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In this paper, we show how oracle-based optimization can be effectively used for the calibration of an intermediate complexity climate

model. In a fully developed example, we estimate the 12 principal parameters of the C-GOLDSTEIN climate model by using an oracle-

based optimization tool, Proximal-ACCPM. The oracle is a procedure that finds, for each query point, a value for the goodness-of-fit

function and an evaluation of its gradient. The difficulty in the model calibration problem stems from the need to undertake costly

calculations for each simulation and also from the fact that the error function used to assess the goodness-of-fit is not convex. The method

converges to a Fbest fit_ estimate over 10 times faster than a comparable test using the ensemble Kalman filter. The approach is simple to

implement and potentially useful in calibrating computationally demanding models based on temporal integration (simulation), for which

functional derivative information is not readily available.
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1. Introduction

The objective of this paper is to show how oracle-based

optimization can be effectively used in model calibration for

intermediate complexity climate models. Following Oliva

[1], model calibration is defined as (a) the estimation of the

model parameters to obtain the best match between observed

and simulated behaviour of the phenomena described

(parameter estimation) and (b) the assessment of these esti-

mates by confidence intervals (estimate assessment).

Climate models play a central role in the scientific de-

bate concerning anthropogenic climate change, as indicat-

ed, for example, in the Intergovernmental Panel on Climate

Change (IPCC) reports [2, 3]. These models are used to

simulate the earth system response to the temperature

forcing due to anthropogenic emissions of greenhouse

gases. They include descriptions of atmosphere, ocean, ice

and snow cover and precipitation dynamics in different

locations on the planet. Model calibration is a vital issue in

climate and earth system modelling since even so-called

intermediate complexity models, such as the one used in

this work, can have a large number of uncertain parameters.

More complex models, generally speaking, have corre-

spondingly more, whereas simpler models typically have

fewer parameters, but correspondingly greater uncertainty

in their values. For climate prediction, in contrast to short-

term weather prediction, parameter values, rather than

initial conditions, are considered to be the dominant source

of uncertainty. This may be true even for the ocean because

interior processes are poorly understood or quantified, even

though initial conditions are forgotten only over millennia.

Oliva [1] distinguishes two approaches for model

calibration: optimal filtering and model reference optimi-

zation. In optimal filtering approaches, as for example the

ensemble Kalman filter (EnKF) approach proposed by

Evensen [4], the parameter estimation and the estimate

assessment problems are treated simultaneously. These

methods require some probabilistic assumptions con-

cerning the prior distribution of unknown parameters and

the model measurement errors (represented by a covariance

matrix). In model reference optimization approaches,

parameter estimation is done as a first step, followed by a

second step concerning estimate assessment. In the

parameter estimation step the objective is simply to find

parameter values that minimize an error function (typically

weighted least squares) in order to obtain the best fit

between observed and simulated data. No a priori proba-

bilistic information is assumed at this stage. In the estimate

assessment step, confidence intervals for the parameter

estimates can be determined by performing sensitivity

analysis of the minimized error function [1].

We may see the model reference optimization approach,

applied to a climate model, as an instance of a design

problem where one has to choose the values for static

parameters influencing the performance of a complex

dynamical system. Indeed, the difficulty lies in the non-

explicit link that exists between static design parameter

values and evaluation of the dynamic system performance.

In this article, we propose to use an oracle-based

optimization tool (OBOT), Proximal-ACCPM, i.e., the

proximal analytic center cutting plane method [5], to deal* Corresponding author.
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with this difficulty. An OBOT proceeds through a se-

quence of queries where an oracle replies by sending

information about the performance indicator value and its

gradient w.r.t. design parameter values. We demonstrate

the potential of the method by performing parameter

estimation for C-GOLDSTEIN [6], which is a simplified

physics, low-resolution climate model, with a 3-D ocean, a

2-D atmosphere and a dynamic and thermodynamic sea-ice

component. We describe how the parameter estimation

step was performed using an OBOT. The extension to

estimate assessment via sensitivity analysis will be the

subject of another report.

We compare our results to those reported by Hargreaves

et al. [6], who calibrated the C-GOLDSTEIN model using

an EnKF method.

The paper is organized as follows: In section 2 we

briefly introduce the C-GOLDSTEIN climate model. In

section 3 we discuss the potential of Proximal-ACCPM for

climate model calibration. In section 4 we formulate the

minimization problem used to estimate the C-GOLD-

STEIN parameters. In section 5 we briefly introduce

Proximal-ACCPM. In section 6 we give the implementa-

tion details. In section 7 we report the results and finally,

conclusions are given in section 8.

2. C-GOLDSTEIN

2.1. The model

In the hierarchy of climate and earth system models, C-

GOLDSTEIN is of intermediate complexity. Owing to a

combination of low spatial resolution and simplified

physics, the model achieves an integration speed of 1000

or 2000 years per hour on a modern PC (Pentium IV, 2.4

GHz), making it 3 or 4 orders of magnitude (o.o.m.) more

computationally efficient than widely used high-resolution

general circulation model (GCMs) such as HadCM3 [7],

and 1 or 2 o.o.m. faster than other intermediate complexity

models with three-dimensional ocean components such as

ECBILT-CLIO [8] or the UVic model [9]. On the other

hand C-GOLDSTEIN is 1 o.o.m. slower than the reduced

dimensionality Bern 2.5-D model [10].

The oceanic momentum budget is represented by a

simplified frictional geostrophic balance which is approx-

imately valid for long timescales, of years to decades or

more, and large spatial scales, of the order 1000 km or

more. The detailed dynamics of oceanic eddies, for

instance, are neglected. The atmosphere has a single layer

so that atmospheric processes are represented by a balance

of energy and moisture plus simple horizontal transport by

anisotropic diffusion and advection by a fixed wind field.

Feedback involving changes in atmospheric circulation and

precipitation patterns, and feedback involving the land

surface, are therefore relatively poorly represented or

ignored. Sea-ice height and areal coverage are similarly

governed by a local heat and fresh water balance, plus

advection by surface currents with a diffusive term to

represent unresolved processes. For the studies described

here, the ocean component is configured with eight vertical

levels while all components share the same 36 � 36-cell

horizontal grid.

Processes relevant to global-scale ocean circulation are

reasonably well represented by this version, as shown in

[6]. As a result of its efficient but relatively faithful

representation of large-scale ocean dynamics, the model

has proved useful for studies of glacial circulation states

[11], integrated assessments of climate change impacts

[12] and parametric investigations of the stability of the

thermohaline circulation [13]. The model is described more

fully in [14]. C-GOLDSTEIN forms a component of the

Grid Enabled Integrated Earth System Model (GENIE)

project (www.genie.ac.uk) in the context of which an Earth

System Model with more detailed representations of

atmosphere, land ice, ocean biogeochemistry and land-

surface processes is under development.

2.2. The parameters

C-GOLDSTEIN contains a total of about 75 physical

and model parameters, a subset of 12 which were identified

in [14] as the principal adjustable parameters governing

transport and mixing, and thus the large-scale distributions

of climatic variables (temperature, humidity, etc.). Even

where these parameters correspond to well-defined physi-

cal processes which may, in principle, be measurable, the

correct physical values remain hard to ascertain experi-

mentally. Furthermore, even where an appropriate true

global average value could be tightly constrained by

measurements, it may be appropriate to allow the model

value to deviate from the measured bounds if this allows

the model dynamical system to better approximate the real

climate, in some desired averaged sense.

Thus in [14], an averaged error function is defined

which measures the mean square departure of the model

state from observations. Good estimates of the 12 param-

eters are found by minimizing the error, over an ensemble

of 1000 randomly chosen parameter sets within a prede-

fined range. To better compare estimation results, exactly

the same optimization problem, using the same data, the

same cost function and, as far as possible, the same prior

ranges, were addressed both in the present work and in the

EnKF study of Hargreaves et al. [6]. However, prior

information and cost are treated somewhat differently by

Hargreaves et al. [6], as noted below. The observational

data correspond to ocean and surface atmospheric statistics

averaged over a period of around 50 years. Although there

has been significant change in upper ocean and atmosphere

temperatures over this period, these changes will be small

relative to the error in such a simple model. Indeed, the

error function essentially tests how well the model can

reproduce the spatial distributions of atmospheric and

oceanic variables. Since sources of internal variability

such as eddies are not represented, the model typically
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responds to the steady imposed solar forcing used here by a

slow approach toward a steady state. Physically, then, we

consider this steady state as a representation of the

preindustrial climate and wish to choose parameters that

minimize the deviation between the steady state and the

data.

3. Potential of Proximal-ACCPM for climate model

calibration

In this section we briefly review possible alternatives

for performing model calibration and we indicate why we

believe an OBOT such as Proximal-ACCPM is well suited

to this task.

As indicated in section 1, model calibration has been

attempted via two main strands of approaches: those

related to optimal filtering, represented by the Kalman

filter family of methods, and model reference optimization.

The Kalman filter can be seen as a recursive predic-

torYcorrector method [15] that was initially designed to

estimate the state of a stochastic linear dynamical system.

By starting at an initial guess of the system state and of the

error covariance matrix and after some predictorYcorrector

iterations, the Kalman filter outputs an optimal estimated

state and its associated error covariance matrix. The

Kalman filter supposes an underlying linear system that

at each iteration predicts the future state. Furthermore, at

each Kalman filter iteration, the state prediction and its

associated error covariance matrix are corrected by

incorporating the measured information. Both linear sys-

tem and measurements have associated noise functions

which are assumed white and Gaussian.

A powerful variant of the Kalman filter suitable for non-

linear systems is the Ensemble Kalman Filter (EnKF),

introduced by Evensen [16]. EnKF is based on an ensemble

(set) of model states instead of a single model state (in

contrast with the Kalman filter). As pointed out in [15], the

EnKF can be interpreted as a statistical Monte Carlo

method where the ensemble of model states evolves in the

state space with the mean as the best estimate and the

spreading of the ensemble determining the error variance.

In the Kalman filter, the stochasticity of the system state is

completely represented by the estimate itself and the error

covariance matrix. In contrast, in the EnKF, the stochas-

ticity is approximately represented by the estimate itself

and a cloud of points around it (ensemble of system states).

The Kalman filter is also used for parameter estimation

(model identification). Anderson [17] shows how to

implement the EnKF for this purpose. The technique

consists in extending the definition of the state vector so

as to include the model parameters (see [18]). Hargreaves

et al. [6] report on a calibration of the C-GOLDSTEIN

model using the EnKF technique. This study showed a

substantial improvement in computational efficiency com-

pared to simpler Monte Carlo parameter estimation

techniques, but the calculation process was still relatively

expensive, requiring 54 model runs, each of around 10,000

years (several times the model’s intrinsic adjustment

timescale). A critical detail of the method was that the

model state and model parameters were treated differently

in the iteration, in that the prior estimates for the model

state were continually updated, whereas the prior estimates

for the parameters were not. This constrains the parameters

to remain relatively close to the mean of the original,

Gaussian parameter distributions.

In model reference optimization approaches, one must

first decide on the error function f to be minimized. A

common choice is weighted least squares, which can be re-

lated to the maximum-likelihood method under appropriate

assumptions on the distribution of errors [1]. To minimize

the error function, one may use zero-order methods, which

only require evaluations of f, first-order methods which also

require the evaluation of the gradient g and second-order

methods which ask in addition for the evaluation of the

Hessian H. In [19], zero-order methods (genetic algorithms,

controlled random search, etc.) are used to calibrate different

models arising in water industry systems. In this implemen-

tation, the number of function evaluations is of the order of

several thousands. In [20], a second-order method based on

the BroydenYFletcherYGoldfarbYShano (BFGS) method is

used to calibrate three parameters of a soil constitutive

model. In this application only three parameters had to be

estimated and the number of calls to the function evaluation

was of the order of 50 to several hundreds.

Proximal-ACCPM is a cutting plane method which

belongs to the class of first-order methods. In the C-

GOLDSTEIN calibration problem, the only available

functional information is the error function value f obtained

at a high computational expense. The remaining functional

information, g and H, when needed, has to be numerically

computed by finite differences or automatic differentiation

techniques. In our opinion, a first-order method represents

a priori a good compromise when implemented through an

algorithm like Proximal-ACCPM, which keeps the number

of oracle calls (defining the cutting planes) at a moderate

level. Furthermore, most of the optimization methods are

based on line search along an improvement direction,

which requires extra function evaluations. In our case, the

use of a method which is free of line search, like Proximal-

ACCPM, is an advantage considering the very high

computational cost of each function evaluation.

The main limitation of cutting plane methods is that in

principle they are designed for convex optimization. Given

that our error function shows non-convexities, we have

adapted Proximal-ACCPM in order to deal with them. It is

therefore important to note that we will not be able to

guarantee that even a local optimum has been reached.

However, the method will provide solutions that improve

the fit with observed data. We also note that global

optimization methods [21], which are designed for non-

convex functions, are computationally too demanding for

this class of problems. Indeed, these methods rely on

enumeration schemes, e.g., branch-and-bound methods,
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which usually result in a very high number of function

evaluations.

4. The minimization problem

Our goal in this section is to formulate the parameter

estimation minimization problem for the C-GOLDSTEIN

model. For this purpose, we characterize the modelled

climate state by the vector s 2 RN , which consists of the

values of oceanic temperature and salinity and of atmo-

spheric temperature and humidity at every model grid

point. The minimization therefore does not explicitly

consider velocity and sea-ice variables, but these are

tightly linked to s by the model dynamics. Note that s

corresponds to the steady state attained after a long

integration and depends on 12 model parameters repre-

sented by x. Unless otherwise stated, for every possible

vector of parameters x, C-GOLDSTEIN returns a vector

s(x). On the other hand, the real earth climate is

represented by the observed state S 2 RN . As error

function, we use the weighted mean square error

f xð Þ ¼ 1

N

XN

i¼1

si xð Þ � Sið Þ2

b��2
i

; ð1Þ

where the weight b��2
i is the variance associated to Si, i =

1, . . . , N. There is thus one value of b��i for each of the four

physical variables, temperature and salinity in the ocean,

and temperature and humidity in the atmosphere. Both the

variances and the mean error are calculated in computa-

tional space rather than physical space, i.e. unweighted by

grid-cell volume, so that variables in regions of lower

resolution do not carry greater weight. The error function is

thus a balanced measure of how well the model succeeds in

representing the quantities it attempts to represent.

Our parameter estimation problem searches for a set of

parameters x* that minimizes f over all allowed parameter

sets and can be formulated as

x* ¼ arg min f xð Þ
s:t: x 2 D � R12;

ð2Þ

where the box domain D for the model parameters is

defined a lower and an upper bound value for each

parameter xi, that is,

D ¼ x1; x1½ � � . . . � x12; x12½ �: ð3Þ

The bound values can be found in table 2.

As in any minimization problem, a very important

question is whether f is a convex function. However, the

complexity of the C-GOLDSTEIN model prohibits us from

determining the convexity of f(x) analytically. As a

heuristic approach, we can plot slices of the graph of f(x)

along the coordinate axes, i.e., we can plot �i(a) = f(x0 +

aei), i = 1, . . . , 12, where ei = (0, . . . , 1i, . . . , 0) is the ith

canonical vector of R12 and x0 is the central point of the

domain D. We have encountered convex and non-convex

plots (see figures 1 and 2), thus f is clearly not a fully

convex function. Similar, single-parameter bifurcation

experiments were conducted by Edwards and Marsh [14]

for all 12 parameters. Most yielded convex graphs, but

parameters controlling the global hydrological cycle in

particular, such as atmospheric humidity transport, showed

evidence of non-convexity associated with hysteresis and

bifurcations between contrasting global ocean circulation

states. We shall discuss this matter later. The second main
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Figure 1. Evolution of f(x) along the wind-scale parameter direction.
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difficulty is that each evaluation of f takes about 2.5 h on a

modern PC (Pentium IV, 2.4 GHz), since for any set of

parameters x, f(x) is obtained after a long simulation.

5. Proximal-ACCPM

To solve (2), we use Proximal-ACCPM, an effective

and robust cutting plane method [5]. In its iterations,

Proximal-ACCPM produces an outer polyhedral approxi-

mation of the function epigraph.1 This approximation

serves to delineate a localization set which contains the

optimum. For convex optimization problems, the localiza-

tion set rapidly shrinks to yield an optimal solution x*. The

role of Proximal-ACCPM is to efficiently guide the

construction of such an approximation and eventually to

find x*. Proximal-ACCPM is a convex optimization tool

and must therefore be applied with care when one deals

with a non-convex problem as is the case here.

In the procedure, we consider a sequence of points

{xk}k2K in the search domain D. We denote by gk the

gradient of f (x) at xk, that is, gk = lf (xk). We consider the

linear approximation to f (x) at xk, given by f k(x) = f (xk) +

gk I (x j xk) and have

f k xð Þ � f xð Þ
for all x (to introduce Proximal-ACCPM we assume that f

is convex).

The point xk is referred to as a query point, and the

procedure to compute the objective function and its

gradient at a query point is called an oracle. Furthermore,

the hyperplane approximating the objective function f (x) at

a feasible query point and defined by the equation z =

f k(x), is referred to as a cut.

An upper bound to the minimum value of f(x) is

provided by:

�u ¼ min
k

f xk
� �

:

The localization set is defined as

L ¼ x; zð Þ 2 R12þ1 z � f k xð Þ 8k 2 K; z � �u

��� �
: ð4Þ

The basic iteration of a cutting plane method can be

summarized as follows

1. Select bxx;bzzð Þ in the localization set L.

2. Call the oracle at bxx. The oracle returns one cut and a

new upper bound f bxxð Þ.

3. Update the bounds:

(a) �u  min f bxxð Þ; �uf g.

(b) Compute a lower bound �l to the optimum of

problem (2). For example, �l = min{z ª (x, z) 2 L 7 D}.

4. Update the upper bound �u and add the new cut in the

definition of the localization set (4).

These steps are repeated until a point is found such that

�u j �l falls below a prescribed optimality tolerance. The

initial domain is thus Fcut_ down in size by the repeated

removal of regions which cannot contain the optimum

(given the assumption of convexity).

Cutting plane methods essentially differ in the way one

chooses the query point. For instance, the intuitive choice
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Figure 2. Evolution of f(x) along the T diff. amp. parameter direction.

1 The set of points that lie on or above the graph of a real-valued

function, that is, the set of points x; zð Þ 2 Rnþ1 such that z Q f (x).
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of the Kelley point bxx;bzzð Þ [22] that minimizes z in the

localization set may prove disastrous, because it over-

emphasizes the global approximation property of the

localization set. Safer methods, as for example bundle

methods [23] or Proximal-ACCPM [5], introduce a

regularizing scheme to avoid selecting points too Bfar

away^ from the best recorded point. Proximal-ACCPM

selects the proximal analytic center of the localization set.

Formally, the proximal analytic center is the point bxx;bzzð Þ
that minimizes F� x; zð Þ, defined as the logarithmic barrier2

of the localization set plus a quadratic proximal term which

ensures the existence of a unique minimizer3 for F� x; zð Þ.
This point is relatively easy to compute using the standard

artillery of Interior Point Methods. Furthermore, Proximal-

ACCPM is robust, efficient and particularly useful when

the oracle is computationally costly Y as is the case in this

application.

6. Implementation details

6.1. Variable scaling

The bounds for the 12 parameters xi and xi, which define

D in (3), vary greatly from parameter to parameter (see

table 2); thus in order to optimize efficiently, x needs

scaling. Gill et al. [24] proposed a linear transformation of

the form x = T( y) = Ay + b, where A = [aij] is a diagonal

matrix, aii ¼ 0:5 xi � xið Þ, and bi ¼ 0:5 xi � xið Þ. In this

case, Tj1(x) transforms domain D into [j1, 1]12 and prob-

lem (2) is transformed into the following equivalent one:

y*¼ arg min bff yð Þ
s:t: y 2 �1; 1½ �12;

ð5Þ

where

bff yð Þ ¼ 1

N

XN

i¼1

bssi yð Þ � Sið Þ2

b��2
i

;

and with bss yð Þ ¼ s T yð Þð Þ ¼ s xð Þ. Although in practice we

solve the scaled problem (5), we will continue to use the

simpler Ff (x)_ notation instead of Fbff yð Þ_ for convenience.

6.2. Derivative approximation

Since it is not feasible to derive an analytical expression

for lf (x), we approximate the partial derivatives by the

forward-difference formula:

@f xð Þ
@xi

’ 1

h

�
f xþ heið Þ � f xð Þ

�
i ¼ 1; . . . ; 12: ð6Þ

As we will see later, we only use approximate values eff xð Þ
instead of the true value f(x). In this case, special care must

be taken in the computation of the approximated partial

derivatives [24].Given that eff xð Þ introduces an error �(x),

i.e., eff xð Þ ¼ f xð Þ þ � xð Þ, then we have

1

h

�
eff xþ heið Þ � eff xð Þ

�
¼ 1

h

�
f x þ heið Þ� f xð Þ

�

þ 1

h

�
� x þ heið Þ� � xð Þ

�

’ @f xð Þ
@xi

þ 1

h

�
� x þ heið Þ� � xð Þ

�
;

i ¼ 1; . . . ; 12:

Thus, even for a small error �(x + hei) j �(x), we may

obtain completely meaningless approximated derivatives

for small values of h. In our computational experience, this

has been the case for h e O(10j6) and best results have

been obtained with h = O(10j2) or h = O(10j3).

6.3. Coping with non-convexity

As already stated, Proximal-ACCPM is designed for

convex problems. The convexity assumption is crucial in

the convergence analysis of the method [25, 26], and even

in its definition. Indeed, the definition of analytic center

applies to convex sets with a nonempty interior. The

localization set that Proximal-ACCPM builds satisfies this

assumption when the function to be minimized is convex.

If the function is not convex, simple examples show that

the oracle may produce cuts that totally exclude the current

localization set. After adding the new cut, the set becomes

empty and the method fails.

In our case, we know that the function we minimize is

not convex. Indeed, we have observed that the oracle

occasionally produces cuts that exclude a previously

computed point, which, by construction, belongs to the

epigraph set. To cope with the risk of an empty localization

set, we use a simple device, based on the observation that

the epigraph of a function is unbounded along the vertical

axis. To ensure non-emptiness, we check whether a new cut

excludes our reference point (the best point in the epigraph

generated so far). If not, we proceed as usual, otherwise we

lift the upper bounding cut by a sufficient amount.

This procedure is heuristic. It guarantees that the

method does not stop unduly. However, we cannot

guarantee that the point at which the convergence criterion

of Proximal-ACCPM is met corresponds to a local

minimum. We can only claim that we have empirical

evidence on our climate problem that our simple heuristic

device enables Proximal-ACCPM to converge to a point

with low least-squares residual. This positive result is

probably due to the fact that the function we minimize is

only mildly non-convex, at least in the area of interest.

Further enhancement of the Proximal-ACCPM technique

would be required in order to guarantee convergence to a

local minimum in non-convex cases.

2 The logarithmic barrier for the half space x 2 Rn aT x � bjf g is

jlog(bj aTx).
3 That is, the proximal analytic center of L is the point

bxx;bzzð Þ ¼ arg minx; zF� x; zð Þ ¼ arg minx; z FL x; zð Þ þ � x� exxk k2
n o

;

where FL(x, z) is the logarithmic barrier for the localization set L, r is the

proximal weight, and exx is the proximal point (current best point).
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6.4. Fast computing of the error function

We now consider how to accelerate the computation of

the costly f (x). The error function f (x) is a continuous

function of s(x) whose definition is based on the integration

of a system of partial differential equations along an

infinite time horizon. If we define ess s0; t; xð Þ as the final

state associated to an initial state s0, an integration length t

and a vector of system parameters x, then by definition

s xð Þ ¼ limt!1ess s0; t; xð Þ for any s0 2 S0, the set of suitable

initial states of the dynamical system. (Note that we are

assuming, for now, that s(x) does not depend on the initial

state s0).

In practice, we have observed that with an integration

length of 5000 years, we obtain a very good approximation

of s(x) for a reasonable initial state s0, i.e., s xð Þ ’
ess s0; 5000; xð Þ. Computing of ess s0; 5000; xð Þ, takes about 2.5

h on a modern PC (Pentium IV, 2.4 GHz). At each iteration

of Proximal-ACCPM, we need to compute f (xk) and the

approximation to lf (xk) given by (6), which implies the

evaluation of s(x) at 13 points. This means that with this

direct approach, we need about 32.5 h of CPU for each

Proximal-ACCPM iteration.

An alternative to this direct approach is to use the so-

called warm start procedure in C-GOLDSTEIN. Assum-

ing, once again, that for two different initial states, s0 and

s1, we have

s xð Þ ¼ lim
t!1

ess s0; t; x
� �

¼ lim
t!1

ess s1; t; x
� �

;

we can accelerate the computing of, say s(xb), provided we

already know s(xa) for an xb close to xa. In this case, s(xa)

should not to be too far from s(xb) and therefore a short

integration with s(xa) as initial state, should be enough to

compute s(xb). That is,

s xb
� �

’ ess s0; ts; x
b

� �
’ ess s xað Þ; tw; x

b
� �

;

with tw GG ts = 5000. ess s0; ts; x
b

� �
and ess s xað Þ; tw; x

b
� �

are

respectively called the standard start and the warm start

approximations of s(xb). Analogously, ts and tw are re-

spectively called the standard start and warm start inte-

gration lengths.

The error function associated to ess s0; t; xð Þ is

eff s0; t; x
� �

¼ 1

N

XN

i¼1

essi s0; t; xð Þ � Sið Þ2

b��2
i

:

By continuity, eff s0; t; xð Þ inherits the asymptotic behaviour

of ess s0; t; xð Þ. For example, it is easy to see that f xð Þ ¼
limt!1eff s0; t; xð Þ for any s0 2 S0. Analogously, eff s0; ts; x

b
� �

and eff s xað Þ; tw; xb
� �

are respectively called the standard start

and the warm start approximations of f (xb).

To compute fast and reliable approximation to f (xk) and

to lf (xk), we use the warm start procedure as follows:

Central point warm start algorithm

1. Warm start initialization: prior to any Proximal-

ACCPM iteration, select s0 2 S0. Compute and store
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Figure 3. Deepwater temperature in the model Atlantic as a function of time for various initial states. Left-hand side plot: The standard start needs a long

integration to attain a steady state. Central plot: The warm start needs a shorter integration to attain a steady state. Right-hand side plot: The warm start at

a slightly perturbed point attains steadiness with a very short integration.
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ess0 ¼ ess s0; ts; x
0ð Þ the standard start approximation of

s(x0).

2. Warm start: at each Proximal-ACCPM iteration k

compute and store

essk ¼ ess essk�1; tw; x
k

� �
;

approximate f (xk ) by eff essk�1; tw; x
k

� �
and approximate

f (xk + hei) by eff essk ; t 0w; x
k þ hei

� �
; i ¼ 1; . . . ; 12.

3. Partial derivatives: approximate partial derivatives

¯f (xk )/¯xi by:

1

h
eff essk ; t 0w; x

k þ hei

� �
� eff essk�1; tw; x

k
� �h i

i ¼ 1; . . . ; 12:

ð7Þ

4. Accurate value of f (x*): once Proximal-ACCPM deter-

mines x* as the best encountered point, approximate

f (x*) by an extra standard start C-GOLDSTEIN call
eff s0; ts; x*ð Þ.

Note that at step 2, at each perturbed point xk + hei, the

warm start procedure uses the steady state attained when

computing the objective function at the central point xk.

This approach takes advantage of the fact that the distance

between any of these perturbed points and the central point

is h. For this reason, at a perturbed point, by using the

warm start procedure, the dynamical system recovers its

steadiness after a very short integration length. This

phenomenon can be intuitively observed in figure 3.

An alternative warm start approach could be as follows:

Parallel warm start algorithm

1. Warm start initialization: prior to any Proximal-

ACCPM iteration, select s0 2 S0. Compute and store

ess0;i ¼ ess s0; ts; x
0 þ heið Þ, the standard start value of s(x0

+ hei) for i = 0, . . . , 12 (the vector e0 being the null

vector).

2. Warm start: at each Proximal-ACCPM iteration k,

compute and store

essk;i ¼ ess essk�1;i; tw; x
k þ hei

� �

and approximate f (xk + hei) by eff essk�1;i; tw; x
k þ hei

� �
i ¼

0; . . . ; 12.

Steps 3 and 4 would be as in the central point warm start

algorithm. Obviously, this approach is better suited for

parallel computing than the previous one, since now the 13

C-GOLDSTEIN calls at step 2 are independent. The main

drawback of the Parallel procedure is that it does not take

advantage of the proximity between the central and

perturbed points when computing the approximation to

the partial derivatives (see next section). Since we are

using a single processor PC, this is the reason why we have

chosen the central point warm start in this paper.

6.5. Selection of the integration length

The critical parameter in our method is the integration

length in the C-GOLDSTEIN model. A long integration

will result in accurate results but long computations. A too-

short integration will produce the opposite effect. Our aim

is therefore to find an integration length which balances

both computation time and accuracy. The selection of the

integration lengths ts, tw and tw
0 has been done in a heuristic

way by observing the evolution of the climate state. The

evolution of the climate state as a function of time ess s; t; xð Þ
can be visualized by plotting the basin-averaged deepwater

temperature in the model Atlantic (below $1000 m depth),

Td(s, t, x).

In figure 3, the left-hand plot corresponds to T0(t) =

Td(s0, t, x0) obtained by a standard start C-GOLDSTEIN

call with initial state s0 and x0 as parameter vector. The

initial state s0 is a globally uniform state with warm water

throughout the ocean, as used by Edwards and Marsh [14].

We observe that the temperature stabilizes around 12.6-C
after 5000 integration years, i.e., limt Y VTd(s0, t, x0) ’
Td(s0, 5000, x0) = 12.6-C.

The central plot corresponds to T1 tð Þ ¼ Td ess0; t; x1ð Þ,
obtained by a warm start C-GOLDSTEIN call with initial

state ess0 ¼ ess s1; 5000; x0ð Þ and x1 as parameter vector. We

observe that, by using the warm start, the temperature stabi-

lizes around 13.15-C after an integration period of only 1000

years, i.e., limt!1Td ess0; t; x1ð Þ’Td ess0; 1000; x1ð Þ¼13:15�C.

The right-hand plot corresponds to T2 tð Þ ¼ Td ess1; t;ð
x1 þ he1Þ obtained by a warm start C-GOLDSTEIN call

with initial state ess1 ¼ ess ess0; 1000; x1ð Þ and x1 + he1 as

parameter vector. We observe that, by using the warm

start at a slightly perturbed point, the temperature stabilizes

very quickly. In order to reduce the CPU time, the goal is to

take integration lengths ts, tw and tw
0 as short as possible,

but ensuring the steadiness of the C-GOLDSTEIN dynam-

ical system in order to obtain well-approximated values of f

and its partial derivatives. From our numerical experience,

we have observed that good values for the integration times

are: ts = 5000, tw = 500 and tw
0 = 50. Furthermore, C-

GOLDSTEIN routinely calculates a diagnostic parameter

ROC which measures the root mean square rate of change

of ocean variables and thus provides a very strong measure

of unsteadiness. This can be used to guarantee the quality

of our approximation to f (xk) in step 2 of the central point

algorithm. After computing eff ess; t; xk
� �

, a low value of the

associated ROC ensures a good approximation to f (xk ). In

our implementation, whenever the ROC has been greater

than 0:01, an extra integration has been performed in order

to double the integration time and thus improve the

approximation to f (xk ). This last mechanism is seldom

used and, roughly speaking, we can say that by using this

warm start setting, at each Proximal-ACCPM iteration we

divide by nearly 60 (13 � 5000 / (500 + 12 � 50)) the

standard start integration time per iteration, without

noticeably increasing the number of Proximal-ACCPM

iterations required.
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7. Results

In this section we compare the results of our model

calibration with those of the ensemble Kalman filter

(EnKF) method, both from the numerical perspective and

from the point of view of the resulting model climate.

7.1. Numerical performance

In our approach, we used h = 10j2 to estimate the

derivatives [see equation (6)] and �ACCPM = 10j3 for the

Proximal-ACCPM stopping tolerance. As initial point x0

for Proximal-ACCPM, we took the center of the box

domain D in equation (2). The initial state s0 is globally

uniform, as noted above. Programs were written in

MATLAB 6.1 [27] and run on a PC (Pentium IV, 2.4

GHz, with 6 Gb of RAM) under the Linux operating

system. C-GOLDSTEIN is coded in Fortran 77.

Figure 4 shows the evolution of the Proximal-ACCPM

upper and lower bounds up to convergence after 33

iterations. In the case of a convex error function, the upper

bound plot would be monotonically non-increasing, that is,

�u
k
Q �u

k + 1 for all k. It is not the case here, however, due to

the apparently mild non-convexity of f. As shown in

Section 6, Proximal-ACCPM may lift the current upper

bound in order to cope with the non-convex case.

In terms of solution quality, Proximal-ACCPM finds a

slightly lower function value of 0.4895 compared to 0.4944

for the EnKF approach (see tables 1 and 2). Regarding

performance, the more reliable integration length (as

opposed to the CPU hours) was used to compare the two

methods. Proximal-ACCPM converges after 33 iterations,

when the relative gap between the upper bound (objective

function) and the lower bound falls below the stopping

threshold �ACCPM (see figure 4). The total number of

integration years for Proximal-ACCPM after 33 iterations

was: 5000 years for the warm start initialization, plus 33 �
(500 + 12 � 50) for the Proximal-ACCPM iterations

(warm start), plus 700 integration years to improve the

ROC parameter in a few cases plus 5000 integration years

to compute the exact value of the error function at the

optimal point. All in all, we needed 47,000 integration

years compared to around 54 � 10,000 = 540,000

integration years for the EnKF method, as reported in [6].

The overhead CPU times for Proximal-ACCPM and the

EnKF methods are both considered negligible compared to

the climate integration times. For the computer we used,

the reported integration lengths would correspond to

estimated CPU times of 270.0 and 23.5 hours for EnKF

and Proximal-ACCPM methods, respectively. It should be

noted that the large amount of data processed in the EnKF

method can lead to further computational overheads;

however, EnKF computation can be parallelised,

corresponding to a minimum integration time of 5 CPU

hours per node across 54 nodes. In contrast to the results

obtained by EnKF and Proximal-ACCPM, the Latin

hypercube Monte Carlo method of Edwards and Marsh

[14], required 2,000,000 integration years, but failed to

locate any solutions with error less than 0.6000.

It is worth mentioning that it is common practice to test

a parameter calibration method by an identical twin test in

which an arbitrary system state is used as artificial data and

the calibration method attempts to determine what param-

eter values were used to produce it. Indeed, the EnKF

development for C-GOLDSTEIN followed this approach,

with Annan et al. [28] showing that EnKF was able to
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Figure 4. Proximal-ACCPM convergence.
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solve the identical twin problem in around n � 2000 years,

where the ensemble size n in the test was set to 54 (their

figure 2), and Hargreaves et al. [6] showing that with real

data the integration cost increased to around n � 10,000

years (from their figure 4). In the case of Proximal-

ACCPM, we found that if the artificial data were used as

an initial state, the method was able to find the exact

parameters used to extremely high accuracy in only around

100 Proximal-ACCPM iterations. With a very short

integration period of 2 years, this gave a total integration

time for estimation of the 12 parameters of less than 3000

years. In other words, Proximal-ACCPM was able to solve

the identical twin test so efficiently that it was necessary to

proceed directly to the case with real data to have a

meaningful assessment of the method.

7.2. Model climate

As expected from the decrease in mean error, the final

state ess x*ð Þ of the optimization procedure constitutes a sig-

nificantly more realistic climate than the initial guess ess x0ð Þ.
We do not discuss the model climate in detail here because

the final state is similar to that obtained using the EnKF

procedure and discussed in detail by Hargreaves et al. [6].

By way of illustration we show, in figure 5, the sea-surface

temperature (SST) field in the final state, along with the

SST difference fields between this state and the initial

guess, the EnKF solution, and the data. Changes of several

degrees are visible compared to the initial state, leading to

broad regions of low error compared to the data. Large

systematic errors remain, however, particularly in the

regions of the cold upwelling pools in the eastern tropical

Pacific and Atlantic and in the boundary current separation

regions of the Gulf Stream and Kuroshio. These regions are

challenging even for much more computationally expen-

sive climate models. The EnKF solution has very similar

SST and thus similar systematic errors, which it is reason-

able to assume are inherent to the model dynamics. It is

noteworthy that the method is able to find a minimum-error

state without difficulty, even when the optimal model cli-

mate is relatively far removed from the observational target.

Most intriguing is that the EnKF and Proximal-ACCPM

solutions are not exactly the same. Indeed, there are

substantial differences in most parameters, as indicated in

table 2. According to the error estimate provided by the

EnKF method, the parameter values obtained using Prox-

imal-ACCPM are, on average, around 2 standard devia-

tions away from the mean obtained using the EnKF (see

[6]). That the solutions are different is to be expected since,

as noted above, the EnKF estimate is constrained to remain

relatively close to the initial estimate. Furthermore, it was

noted by Hargreaves et al. [6] that certain parameters are

only poorly constrained, in particular the parameter

governing the behaviour of sea ice, for which no data

constraint was applied. Sea-ice diffusivity in the Proximal-

ACCPM solution is very close to the imposed bound, and

experience with both methods suggests that larger values

are preferred. The EnKF, however, penalizes solutions

which are near to the bounds. Another relevant point is that

Hargreaves et al. [6] found certain parameters to be corre-

lated, indicating possible redundancy in the tuned param-

eter set, in particular the multiple parameters governing

atmospheric transport. Closer examination reveals that

Table 1

Performance.

Method Lowest error Integration length (years)

EnKF 0.4944 540,000

Proximal-ACCPM 0.4896 47,000

Note that the EnKF value corresponds to 10,000 years per ensemble

member and that the estimate referred to corresponds to the ensemble

mean, which may not be the lowest-error solution found.

Table 2

Estimated parameters.

Parameters Lower bound Upper bound Estimated parameters Units

EnKF Proximal-ACCPM

Ocean

Wind-scale 1.0 3.0 1.6674 1.1841 Y
Isopyc. diff. 3.0 � 102 1.0 � 104 4.1264 � 103 5.5321 � 103 m2 sj1

Diapyc. diff. 2.0 � 10j6 2.0 � 10j4 1.8134 � 10j5 3.8818 � 10j5 m2 sj1

Frictionj1 5.0 � 10j1 5.0 3.4331 4.9959 days

Atmosphere

T diff. amp. 1.0 � 106 1.0 � 107 3.7548 � 106 2.5839 � 106 m2 sj1

q diff. 5.0 � 104 5.0 � 106 1.7447 � 106 1.9337 � 106 m2 sj1

T adv. coeff. 0.0 1.0 6.0357 � 10j2 8.9163 � 10j2 Y
q adv. coeff. 0.0 1.0 1.3674 � 10j1 1.4885 � 10j2 Y
Sea-ice diff. 5.0 � 102 8.0 � 103 6.2494 � 103 7.9913 � 103 m2 sj1

FWF adjust. 0.0 2.0 8.9796 � 10j1 1.0406 Y
T diff. width 5.0 � 10j1 2.0 1.3071 1.992 radians

T diff. slope 0.0 2.5 � 10j1 6.8597 � 10j2 2.3644 � 10j1 Y
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differences in atmospheric transport appear to physically

explain the differences in the modelled climate states.

We are thus left with two significantly different sets of

Boptimal^ parameters arising from different approaches to

calibration but associated with very similar climate states.

Remaining close to the original priors gives a better-posed

mathematical problem, but indicates that the result depends

on initial guesses for both the mean and the variance of the

parameter distributions, rather than simply on the imposed

extreme values. It must also be borne in mind, as shown in

[13], that in certain regions of parameter space C-GOLD-

STEIN exhibits multiple solutions for fixed parameter

values, corresponding to qualitatively different steady

ocean circulation states. By more devious choice of

initialization procedures, the model has been found to

possess up to 12 steady solutions for fixed parameters in

some regimes, mostly corresponding to qualitatively very

similar states (Hargreaves, personal communication). Thus

it is likely that a given method could produce different

solutions depending on the initial conditions and solution

path. Another possibility, which cannot be ruled out, is that

the optimization procedure itself could have multiple

solutions, in other words, that multiple local minima of

the cost function might exist. This would be in line with the

results of Edwards and Marsh [14], where the Monte Carlo

optimization, effectively a global optimization, while

admittedly undersampled, found both good and bad

solutions almost throughout the range of each parameter.

Whatever the root cause, the possible existence of

different optimal solutions using different methods or

initial conditions indicates that, although great improve-

ments can be obtained in the fit of model to data and thus

in the objectivity of the model calibration process, it may

be difficult to identify with confidence the globally optimal

values for individual parameters. Climate model calibra-

tion should thus be viewed as part of a continual process of

improving knowledge of model errors as a function of prior

assumptions concerning model parameters.

8. Conclusions

In this paper, we showed how oracle-based optimization

can be effectively used in the calibration of intermediate

complexity climate models. In a fully developed example,

the 12 principal transport and mixing parameters of the C-

GOLDSTEIN climate model were estimated by using

Proximal-ACCPM as the oracle-based optimization tool.

In terms of goodness-of-fit, we obtained estimates of

similar quality to those obtained by an EnKF approach,

but in around one tenth of the total model integration time.

Nevertheless, the two approaches cannot really be com-

pared since the EnKF approach also performs the estimate

assessment. The fact that the solution found by Proximal-

ACCPM was well outside the estimated error bounds

provided by the EnKF should serve as a warning that the

results of model calibration can depend on the initial

assumptions concerning model parameters. Results may

also be subject to sensitivity to initial conditions, or

redundancy in the process of minimizing a simple scalar
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error function by tuning many related parameters in a

model with large systematic errors. Overall, the result is

that it may be difficult to identify with confidence the

globally optimal values for individual parameters. Never-

theless, optimization is able to produce considerable

improvements in model performance and remove at least

some of the subjectivity which plagues the model devel-

opment process. The oracle-based optimization approach

used here is highly efficient, simple to implement and

generally applicable and could thus be useful in calibrating

other computationally demanding models based on tempo-

ral integration (simulation), for which functional derivative

information is not readily available. Whether the approach

could be successfully applied to more chaotic models, such

as eddy-resolving climate models, remains untested and

uncertain. In [29], it is argued that the pathological

behaviour of even averaged statistics in such cases handi-

caps any derivative-based method, although the derivative-

based 4DVar method is widely used for assimilation in

eddying models over very short integration periods.

Our contribution has been empirical. By using a well-

established optimization tool, Proximal-ACCPM, we have

performed a fast tuning of C-GOLDSTEIN, a model of

intermediate complexity. The keys for fast tuning have

been: (1) the fast computation of the error function and

approximated derivatives by exploiting the restart proce-

dure (warm start) in the C-GOLDSTEIN model; (2) the

rapid convergence and robust behaviour, particularly in

respect of non-convexity, of Proximal-ACCPM.

From the climate modelling point of view, two refine-

ments to the work described here would be highly

desirable: firstly, the use of an error function which

incorporates information from a variety of oceanic tracers

representing different timescales, and, secondly, develop-

ing the ability to tune two separate steady states of the

model to different data sets. This would make it possible to

demand that a model successfully should reproduce more

than one climate state. An obvious example would be

simultaneous tuning to glacial and interglacial states.
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