what extent routines can be transferred from humans
to robots. They explored the extent to which an individual process or routine can be
transferred from a human to a robot (Rutschi and Dibbern, 2020). In case a company
wants to automate numerous processes and thus transfer them to robots, it can lead to
enormous costs and time expenditures if the company must approach the automation
of each process or the programming of each robot individually. This could be made
more efficient if one could draw on prior automation approaches and thus accelerate
the whole automation process. In order to ensure a successful evolution of software
robots, it is essential to understand what scaling means in this context. This requires
an understanding of what is scalable, i. e., of what can be scaled, how it can be scaled,
and to what extent it can be scaled (Sahay and Walsham, 2006).

6.2.1 What to scale

Robots are designed to perform certain tasks by following certain behavior patterns
or rules. In addition, robots include features such as “adaptivity, robustness, versa-
tility and agility” (Pfeifer etal., 2007, p. 1088). Generally, a robotic system or a soft-
ware robot can be any machine replacing work performed by humans (Willcocks and
Lacity, 2016) while gathering information and following instructions to execute tasks
(Tirgul and Naik, 2016). Examples for robotic systems are robotic process automation
(RPA) (Willcocks and Lacity, 2016) and chatbots (Sengupta and Lakshman, 2017). Im-
plementing RPA robots allows companies to automate back office business processes
(Slaby, 2012; Willcocks and Lacity, 2016).

RPA robots execute processes like humans while interacting with IT systems
through their user interface (Asatiani and Penttinen, 2016; Willcocks and Lacity,
2016). In doing so, RPA robots log in (and out) of systems like humans do (Willcocks
and Lacity, 2016).

Implementing a chatbot allows companies to automate conversational business
processes (Heller et al., 2005; Shawar and Atwell, 2007). After releasing a chatbot into
the live system, the human user can interact with it via a user interface, such as a
pop-up window integrated on a web site (Sengupta and Lakshman, 2017), Facebook
Messenger, Skype, or Slack (Patil et al., 2017).

By introducing software robots, companies can benefit from improved perfor-
mance in terms of quality and efficiency, as robots outperform humans in executing

116 —— C.Rutschiand). Dibbern

certain tasks and processes (Fung, 2014; Guzman and Pathania, 2016; Sengupta and
Lakshman, 2017; Sharma et al., 2016; Slaby, 2012). Scaling in the sense of implement-
ing robots might be described as engineering robots “capable of performing a large
variety of tasks” (Pfeifer etal., 2007, p.1091). However, scaling does not refer to the
extent to which a system can be configured, customized, parameterized (Sahay and
Walsham, 2006), or adapted. Adaptation may be necessary in the case of environmen-
tal changes so that a system can perform processes exactly as it did before the change.
However, this does not mean that its functionalities are extended and therefore can-
not be called scaling. What can be described as scaling is the step-by-step process in
which technology changes into a more complex form (Henfridsson and Bygstad, 2013).

Routine theory describes the dynamic evolution of routines through the perfor-
mance of preceding routines. As outlined above, humans do not always perform rou-
tines in the same way, which implies that routines change over time or new routines
emerge. Humans play a central role in changing existing and generating new routines
(Feldman, 2000; Howard-Grenville, 2005). Performing routines thus causes routines
to change or new routines to emerge (Pentland et al., 2012). Dittrich and Seidl (2018) ar-
gue that means can be created while performing routines. These means can be reused
to define and achieve current and new ends. Reusing means in any subsequent perfor-
mance of a routine results in the routine to change over time (Dittrich and Seidl, 2018).
To draw the analogy to the implementation of software robots, one could argue that in
the course of programming software robots means are generated that can subsequen-
tially be reused in the further programming of software robots. Such means could be
described as components that can be used to build and implement a software robot.

Today, standard robotic implementation solutions are available that provide a
kind of toolbox, whereby the robot can be built with the help of the elements contained
therein. An example of this is Blue Prism,' which allows one to build RPA robots by
modeling business processes in processes and objects. A process describes the logic of
how an RPA robot should perform a specific task. An object describes the RPA robot’s
interaction with specific systems on their user interface.

Another example is IBM Watson Conversation Services,2 which make it possible
to create a chatbot by modeling conversations in decision trees and introducing vari-
ations and synonyms. A decision tree refers to the structure of a specific dialogue.
Variations refer to different semantic structures of questions and answers within the
decision tree. Synonyms refer to different terms for the same elements within specific
questions and answers.

With regard to RPA robots, means or components that can be reused could be pro-
cess structures and objects. With regard to chatbots, means or components that can

1 https://www.blueprism.com/
2 https://www.ibm.com/watson/ph-en/conversational-ai/

6 Transforming and recombining routines to scale =— 117

be reused could be decision trees, variations, and synonyms. Reusing components al-
lows the transfer of routines from humans to robots to be performed more efficiently.
In other words, the robot implementation process can be scaled. This essentially im-
plies that the process of transferring routines from humans to robots may have been
very complex in the past but certain components have been created that can now be
reused. By reusing these same components, the further transfer of routines to robots
can be made more efficient and thus scaled.

Thus, scaling can be described as a generative process, which requires actions
taken by actors such as the developer. Such actions can be associated with reuse.
Reuse enables the development and implementation of IT systems in a more efficient
way. Thus, scaling requires that certain components can be reused. Hence, what to
scale refers to the components that can be reused in the further implementation of
software robots.

6.2.2 How to scale

Reuse of already created components can be considered as a mechanism that triggers
scaling by enabling the addition or transfer of functionality (Banker and Kauffman,
1992; Basili et al., 1996). The flexibility of technology can thereby be innovatively ex-
ploited by extending functionality within the same or a new environment or context.
Thus, the addition of new functionalities (mutation) to an IS can describe one mode
of scaling. Another mode of scaling describes the transfer of functionalities (inheri-
tance) to a new IS (Huang et al., 2017; Svahn etal., 2017; Yoo et al., 2012). In regard
of the implementation of software robots this means that components may be reused
in the same or a new environment or context. Hence, how to scale refers to whether
components are reused to transfer functionality into a different or new context or to
extend functionality in a current context.

6.2.3 To what extent to scale

However, not everything can be reused directly but certain components may first have
to be modified so that they can then be reused to transfer or extend functionality. The
reuse mechanism can therefore not always be applied directly but depends on contex-
tual factors (see Adler etal., 1999). It is important to understand what the contextual
factors are that prevent direct reuse and how components can be adapted in order to
be reused (see Adler etal., 1999).

If components can be reused directly, it can also be said that they can be repro-
duced into an existing context. If means cannot be directly reused, it can also be said
that they must be recreated into a different or new context. Reproduction indicates

118 =—— C.Rutschiand]. Dibbern

that means can be directly reused regardless of contextual factors. Recreation indi-
cates that means must be adapted depending on contextual factors in order to be
reused (Dittrich and Seidl, 2018).

Hence, to what extent to scale refers to whether components need to be adapted
or not in order to be reused within a certain context and, if so, how components need
to be adapted.

6.3 Conceptualization of scaling the implementation
of software robots

Thus, in order to better understand the scaling of implementing software robots, it is
necessary to analyze which components can be reused (what), how, and to what ex-
tent (Henfridsson and Bygstad, 2013; Huang et al., 2017; Svahn et al., 2017; Yoo et al.,
2012). Implementing software robots by transforming human-executed processes (i. e.
routines) into robot-automated processes can be done more efficiently as the imple-
mentation process scales. Based on theoretical concepts of routine theory, as well as
digital scaling literature and our preliminary data, we have developed an initial model
of scaling the implementation of software robots (see Figure 1). Routine theory and
digital scaling literature allow us to theoretically open the black box of a successful
evolution of software robots and how the associated scaling can be approached.

o i scaling(, - i scaling() S - i scaling(| i
asic stage resource(s, scalin resource(s, scalin resource(s, scalin
finput] stage% [outputinput] 9 [output/input] stage .32

stage n+1

Figure 1: Phase of scaling.

The model is composed of multiple elements (see Table 1). Here, scaling the imple-
mentation of software robots is described as a circular process in the context of which
scaling resources are created that can be reused in the further course of scaling. Thus,
scaling resources refer to components that can be created in the course of implement-
ing or programming software robots. Once created, scaling resources can be reused to
accelerate or scale the implementation of software robots.

The whole scaling process can be divided into different stages of scaling, which
can take place sequentially or in parallel. Scaling can be initiated once a basic stage

6 Transforming and recombining routines to scale =— 119

Table 1: Description of scaling elements.

Description

Basic stage The basic stage describes a first phase of the development of a software
robot, based on which the robot implementation can be scaled subsequently

Scaling resource(s) Scaling resources describe components that were created in the course of the
previous development of a software robot and can be reused in further
development. They can result as output from a scaling stage and they can be
used as input to continue in a current scaling stage or to initiate a new scaling
stage

Scaling stage A scaling stage describes a phase of scaling in the implementation of software
robots

has been completed. The basic stage refers to a first phase of the development of a
software robot. Thus, the initial development or programming of the software robot
can not yet be scaled but a software robot must already have been developed to a cer-
tain degree so that its further development can be scaled. Scaling resources can result
from the basic stage and from each subsequent scaling stage. They can be considered
as necessary input to enable scaling in each scaling stage and as potential output that
can result from the basic stage and each subsequent scaling stage. As a resulting out-
put, scaling resources can be reused in any past, current, or subsequent scaling stage.
Thus, scaling resources can be reused not only prospectively but also retroactively ei-
ther in the scaling stage from which they resulted or in any preceding scaling stage.

6.4 Illustration through case data

To better understand scaling in the context of implementing software robots, we have
made first steps towards a theoretical understanding and empirical illustration of the
scaling of the implementation of software robots. We have chosen a reciprocal ap-
proach that has enabled us to conceptualize a model, in which we have derived theo-
retical elements of routine theory and digital scaling literature deductively and induc-
tively from empirical data of two case studies. However, the model developed in this
chapter represents a first draft and needs to be further refined and substantiated with
additional data. With the help of theoretical sampling, we identified two cases that
seemed to contribute to an empirical illustration of our conceptualized model. Case 1
describes a chathot project at a Swiss bank. Case 2 describes an RPA project at another
Swiss bank. The aim is not to test the model but to illustrate it and to show how our
model can be instantiated while some aspects of the model have also been derived
from the case data (see, e. g., Leonardi, 2011). We conducted nine semi-structured in-
terviews with people in different roles within the project team of case 1 between Oc-

120 —— C.Rutschiand]). Dibbern

tober and November 2017, in a second round in September 2018, and in a third round
in March and April 2020. For case 2, we conducted three semi-structured interviews in
October and November 2017. This helped us to obtain a holistic picture of both cases
(Miles and Huberman, 1994; Yin, 2003). In addition, we also analyzed other data such
as robot software suit manuals. Given that our key objective is to build theory, the
research thrust is exploratory in nature (Benbasat et al., 1987). Qualitative research
methods are suitable for “generating novel theory” (Eisenhardt, 1989, p. 546) — in par-
ticular theory that aims at answering “how” and “why” questions (Yin, 2003). This is
true for our study as the key objective is to understand how to scale the robot imple-
mentation process.

6.4.1 Case narrative 1

The case describes a bank that wanted to optimize its contact center (CC) in terms of
efficiency and in terms of improving performance and reducing costs. Therefore, chat-
bots were deemed suitable to automate processes. The project regarded was initiated
in October 2016.

The team consisted of a product owner, a scrum master, an external partner, an
application manager, and the content team. The product owner and the scrum mas-
ter were primarily responsible for managing the project. The product owner focused
mainly on the business aspects and the scrum master on the IT aspects of the project.
The external partner helped the bank to acquire the necessary know-how to imple-
ment the chatbot. Since it was the first chatbot project of the bank, this was essential.
The application manager was responsible for maintaining the chatbot application and
integrating it into the existing system architecture. The role of the content team was to
generate the content, based on which the chatbot should conduct dialogues. By con-
tent, topics and corresponding dialogues are meant. The content team therefore had
to identify such topics on the one hand and then define and implement correspond-
ing dialogues. An example of such a topic would be the query of the current account
balance by a customer.

The chatbot software used by the bank was relatively simple. Decision trees could
be modeled graphically. Thus, the content team mostly modeled dialogues directly in
the chatbot framework itself. The chatbot framework describes the chatbot software
used by the bank and its functionalities, which the project team used to build the
chatbot.

In the course of the project, the chatbot was not only continuously developed but
the project team was able to benefit from already created components to the extent that
it was able to scale the entire implementation process of the chatbot. Thus, by evalu-
ating the project, different scaling stages could be identified. In summary, three differ-
ent incidents, which each reflect one stage of scaling could be identified that together

6 Transforming and recombining routines to scale = 121

represent an evolutionary path that the chatbot went through during its implementa-
tion. These are the scaling from the German to the French chatbot, the scaling to the
e-banking chatbot, and the scaling to the voicebot. In each of the three scaling stages
certain components could be reused and thus functionalities could be transferred. It
was, however, only possible to digitally scale after the chatbot had been developed
and implemented to a certain extent, i. e., the German bot had been created.

6.4.1.1 Basic stage — German bot

The basic prerequisite for scaling the implementation of the bank’s chatbot was there-
fore the previous development and implementation process of the basic stage of the
chatbot, i. e., the German version of the chatbot. The development of the basic stage
basically meant to model German conversational processes within decision trees and
toimplement variations and synonyms. Decision trees were modeled around one main
question, which constituted the root, while possible direct answers and follow-up
questions formed the branches of each decision tree. One main question then required
about 100 variations, so that the chatbot was able to answer accurately. “Still, if there
is a 101st question and the syntax is wrong, we are pretty sure the chatbot is going to
map the question to the right main question” (external partner). Decision trees refer
to a dialogue’s structure, while the main questions refer to dialogue topics.

Initially, the chatbot could answer simple questions in German that contained
general information; occurred in high volumes; contained self-service components or
aspects that the end user could handle him or herself; and referred to a non-value
adding process. Thus, in this basic stage the chatbot was able to conduct simple con-
versations in German, which did not require any kind of system integration. Users
could access the chatbot through the bank’s website without being logged in.

As long as decision trees were extended and new variations and synonyms were
added that allowed the chatbot to run processes more accurately in the same domain,
i. e., around the same topic, no scaling was performed. Thus, the initial development
and implementation phase of the chatbot cannot be referred to as scaling. The German
version of the chatbot was officially released in November 2017.

6.4.1.2 Scaling stage 1 - French bot

After completion of the basic stage, in which the German chatbot was developed, the
first scaling stage of the development of the French chatbot could be initiated. Based
on the basic stage the project team could further develop the chatbot so that it could
conduct conversations not merely in German but also in French. This can be referred to
as the first scaling stage. The basic idea of this stage was to build on the conversations
or dialogue topics that had previously been built up in German. These conversations

122 — C.Rutschiand). Dibbern

should be translated into French. As the decision trees of the German dialogues al-
ready contained a considerable amount of questions and corresponding answers, the
project team assumed that this stage could be completed relatively quickly. In princi-
ple, the project team assumed that the dialogues previously set up in German could
now be translated directly into French. However, the complete reuse of dialogue top-
ics and dialogue structures was not possible as only some components could indeed
be reused. Reuse was prevented by the users who were supposed to use the chatbot in
French. The reason for this was that the French speaking users expressed themselves
and structured dialogues differently than the German speaking users.

During the development of the German version of the chatbot, the project team
acquired considerable knowledge about the extent to which a chatbot needs to be de-
veloped at all, and which topics the users want to address via the chatbot. The project
team could build on this knowledge to develop the French version of the chatbot faster.
In addition, however, they had to analyze and better understand their French speaking
users as well as their behaviors in order to set up and structure the French dialogues
accordingly. To accomplish this, the content team has been expanded to include a na-
tive French speaker.

Thus, in the first scaling stage, some components could be directly reused, while
for the reuse of other components, these first had to be made compatible with the cor-
responding context. Concretely, this meant that the knowledge acquired for the devel-
opment of the chatbot and the dialogue topics previously established for the German
bot could be directly reused for the French bot. The reuse of the knowledge enabled
the project team to design the dialogs for the French bot more efficiently and faster.
The German dialogue structures, on the other hand, could not be directly reused, al-
though their structure had to be revised to suit the French speaking users. The French
chatbot was released in October 2018.

6.4.1.3 Scaling stage 2 — e-banking bot

The second scaling stage then describes the evolution from the development of the
German and French dialogues to the integration of the chatbot into the e-banking sys-
tem. This should allow the users of the chatbot not only to have general conversations
but also to ask user-specific questions while being logged into the bank’s e-banking
system. Until then, the chatbot was dependent on the information the user provided
in a chat. With the integration into the e-banking system, the chatbot could now di-
rectly retrieve information about a specific user from the system. However, this not
only meant that the conversations needed to be tailored to a specific user but it also
meant that sensitive user-specific data should become part of the dialogues.

The chatbot software used by the bank was based on cloud servers located abroad.
However, the Swiss data protection law stipulated that sensitive user data may only
be processed on cloud servers located in Switzerland. Consequently, for the bank

6 Transforming and recombining routines to scale =— 123

this meant that the dialogues processed on the cloud servers of the chatbot software
provider could not contain any sensitive data. The project team was confronted with
the problem that with the integration into the e-banking system, sensitive data would
become part of the conversations but that these sensitive data cannot be sent via the
chat, because otherwise it would be stored in the chatlog on the cloud abroad.

The project team solved this problem with so-called deep links. In doing so, the
user could for example ask, “What is my account balance?” Rather than the chatbot
answering the user’s account balance in the chat field, the chatbot would reply “You
can find your account balance in the red marked field on your screen.” If it was sen-
sitive data that the chatbot was supposed to give out, it was not displayed in the chat
field but highlighted directly on the bank’s website. The sensitive data entered by users
were encrypted in order to ensure compliance with data protection laws.

For the integration of the chatbot into the e-banking system, the project team was
once again able to draw on the knowledge they had already gained in developing the
German and French bots. In addition, the previously modeled dialogue topics in Ger-
man and French could be reused. These dialogue topics were previously modeled in
a very general and not user-specific manner. The integration into the e-banking sys-
tem, however, should now focus on the chatbot being able to conduct user-specific
dialogues. The previous dialogue topics could thus be used as a basis, which now had
to be tailored specifically to the user.

In addition to the already existing dialogue topics, new topics had to be covered by
new dialogues. When modeling these new dialogue topics, certain dialogue structures
of the previous dialogues could be reused.

In the second scaling stage, most components could be directly reused. The
reuse of these components enabled the project team to design the dialogues for the
e-banking bot more efficiently and faster. The integration into the e-banking system
was initiated in summer 2018 and a first version got released in early 2019.

6.4.1.4 Scaling stage 3 - voicebot

Finally, the third scaling stage describes the evolution from the integration into the
e-banking system to the extension of the chatbot to a voicebot. This third stage was
initiated shortly after the start of the second stage of the integration into the e-banking
system. The voicebot should allow users to interact with the bot not merely by text
input but also by voice input. The users were to reach the voicebot by phone, just as
they had reached CC employees before. In a first phase, no integration of the voicebot
into the web site or the mobile application was planned. The project team still left this
possibility open.

The project team again assumed that a considerable part of the dialogue topics
and structures already created for the chatbot could be reused for the development
of the voicebot. This was again not as easy as one had hoped for. The project team

124 — C.Rutschiand]).Dibbern

had to realize that not only the German and French speaking users expressed them-
selves differently, but all users spoke differently than they wrote. “For example, the
syntax is completely different when the customer asks, ‘Can I check my account bal-
ance, please?’ Then he writes on the text channel: ‘Account balance please’. Maybe
two words. [...] But when he enters it in the voice channel, it’s more of a dialogue and
he says, ‘Yes, I think I got my paycheck yesterday and I need to know what my balance
is and check if I can pay my bills.’ [...] And you just can’t compare how the customers
write and how they talk to the assistant [voicebot]” (product owner).

Thus, it turned out to be much more difficult to reuse already modeled dialogues
for the voicebot. The project team therefore had to rethink its approach. They did this
by adopting a voice-first approach and trained all team members accordingly. Voice-
first meant that the project team would create all newly generated dialogues for the
voice channel first, in a form in which they could potentially be used for the text chan-
nel in a second step.

The project team also reworked some of the existing dialogue topics and structures
so that they were compatible for the voice channel. “We will not be able to make 100 %
of the content we have modeled suitable for voice. That would lead to too much effort
at the moment” (product owner).

As with the integration into the e-banking system, the transition to voice posed the
challenge of sensitive data. However, this time it was not possible to use deep links and
show the sensitive aspects of a conversation to the respective user on the visual user
interface. Once conversations are conducted via voice channel, there is no visible user
interface. As mentioned above, the bank was not allowed to process sensitive data on
a foreign cloud due to applicable regulations. The provider of the chatbot software
used until then was neither willing to install a cloud in Switzerland, nor to offer the
software on-premise. The bank was thus forced to look for another solution.

They found what they were looking for in another provider who delivered their
chatbot software on-premise. The text-based chatbots should run on the old chatbot
software for the time being. The voicebot should be based on the new chatbot software.
However, the long-term goal was to completely replace the old chatbot software with
the new one.

For the development of the voicebot the project team was not able to directly reuse
the dialogue topics and structures that have been created in previous stages. Instead,
the dialogue structures had to be made compatible with the voice channel. Accord-
ingly, the project team translated some of the text dialogues into voice dialogues. How-
ever, some of the text dialogues hardly seemed suitable for the voice channel. Here the
project team had to reverse the approach and henceforth model voice-first dialogues,
which could then be reused for the text channel and thus the further extension of the
text-based bots.

In the third scaling stage, most components could not be directly reused but they
had to be revised to suit the voicebot. Reuse was reversed here in that the dialogue
structures created for the voicebot were to be reused retroactively for the text-based

6 Transforming and recombining routines to scale =— 125

bots. The transition from the text to the voicebot is still in progress. A first version of
the voicebot was released in June 2020.

6.4.2 Case narrative 2

The case describes another bank that also wanted to optimize its CC in terms of ef-
ficiency, improved performance, and reduced costs. Therefore, multiple RPA robots
should allow the automation of business processes. The project was initiated in July
2017. The project team consisted of different roles. As this was the bank’s first RPA
project, the project was implemented in collaboration with an external consultancy
firm.

Similarly to the case previously outlined, certain scaling dynamics could be iden-
tified in this case as well. Unlike in the chatbot case, however, no multiple scaling
stages could be identified but scaling was instead applied step by step within one
single stage of scaling. In this scaling stage, various business processes were to be
automated with the help of several RPA robots.

6.4.2.1 Basic stage

The basic prerequisite for scaling the implementation of the bank’s RPA robots was
an initial phase where the project team had to understand the RPA robot design. This
was critical, because it determined how business processes could be introduced to the
RPA software so that an RPA robot could execute them.

The RPA software used allowed the programming of RPA robots that could perform
a sequence of process steps and mimicking what the human user normally does. The
automation of business processes through the development of RPA robots was thereby
done in the software’s Studio, which was divided into Process Studio and Object Stu-
dio. Process Studio enabled the configuration of the process logic and the business
rules (i. e., the process structure). Object Studio enabled the creation of reusable ob-
jects. A process described the logic of how a specific RPA robot executed tasks. An
object described the RPA robot’s interaction with specific systems on their user inter-
face.

The developers did not actually have to program the automation of business pro-
cesses but could graphically model them with the help of various flowchart elements.
In Process Studio, one could either entirely model business processes or split them
into multiple process steps. Each process step could be modeled in a separate page.
Throughout all the pages, the main process could be kept slim on the main process
page; frequently used process steps within a particular process could be reused.

In Object Studio objects could be created, which allowed integrating external sys-
tems into the RPA software framework. With the “spying mode” of Object Studio, ev-

126 —— C.Rutschiand]. Dibbern

ery system button could be tracked and added to the corresponding object. Once a
system and its entire corresponding buttons had been integrated, actions linked to
the usage of a specific system could be modeled. Unlike in Process Studio, pages were
hereby used to model individual actions related to a specific object. For example, in
one of the business processes to be automated, the RPA robot had to send a confirma-
tion letter to a customer who had opened a new account. For this purpose, the RPA
robot had to know the respective system button “print” and execute the action “print
confirmation letter.” To then add an action to a process in Process Studio, one could
access the corresponding action from Object Studio. To do this, the flowchart element
“action” had to be inserted into the main process or a process step page in Process
Studio.

In summary, Object Studio enabled the integration of specific systems needed so
that the RPA robots could execute the business processes modeled in Process Studio.
Once the project team had gained an understanding of the design of the RPA software,
the actual process automation could be initiated.

Business processes suitable for automation had to be executed in high volume and
on a computer; they had to be rule-based and should entail limited exceptions; they
should implicate structured data, and each business process to be automated should
replace 0.3 full-time equivalents (FTE) in order to achieve the break-even point after
one year. It was only worthwhile to develop a robot in case it could undertake the
work of 0.3 FTE. Based on these criteria and a list of all processes executed in the CC,
the project team identified four business processes with automation potential. Those
four processes should be automated first while potential additional processes should
follow later.

The development of the first four RPA robots was initiated with the modeling of
the respective business processes. This was done within Process Studio and Object
Studio. Each RPA robot was hereby set up through one process containing various
objects that described the actions an RPA robot had to take in various process steps.
However, some of the developers initially created RPA robots within objects instead
of forming processes by using objects. “The object is something that you can reuse.
The process is something you are only using for the current robotic process. So...you
should not create a process inside an object. But many times, they did it” (supplier
chief developer). If done so, objects could only be used for one specific process, while
reuse was not possible. However, the idea of using objects to build processes was to
be able to reuse the objects for several processes involving the same systems and thus
to scale the RPA robot implementation process. Even though this approach required
more effort in the beginning, it allowed a more efficient and faster implementation of
subsequent RPA robots accessing the same systems. “Because the first robots are al-
ways the hardest. How so? Because. .. you develop that in objects. These are objects
that can be reused in other robots. This automatically means that subsequent robots
can be developed faster” (supplier project manager 2). Once the chief developer dis-
covered that the other developers defined processes within objects instead of using

6 Transforming and recombining routines to scale =— 127

various objects to define one process, he drew their attention to it, and they changed
their approach from object-based to process-based development.

The initial development and implementation phase of the RPA robots cannot be
referred to as scaling but allowed the creation of objects that could be reused later on.

6.4.2.2 Scaling stage 1

After completion of the basic stage, in which initial objects were created, scaling could
be initiated. The automation of the four processes originally identified took place in
parallel. The basic stage was not completed with the completion of the implementa-
tion of the four corresponding RPA robots. Rather, it was possible to move from the ba-
sic stage to scaling stage 1 after some initial objects were created that could be reused
continuously and thus contributed to implement RPA robots more efficient. Thus, the
previously created objects could be reused in the further implementation of the RPA
robots. This helped to speed up the overall implementation process of the robots.

In the course of the development of multiple RPA robots some components, i. e.,
objects and process structures, could be reused. This enabled a more efficient imple-
mentation of the RPA robots and thus scaling. However, not only were existing objects
and process structures reused but also new ones were created even after the comple-
tion of the basic stage. Scaling was thus achieved through the creation of objects and
process structures. After a period of five months, the first out of the initial four RPA
robots was released in November 2017.

6.5 Discussion

Implementing software robots essentially describes an approach of automating busi-
ness processes. In this chapter we associate such business processes with routines.
The performance of routines often implies that certain means are used to achieve cer-
tain ends. It has been argued in previous literature that the ends determine which
means should be used in achieving ends (Feldman et al., 2016). Dittrich and Seidl
(2018) add to this that certain means originate in the performance of routines and
can be used to define and achieve new ends. A similar dynamic can be observed in
the implementation of software robots.

One could describe the implementation of software robots as automating pro-
cesses by means of programming software robots (Rutschi and Dibbern, 2019, 2020).
While implementing software robots, components or resources can be created that can
be reused for the further programming of past, current, or new robots. This allows for
a more efficient and faster programming of software robots and thus to accelerate or
scale the software robot implementation process (Dittrich and Seidl, 2018).

128 — C.Rutschiand). Dibbern

By scaling the implementation of software robots, functionality of a current robot
can be extended or transferred to a different robot or context. As a result, the evolution
of software robots can be accelerated. Such acceleration or scaling can be achieved
when certain resources are created during the initial programming of software robots.
These same resources can then be reused.

To better understand how to scale the implementation of software robots, it is es-
sential to understand which resources can be reused, how they can be reused (in the
same or a different context), and to what extent they can be reused (through repro-
duction or recreation) (Henfridsson and Bygstad, 2013; Huang et al., 2017; Svahn et al.,
2017; Yoo et al., 2012). In this chapter we provide insights into all three of these aspects:
(1) what to scale (i. e., which means or resources), (2) how to scale (i. e., through which
type of reuse), and (3) to what extent to scale (i. e., the type of contextual extension).
In the following, we will again discuss and elaborate on all three aspects and show
how they apply in the two cases analyzed.

6.5.1 What to scale

In order to scale at all, certain resources or means must be created, which can be
reused subsequently. Hereafter we will go into more detail about what such resources
could look like, and which concrete resources were created in the two cases. As out-
lined above, a routine consists of an ostensive and a performative aspect (D’Adderio,
2011; Feldman et al., 2016; Pentland and Feldman, 2005). If we now want to transfer
a routine from a human to a robot, we need to comprehend both the ostensive aspect
and the performative aspect of the human-executed routine. Only then can we trans-
fer the human-executed routine into a robot-automated routine. Therefore, we need to
translate the ostensive and performative aspects of the human-executed routine into
ostensive and performative aspects of the robot-automated routine.

The ostensive and performative aspects differ from each other when a routine is
performed by a human, since the human can continuously influence both aspects.
This is different for software robots. The robot has an initial influence on the ostensive
aspect of the routine by specifying the extent to which it can and cannot perform a
routine. The rules and procedures (i. e., the ostensive aspect) according to which a
human has executed the routine in the past must therefore be translated to correspond
to the robot design.

Once a routine has been implemented as a software robot, it does not change any-
more. The robot performs the routine by strictly following the given rules and proce-
dures (i. e., the ostensive aspect). Different from when a human performs a routine,
the ostensive and performative aspects are the same when a routine is executed by a
software robot.

When a company decides to implement software robots to automate certain busi-
ness processes, there are several ways to approach this. The company can automate

6 Transforming and recombining routines to scale =— 129

each process individually, starting from scratch each time. Alternatively, the company
can combine the automation of several processes and build on already created re-
sources or means. In fact, these resources can be referred to as the ostensive aspect
of the routine or a part of it, which is implemented as a robot.

For each automation of a process Pn+1, which is preceded by another automation
of a similar process Pn, it must be examined to what extent the ostensive aspect On of
process Pn corresponds to the ostensive aspect On+1 of process Pn+1. The difference
or delta between On and On+l must be evaluated (see Figure 2). The more the two
overlap and the larger the delta, the more resources can be reused. Therefore, the delta
describes what can be reused or scaled. If the delta is positive, scaling resources can
be reused in any current or subsequent scaling stage. If the delta is negative, scaling
resources can be reused retroactively.

o &
o »r. taﬂnl

~ i Process n:

[On = Pn]

combined process

individual process similar -
| ‘ A=0n-Onn automation

automation processes

.

N ® &

Process n+1: -[Onﬂ +Pui] ———— @@ [On+1 = Pa+1]

Figure 2: Individual and combined process automation.

In case 1, the implementation of the German, French, and e-banking bots and the
voicebot led to the generation of scaling resources (i. e., means) such as dialogue top-
ics (in German and French) and dialogue structures (in German and French, and of
general as well as of user-specifically tailored text- and voice-based nature). Reusing
these scaling resources resulted in an acceleration of the implementation of the chat-
bot (see Table 2).

In case 2, the implementation of the first RPA robots led to the generation of scal-
ing resources (i. e., means) such as process structures and objects. Reusing these scal-
ing resources resulted in an acceleration of the implementation of the RPA robots.
However, the project team did not initially create scaling resources but some of the
developers created RPA robots within objects instead of forming processes by using
objects. As a result, every new development of an RPA robot had to be started from
scratch and could not be based on already existing components or scaling resources.
When they realized this, they adapted their implementation approach and created
components (i. e., scaling resources) that could be reused (see Table 3).

130 —— C.Rutschiand]. Dibbern

Table 2: Scaling process in case 1.

Basic Scaling Scaling Scaling Scaling Scaling Scaling Scaling
stage resource(s) stage1l resource(s) stage2 resource(s) stage3 resource(s)
(input) (output/ (output/ (output/
input) input) input)
Develop- Dialogue Develop- Dialogue Develop- Dialogue Develop- Voice-first
ment of structures mentof structures mentof structures, ment of dialogue
German and French and e- additional voicebot structures
bot dialogue bot dialogue banking dialogue and
topicsin topicsin bot topics, and additional
German French deep link dialogue
integrations topics

Table 3: Scaling process in case 2.

Basic stage Scaling Scaling stage 1 Scaling resource(s)
resource(s) (input) (output/input)

Initial development Process structures Further development Additional process

of RPA robots and objects of RPA robots structures and objects

6.5.2 How to scale

Once it has been defined what (i. e., what scaling resources) can be scaled, one must
evaluate how to scale. Scaling resources can be reused to accelerate the implementa-
tion of a current, a subsequent, or a previous software robot. Scaling resources can
be reused to extend functionality of a robot or to transfer functionality from one robot
to another. This results in two types of reuse (i. e., how to scale). Expanding function-
ality can be referred to as mutation. Transferring functionality can be referred to as
inheritance (Henfridsson and Bygstad, 2013).

In case 1, scaling resources were reused for extending as well as transferring func-
tionality. Scaling resources that resulted from the basic stage (i. e., implementing the
German bot) were reused to accelerate the further development of the German bot
(first context) as well as the initial developments of the French bot (second context),
the e-banking bot (third context), and the voicebot (fourth context). Scaling resources
that resulted from scaling stage 1 (i. e., implementing the French bot) were reused to
accelerate the further developments of the German (first context) and French bots (sec-
ond context) as well as the initial developments of the e-banking bot (third context)
and the voicebot (fourth context). Scaling resources that resulted from scaling stage 2
(i. e., implementing the e-banking bot) were reused to accelerate the further devel-
opment of the e-banking bot (third context) as well as the initial development of the
voicebot (fourth context). Scaling resources that resulted from scaling stage 3 (i.e.,

6 Transforming and recombining routines to scale = 131

implementing the voicebot) were reused to accelerate the further development of the
voicebot (fourth context) as well as the further development of the German (first con-
text), French (second context), and e-banking bots (third context).

In case 2, scaling resources were reused in order to extend functionality of current
RPA robots as well as to transfer functionality to other RPA robots.

6.5.3 To what extent to scale

Finally, one must understand in what context scaling takes place (i.e., the type of
contextual extension). Direct reuse may be hampered whereas scaling resources may
not always be reproduced but need to be recreated if they are to be reused in a different
context. Reproduction indicates that means or scaling resources were directly reused
independent of the context. Recreation indicates that means or scaling resources were
adapted according to a new context in order to be reused.

In case 1, some scaling resources (i. e., dialogue topics) could be reused directly
while others (i. e., dialogue structures) had to be adapted to different contexts in or-
der to be reused. Overall, scaling dynamics could be observed in multiple (i. e., three)
scaling stages within case 1.

In case 2, all RPA robots should be implemented in the same department. Thus,
scaling resources (i. e., process structures and objects) could be reused directly with-
out any need for context-specific adaptations in case 2. Unlike in case 1, in case 2 scal-
ing dynamics could merely be observed in one stage of scaling.

6.6 Conclusion and outlook

Software robots are expected to dramatically improve the efficiency of companies and
disrupt the way humans and machines work and collaborate (Willcocks and Lacity,
2016). It is crucial for companies to understand how business processes can be auto-
mated successfully by implementing software robots and how such robot implementa-
tions can be scaled. Implementing software robots by transforming human-executed
routines into robot-automated processes can be done more efficiently by scaling the
implementation process.

Despite the automation through software robots, the human factor plays an impor-
tant role here. This may change as technology advances and robots are able to learn
how to take over and perform certain processes autonomously without any need for
human intervention. Given the type of software robots (i. e., chatbots and RPA robots)
we are looking at here, this is not the case. Such software robots can take over and
perform processes only after a human (i. e., the developer) has programmed the robot
accordingly.

132 — C.Rutschiand]. Dibbern

For this to be done more efficiently, the human must understand the delta and
thus the degree of scaling. In other words, the developer must understand the extent
to which the ostensive aspect of two similar processes or routines to be automated
overlap. Depending on whether the delta between two ostensive aspects is positive
or negative, scaling resources can be reused for current and subsequent robot imple-
mentations or retroactively for preceding robot implementations.

We contribute to routine theory and literature on digital scaling by examining how
the implementation of software robots can be scaled. Specifically, we found that (1) for
scaling the implementation of software robots, one can build on what already exists
(scaling resources), (2) scaling resources can be reused for functionality extension or
transfer (mutation vs. inheritance), and (3) scaling resources can be reused in different
contexts, in which they can be reused directly or through adaptations (reproduction
vs. recreation).

In this regard, we have conceptualized a model for scaling the implementation of
software robots based on existing constructs from routine theory and digital scaling
literature. Some aspects of the model have also been derived from the data.

Besides the implications of our research, we also must acknowledge its limita-
tions. The model developed in this chapter describes an initial model and needs to be
further refined and substantiated with additional data.

We have shown exemplarily how scaling was approached in two cases. It was
shown that digital scaling can be divided into different scaling stages, within which
scaling resources (i. e., means) are created and can be reused. The reuse of scaling re-
sources can be considered as a mechanism that triggers scaling by enabling the exten-
sion (i. e., mutation) or transfer (i. e., inheritance) of functionality (Banker and Kauff-
man, 1992; Basili et al., 1996). The implementation of software robots is associated
with high costs and time expenditure. These can be reduced by scaling and therefore
the implementation of software robots can be made more efficient. However, in order
to be able to scale at all, it must be understood what can be scaled (i. e., what scaling
resources or means), how it can be scaled (i. e., in what contexts), and to what extent
it can be scaled (i. e., through reproduction or recreation).

An understanding of how to scale the software robot implementation process is
of great interest to both research and practice. We make first steps in conceptualizing
and theorizing the three aspects (i. e., what, how, and to what extent) of scaling the
implementation of software robots. Future research could seek to better understand
which contextual factors could impede direct reuse of scaling resources and why reuse
is performed this or that way.

6 Transforming and recombining routines to scale = 133

Bibliography

Adler PS, Goldoftas B, Levine DI (1999) Flexibility versus efficiency? A case study of model
changeovers in the toyota production system. Organ Sci 10(1):43-68

Asatiani A, Penttinen E (2016) Turning robotic process automation into commercial success — case
OpusCapita.] Inf Technol Teaching Cases 6(2):67-74

Banker RD, Kauffman R) (1992) Reuse and productivity in integrated computer-aided software
engineering: an empirical study. MIS Q 14(3):374-401

Basili VR, Briand LC, Melo WL (1996) How reuse influences productivity in object-oriented systems.
Commun ACM 39(10):104-116

Benbasat I, Goldstein DK, Mead M (1987) The case research strategy in studies of information
systems. MIS Q 11(3):369-386

Chandler AD (1990) Strategy and structure: chapters in the history of the industrial enterprise,
vol 461. MIT press

D’Adderio L (2011) Artifacts at the centre of routines: performing the material turn in routines theory.
J Inst Econ 7(2):197-230

Dittrich K, Seidl D (2018) Emerging intentionality in routine dynamics: a pragmatist view. Acad
Manag) 61(1):111-138

Eisenhardt KM (1989) Building theories from case study research. Acad Manag Rev 14(4):532-550

Feldman MS (2000) Organizational routines as a source of continuous change. Organ Sci
11(6):611-629

Feldman MS, Pentland BT (2003) Reconceptualizing organizational routines as a source of flexibility
and change. Adm Sci Q 48(1):94-118

Feldman MS, Pentland BT, D’Adderio L, Lazaric N (2016) Beyond routines as things: introduction to
the special issue on routine dynamics. Organ Sci 27(3):505-513

Fung HP (2014) Criteria, use cases and effects of information technology process automation (ITPA).
In: Advances in robotics & automation, vol 3

Guzman I, Pathania A (2016). Chatbots in customer service. Retrieved 25 Oct, 2017, from https:
//www.accenture.com/t00010101T000000__w__/br-pt/_acnmedia/PDF45/Accenture-
Chatbots-Customer-Service.pdf

Heller B, Proctor M, Mah D, Jewell L, Cheung B (2005) Freudbot: an investigation of chatbot
technology in distance education. Paper presented at the EdMedia: World Conference on
Educational Media and Technology

Henfridsson O, Bygstad B (2013) The generative mechanisms of digital infrastructure evolution. MIS
Q907-931

Howard-Grenville JA (2005) The persistence of flexible organizational routines: the role of agency
and organizational context. Organ Sci 16(6):618-636

Huang J, Henfridsson O, Liu M, Newell S (2017) Growing on steroids: rapidly scaling the user base of
digital ventures through digital innovation. MIS Q 41(1)

Leonardi PM (2011) When flexible routines meet flexible technologies: affordance, constraint, and
the imbrication of human and material agencies. MIS Q 35(1):147-167

Miles MB, Huberman AM (1994) Qualitative data analysis: an expanded sourcebook. Sage
Publications, Thousand Oaks, CA, USA

Patil A, Marimuthu K, Niranchana R (2017) Comparative study of cloud platforms to develop a
chatbot. Int) Eng Technol 6(3):57-61

Pentland BT, Feldman MS (2005) Organizational routines as a unit of analysis. Ind Corp Change
14(5):793-815

134 =— C.Rutschiand]. Dibbern

Pentland BT, Feldman MS, Becker MC, Liu P (2012) Dynamics of organizational routines: a generative
model.) Manag Stud 49(8):1484-1508

Pfeifer R, Lungarella M, lida F (2007) Self-organization, embodiment, and biologically inspired
robotics. Science 318(5853):1088-1093

Rutschi C, Dibbern J (2019) Mastering software robot development projects: understanding
the association between system attributes & design practices. In: Paper presented at the
proceedings of the 52nd Hawaii international conference on system sciences, Hawaii, USA

Rutschi C, Dibbern) (2020) Towards a framework of implementing software robots: transforming
human-executed routines into machines. ACM SIGMIS Database 51(1):104-128

Sahay S, Walsham G (2006) Scaling of health information systems in India: challenges and
approaches. Inf Technol Dev 12(3):185-200

Sengupta R, Lakshman S (2017) Conversational chatbots — let’s chat. Retrieved 25 Oct, 2017 from
https://www2.deloitte.com/content/dam/Deloitte/in/Documents/strategy/instrategy-
innovation-conversational-chatbots-lets-chat-final-report-noexp.pdf

Sharma P, Southern R, Dalton D (2016) The discruptive chat bots — sizing up real opportunities for
business. Retrieved from https://www?2.deloitte.com/content/dam/Deloitte/ie/Documents/ie-
dispruptivechat-bots.pdf

Shawar BA, Atwell E (2007) Different measurements metrics to evaluate a chatbot system. In: Paper
presented at the proceedings of the workshop on bridging the gap: academic and industrial
research in dialog technologies, Rochester, NY, USA

Slaby JR (2012) Robotic automation emerges as a threat to traditional low-cost outsourcing. HfS
Research Ltd.

Svahn F, Mathiassen L, Lindgren R (2017) Embracing digital innovation in incumbent firms: how
volvo cars managed competing concerns. MIS Q 41(1)

Tirgul CS, Naik MR (2016) Artificial intelligence and robotics. Int] Adv Res Comput Eng Technol
5(6):1787-1793

Willcocks L, Lacity MC (2016) Service automation: robots and the future of work. Steve Brookes
Publishing

Yin RK (2003) Case study research. In: Applied social research methods series, vol 5. Sage
Publications, Beverly Hills, CA, USA

Yoo Y, Boland RJ Jr, Lyytinen K, Majchrzak A (2012) Organizing for innovation in the digitized world.
Organ Sci 23(5):1398-1408

	1

