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Abstract We present the implementation and results of a
model tuning and ensemble forecasting experiment using
an ensemble Kalman filter for the simultaneous estima-
tion of 12 parameters in a low resolution coupled
atmosphere-ocean Earth System Model by tuning it to
realistic data sets consisting of Levitus ocean tempera-
ture/salinity climatology, and NCEP/NCAR atmo-
spheric temperature/humidity reanalysis data. The
resulting ensemble of tuned model states is validated by
comparing various diagnostics, such as mass and heat
transports, to observational estimates and other model
results. We show that this ensemble has a very reason-
able climatology, with the 3-D ocean in particular hav-
ing comparable realism to much more expensive coupled
numerical models, at least in respect of these averaged
indicators. A simple global warming experiment is per-
formed to investigate the response and predictability of
the climate to a change in radiative forcing, due to
100 years of 1% per annum atmospheric CO2 increase.
The equilibrium surface air temperature rise for this CO2

increase is 4.2±0.1�C, which is approached on a time
scale of 1,000 years. The simple atmosphere in this
version of the model is missing several factors which, if
included, would substantially increase the uncertainty of

this estimate. However, even within this ensemble, there
is substantial regional variability due to the possibility of
collapse of the North Atlantic thermohaline circulation
(THC), which switches off in more than one third of the
ensemble members. For these cases, the regional tem-
perature is not only 3–5�C colder than in the warmed
worlds where the THC remains switched on, but is also
1–2�C colder than the current climate. Our results,
which illustrate how objective probabilistic projections
of future climate change can be efficiently generated,
indicate a substantial uncertainty in the long-term future
of the THC, and therefore the regional climate of wes-
tern Europe. However, this uncertainty is only apparent
in long-term integrations, with the initial transient re-
sponse being similar across the entire ensemble. Appli-
cation of this ensemble Kalman filtering technique to
more complete climate models would improve the
objectivity of probabilistic forecasts and hence should
lead to significantly increased understanding of the
uncertainty of our future climate.

1 Introduction

In contrast to short-term operational weather predic-
tion, climate forecasts (for a given set of boundary
conditions, i.e. a specific scenario) depend more strongly
on parameterisations and less strongly on initial condi-
tions. At the multi-decadal time scale and beyond,
model estimates of the response to anthropogenic forc-
ing (as measured by for example the typical indicator of
global mean surface air temperature) substantially ex-
ceed the range of natural variability (Collins and Allen
2002). However, the magnitude of the response depends
greatly on the nature of the parameterisations contained
within the model, and the particular parameter values
selected (Houghton et al. 2001). Therefore, in order to
generate meaningful predictions, it is important that the
parameter values should be tuned to appropriate values.

J. C. Hargreaves (&) Æ J. D. Annan
Frontier Research System for Global Change,
3173-25 Showa-machi, Kanazawa-ku,
Yokohama, Kanagawa, 236-0001, Japan
E-mail: jules@jamstec.go.jp
Fax: +81-45-7785707

N. R. Edwards
Climate and Environmental Physics, Physics Institute,
University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

R. Marsh
James Rennell Division, Southampton Oceanography Centre,
Empress Dock, Southampton, SO14 3ZH, UK

J. C. Hargreaves Æ J. D. Annan
Proudman Oceanographic Laboratory,
Joseph Proudman Building, 6 Brownlow Street, Liverpool,
L3 5DA, UK

Climate Dynamics (2004) 23: 745–760
DOI 10.1007/s00382-004-0471-4



Moreover, given that no deterministic prediction will
ever be exactly correct, it is also important to quantify
the uncertainty associated with a forecast, which itself
depends on the confidence with which parameter values
can be determined. For these reasons, the problem of
parameter estimation in climate modelling has recently
attracted a great deal of attention (e.g. Forest et al. 2000;
Andronova and Schlesinger 2001; Knutti et al. 2002;
Gregory et al. 2002). We have introduced, in Annan
et al. (2004) and Annan and Hargreaves (2004), a new
parameter estimation system based on the ensemble
Kalman filter (EnKF) (Evensen 1994; Keppenne 2000).
The potential of the system was clearly demonstrated by
application to identical twin testing with a new Earth
system model of intermediate complexity (EMIC). We
were able to simultaneously estimate 12 parameters from
observations of the climatological mean model state,
with an ensemble of only 54 model runs. This represents
a large increase in efficiency when compared to the ra-
ther simple Bayesian and brute-force sampling methods
that have been previously used. Identical twin testing,
where the model itself is used to generate synthetic data,
is a useful step in the development of assimilation
methods, but can be a rather weak test. In that type of
experiment, the error statistics of the surrogate obser-
vations are known precisely, and the perfect model
assumption is not challenged. Both of these factors may
play an important role in real applications using obser-
vational data. In this paper, we demonstrate the appli-
cation of the parameter estimation method in tuning the

EMIC to realistic climatology consisting of ocean tem-
perature and salinity, from 1945 to 1998 (Levitus 1998),
and NCEP/NCAR atmospheric reanalysis data (surface
air temperature and humidity only) averaged between
1948 and 2002 (NCEP Reanalysis data provided by the
NOAA-CIRES Climate Diagnostics Center, Boulder,
CO, USA, from their Web site at http://
www.cdc.noaa.gov/).

We briefly introduce the model, data and method in
Sect. 2. The importance of model error is discussed, and
we describe a simple method to account for it. In Sect. 3,
we present the results of tuning the model to the cli-
matological data, and validate it by comparison with
various observational and model-based estimates of heat
and mass transports. Although this model has a rather
low resolution and a highly simplified representation of
many physical processes, it appears to give a realistic
description of large-scale circulation, comparable to the
much more expensive and complex models of coupled
model intercomparion project (CMIP, http://www-
pcmdi.llnl.gov/cmip/). This in itself is a clear illustration
of the power of the tuning procedure.

We further investigate the response of the ensemble
to some idealised anthropogenic CO2 emissions scenar-
ios in Sect. 4. The effect of changing atmospheric CO2 is
parameterised as a direct radiative forcing of 4 W m�2

for each doubling of CO2, and the model omits a large
variety of carbon-cycle and atmospheric dynamical
feedbacks such as the highly uncertain aerosol and cloud
feedback mechanisms, so this experiment is best con-

Fig. 1 NCEP reanalysis surface
air temperature (SAT) and
humidity, with corresponding
ensemble mean output
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sidered as a demonstration of the potential of the
method rather than a definitive forecast of future climate
change. Even though the globally averaged climate
change is highly constrained due to the simplicity of the
model, there is significant local uncertainty due pri-
marily to the possible collapse of the North Atlantic
thermohaline circulation (THC). The probability of a
collapse of the North Atlantic THC is quantified, with
the outcome highly sensitive to the level of CO2 reached.
We end with some conclusions in Sect. 5.

2 Model, data and method

2.1 Model

The model, C-GOLDSTEIN, was outlined in Annan
et al. (2004) and is described more fully in Edwards and
Marsh (2003). Briefly, it is a prototype EMIC being
constructed as part of the GENIE project (http://
www.genie.ac.uk/). The version used here is a coupled
atmosphere-ocean general circulation model on a 36·36
equal-area horizontal grid. The resolution and topog-
raphy along with some model output is shown in Figs. 1
and 2. The ocean is a 3-D frictional geostrophic model
on an 8-level z-coordinate grid (Edwards and Shepherd
2002) and the atmosphere is a 2-D energy/moisture
balance model similar to that of Weaver et al. (2001).
The model also contains a simple thermodynamic and
dynamic sea ice formulation following Semtner (1976)

and Hibler (1979). Further components including bio-
geochemical cycles, dynamical land ice sheets and a low-
resolution 3-D dynamical atmosphere are currently un-
der development. A major feature of this model is its
computational efficiency, which allows integration to
equilibrium (�2,000 model years from a cold start) in
only a few hours on a desktop computer.

We tune the same set of 12 parameters as in Edwards
and Marsh (2003) and Annan et al. (2004), and for
clarity we repeat their description here. Ocean temper-
ature and salinity are diffused along and across isopyc-
nal surfaces with constant diffusivities, and advected by
the frictional geostrophic velocity field. The frictional
drag coefficient (representing nonlinear momentum
terms) is spatially variable, increasing near steep topo-
graphic features and near the equator from a constant
interior value. To counteract the dissipative effect of the
drag and the uncertainty of the momentum flux from the
atmosphere to the ocean (which depends on the surface
roughness) we allow for a scaling factor of the wind
stress. In the one-layer atmosphere, diffusivity of surface
specific humidity is constant, while diffusivity of surface
temperature is an asymmetric function of latitude. Here
we wish to consider the effect of varying the width and
asymmetry of this function and thus we define the
temperature diffusivity jT via

jT ¼ kT sd
2hþ p

p
þ ð1� sdÞ

exp �ðh=ldÞ2
� �

� c

1� c

0
@
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A; ð1Þ

Fig. 2 Levitus sea surface
temperature (SST) and salinity
(SSS), with corresponding
ensemble mean output and
surface currents
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where h is latitude (in radians), ld and sd are width and
slope parameters and the constant c is given by

c ¼ exp � p
2ld

� �2
 !

: ð2Þ

The vertically averaged effect of atmospheric advec-
tive transport is represented by advection with a fixed
surface wind field derived from NCEP analysis, scaled
by a coefficient, following Weaver et al. (2001), which
takes different values for moisture advection and for the
zonal advection of heat. There is no meridional advec-
tion of heat in the model atmosphere. To compensate for
a lack of inter-basin moisture transport produced by our
simplified atmosphere we introduce a constant redistri-
bution of moisture from the surface Atlantic to Pacific
following the pattern observed by Oort (1983). This ‘flux
adjustment’ is an important parameter of the model
hydrological cycle, but is unrelated to the flux adjust-
ments required in early coupled models to prevent cli-
mate drift, which is not a problem for this model. Sea ice
height and fractional area are advected by the surface
ocean currents and diffused with constant diffusivity.

With two diffusivities in the ocean and one for sea ice,
an Atlantic-Pacific moisture flux adjustment, two
parameters controlling wind-driven circulation and six
parameters controlling the atmospheric heat and mois-
ture transport, we have a set of 12 model parameters
which are allowed to vary. The prior distributions for all
12 parameters are given in Table 1, along with the re-
sults that will be discussed in Sect. 3. The ranges of the
distributions are chosen to cover, or exceed, a range of
reasonable choices of appropriate values for such a
model as discussed by Edwards and Marsh (2003).
When the model is repeatedly run using parameters
chosen independently at random from these priors, the
climatologies produced span a large range which is
generally well in excess of the uncertainty of the true
climate state (some diagnostics of this prior are men-
tioned in Sect. 3). Thus, we are deliberately starting from

a position of substantial ignorance in order to investi-
gate what can be objectively determined from the data
alone.

2.2 Method

The assimilation method is an iterative application of
the EnKF, and is described more fully in Annan et al.
(2004). The climatological parameter estimation prob-
lem studied in this paper is a steady state problem,
somewhat different in detail (and in principle simpler)
than the more conventional time-varying implementa-
tions of the EnKF. However, the prior assumption of
substantial ignorance, combined with the nonlinearity of
the model and high dimensionality of the parameter
space being explored, means that a direct solution of the
steady state problem does not work well. Therefore, an
iterative scheme has been developed which repeats a
cycle of ensemble inflation (in which the spread of the
ensemble is increased by increasing the distance from
each member to the ensemble mean by a fixed multi-
plicative factor), data assimilation and model integra-
tion over a specified time interval, in order to converge
to the final solution. As demonstrated in Annan et al.
(2004) and Annan and Hargreaves (2004), this iterative
method converges robustly to the correct solution in
identical twin testing. All of the experiments described
here used an assimilation cycle of 100 years length, with
an expansion factor of 5%, and an ensemble size of 54,
all of these values (which do not significantly affect the
converged solution) being chosen primarily for compu-
tational convenience.

Using only steady state data eliminates any infor-
mation concerning the rate of change that may be con-
tained in recent time series of observational data. This is
clearly undesirable, especially since the ultimate purpose
of the tuning is to estimate the rate of future climate
change. In principle, the assimilation method used here
can also be applied to time series data, since the aug-

Table 1 Prior and posterior
distributions of the parameters Parameter Prior Posterior

Mean SD Mean SD

Ocean
Wind-scale 1.9 0.4 1.7 0.2
Isopycnal diffusion (m2 s�1) 5,100 2,300 4,100 800
log10(diapycnal diffusion (m2 s�1)/2·10�5) 0.07 0.44 �0.04 0.27
1/friction (days) 2.7 0.9 3.4 0.7

Atmosphere
T diffusion amplitude (m2s�1)/106 6.9 1.5 3.8 0.5
T diffusion width (radians) 1.3 0.78 1.3 0.2
log10(T diffusion slope/0.1) �0.32 0.36 �0.16 0.30
T advection coefficient 0.35 0.17 0.06 0.05
log10(Q diffusion (m2s�1)/105) 0.57 0.43 1.2 0.04
Q advection coefficient 0.40 0.19 0.14 0.04
FWF adj (Sv) 0.32 0.16 0.29 0.03

Ice
Sea ice diffusion (m2 s�1) 3,900 1,800 6,200 1,500
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mented model state method allows for arbitrary asyn-
optic observations to be used (note that climatological
observations are themselves asynoptic). Further devel-
opment of the method to this end is under way.

There is one important detail in the assimilation that
should be explained here. The previous work considered
only an identical twin experiment in which the ‘strong
constraint’ assumption of a perfect model is not vio-
lated. In any real application, the model will contain
some inaccuracies and approximations over and above
those relating to imperfect parameter values; for exam-
ple numerical diffusion, truncation errors, and, more
generally, many approximations to the processes being
modelled. This ‘model error’ formally violates the
assumptions underlying many analysis and estimation
algorithms (including this implementation of the
EnKF), and on a practical level, if the model error is
significant, then this can degrade the quality and reli-
ability of the results. In particular, the results will tend to
have an unrealistically narrow uncertainty associated
with them—the problem of ‘false confidence’ which was
illustrated in Hargreaves and Annan (2002). In that
work, the true forecast (and even hindcast) error was
substantially greater than the width of the ensemble
generated by an objective estimation scheme. A simple
diagnostic for the occurrence of this problem is to
examine the residuals after fitting the model. If they are
larger than expected [as defined by a high v2-value (Press
et al. 1994, 15.2)] or are significantly correlated in time
and/or space, then these are indications that the model
contains significant structural errors that should be ac-
counted for. Thacker (2003) discusses the detection of
model-data incompatibility in more detail. One possible
approach to account for this problem is to consider the
discrepancy between model and data as ‘representation
error’: that is, the model does not represent the real
system perfectly, but rather is a somewhat erroneous
approximation to it. In this case, the model state does
not represent an estimate of the truth but rather can only
be considered to be an estimate of the projection of truth
onto the manifold spanned by the model. The correct
treatment of representation error (where it cannot be
filtered from the data, as in for example de-tiding of sea
surface elevation data) is to add it to the estimated
observation error of the data (Fukumori 2001), thereby
effectively decreasing the assumed accuracy of the
observations and consequently increasing the width of
the estimated pdf. Since the magnitude and correlation
length scale of the representation error are not known a
priori but can only be diagnosed though an a posteriori
examination of the differences between the model and
data, this remains a somewhat tunable factor in this
application, and we have validated our choice by com-
paring the width of the resulting ensemble to the
uncertainty of various observational estimates in Sect. 3.
A largely equivalent technique to limit data influence
that is sometimes adopted in assimilation studies is to
use a temporally and/or geographically sparse subset of
the data, but here the model resolution is so low that we

do not wish to artificially generate any data-free regions
or other artefacts due to subsampling.

2.3 Data

Figures 1 and 2 show some of the data, averaged onto the
model grid. The ocean data set used consists of fully 3-D
temperature and salinity fields, but only the top level is
shown here. The atmospheric data are 2-D (surface air
temperature and humidity). Both data sets represent an
average over roughly five decades with a near-complete
overlap. During this time, there has been significant
anthropogenic perturbation to the atmospheric CO2

concentration. Since the response of the atmosphere and
upper ocean is much more rapid than that of the deep
ocean, these data sets do not precisely represent a steady-
state climatology appropriate to any fixed CO2 level.
However, the mean overall perturbation from the pre-
industrial state is certainly less than 0.5�C [this being a
typical estimate for the recent anthropogenically-forced
surface warming (Hansen et al. 2002), with the tempera-
ture rise being much lower in the ocean interior (Levitus
et al. 2000)], and since this discrepancy is small compared
to other faults in our model, we discount this minor
problem for the purposes of this study. The time-varying
assimilation procedure which is being developed will en-
able us to address this issue with more precision.

These data are by no means the only observations that
could help us to determine the full model state and
dynamics (and therefore parameter values). For example,
sea ice, precipitation, heat and mass transports and pas-
sive tracer distributions could also all be helpful in prin-
ciple. However, the data selected do provide a substantial
volume of reliable information over the entire global
domain, and have been widely used and well validated.
As such, they are a suitable basis for the preliminary
experiment performed here. Since we do not know the

Fig. 3 Decrease in cost function (a global measure of model-data
error), ensemble mean and one standard deviation range
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covariances of the errors on the data, we assume that the
observational errors on the different data types are pro-
portional to the square root of their variances as in An-
nan et al. (2004) and ignore spatial correlations. To
account for the model error problem mentioned in Sect.
2.2, we fix an observational error of 3�C for the ocean
data, and scale the error on the other data types appro-
priately. This value is substantially larger than the true
observational uncertainty, but this deliberate overesti-
mate compensates for the representation errors in the
model, and results in an ensemble width that appears to
plausibly represent the true uncertainty of the climate
system state, as we now show in Sect. 3.

3 Results and validation

3.1 Convergence

The mean atmospheric and ocean surface fields from the
converged ensemble are shown in Figs. 1 and 2. These
results were obtained after 150 iterations (representing
15,000 years of integration for each ensemble member).
However, there was very little change beyond 20 itera-
tions (2,000 years, comparable to the equilibration time
scale of the deep ocean). The rate of convergence of
model variables is similar to that seen in the identical
twin test (not shown here). For application to more

expensive models, this process could be substantially
speeded up by initialising from a realistic climatology
and by allowing for a modest drift in the deep ocean
climate, which is not necessarily in true equilibrium in
any case and will not significantly affect O(100) year
forecasts.

As a single scalar measure of the goodness of fit, we
use the cost function described in Edwards and Marsh
(2003). This is a global root mean square (RMS) error,
with each data type normalised by the square root of its
spatial variance. Therefore, spatially uniform model
fields with the correct global mean would have a cost of
1, and our final figure of around 0.5 (Fig. 3) indicates
that typically three-quarters of the variance of each
variable type is explained by the model. This compares
favourably with the results from the Latin hypercube
ensemble experiment of Edwards and Marsh (2003), in
which the costs of 1,000 samples ranged from 0.61 to 2.8.
As can be seen from Fig. 3, the cost converges to its final
value in around 20 iterations.

3.2 Parameter values

Figure 4 shows the evolution of the mean (central lines)
and one standard deviation width (outer lines) of the
parameter values. The horizontal lines at time t<0 in
each plot indicate the prior distributions, selected to

Fig. 4 Evolution of parameter values, ensemble mean (central lines) and one standard deviation widths (log=log10 throughout)
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cover a wide range of plausible values. Convergence here
is slightly slower than examination of the cost function
alone would indicate, but is still close to completion
after 50 cycles. The initial spikes in several of the para-
meter values are due to the unrealistic and unsteady
model state at this time.

As in the identical twin testing described by Annan
et al. (2004), some parameters are hardly constrained by
the data, that is to say, the posterior distributions are
not much narrower than the priors. For example, the ice
diffusion coefficient is very uncertain. Even though the
ensemble has an acceptable representation of ice (de-
scribed below in Sect. 3.6), this is essentially determined
by the local sea surface and atmospheric temperatures,
and its dynamics play a minor rôle. At the other ex-
treme, it is reassuring that the freshwater flux adjustment
(a redistribution of water from the Atlantic to the Pacific
basins, to correct for our atmosphere’s inability to per-
form this function) is constrained so as to give a total
moisture flux (when added to the model’s own modest
contribution of around 0.02 Sv) very close to the
observational estimate of 0.32 Sv (Oort 1983).

There are a handful of significant correlations be-
tween the parameter values according to the sample
statistics of the ensemble, similar but not identical to
those found in the previous identical twin test. The width
and amplitude of the atmospheric temperature diffusion
coefficients have a significant negative correlation
(r2=�0.6), as might be expected from their roughly
equivalent effects on large-scale heat transport. The
ocean inverse friction coefficient, and wind scaling fac-
tor, have a negative correlation of �0.4, which is again
unsurprising as they have a largely equivalent action on

ocean circulation. In the identical twin test, this negative
correlation was also present but did not meet the
threshold for statistical significance which is an absolute
magnitude of 0.27 or greater (for 90% confidence). The
ocean isopycnal diffusion coefficient, atmospheric
moisture diffusion coefficient and fresh water flux cor-
rection are all positively correlated with one another,
with values ranging from 0.5 to 0.7. These results are
slightly different from those of the identical twin test, but
the correlated parameters are all strongly implicated in
determining the strength of the meridional overturning
circulation and thus have somewhat interchangeable
effects.

3.3 State variables

The global RMS errors of the ensemble mean of each
field, in physical units, are 1.45�C (ocean temperature),
0.22 psu (ocean salinity), 1.31�C (atmospheric tempera-
ture) and 0.0011 (atmospheric humidity, dimensionless
mass ratio of water to air). After normalisation by the
square root of the variance, the relative salinity error is
greater than the other three data types combined,
probably due to rather poor moisture transport in the
atmosphere which will be discussed in Sect. 3.5.

The validity of our climate state is investigated by
comparison with observational and model estimates
from various sources. Some results from the CMIP, as
summarised by Lambert and Boer (2001) and Jia (2003),
provide a particularly useful benchmark. The CMIP
project consists of a wide-ranging investigation into
many aspects of the behaviour of many of the most

Fig. 5 Zonally averaged
overturning (Sv)
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widely used coupled climate models, under both steady
conditions and an idealised anthropogenic forcing sce-
nario. In this initial validation, we are only concerned
with the model climatologies under steady pre-anthro-
pogenic conditions. Lambert and Boer (2001) summa-
rises the basic climate variables from CMIP1, the first
phase of CMIP. Their paper contains comparisons of
model fields and data at a limited number of locations.
Although global numerical RMS error statistics are not
provided, it seems that our ensemble mean compares
acceptably well with the CMIP1 models in terms of the
basic state variables such as temperature and salinity.
For example, the CMIP1 ocean temperature profiles at
15�S (Lambert and Boer 2001, Fig. 6) appear to have a
typical error in the region of 1–2�C, even after zonal
averaging which will underestimate the pointwise RMS
error. The salinity field in our model is rather poor, and
it is clear from Fig. 2 that the meridional gradients in the
surface salinity fields are substantially weaker than the
observations. This is due to the inability of the simple
atmosphere to transport moisture effectively from the
saline equatorial region to the fresher poles, and is dis-
cussed further in Sect. 3.5. Despite this problem, our

global RMS error of 0.22 psu compares very reasonably
with the CMIP1 results at the surface and 1,000 m depth
(Lambert and Boer 2001, Figs. 8 and 9, again the zonal
averages plotted will underestimate the pointwise error).
The atmospheric surface air temperature plots of
(Lambert and Boer 2001, Figs. 3 and 4) also show
comparable errors to our global RMS value.

Since these variables were directly assimilated into
our ensemble, it is hardly surprising that the agreement
between model and data is reasonable. A more severe
and interesting test is to examine derived quantities such
as heat and mass transports, since the transports must be
generated by the model dynamics and therefore these
quantities are not purely dependent on the assimilated
data. In the remainder of this section, we discuss the
transports in more detail.

3.4 Ocean circulation and transport

Since the ocean is the most sophisticated component of
our coupled model, we focus most of our attention there.
Jia (2003) analysed the output from the ocean compo-

Fig. 6 Zonally averaged northward heat
transports
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nents in eighteen of the CMIP ‘control’ runs (current
climatology), and compared various transports to
observational estimates at the two latitudes 25�N and
30�S in the different ocean basins.

The zonally-averaged basin-wide and global over-
turning of the mean of our ensemble are shown in Fig. 5,
and the heat transports are plotted in Fig. 6. In the
following subsections we examine these results in more
detail, focussing on each of the major ocean basins in
turn.

3.4.1 Atlantic Ocean

Observational estimates of the zonally integrated cli-
matological heat and mass transports at 25�N in the
Atlantic ocean are shown as the large red dots in the
upper plot of Fig. 7, along with the results from the
CMIP experiment (black crosses) and our own ensemble
members (dark blue crosses). The cyan crosses will be
discussed in Sect. 4. The CMIP and observational data
are taken from Jia (2003), from whose Figs. 4 and 5 this
diagram was derived. Sources and numerical values for

the CMIP models and observational data are listed in Jia
(2003, Table 2).

The observational estimates of heat transport are
around 1.1–1.3 PW, with an overturning strength of 16–
20 Sv. However, few of the CMIP models are close to
these values, with only three of them exceeding 1 PW,
and they also have a very wide range of overturning
strengths. According to Jia (2003), the basic reason for
the unrealistically low heat transports in the CMIP
models is the inability of these models to represent the
vertical heat gradient correctly, with most being much
too warm in the deep ocean (Fig. 7, lower plot).

In contrast, our model generates a much more real-
istic temperature distribution, with the ensemble mean
upper and lower temperatures being 18.3 and 3.3�C.
However, the overturning of 14.5±1.5 Sv is slightly too
small, and this results in a low heat transport of
0.8±0.1 PW. It is straightforward to generate an
ensemble which has closer agreement with these, and
other, transport estimates (by assimilating the estimates
directly into the ensemble), but this would prevent us
from using these estimates as independent validation of
the model, as well as potentially suffering from the
problem of data over-use since the transport estimates
are often based to some extent on the climatological
fields that we are already assimilating.

The distribution of our ensemble members in the
upper plot agrees well with the estimate from Böning
et al. (1996) that for each 2 Sv increase in overturning,
the heat transport increases by 0.1 PW. For random
selections of parameter sets from the prior, the maxi-
mum overturning ranges from 0 to 30 Sv, and the heat
transport varies from less than 0.4 to greater than
1.6 PW, so the results plotted here are not an intrinsic
property of the model but are instead determined
through the assimilation process. The width of our
ensemble also seems comparable to the uncertainty in
the observations, in contrast to the much greater range
of the CMIP models.

The position of the maximum overturning varies
somewhat between ensemble members, with most close
to 25�N but some being positioned around 40�N where
there is a small local maximum in the ensemble mean.

Estimates of the northward heat transport around
30�S range from 0.16 to 0.68 PW (Bennett 1978), with
several recent estimates being very close to 0.3 PW with
a mass transport of around 14 Sv (Weijer et al. 1999,
Ganachaud and Wunsch 2000, Holfort and Siedler
2001). A few of the CMIP models give negative values
here, but most are in good agreement, and their over-
turning strengths are also reasonable, ranging between
10 and 20 Sv. We also have a very small poleward heat
transport of 0.1±0.05 PW (Fig. 6), with our overturn-
ing of 8 Sv again being on the low side. This weakness in
overturning may be due to the lack of a warm water
path from the Pacific via the Indonesian Throughflow
and Agulhas leakage, which cannot be adequately re-
solved at the low resolution we are using here.

Fig. 7 North Atlantic heat and mass transports, and mean
temperatures of northward-flowing (upper) and southward-flowing
(lower) branches of overturning circulation
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3.4.2 Pacific Ocean

In the Pacific at 25�N, we have observational estimates
of northward heat transport of 0.76±0.3 PW from

Bryden et al. (1991), and 0.5±0.1 PW from Ganachaud
and Wunsch (2000). The CMIP models are generally a
little lower than these estimates, but still consistent with
them. The overturning at 30�S Pacific is very uncertain
in the CMIP models, ranging from 4 to 30 Sv. Our
ensemble has northward heat transport of 0.6±0.1 PW,
and our ensemble overturning of 16 Sv is in the middle
of the range of CMIP results.

The observed heat transport at 30�S is very uncertain,
with there being no consensus even on its sign. Gana-
chaud and Wunsch (2000) suggest 0.6 PW northwards,
whereas Trenberth et al. (2001) have a figure of 0.9 PW
southwards. The CMIP results have an even greater
range, with mass transports from 2 Sv southwards to
0.64 Sv northwards. Our results here are harmed by the
inability of our model to resolve the Indonesian
Throughflow, by which, according to the analysis of
Ganachaud and Wunsch (2000), 16 Sv of water carries
1.4 PW of heat from the Pacific to Indian oceans. As a
result, our estimate of 1.3±0.1 PW southwards is rather
large.

3.4.3 Indian Ocean

At 30�S in the Indian Ocean, Ganachaud and Wunsch
(2000) indicate a heat transport of 1.5 PW southwards,
and the CMIP models are split between those with
substantial transports in excess of 1 PW, and those with
very small transports of below 0.4 PW (even in models
which do resolve the Indonesian Throughflow). The heat
flux across 30�S in our Indian Ocean is about 1 PW
southwards, even without the help of the Indonesian
Throughflow.

Fig. 8 Barotropic circulation

Fig. 9 Zonally averaged atmospheric temperature and humidity,
ensemble and data
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3.4.4 Global ocean heat transport

The total global northward heat transport in the ocean
has been estimated to be 2.0 PW at 18�N (Trenberth
et al. 2001), and 1.8 PW at 25�N (Ganachaud and
Wunsch 2000). In contrast, only three of the CMIP
models reach 2.0 PW northwards transport, and one of
those includes an anomalous northward head transport
in the northern Indian Ocean, contrary to the sparse
observational data there. The meridional heat transport
of our ensemble is shown in Fig. 6. The Atlantic, Pacific
and total ocean heat transports are shown. Our result
here of 1.5±0.1 PW total ocean northwards transport
(at both latitudes) is good compared to most CMIP
model results, although still a little low compared to the
observational estimates.

The southward heat transport peaks at 1.3 PW at
around 15�S according to Trenberth et al. (2001). Most
of the CMIP transports are substantially smaller than
this, although three of the models exceed 2 PW. Al-
though the lack of Indonesian Throughflow in our
model is clearly responsible for a large error in our Pa-
cific and Indian Ocean estimates at 30�S, the total ocean
transport at this latitude (which should be less strongly
affected by the exchange) is still rather too high at
2.3 PW.

Barotropic flow (Fig. 8) in the Atlantic and Pacific
appear reasonable in our results, similar on large scales

to the results from the CCCMA model shown by Jia
(2003). Of course the smaller scales are not resolved on
our coarse grid. The Antactic circumpolar current
(ACC) was estimated at 123±11 Sv by Whitworth and
Peterson (1985) and 140±6 Sv by Ganachaud and
Wunsch (2000). The ACC is notoriously difficult to
model accurately even at high resolution, with the CMIP
models producing a range of results from 10 to 270 Sv.
Our estimate is rather low, at 28 Sv, but is well within
the range of the CMIP models.

3.5 Atmospheric state

We now consider the atmospheric state, in rather less
detail since this module is very simplified and barely
attempts to represent the atmospheric circulation. The
zonally averaged temperature and humidity are shown
in Fig. 9. Although the globally integrated precipitation
is reasonable, the zonally averaged precipitation
(Fig. 10) does not adequately represent the spatial var-
iability in the data (in particular, it is the difference be-
tween precipitation and evaporation that affects the
meridional salinity gradient), and we believe that this is
largely responsible for the poor ocean salinity distribu-
tion mentioned in Sect. 3.3. The zonally averaged pre-
cipitation minus evaporation in our model rarely
exceeds 0.2 m year�1, whereas the SOC climatology
(Josey et al. 1998) has a peak of around 1 m/year in the
equatorial region, and large troughs and peaks at ±20�
and ±45� respectively for both hemipsheres. These
peaks and troughs are closely aligned with the observed
zonally averaged SSS profile. The importance of this
moisture transport in determining the ocean salinity was
demonstrated by (Weaver et al. 2001), when they com-
pared model runs with moisture advection switched on
and off. Our results appear comparable to their non-
advective model version. Even though we have imple-
mented an advective term here it does not appear to
have sufficient effect, perhaps due to a lack of resolution
and the simplified precipitation and land-surface
schemes. The lack of seasonality (with the associated
zonal shift of the ITCZ and its precipitation) may also
be significant here.

Trenberth and Caron (2001) have examined atmo-
spheric reanalyses from NCEP, and calculated that the
northward heat transport in the atmosphere peaks at
5.0±0.14 PW, greatly in excess of previous estimates.
Our result of 5.1±0.2 PW shows good agreement with
their figure. The estimate from the prior was about
6.5±1 PW, indicating a lower dependence on the
parameters and a greater degree of predetermination
than was apparent for the more dynamically active
ocean model. In the southern hemisphere, the observed
transport is slightly higher, but our ensemble’s atmo-
spheric heat transport is slightly lower. It is not clear
whether this is the cause, or the result, of the excessive
heat transport in this region of the ocean. In any case,
we hope for a more realistic atmospheric climatology

Fig. 10 Zonally averaged precipitation and evaporation, ensemble
mean and standard deviation, together with data from the SOC
climatology
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(and therefore an improved ocean state) when a more
complete 3D atmosphere is implemented.

3.6 Other state variables

The only remaining component is the sea ice, which
exists in each of our ensemble members in the northern
hemisphere and also in the southern hemisphere of some
members. Due to the equal-area grid arrangement, the
northern hemisphere ice is mostly restricted to the
northernmost row of cells (covering the latitudes 71–
90�N) with some spread to the second row (63–71�N),
and the longitudinal distribution of thickness is rather
smooth. Nevertheless, the pattern and depth of ice is not
unreasonable, with a maximum depth in our ensemble
members of 12±2 m at around 90�W comparable to
output from the 1/4� resolution ocean model OCCAM
(Saunders et al. 1999) which has a maximum ice thick-
ness of 7 m occurring at the same longitude (Y. Akse-
nov, personal communication). In the southern
hemisphere, the southernmost row of grid boxes is en-
tirely occupied by land. In reality, the sea ice around the
Antarctic is highly seasonal, so it seems reasonable that
our ensemble sits on the boundary between being totally
ice-free (31 of the 54 ensemble members), and having
permanent ice cover in part of the second row of grid
cells (23 of the ensemble members).

3.7 Summary of validation

The ensemble mean state is a reasonable one, especially
in the ocean, but less realistic in the simple atmosphere.
The ocean circulation is a little weak, which results in
transports being generally low, although the lack of
Indonesian Throughflow must also be responsible for
substantial errors in the Pacific and Indian Ocean basins.
It is in fact straightforward to improve the ensemble’s
estimates of circulation somewhat by directly assimilat-
ing the observational estimates of its strength (not
shown here). However, this procedure runs the risk of
over-using data since many of these estimates are
themselves modelling analyses relying to a greater or
lesser extent on assimilation of temperature and salinity
data. Furthermore, this would prevent us from using
these observational estimates as independent validation
of the model. In any case, the poor SSS distribution
points to the atmospheric model being a dominant
source of error. Overall, the mean state (especially in the
ocean) does not seem clearly worse than the CMIP
models, with each of these models also having its own
particular strengths and weaknesses in different regions.
Given the extremely low resolution and simplicity of our
model, this is in itself an encouraging illustration of the
value of the tuning method.

The ensemble width is also generally realistic, com-
paring well (within a factor of two or so) with the esti-

mated uncertainty in the observational analyses such as
those generated by Ganachaud andWunsch (2000). Even
when there is a bias in the mean, such as the North
Atlantic overturning circulation, the ensemble still has a
plausible width. This justifies our choice of scaling of the
observational error estimates (which directly determines
the ensemble width). Since the regional biases cannot be
eliminated by tuning parameters, the model can only be
improved further through more fundamental structural
changes such as implementing a more realistic atmo-
sphere. In regions where there is a large bias, the model
state should not be considered as a direct estimate of the
true climate state, but rather the estimated projection of
the true climate state onto the space spanned by the
model, and the bias should be taken into account when
analysing forecasts. Our ensemble width contrasts
strongly with the CMIP results, which generally span a
range well in excess of any reasonable observational
uncertainty, such as their estimates of maximum over-
turning in the North Atlantic which range from less than
8 Sv to more than 32 Sv. It seems improbable that an
‘ensemble of opportunity’ made up of such a wide range
of models will be able to give a quantitatively useful
probabilistic prediction, since the uncertainty in even the
nowcast bears such little relation to the uncertainty in the
true climate state.

4 Climate change projections

4.1 Forecast scenario

Here we present some projections of climate change un-
der a simple anthropogenic forcing scenario. In this
experiment, the ensemble generated by the previous
parameter tuning procedure was integrated for 70, 100 or
200 years under a 1% per annum atmospheric CO2 in-
crease (reaching 2, 2.7 or 7.3 · the present day level)
followed by a further 3,500 years at the constant higher
level. This is then followed by a slow decline in CO2 at a
rate of 0.05% until the value returns to the present day,
and then finally a further 6,000 years at the constant
lower value. In these experiments we use a fixed radiative
forcing for doubled CO2 of 4 W m�2, thus ignoring one
source of uncertainty. The range of 3.5–4.1 W m�2 of
Houghton et al. (2001, Chapter 6) is generally taken to
indicate the 95% confidence (2r) interval, so this is a
rather minor factor. More importantly, this simple model
does not contain any of the feedbacks related to cloud
cover, which are highly uncertain but potentially large.

4.2 Global temperature change

The global mean surface air temperature at the start of
the experiment was 12.1±0.1�C, and this rose to
13.7±0.1�C after 70 years of rising CO2. The mean heat
rise per ensemble member was 1.6±0.04�C. However,
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after integrating for a further 5,000 years to equilibrium
at the 2· CO2 level, the temperature rose further to
15.1±0.1�C, a final ‘climate sensitivity’ (equilibrium re-
sponse to doubled CO2) of 2.9±0.1�C. The integrations
with the longer warming periods showed that the equi-
librium temperature response is roughly linear in radia-
tive forcing. The uncertainties on all these figures are
markedly lower than those estimated by other research-
ers, probably due to the lack of competing but highly
uncertain feedbacks in the atmospheric model (e.g. cloud
effects). However, it should be noted that our initial
ensemble has a reasonable range of uncertainty on most
of the state diagnostics examined earlier, whereas the
ensemble of coupled models in the CMIP experiments
have a huge range of uncertainty which is generally much
greater than that of the observations. Therefore, it seems
possible that the range of predictions generated as an
‘ensemble of opportunity’ from these models is unreal-
istically wide. In any case, our results suggest that the use
of a ‘climate sensitivity’ estimate needs to be carefully
qualified in terms of the time allowed to approach the
new equilibrium. Higher resolution models cannot real-
istically be integrated for such long periods as are nec-
essary for a true equilibrium (which in any case may have
limited utility), but the state reached during or immedi-
ately following a transient rise in CO2 will be far from the
equilibrium.

4.3 THC collapse and hysteresis

Recently, the strength and stability of the North
Atlantic THC has been a subject of much interest. It is

widely believed that the THC has two or more quasi-
stable states, and has repeatedly switched abruptly be-
tween the current ‘on’ state, and substantially a weaker,
or even ‘off’ state over the recent paleoclimate record
(Broecker 1997). Since the THC is responsible for
transporting a large amount of heat to the North
Atlantic and Western Europe, such transitions are
accompanied by large regional changes in climate. The
possibility of an abrupt transition has therefore been
the subject of intense study in recent years (e.g.
Broecker 1997; Rahmstorf and Ganopolski 1999).
Many studies have confirmed the sensitivity of the
THC in ocean models to externally imposed freshwater
fluxes, and more recently, coupled models have been
used to investigate the response of the atmosphere-
ocean system to anthropogenically enhanced CO2

(Wiebe and Weaver 1999; Stouffer and Manabe 2003).
The results generally indicate that the THC can be
switched off by a small additional freshwater flux of
around 0.06–0.15 Sv. This figure is comparable to some
estimates of likely changes in the hydrological cycle,
although there is substantial disagreement between
different models regarding the overall effect, with some
indicating a weakening or even complete shutdown
(Cubasch et al. 2001), and others a strengthening due
to increased freshwater flux further south (Latif et al.
2000). Moreover, in some models where the THC ini-
tially shuts down, it is re-established in the longer term
(under steady but elevated CO2 levels) to a value which
may even exceed the original state (Wiebe and Weaver
1999; Stouffer and Manabe 2003). The wide range of
results generated by different models indicates a sub-
stantial uncertainty over the response of the THC to

Fig. 11 Evolution of the thermohaline circulation under anthropogenic forcing
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anthropogenic perturbations, over both the short and
longer term.

The time series of overturning in the North Atlantic
(for the experiment using 100 years of CO2 increase), for
each ensemble member, is shown in Fig. 11. The initial
response to the rise in CO2 is a rapid drop in the strength
of the THC. The cyan crosses in Fig. 7 show the snap-
shot of overturning and temperatures in the North
Atlantic at the end of the 100-year period. Over this
initial interval, the surface warming almost completely
compensates for the reduction in overturning strength,
with the total heat transport only dropping marginally.
During the stabilisation phase of the experiment, the
overturning largely recovers in many of the ensemble
members, but continues to fall and ultimately collapses
in a substantial proportion of them (19 out of 54, or
37%). This results in a substantial difference in the re-
gional climate, with the temperature in NW Europe
being around 3–5�C colder in those ensemble members
where the THC collapses, when compared to those in
which it recovers. In fact, the regional temperature for
collapsed members is generally colder than the present
day climate, but only by 1–2�C. The time taken for the
collapse ranges from around 250 to 3,000 years. Even in
those members where the overturning recovers some-
what, it remains at a generally lower level than initially,
in contrast to the results of Wiebe and Weaver (1999)
and Stouffer and Manabe (2003). Our simple atmo-
sphere is incapable of substantially varying the moisture
transport from the Atlantic to the Pacific basins, but the
model’s dynamically diagnosed moisture transport does
drop by around 0.01–0.02 Sv which adds to the surface
warming effect in helping to destabilise the THC. Using
another efficient model with simple atmosphere,
Rahmstorf and Ganopolski (1999) added a further
external perturbation to the freshwater forcing in pro-
portion to the change in the model’s northern hemi-
sphere temperature. However, the constant of
proportionality for this perturbation is unknown a priori
and cannot be estimated even in principle from a single
steady state climatological tuning, since their parame-
terisation is defined in terms of the deviation from the
climatological mean. Therefore, we have not attempted
to include this factor in our study, although it could
have a significant influence on THC stability.

During and after the atmosphere’s return to present-
day CO2 levels, the THC increases back towards the
initial level in those models where it did not collapse
entirely. Of the ensemble members where the THC
switched off, only two switch back on again, illustrating
the hysteresis which has been widely investigated by
others. When a similar global warming experiment was
performed with 70 years of 1% pa CO2 increase, only 6
of the models switched to the collapsed THC state (11%
of the ensemble). With 200 years of increase, 52 of them
collapsed (96%). These results, which are the first using
a truly objective multivariate analysis system to simul-
taneously sample the uncertainty of the climate system
due to many different parameterisations, suggest that the

current state of the THC could be vulnerable to
anthropogenic perturbation, and if atmospheric CO2

levels increase rapidly, we could see drastic changes in
the THC in the next couple of centuries. However it
should be noted that the subset of ensemble members
that shut down their overturning are predominantly
those with the lower initial values, and since the
ensemble as a whole has a low bias, the real risk may be
somewhat overstated by these results. Missing processes
in the model (in particular, the inadequacy of the
moisture transport and the use of a fixed wind field) also
limits the confidence that can be placed in these quan-
titative results. However, application of this methodol-
ogy to more realistic models should help to quantify the
risk more accurately.

5 Conclusions

We have applied the method of Annan et al. (2004) to
perform probabilistic multivariate parameter estimation
by assimilating observational data for the ocean and
atmosphere into a new highly efficient coupled global
atmosphere-ocean model. The method generates an
ensemble whose members sample the uncertainty of the
current climate state. The ensemble mean appears to
have a very reasonable steady state climatology (espe-
cially in the ocean, which is the most sophisticated
component of the model), within the constraints of the
model’s limited physics and resolution. In fact, it ap-
pears comparable in realism to the those of the much
more complex and expensive coupled models used in the
CMIP project (Jia 2003). Furthermore, the ensemble
spread is comparable to the uncertainty estimated by
other ocean state analyses (e.g. Ganachaud and Wunsch
2000). In principle, such a tuned ensemble should be
useful for making objective predictions of future climate
change under anthropogenic forcing. However, it is clear
that the simplicity of the atmospheric component of this
model limits its value for this purpose.

When tuned to present day climatology, the forecast
under a scenario of 70 years of steadily rising atmo-
spheric CO2 (1% per annum cumulative growth) is for a
rise in surface air temperature of 1.6�C in 70 years,
increasing to 2.9�C at equilibrium. These results are
consistent with other research. However, this model is
rather simplistic (particularly with respect to the atmo-
sphere) and therefore the importance of these results
may be considered to be more in terms of what the
method promises for more sophisticated models
(including, but not limited to, future versions of the
GENIE model) than in terms of their accuracy for the
real Earth climate system.

The North Atlantic overturning is of particular
interest. It is widely (but not unanimously) believed that
atmospheric CO2 increase is likely to result in a reduc-
tion in overturning. Recent model results have suggested
that, over the longer term, overturning will recover and
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indeed converge to a slightly higher strength than the
original value, although there are some differences in
detail between the different model results (Wiebe and
Weaver 1999; Stouffer and Manabe 2003). A further
unknown is the level required for a permanent (or at
least long-term) shutdown of the overturning, which is
considered a likely result at some high level of CO2. Our
results indicate a polarisation of the ensemble into two
classes of behaviour: those where a recovery takes place,
and those where a complete shutdown occurs for our 2.7
· CO2 increase. When this experiment was repeated for a
200 year CO2 increase and stabilisation (7.3·), only two
of the 54 ensemble members remained in the ‘on’ state.
These results suggest a significant (if somewhat un-
quantified) risk of substantial and effectively irreversible
changes in regional climate in response to anthropogenic
perturbation.

Acknowledgements NRE is currently supported by the Swiss
NCCR-Climate programme. RM is supported by the Natural
Environment Research Council (NERC) Core Strategic Pro-
gramme ‘‘Ocean Variability and Climate’’. Supercomputer facilities
and support were provided by JAMSTEC. This research was partly
supported by the GENIE project (http://www.genie.ac.uk/), which
is funded by the NERC (NER/T/S/2002/00217) through the
e-Science programme.

References

Andronova NG, Schlesinger ME (2001) Objective estimation of the
probability density function for climate sensitivity. J Geo-
physical Res 108(D8):22605–22611

Annan JD, Hargreaves JC (2004) Efficient parameter estimation
for a highly chaotic system. Tellus (in press)

Annan JD, Hargreaves JC, Edwards NR, Marsh R (2004)
Parameter estimation in an intermediate complexity Earth
System Model using an ensemble Kalman filter. Ocean Model
(in press)

Bennett AF (1978) Poleward heat fluxes in Southern Hemisphere
Oceans. J Phys Oceanography 8:785–798
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