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Abstract The atmospheric abundance of 81Kr is a global integrator of cosmic rays. It is insensitive to
climate shifts, geographical variations, and short‐term solar cycle activity, making it an ideal standard to
test models of cosmic‐ray flux on the time scale of 105 years. Here we present the first calculation of absolute
81Kr production rates in the atmosphere, and a measurement of the atmospheric 81Kr/Kr abundance via
the Atom Trap Trace Analysis method. The measurement result significantly deviates from previously
reported values. The agreement between measurement and model prediction supports the current
understanding of the production mechanisms. Additionally, the calculated 81Kr atmospheric inventory over
the past 1.5 Myr provides a more accurate input function for radiokrypton dating.

Plain Language Summary Krypton‐81 is a long‐lived radioactive isotope produced in the Earth's
atmosphere by cosmic rays. It stays in the atmosphere as a noble gas for hundreds of thousands of years
until its eventual nuclear decay. As a result, its abundance uniquely reflects the long‐term accumulation
record of cosmic rays across the entire globe. We performed the first precise measurement of the
atmospheric abundance of krypton‐81. The result agrees with the prediction of a realistic isotope production
model, thus confirming the current understanding of the cosmic‐ray flux, isotope production mechanisms,
and the past terrestrial and space magnetic field environment.

1. Introduction

Long‐lived cosmogenic radionuclides are messengers carrying information about the past terrestrial and
space environments (Beer et al., 2011). The 10Be (half‐life = 1.4Myr), for example, effectively records the flux
of cosmic rays entering the Earth's atmosphere, particularly of the galactic cosmic‐ray (GCR) component,
over the past 105–106 years (Beer et al., 2013). The variation of the flux in space and time is revealed by
the 10Be concentrations in polar ice (Finkel & Nishiizumi, 1997) and sea sediments (Carcaillet et al., 2003;
Frank et al., 1997). Variation as large as 40% was found in correlation with the changing magnetic fields
in the heliosphere, which follows the Schwabe (11‐year) and other short‐term cycles (Beer et al., 1990;
McCracken et al., 2002). This solar modulation effect agrees with modern real‐time neutron flux measure-
ments in the atmosphere (Usoskin & Kovaltsov, 2008). On a longer time scale, the flux is affected by the
changing magnetic fields of the Earth, an effect that has been demonstrated by comparing 10Be with the geo-
magnetic fields, both recorded in sediments (Carcaillet et al., 2003; Frank et al., 1997). A similar effect of geo-
magnetic modulation within the past 100 kyr has also been observed using 36Cl (half‐life = 301 kyr;
Baumgartner et al., 1998). Considering a plausible link between the cosmic‐ray flux and cloud formation
or solar irradiance, the long‐term flux record derived from the 10Be measurements has assisted in paleocli-
mate discussions (Bard & Frank, 2006; Sharma, 2002).

The 81Kr (half‐life = 229 ± 11 kyr; Baglin, 2008) in the atmosphere is also cosmogenic in origin and records
the GCR flux on the time scale of 105 years. 81Kr provides a complementary perspective to that of 10Be (or
36Cl) because of differences in their transport and residence properties in the atmosphere. 10Be stays in
the atmosphere for typically a few years or less. Its rate of deposition on the ground, affected by both the
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distribution of cosmic‐ray flux and atmospheric transport factors, varies with time and position over the
globe by as much as a factor of 10 (Beer et al., 2013). As a result, understanding its transport process using
large, sophisticated climate models is a critical step in the analysis of the cosmic‐ray flux (Heikkila et al.,
2013). In contrast, 81Kr is a noble‐gas nuclide and predominantly stays in the atmosphere throughout its
long lifetime. Consequently, the 81Kr/Kr ratio is completely insensitive to the solar cycles that act over short
time scales. Only ~2% of the total terrestrial Kr content is absorbed into the oceans (Ozima & Podosek, 2001),
and anthropogenic 81Kr is less than 1% of the total atmospheric 81Kr inventory, as verified by measurements
in this work. The tracer is also mixed in the atmosphere over time scales of one to two years, and thus free of
geographical variations. In summary, the 81Kr/Kr ratio in the atmosphere is the ideal whole‐Earth integrator
of the cosmic‐ray flux on the time scale of 105 years. Due to this simplicity, the measured 81Kr/Kr value can
serve as a proving ground for models that simulate cosmic‐ray fluxes and calculate the production rates of
cosmogenic nuclides. Here we report on the first calculation of the production rates of 81Kr in the Earth's
atmosphere as well as a precision measurement of the 81Kr/Kr ratio in the atmosphere using the Atom
Trap Trace Analysis (ATTA) method (Chen et al., 1999), the result of which differs significantly from all pre-
viously reported values.

2. Model for the Production of 81Kr

The interactions of cosmic‐ray particles with the atmosphere produce a cascade of secondary particles.
Models have been developed to simulate these processes and calculate the production rates of cosmogenic
nuclides (Beer et al., 2013; Masarik & Beer, 1999; Webber & Higbie, 2003). The production rate of 81Kr at
the atmospheric position D can be calculated as

P D;M;Φð Þ ¼ ∑
i
Ni∑

k
∫
∞
0 σik Ekð Þ·Jk Ek;D;M;Φð ÞdEk (1)

Here Ni is the number of atoms for target element i per kg material in the atmospheric sample, σik (Ek) is the
cross section for the production of 81Kr from the target element i by particles of type kwith energy Ek, and Jk
(Ek,D,M,Φ) is the total flux of particles of type k with energy Ek at location D within the atmosphere for the
geomagnetic fieldM and the solar modulation parameter Φ. In this model, the particle fluxes Jk (Ek,D,M,Φ)
are calculated by interfacing the GEANT (Brun, 1987) and MCNP (Briesmeister, 1993) codes (Masarik &
Beer, 1999). The main nuclear reactions leading to cosmogenic 81Kr are proton‐ and neutron‐induced spal-
lation of the stable nuclides 82Kr, 83Kr, 84Kr, and 86Kr, as well as nuclear reactions 80Kr(n,γ) 81Kr and 82Kr(γ,
n)81Kr. The cross sections for spallation reactions were evaluated in earlier calculations (Masarik & Beer,
1999). The cross sections for the (n,γ) and (γ,n) reactions are taken from the ENDF‐VI/b library linked to
the MCNP code.

The primary cosmic‐ray flux at the Earth's orbit has two components: galactic (GCR) and solar (SCR). The
GCR particles are a mixture of ~87% protons, ~12% α particles, and ~1% heavier nuclei (Simpson, 1983).
The energy distributions of all nuclei are quite similar if compared in terms of energy per nucleon. The ana-
lytical formula for the differential spectra of GCR primary protons is expressed as (Castagnoli & Lal, 1980;
Simpson, 1983)

J Ep;ϕ
� � ¼ Cp

Ep Ep þ 2mp
� �

Ep þ x þ ϕ
� �−2:65

Ep þ ϕ
� �

Ep þ 2mp þ ϕ
� � (2)

Here Ep (MeV) is the kinetic energy of the proton, mp (MeV) is the rest mass, ϕ (MeV) is the parameter
describing the modulation effect of the solar activity, Cp = 1.24 × 106 cm−2 s−1 MeV−1 is the normalization
coefficient, and x = 780 exp(−2.5 × 10−4 Ep) MeV. For α particles and heavier nuclei in GCR, there are cor-
responding formulae with parameters of slightly different values (Lal, 1988). Within the Earth's magnetic
field, α particles are simulated separately from the protons because of the different geomagnetic effects on
these two nuclides. Fits to lunar experimental data (Masarik & Reedy, 1994) indicate that the effective flux
of protons and α particles with energies above 10 MeV per nucleon at 1 A.U. is 4.56 nucleons cm−2 s−1. This
value corresponds to the long‐term average of ϕ = 550 MeV for the modulation parameter (Reedy, 1987)
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The SCR particles consisting of ~98% protons and ~2% heavier nuclei
(Simpson, 1983), with energies in the range of 1–100 MeV, can be
neglected. Because of their relatively lower energies, nuclear reactions
in the Earth's atmosphere are limited to high geomagnetic latitudes and
the very top of the atmosphere. Previous calculations showed that, for cos-
mogenic nuclides produced in spallation, the contribution from SCR is
below 1% (Masarik & Beer, 1999). This percentage can increase by a factor
of a few, but only at high latitudes and during strong solar events.

Based on the relative geomagnetic field intensities recorded over the past 2
Myr (Valet et al., 2005), we calculate the atmospheric 81Kr/Kr abundance,
Krab, at a given time before present inMa, timeBP, by integrating the produc-
tion rate P(t) from equations (1) and (2) weighted by the 81Kr decay factor

Krab timeBPð Þ ¼ ∫
T

timeBP
P tð Þ·2−

t−timeBP
t1=2 dt (3)

In order to obtain an estimated range for the unknown initial value ofKrab
at 2 Ma, we integrate from timeBP to T = 4 Ma in 1‐kyr intervals. For
timeBP beyond 2 Ma, where we lack magnetic field data to calculate a pro-
duction rate, we have assumed constant production rates of P(2 Ma), P(2

Ma) − s, and P(2 Ma) + s, to generate the three curves shown in Figure 1, where s is 2 standard deviations of
the range of production rates at t< 2Ma. Independent of the initial value, the calculation provides consistent
results from present to approximately 1.5 Ma within the uncertainty range indicated by the two outer curves.

Using equation (3), the present dayKrab is determined to be (7.3 ± 1.8) × 10−13 (all uncertainties reported are
1σ). The error is dominated by the ~25% systematic uncertainties on the input parameters (e.g., cross
sections, neutron fluxes) of the production rate. A more detailed discussion on the uncertainties in similar
analyses is given in Masarik et al. (2001). Although the standard deviations of the stacked paleomagnetic
field records are on the order of 15–20% (Frank et al., 1997; Valet et al., 2005), short‐term variations of such
amplitudes around the adopted smoothed field intensity curves have a negligible influence on the integrated
production rates of 81Kr. Therefore, only the systematic errors in the paleomagnetic records significantly
contribute to the uncertainty of the production rate.

3. Measurement of the Atmospheric 81Kr/Kr Isotopic Abundance

The atmospheric 81Kr/Kr ratio has previously been measured a few times using the Low‐Level Decay
Counting (LLC) method (Barabanov & Pomansky, 1975; Kuzminov & Pomansky, 1980; Loosli &
Oeschger, 1969), with results varying by as much as a factor of 2 (see Table 1). The main difficulties for
LLC lie in the extremely low counting rate and the need to understand and calibrate the counting efficiency
and background of the detector. The 81Kr/Kr ratio has also been measured once using the Accelerator Mass
Spectrometry method (Collon et al., 1997; Collon et al., 1999). However, the Accelerator Mass Spectrometry
measurement had relatively large statistical uncertainty (~20%) and possibly undetermined
systematic uncertainties.

Figure 1. The isotopic abundance of 81Kr in the atmosphere calculated over
the past 1.5 Ma. The middle curve (solid) uses a constant production rate
of P(2 Ma) for timeBP >2 Ma. The top and bottom (dotted) curves represent
production rates two standard deviations (taken from the full range of
production rates from 0 to 2 Ma) higher and lower than P(2), respectively,
for timeBP > 2 Ma.

Table 1
Measurements of the 81Kr Decay Activity and the 81Kr/Kr Isotopic Abundance in the Atmosphere

Reference Method 81Kr activity (dpm/LKr)
81Kr/Kr abundance

Loosli and Oeschger (1969) LLC 0.100 ± 0.010 (6.6 ± 0.7) × 10−13

Barabanov and Pomansky (1975) LLC 0.046 ± 0.010 (3.0 ± 0.7) × 10−13

Kuzminov and Pomansky (1980) LLC 0.067 ± 0.003 (4.4 ± 0.2) × 10−13

Collon et al. (1997) AMS 0.081 ± 0.019 (5.3 ± 1.2) × 10−13

This work (2019) ATTA/MS/dilution 0.138 ± 0.005 (9.3 ± 0.3) × 10−13

This work (2019) Calculation 0.11 ± 0.03 (7.3 ± 1.8) × 10−13

Note. The values in bold, measured directly, are used to derive the corresponding values in plain text. 81Kr decay activity is in units of decays per minute per liter
of Kr gas at STP.
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Since the advent of ATTA‐3 (Jiang et al., 2012), a new atom‐counting instrument based on the Atom Trap
Trace Analysis method, measuring 81Kr/Kr ratios in environmental samples, has become routine and 81Kr
dating of old groundwater and ice samples is now available to the Earth science community at large
(Lu et al., 2014). An ATTA‐3 instrument can be used to selectively trap atoms of the radioactive isotopes
81Kr or 85Kr in the isotopic abundance range of 10−14–10−10, as well as the stable isotopes (Jiang et al.,
2012). In particular, 83Kr (stable, isotopic abundance = 11.5%) is trapped for normalization in isotope‐ratio
measurements. While the abundance of each isotope is proportional to its trap capture rate, the proportion-
ality coefficient for each isotope depends on the details of the trap instrument and cannot be derived a priori.
For isotope dating, the coefficients need to be kept stable from one measurement to another, but their values
need not be determined because they cancel in the ratio‐of‐isotope‐ratio calculation between the isotope
ratios of the sample and the atmosphere. However, for the purpose of this work, in order to derive the
81Kr/Kr isotopic abundance of the atmosphere, we must first calibrate the ATTA‐3 instrument with a set
of standard samples whose isotope ratios are known independently.

The set of 81Kr Standard samples were derived from an enriched Primary sample of krypton gas with a
81Kr/Kr ratio (Aprim,81) on the order of 10−5 and a 85Kr/Kr ratio (Aprim,85) on the order of 10−6. The
Primary sample is a mixture of accelerator‐produced 81Kr contained in a N2 carrier gas and reactor‐produced
85Kr in an atmospheric krypton gas. At this highly enriched level, Aprim,81 and Aprim,85 can both be precisely
determined using noble‐gas mass spectrometry and were measured to be 20.31 ± 0.05 and 2.54 ± 0.04 ppm,
respectively. Details of the Primary and Standard samples are shown in Figure 2.

This enriched Primary sample was then precisely diluted using Blank85, a krypton gas sample extracted
from the atmosphere in 1944 (Kuzminov & Pomansky, 1980). LLC shows the 85Kr/Kr ratio of this krypton
gas to be below the detection limit of 6 × 10−14, and ATTA measurements show the 81Kr/Kr ratio of
Blank85 to be within 1% of the modern atmospheric value (by a relative comparison, as used in age dating).
This 81Kr/Kr measurement allows us to treat the 81Kr/Kr abundance of Blank85 as the modern atmospheric
value. At the same time, it also demonstrates that the modern 81Kr/Kr abundance has no significant anthro-
pogenic contributions. Various levels of dilution by about 5–6 orders of magnitude were performed to lower
the 81Kr/Kr and 85Kr/Kr ratios to levels within the measurement range of ATTA. The resulting Standards
thus have isotopic ratios Astan of

Astan;81 ¼ Aair;81 þ d·Aprim;81 (4)

Astan;85 ¼ d·Aprim;85 (5)

Figure 2. Details of Blank85, Primary, MS Reference, and Standard samples. A diagram of the two dilution processes A
and B, including the respective Kr/N2,

81Kr/Kr, and 85Kr/Kr ratios of the Primary and MS Reference gases measured
by mass spectrometry, and the dilution factors d of the Standards (see supporting information for further details on mass
spectrometry measurements and dilution processes).
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where d (~10−5–10−6, 1–d ≈ 1) is the fraction of krypton gas from the
Primary sample in the Standard and Aair,81 is the modern atmospheric
81Kr/Kr ratio that we aim to determine in this work.

In the ATTA‐3 apparatus, atoms of a targeted isotope (81Kr, 85Kr, or the
control isotope 83Kr) are captured by resonant laser light into a trap. For
the rare isotopes 81Kr and 85Kr, the trapped atoms are counted individually
by observing their fluorescence, and their capture rates (R81 and R85) are
recorded. In addition to trapping these two radioactive isotopes, ATTA‐3
is also used to trap and measure the loading rate (R83) of the stable isotope
83Kr for normalization (Jiang et al., 2012; Jiang et al., 2014) The ratio
R81/R83 is proportional to the isotopic abundance A81. The ATTA‐3
apparatus has demonstrated the ability to measure this ratio with 1%
precision, given sufficient atom counting statistics (Zappala et al., 2017).

For each of the Standard samples, the ratios (R81/R83)stan and (R85/
R83)stan are measured with ATTA. The values are then compared to those
of a dedicated lab reference sample, (R81/R83)ref and (R85/R83)ref, to gener-
ate the fractional reference values (fR) of the standard sample defined as

f Rstan;81 ¼ R81

R83

� �
stan

= R81

R83

� �
ref

¼ 1þ d·
Aprim;81

Aair;81
(6)

f Rstan;85 ¼ R85

R83

� �
stan
= R85

R83

� �
ref

¼ d·
Aprim;85

Aref ;85
(7)

These relations are derived from equations (3) and (4), given that the 81Kr/Kr ratio of the reference gas is
identical to that of the air (Aref,81 = Aair,81); d is determined in the precision dilution procedure.

As a consistency check for the method, fRstan,85 measured with ATTA are converted to isotopic abundances
and plotted in Figure 3 against the abundances taken from the results of mass spectrometry and precision
dilution. For 85Kr, ATTA is calibrated to LLC in order to determine the isotopic abundances. The uncertainty
on this calibration is primarily due to a 85Kr reference standard created in 1986, which was measured by
differential counting with an error of ~10%, typical at the time. This error affects the overall slope of the
fit, but not the linearity of the data. The resulting slope is 1.115 ± 0.028 (systematic) ± 0.014 (statistical).
The systematic error is the result of a common 3% error in the dilution of five of the seven Standards shown
(see supporting information). These data confirm the linearity of the dilution process and analysis method to
be at the 1.8% level. The deviation of the slope from unity is expected within the uncertainty of the LLC
calibration of ATTA. We note that this deviation has no direct impact on the following 81Kr measurement.

To extract Aair,81, equation (6) is rearranged as

d· Aprim;81
� � ¼ Aair;81 fRstan;81−1

� �
(8)

in order to relate the results of ATTA measurements (represented on the right side of the equation) against
the results from mass spectroscopy and dilution (represented on the left) such that the slope of a linear
regression will be Aair,81. This plot is shown in Figure 4 and yields a value for Aair,81 of 9.30 ± 0.18
(systematic) ± 0.07 (statistical) × 10−13. The systematic uncertainty is dominated by the dilution process
(see supporting information). The statistical uncertainty is limited by the dilution precision and the ATTA
measurements. In this experiment the relative ATTA uncertainties (1–3% for each individual measurement)
are significantly lower than is typically seen in environmental samples (3–4% for an individual measure-
ment) because the enrichment of the samples well above the modern atmospheric value provides, respec-
tively, higher atom counting statistics. In comparison, the statistical uncertainties from the mass
spectrometry measurements are negligible. As shown in Table 1, our new value of Aair,81 is significantly
higher than previous results.

Figure 3.. The 85Kr Standard comparison. The 85Kr isotopic abundances
measured with ATTA calibrated using LLC versus 85Kr isotopic abun-
dances expected in the Standards from mass spectrometry and precision
dilution, all adjusted to 1 August 2018. The black line represents a linear fit
forced through the origin with a slope of 1.115 ± 0.014 and a reduced χ2

value of 1.7. There is an additional systematic uncertainty of ±0.028 on the
slope due to uncertainties in dilution (see supporting information), which
accounts for the excess reduced χ2 value above unity.
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The measured 81Kr/Kr abundance agrees with the theoretically derived
value in this work, demonstrating the validity of the cosmic‐ray flux
model and its input parameters. However, due to the relatively large
25% model uncertainty the theoretical value also agrees with two of the
previous experimental results on the lower abundance side. As such, the
experimental uncertainty of ~3% for 81Kr/Kr achieved in this work should
motivate investigations into improving the accuracy of the
theoretical models.

The results of this work will have broad implications beyond the under-
standing of cosmic rays. As noted, the dominant error in the production
model is an overall systematic scaling factor, and thus, the relative varia-
tion of the production is much better understood. As such, by pinning the
model to the newly measured present‐day 81Kr/Kr value of this work, a
precise input function can be extrapolated up to 1.5 Ma for this isotope.
Such an input function is critical to the rapidly growing and improving
field of radiokrypton dating, particularly in applications like paleoclimate
studies (Buizert et al., 2014; Yokochi et al., 2019) where absolute ages are
of great importance. The historical atmospheric 81Kr abundance derived
here is found to be in good agreement with previous estimations of its
relative variations (Buizert et al., 2014). An additional and independent
outcome of this work is the production of a well‐characterized 85Kr
standard sample that will aid in future recalibration of
LLC instrumentation.
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