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Highlights

• We present a generative computational model for perceptual phenomena in
tinnitus subjects based on the Bayesian brain concept.

• The model is able to reproduce the tinnitus phenomena of residual inhibition,
residual excitation and the occurrence of tinnitus after sensory deprivation.

• The model can be used to design and optimize behavioral testing paradigms
and to guide future tinnitus research.

Abstract

Recently, Bayesian brain-based models emerged as a possible composite of existing
theories, providing an universal explanation of tinnitus phenomena. Yet, the
involvement of multiple synergistic mechanisms complicates the identification of
behavioral and physiological evidence. To overcome this, an empirically tested
computational model could support the evaluation of theoretical hypotheses by
intrinsically encompassing different mechanisms. The aim of this work was to
develop a generative computational tinnitus perception model based on the Bayesian
brain concept. The behavioral responses of 46 tinnitus subjects who underwent
ten consecutive residual inhibition assessments were used for model fitting. Our
model was able to replicate the behavioral responses during residual inhibition in
our cohort (median linear correlation coefficient of 0.79). Using the same model, we
simulated two additional tinnitus phenomena: residual excitation and occurrence
of tinnitus in non-tinnitus subjects after sensory deprivation. In the simulations,
the trajectories of the model were consistent with previously obtained behavioral
and physiological observations. Our work introduces generative computational
modeling to the research field of tinnitus. It has the potential to quantitatively
link experimental observations to theoretical hypotheses and to support the search
for neural signatures of tinnitus by finding correlates between the latent variables
of the model and measured physiological data.
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1 Introduction1

Subjective tinnitus is a conscious auditory perception in the absence of external2

or internal sound sources. Up to 30% of the population experience bothersome3

tinnitus, but this depends on the methodology and age group surveyed (McCormack4

et al., 2016). Evidence of abnormal neural activity along the auditory pathway up5

to the auditory cortex and other high-level networks suggests that both peripheral6

and central systems are involved in the development and maintenance of tinnitus7

(Carpenter-Thompson et al., 2014, De Ridder et al., 2011, Eggermont and Roberts,8

2004, Jastreboff, 1990, Norena, 2011, Silchenko et al., 2013, Xiong et al., 2019).9

A variety of models have been developed to explain tinnitus and related sound-10

triggered phenomena (De Ridder et al., 2014c, 2015, Norena and Eggermont,11

2003, Noreña and Eggermont, 2006, Rauschecker et al., 2015, Roberts et al., 2013,12

Schaette and McAlpine, 2011, Seki and Eggermont, 2003, Zeng, 2013). Recently,13

modelling approaches based on the Bayesian brain, a fundamental framework for14

predictive processes, have gained attention in tinnitus research. Under the Bayesian15

brain perspective, perception is considered as the active inference of environmental16

states under uncertainty based on internal representations of the brain (Clark, 2013,17

Friston, 2010, Knill and Pouget, 2004). This notion has been applied in predictive18

coding (Friston, 2010, Rao and Ballard, 1999) and hierarchical Bayesian inference,19

namely the Hierarchical Gaussian Filter (HGF) (Mathys et al., 2011, 2014), which20

involves the inclusion of hierarchical predictions of sensory input into the brain.21

At each layer of the hierarchically structured sensory systems, bottom-up signals22

(likelihood) from the layer below are compared with the top-down prediction (prior)23

from the layer above. Their deviations are denoted as prediction errors (PEs) and24
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are passed to the higher layers to update the predictions with the aim of minimizing25

the PEs. The magnitude of the PEs is calculated based on the proportion of the26

confidence levels (precision) of the input and the prediction. Bayesian tinnitus27

theories assume that tinnitus is a compensatory process to minimize elevated PEs28

caused either by bottom-up excitatory inputs, false top-down inhibitory predictions,29

or a combination of both (De Ridder et al., 2014a,b, Hullfish et al., 2018, 2019a,30

Kumar et al., 2014, Lee et al., 2017, Sedley et al., 2016a, 2019, Vanneste and31

De Ridder, 2016). Sedley et al. (2016a) proposed a Bayesian brain model in32

which tinnitus can be synergistically triggered by neurophysiological, hormonal33

and neurochemical factors. Each of these factors can influence the precision of the34

bottom-up signal, i.e. the tinnitus precursor, to the auditory cortex. Normally,35

the top-down default prediction (i.e. the prediction in the absence of external36

stimuli or ’silence’) prevents the auditory perception from tending towards the37

tinnitus precursor and ignores it as irrelevant noise. However, a sufficiently high38

precision of the tinnitus precursor leads to a lower degree of confidence in the39

default prediction - resulting in a deviation from the default perception of "silence".40

Ultimately, sufficiently long tinnitus chronicity can lead to the formation of a new41

default prediction (from ’silence to ’tinnitus’) that maintains the persistence of the42

tinnitus.43

The Bayesian brain concept can provide explanations for several phenomena ob-44

served in tinnitus patients, including residual inhibition (RI) and residual excitation45

(RE). RI and RE denote the transient suppression or amplification of tinnitus loud-46

ness perception after exposure to an acoustic stimulus. A detailed understanding,47

in particular of RI, is of central importance, as it could be applied to temporarily48

modulate tinnitus for management and relief in suffering patients (Fournier et al.,49
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2018, Hu et al., 2021). Moreover, RI enables to investigate tinnitus characteristics50

using behavioral test paradigms. However, there exists a paradox of neuronal51

activity in the auditory cortex during RI and RE. RI has been hypothesized to52

be the consequence of a temporary reduction of successive spontaneous firing and53

neuronal synchronicity that occur in response to peripheral lesions (Galazyuk et al.,54

2017, Roberts et al., 2008). Neural imaging studies reported a reduction in low fre-55

quency (i.e. delta/theta bands) and high frequency (i.e. gamma band) oscillations56

in the auditory cortex during RI (Adjamian et al., 2012, Kahlbrock and Weisz,57

2008, Sedley et al., 2012, 2015). During RE, however, contrary to the expected58

increase of oscillations, a decrease of gamma oscillation was observed (Sedley et al.,59

2012). Magnetoencephalography data collected from patients with tinnitus showed60

predominantly gamma power positively correlates with tinnitus intensity in those61

experiencing RI, but the opposite relationship in those experiencing RE (Norena,62

2011). This suggests that auditory cortical gamma oscillations suppress, rather63

than cause, the perception of tinnitus. Applying the Bayesian brain concept, both64

suppression (RI) and enhancement (RE) of tinnitus can be explained as transient65

modulation processes of the tinnitus precursor and the default prediction. In both66

phenomena, the process aims at minimizing the prediction error caused by the67

acoustic stimulation and manifests itself in a reduction of gamma oscillations.68

Although the Bayesian brain approach is promising, the lack of possibilities69

to link the concepts to observable behavioral or physiological data limits further70

analysis. To overcome this limitation, generative computational models were71

proposed in various areas of psychological research. In the related field of auditory72

hallucinations, studies demonstrated that patients with strong priors (prediction)73

are more likely to experience hallucinations (Cassidy et al., 2018, Corlett et al.,74
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2019) and that patients with hallucinations are less likely to update their prior75

beliefs with new sensory input (Powers et al., 2017). Computational modelling76

of tinnitus was applied in previous studies (Chrostowski et al., 2011, Gault et al.,77

2020, Parra and Pearlmutter, 2007, Schaette and Kempter, 2006, 2009, 2012).78

To evaluate whether these concepts could be advanced, we aimed to develop a79

generative computational tinnitus model based on the Bayesian brain concept.80

Such a tinnitus model could be of scientific and clinical importance for several81

reasons. First, it would enable the quantitative inference of observable data from82

proposed neurophysiological mechanisms. Second, differences in model parameters83

could be used for a refined sub-typing of tinnitus, to identify pathophysiological84

mechanisms and potentially provide a personalized treatment based on behavioral85

measurements (Stephan et al., 2015). Third, generative computational models could86

be applied to generate sub-type-specific synthetic data as a basis to design and87

assess hypotheses of behavioral studies. Fourth, the individual parameter values88

for each subject address the heterogeneity across tinnitus patients allowing patient89

tailored treatment in the future, for instance, in combination with neuro-feedback90

that demonstrated promising results (Güntensperger et al., 2017). We hypothesized91

that a Bayesian brain-based approach can be used to reproduce RI behavior in92

tinnitus subjects by introducing a novel generative HGF-based model, the Tinnitus93

Hierarchical Gaussian Filter (tHGF). The model was tested with behavioral data of94

tinnitus subjects collected during RI assessment. Since the Bayesian brain concept95

is also able to explain the phenomena of residual excitation and the occurrence96

of tinnitus after temporary sensory deprivation (e.g. by using ear plugs), the97

applicability of the model to generate such phenomena was evaluated.98
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2 Materials and Methods99

2.1 Tinnitus Hierarchical Gaussian Filter (tHGF)100

Our computational model is based on the HGF, which applies variational Bayes to101

infer an individual’s belief and uncertainty of hidden environmental states from102

sensory inputs (Mathys et al., 2011, 2014). The hidden states evolve over time as a103

hierarchy of coupled Gaussian random walks. At each level of the HGF, the volatility104

over the hidden states is dynamically estimated by the states of the next higher105

level. We adopted the HGF in our extended tinnitus model (tHGF) by assessing106

the continuous updating of subjects’ beliefs in tinnitus perception in response107

to acoustic stimulation. In addition, our model applies the Bayesian approach108

proposed by Sedley et al. (2016a), in which the posterior distribution represents109

the auditory perception and is proportionally depending on the sensory evidence110

(likelihood) and the brain’s predictions (prior distributions). These distributions111

are Gaussian, with the mean representing the auditory intensity (dB SL) and112

the inverse variance the precision of the perception. According to Sedley et al.113

(2016a), the likelihood distribution reflects the spontaneous activity along the114

auditory pathway to the auditory cortex and is denoted as tinnitus precursor. In115

non-tinnitus subjects, the influence of the tinnitus precursor is eliminated by the116

prior distribution (the default prediction) with "silence" as the mean value (defined117

at 0 dB SL) and a dominant precision. Tinnitus occurs either when the mean118

value of the default prediction is displaced from 0 dB SL or when the precision of119

the tinnitus precursor increases significantly, which leads to a updated posterior120

distribution (i.e. auditory perception).121

In the tHGF, we combine the approaches of the HGF and the Bayesian theory122
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proposed by Sedley et al. (2016a). A graphical representation of the tHGF is shown123

in Figure 1. The trajectories of the hidden environmental states (including the124

auditory perception) are derived from the perceptual model (blue and yellow areas125

in Figure 1), while the response model (red area in Figure 1) translates them into126

the behavioral responses of the subjects. The distributions of the hidden states,127

i.e., their mean and precision, are continuously updated according to the acoustic128

stimulation (us; model input) leading to transiently modulated auditory perception129

and consequently behavioral responses (y; model output). In our model, the sensory130

evidence is assumed to be formed as a joint distribution of the tinnitus precursor131

(ut; a fitted model variable) and external acoustic stimuli (us; model input). The132

probability distribution of the external acoustic stimulation can be represented by133

a Gaussian distribution with mean at the stimulation level (in dB SL) and a high134

precision. In the absence of stimulation, a level of 0 dB SL and a low precision135

are used as model input. The probability distribution of the tinnitus precursor is136

approximated as consisting of a time-invariant mean representing a subject-specific137

auditory intensity and a time-varying precision updated based on its higher level.138

This model offers the possibility to choose between fixed parameters or to fit all139

time-invariant constants (i.e. circles in Figure 1), the prior distribution (i.e., the140

initial values for mean and variance before any external stimulation, i.e., the steady141

state) of the time-varying states (i.e., hexagons in Figure 1), and the the tinnitus142

precursor (i.e., the time-invariant mean value and the prior variance of ut). The143

details of the models used for the evaluation (i.e. which parameters were selected144

as fixed or tuned by model fitting) are presented in the section 2.3.145
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Figure 1: Graphical representation of the Tinnitus Hierarchical Gaussian Filter
(tHGF). Diamonds and hexagons represent quantities that change in time, while
hexagons additionally depend in a Markovian fashion on the previous state in time.
Parameters in circles are time-invariant constants. A two-level continuous HGF was
used as the basis (blue area).The acoustic stimulation, i.e. us, is used as a model
input (sensory input). The first level x1 estimates the auditory perception of the
subjects, while its certainty is controlled by the second level x2 with the coupling
strength κ1 and the logarithmic volatility ω1. The estimation of auditory perception
additionally depends on a second input, the tinnitus precursor ut (yellow area).
The certainty of the tinnitus precursor is determined by the higher level b. The
volatilities of the second levels (i.e. x2 and b) are determined by the time-invariant
parameters ϑ2 and ϑb. The behavioral response y (model output; red area) depends
on the inferred value of x1, indicated as a dashed line.
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2.1.1 Perceptual Model146

The perceptual model in the tHGF is based on a two-level continuous HGF (Mathys147

et al., 2014) for estimating the behavioral responses y(k) of the subjects (model148

output or decisions), where k represents a time index. We extend the model by149

adding the components regarding the tinnitus precursor. The lower level x(k)
1150

represents the hidden state about the intensity of an auditory perception (in dB151

SL). The precision, i.e. how certain a subject is about the perception, is determined152

by the state of the second level x(k)
2 . In the following description, the expected153

values of posterior beliefs about the states at a certain level i are called µ(k)
i , while154

µ̂i
(k) is used to denote predictions before new inputs are observed.155

The sensory input in the tHGF is composed of the acoustic stimulation u(k)
s156

(model input) and the tinnitus precursor u(k)
t to infer the hidden state x(k)

1 , with157

the variances (i.e. the inverse of the sensory precision)
(
π

(k)
s

)−1

and
(
π

(k)
t

)−1

,158

respectively. The sensory precision πs is lower in the absence of stimulation (denoted159

as Π0):160

u(k)
s ∼ N

(
x

(k)
1 ,
(
π(k)
s

)−1
)
, (1)

u
(k)
t ∼ N

(
x

(k)
1 ,
(
π

(k)
t

)−1
)
, (2)

π(k)
s =





Π0 if x(k)
1 = 0 dB SL

Πs if x(k)
1 = stimulus level (in dB SL) with Πs � Π0.

(3)

The tinnitus precursor u(k)
t is defined as spontaneous activity along the auditory161

pathway (Sedley et al., 2016a). In our model, u(k)
t is approximated as a time-162
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invariant and subject-specific auditory intensity (referred to as Ut) above tinnitus163

perception level. The updating equation for the posterior belief on auditory164

perception µ(k)
1 after receiving sensory input is:165

µ
(k)
1 = µ̂1

(k) +
π̂

(k)
s

π
(k)
1

· δ(k)
s +

π̂
(k)
t

π
(k)
1

· δ(k)
t , (4)

with the prediction errors

δ(k)
s = u(k)

s − µ̂1
(k), (5)

δ
(k)
t = Ut − µ̂1

(k). (6)

In addition, we have

µ̂1
(k) = µ

(k−1)
1 , (7)

π
(k)
1 = π̂

(k)
1 + π̂(k)

s + π̂
(k)
t , (8)

π̂
(k)
1 =

1
(
π

(k−1)
1

)−1

+ exp
(
κ1 · µ(k−1)

2 + ω1

) . (9)

The precision of the first level is determined by the belief about the state of the166

higher level x(k)
2 (i.e., µ̂(k)

2 ), which is updated via the prediction error δ(k)
1 , weighted167

by the precision:168
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µ
(k)
2 = µ̂

(k)
2 +

1

2
· 1

π
(k)
2

· κ1 · w(k)
1 · δ(k)

1 and (10)

w
(k)
1 = exp

(
κ1 · µ(k−1)

2 + ω1

)
· π̂(k)

1 , (11)

with

δ
(k)
1 =

(
1

π
(k)
1

+
(
µ

(k)
1 − µ̂1

(k)
)2
)
· π̂(k)

1 − 1, (12)

π
(k)
2 = π̂

(k)
2 +

1

2
· κ2

1 · w(k)
1 ·

(
w

(k)
1 + (2 · w(k)

1 − 1) · δ(k)
b

)
, (13)

π̂
(k)
2 =

1
(
π

(k−1)
2

)−1

+ ϑ2

. (14)

We introduce an AR(1) auto-regressive process to the state x(k)
2 , pushing x(k)

2169

towards a restriction parameter m2 with a change rate of φ2, to prevent the170

occurrence of infinite precision:171

µ̂
(k)
2 = µ

(k−1)
2 + φ2 ·

(
m2 − µ(k−1)

2

)
(15)

In our model, the precision of the tinnitus precursor π(k)
t is determined by the172

second level b(k) (with a fixed variance ϑb), that is modulated proportionally to the173

deviations between the posterior perception µ(k)
1 and the tinnitus precursor Ut (i.e.174

the prediction error δ(k)
b ). Greater deviations lead to an increased uncertainty (i.e.175

decrease of the precision) of the tinnitus precursor.176
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π̂
(k)
t = exp

(
−
(
κt · µ(k)

b + ωt

))
, (16)

µ
(k)
b = µ̂

(k)
b +

1

2
·
(
π

(k)
b

)−1

· κt · δ(k)
b , (17)

δ
(k)
b =

(
1

π
(k)
1

+
(
µ

(k)
1 − Ut

)2
)
· π̂(k)

t − 1. (18)

Same as for x(k)
2 , an AR(1) auto-regressive process was implemented to prevent

infinite precision of tinnitus precursor in the second level b(k):

µ̂b = µ
(k−1)
b + φb ·

(
mb − µ(k−1)

b

)
. (19)

For the precision of the second level of the tinnitus precursor b(k) we have

π
(k)
b = π̂

(k)
b +

1

2
· κ2

t ·
(

1 + δ
(k)
b

)
, (20)

π̂
(k)
b =

1
(
π

(k−1)
b

)−1

+ ϑb

. (21)

The coupling factors (κ1, κt) and the volatilities (ω1, ωt) control the dependence177

of the precision of the first levels on the states of the second levels. The updating178

of the precision decreases as κ1 or κt are reduced, corresponding to a stronger belief179

in priors.180

2.1.2 Response Model181

A Gaussian noise model is used to map the subjects’ belief in perception µ(k)
1 to182

their behavioral responses y(k):183

16

                  



P (y(k) | µ(k)
1 ) = N (µ

(k)
1 , ζ), (22)

where the variance ζ represents the noise in the measurement, neural processing,184

and additional noise sources not covered by the perceptual model.185

2.2 Behavioral data186

2.2.1 Data Collection187

The behavioral data used for modeling were collected in a study investigating the188

association between RI and neural activity in subjects with tinnitus. The study189

was approved by the local institutional review board (reference number: KEK-BE190

2017-02037). A detailed description of the measurement setup and procedures191

for audiometric and tinnitometric assessment is provided in the published study192

protocol (Hu et al., 2019). The behavioral task consisted of ten consecutive trials.193

In each trial, a personalized narrow-band noise stimulus was presented bilaterally194

to the subjects for 60 seconds to cause RI (Hu et al., 2019). The subjects were195

asked to rate the RI depth on an 11-point Likert scale (range: -5 to 5; -5 complete196

suppression, 0 no change, +5 gain) immediately after stimulus end. The next trial197

was started after the subjects indicated that their tinnitus had reached the initial198

tinnitus loudness level (i.e. by indicating 0). During the experiments, the indicated199

RI depth and time of response (referred to as "RI time") were recorded (Figure 2200

(a)). For the model, we used data from 46 tinnitus subjects that were susceptible to201

substantial RI, i.e. subjects who achieved an averaged maximum RI depth of -5 or202

-4 over the 10 trials, corresponding to a complete or almost complete suppression203

of tinnitus (Hu et al., 2021). The demographic details of the subjects can be found204
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in Supplementary Table S1.205

2.2.2 Data Preprocessing206

For an appropriate model output, the behavioral responses of discrete-time cat-207

egorical variables were mapped to continuous trajectories of tinnitus loudness in208

dB sensation level (SL). For this purpose, the individual tinnitus loudness (in dB209

SL) determined from tinnitometry (Hu et al., 2019) was used as the reference210

level, corresponding to an RI depth of 0. The RI depth of -5 was defined as a211

tinnitus level of 0 dB SL (complete suppression). A sigmoid function was fitted to212

the discrete RI depth responses of the ten trials to generate a single continuous213

behavioral response at a sampling rate of 10 Hz, corresponding to a sampling step214

of 0.1 second (Figure 2 (b)). The found continuous tinnitus loudness trajectory215

was replicated ten times and applied as the model output based on the robustness216

of the short-term repeatabilty of the subjects’ responses during RI (Hu et al.,217

2021). During stimulation, the behavioral response to acoustic perception of the218

subjects was defined to be identical to the stimulus level (Figure 2 (c)). In addition,219

eight-minute long baseline periods with the initial tinnitus loudness level prior to220

and at the end of the 10 trials were added, assuming that the tinnitus loudness of221

all subjects remained in a steady state before and after the behavioral task (Figure222

2 (c)).223

2.3 Model Fitting and Model Selection224

To evaluate the performance of tHGF, we compared it with three other perceptual225

models. i) Model 1 is a conventional two-level continuous HGF (Mathys et al.,226
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2014). It was used as a baseline for performance evaluation. ii) Model 2 is a227

simplified version of tHGF to investigate the influence of the tinnitus precursor.228

It was specified such that the precision of the tinnitus precursor is assumed to229

be zero (i.e. without tinnitus precursor; π(k)
t = 0). iii) In model 3, we included230

a fixed tinnitus precursor (i.e. with a time-invariant precision: π(k)
t = Πt). iv)231

Model 4 represents the complete tHGF and enables the reduction in the sensory232

precision of the tinnitus precursor after stimulation, which leads to a stronger233

belief in perceiving silence. We combined each perceptual model with two different234

response models, with either a fixed or a subject-fit noise parameter ζ.235

All models were fitted with the collected behavioral data from 46 subjects.236

For each model parameter, its prior distribution, i.e. the prior mean and prior237

variance, was defined before model fitting. In all tested models, it was assumed238

that the tinnitus perception of the subject remained constant before the behavioral239

task. Therefore, the mean value of the prior distribution for perception µ(0)
1 was240

fixed to the subject specific tinnitus intensity, while the mean values of the prior241

distributions of other states, i.e. µ(0)
2 and µ(0)

b , were set to a neutral value of zero.242

Additionally, the prior distributions were determined for the model parameters243

to ensure the constant trajectories of the states and their precision before the244

behavioral task (steady-state; µ(k)
i

!
=µ

(k−1)
i and π(k)

i
!

=π
(k−1)
i ). An overview of the245

parameter settings (i.e., which parameter was set to be fixed or subject to fitting) of246

8 models (4 perceptual models times 2 response models) and their prior distributions247

are presented in Table 1. A parameter was defined as fixed if an infinite prior248

precision (i.e. a prior variance of zero) was used. Parameters with a non-zero prior249

variance, including the tinnitus precursor, were fitted.250

For parameter estimation, maximum-a-posteriori (MAP) was applied using the251
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Table 1: Overview of the model parameter settings

Parameter Description Parameter setting (prior mean; prior variance)

Model Input/Output Model 1 Model 2 Model 3 Model 4

Sensory Stimulation us Stimulation level (dB SL) Subject-specific stimulation level (dB SL)

Πs Precision with stimulation Π0 ; 0 1 ; 42 15 · Π0 ; 42

Π0 Precision without stimulation 0.1 ; 42 π
(0)
t

(
µ
(0)
t

µ
(0)
1

− 1

)
; 0

Responses y Auditory perception (dB SL)

Perceptual Model Model 1 Model 2 Model 3 Model 4

Perception µ
(0)
1 Initial mean of inferred perception Subject-specific tinnitus level (dB SL) ; 0

σ
(0)
1 Initial variance of µ1 1 ; 42 1

3·(Π0+π
(0)
t )

; 42

κ1 Coupling strength to π1 0.05 ; 0

ω1 Learning rate of π1 0.1 ; 42 log
(

1

π̂
(0)
1

− 1

π
(0)
1

)
; 0

µ
(0)
2 Initial mean of 2nd level 0 ; 0

σ
(0)
2 Initial variance of 2nd level 3 ; 42 3 ; 42

ϑ2 Learning rate of π1 -8 ; 0 1

π̂
(0)
2

− 1

π
(0)
2

; 0

m1 Restriction parameter - ; - - ; - 0.5; 0

Model 1 Model 2 Model 3 Model 4

Tinnitus Precursor µ
(0)
t Mean of tinnitus precursor - ; - - ; - µ

(0)
1 · (0.5 · (

√
us

µ
(0)
1

− 1) + 1); 42

κt Coupling strength to πt - ; - - ; - - ; - 0.05 ; 0

ωt Learning rate of πt - ; - - ; - log

(
µ
(0)
t ·

(
µ
(0)
1 −µ(0)t

)2

µp−0.5·µ(0)1

)
; 0

b(0) Initial mean of 2nd level - ; - - ; - - ; - 0 ; 0

σ
(0)
b Initial variance of 2nd level - ; - - ; - - ; - 5 ; 42

ϑb Learning rate of πb - ; - - ; - - ; - 1

π̂
(0)
b

− 1

π
(0)
b

; 0

mb Restriction parameter - ; - - ; - - ; - 5 ;42

Response Model Model 1 Model 2

ζ Inverse decision 0.001 ; 42 0.001 ; 0

prior distribution of the model parameters and optimised with a quasi-Newton252

optimisation algorithm. For model inversion (model fitting), the HGF-Toolbox253

version 4.1 from the TAPAS package was used (Toolbox, 2020). To validate the254

performance of the tHGF the protected exceedance probability (PXP) using the log255

model evidence (LME) was calculated for each of the 8 models. The LME metric256

considers the trade-off between model architecture and model fit by penalizing257

model complexity. Across all subjects, the PXP showed that the full tHGF with the258

subject-specific noise parameter for the response model (PXP = 0.97) explained the259
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behavior of the subjects with the highest probability. Therefore, the reproduction260

of RI and additional simulations were performed with the full tHGF and the261

subject-specific response model.262

2.4 Model Test Scenarios263

To assess the generality of the tHGF, three scenarios of common perceptual tinnitus264

phenomena were simulated with the identical model structure: 1) residual inhibition,265

2) residual excitation and 3) the occurrence of tinnitus in non-tinnitus subjects266

after temporary sensory deprivation (e.g. as caused by ear plugs or a longer stay267

in a soundproof chamber). For all simulations, the model input (i.e. the external268

stimulus in dB SL) was used to generate the model output (i.e. the behavioral269

responses indicating tinnitus loudness mapped to dB SL).270

2.4.1 Residual Inhibition271

Testing of the RI scenario was performed by applying the subject-specific parameters272

found from model inversion to the model using the same subject-specific acoustic273

stimulation to generate the behavioral responses in our cohort. We compared the274

generated model output with the raw data of each subject’s behavioral response275

with the aim of reducing possible information added by pre-processing. Data at276

the same time points after auditory stimulation as the raw data were sampled277

from the generated model output over ten trials. A linear regression with zero278

intercept was performed for each subject using the raw data as the dependent279

variable and the sampled model output as the independent variable. The linear280

correlation coefficient was used to assess the similarity of the model output with281
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the subject responses. In order to investigate the influence of the coupling factor κt,282

which controls the volatility of beliefs in the tinnitus precursor, on RI, the model283

outputs were additionally evaluated using six empirically selected magnitudes for284

the tinnitus precursor coupling factor (κt = 0, 0.001, 0.005, 0.01, 0.05, 0.1). As a285

saturation of RI even using extended stimulation durations was observed by Terry286

et al. (1983), we compared the model output with four stimulation durations (5,287

10, 60, and 180 seconds) to evaluate RI saturation effects predicted by the model.288

2.4.2 Residual Excitation289

Sedley et al. (2016a) suggested that stimulation at a level similar to that of the290

tinnitus precursor could lead the brain to believe it will perceive a higher intensity291

by modifying the default prior and/or posterior to become more similar to the292

tinnitus precursor, resulting in a temporary enhancement in tinnitus perception293

while reducing the precision-weighted prediction error (PWPE). To investigate294

whether the tHGF model could replicate this phenomenon with the same model295

structures (i.e., fitted values of model parameter using RI behavioral data), we296

applied the stimulation at a level identical to the estimated mean of the tinnitus297

precursor to simulate RE for an exemplary subject in the second scenario (i.e.298

us
!

=Ut).299

2.4.3 Transition from Residual Inhibition to Residual Excitation300

Since we assume that perceptually similar stimuli can produce RE, a transition of301

the effect from weak RI to RE and back to RI should be observed for increasing302

stimulation levels, depending on the tinnitus precursor. Furthermore, it was shown303

that higher intensities produce stronger RI (Terry et al., 1983). To illustrate304
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the transition, we computed and compared the synthetic output of the tHGF for305

different stimulation levels.306

2.4.4 Tinnitus after Temporary Sensory Deprivation307

An empirical study reported 64% of subjects without tinnitus experienced tinnitus-308

like sounds after sitting in a sound booth for 20 minutes (Tucker et al., 2005).309

Another study demonstrated that 70% of participants wearing a monaural earplug310

experienced tinnitus on the plugged side (17/27 in the plugged ear only, or in both311

ears, but louder in the plugged ear 2/27) (Brotherton et al., 2019). Accordingly, it312

was hypothesized that the occurrence of tinnitus in subjects without tinnitus after313

a prolonged stay in a silent environment (e.g., in an acoustic chamber or with the314

use of earplugs) would cause an increase in the sensitivity of sensory cells in the315

deprived regions potentially leading to an increase in neural response gain in the316

central auditory system (Hullfish et al., 2019b, Schaette et al., 2012). This can be317

modelled by an decreased restriction parameter (mb) of the auto-regressive process318

in the second level of the tinnitus precursor. For the third scenario, a synthetic319

non-tinnitus subject was created by setting the initial parameter of the posterior320

perception to a small value (µ(0)
1 = 0.01). The coupling factor was also set to a small321

value to mimic the minor volatility in the tinnitus precursor (κt = 0.001). The initial322

values of the other model parameters were updated according to Table 1. Sensory323

deprivation was simulated by manually modulating the value of mb for the subject324

(without changing other model parameters). Additionally, we hypothesized that325

non-tinnitus subjects experiencing no tinnitus after staying in a silent environment326

(around 30 % (Brotherton et al., 2019)) might have minimal tinnitus precursor327

volatility. To test this assumption, a second synthetic non-tinnitus subject was328
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created with κt = 0.0001.329
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3 Results330

3.1 Residual inhibition331

Figure 3 (a) and (b) illustrate the model parameter trajectories of the tHGF levels332

for an exemplary subject (subject number 22). Figure 3 (a) shows a rapid decrease333

in the precision-weighted prediction error of the tinnitus precursor at stimulus onset334

and a gradual decrease during stimulation. In the absence of external acoustic335

stimulation, the error increases again to reach the previous level. Consequently,336

the uncertainty of the tinnitus precursor increases during stimulation, but returns337

to its initial state after stimulus offset (yellow shaded area in Figure 3 (b)). The338

large tinnitus precursor uncertainty leads to a temporary reduction of the perceived339

tinnitus level immediately after the stimulus, eventually converging toward the340

initial tinnitus level (blue line in Figure 3 (a)), which corresponds to a typical341

RI response. Supplementary Table S2 summarizes the fitted values of the model342

parameter.343

3.1.1 Influence of Coupling Factors344

The trajectories of the posterior of the second level of the tinnitus precursor (i.e.345

µb) reflect the evolution of its precision (i.e. πt), which is influenced by the coupling346

factor κt. Figure 3 (c) and (d) illustrate the impact of different magnitudes of347

κt on RI and the tinnitus level. Increased values of κt accelerate the decrease of348

the tinnitus precursor’s precision to reach saturation during stimulation (upper349

panel of Figure 3 (c)), allowing maximum suppression of the tinnitus perception350

after stimulation offset. However, they also increase the recovery of the tinnitus351

(i.e. less time of suppression). Low values of κt reduce the influence of the352
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acoustic stimulation on the precision leading to a partial suppression of the tinnitus353

(κt = 0.001) or no suppression at all (κt = 0).354

3.1.2 Influence of Stimulus Duration355

Figure 4 compares the RI responses for four different stimulation durations. With356

a sufficiently long acoustic stimulation (60 seconds), the uncertainty of the tinnitus357

precursor reaches the saturation level (Figure 4 (a)), resulting in maximum tinnitus358

suppression (Figure 4 (b)). An prolonged stimulation duration (180 seconds) does359

not further increase the uncertainty of the tinnitus precursor. The trajectories360

of the uncertainty of the tinnitus precursor and the posterior perception µ1 after361

stimulation offset (right panels of Figure 4 (a) and (b)) are nearly identical for the362

60 and 180 seconds stimuli. In contrast, an insufficient stimulation length (5 seconds363

and 10 seconds) results in a smaller tinnitus precursor uncertainty, which indicates364

a stronger belief in the tinnitus precursor and leads to less tinnitus suppression365

(Figure 4).366

3.1.3 Comparison with Raw Data367

We observed a median linear regression coefficient of 0.79 for all 46 subjects in368

Figure 5, indicating that the generative model is able to reproduce the behavioral369

responses of the subjects in most of the cases.370

3.2 Residual excitation371

The tHGF was able to reproduce RE with the trained model parameters in all372

subjects (RE duration; median: 152 seconds; inter-quartile range: 91 seconds). The373
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simulation of RE on an exemplary subject is illustrated in Figure 6. A stimulation374

at a level equal to the mean value of the individual tinnitus precursor (us = Ut)375

leads to an increase in the precision of the tinnitus precursor. This causes a376

stronger belief in the tinnitus precursor, resulting in a perceived tinnitus loudness377

at the level of the tinnitus precursor, which is per definition higher than the initial378

tinnitus loudness level. Therefore, an enhancement of the tinnitus loudness can379

be observed after stimulation offset. The tinnitus loudness level returns to its380

original level after approximately 30 seconds after the stimulation offset in the381

exemplary subject. Similar to the RI scenario, the stimulation results in a decrease382

of precision-weighted prediction errors for the tinnitus precursor, which return to383

pre-stimulation levels over time.384

The simulation of the different behavioral responses of an exemplary subject385

(subject 26) after a range of stimulation levels from low to high is demonstrated386

in Figure 7. The transition from a weak RI effect at a low stimulation level, to387

RE using levels similar to the tinnitus precursor, back to RI can be observed. An388

RI effect can be observed for stimulation levels deviating from the level of the389

tinnitus precursor. The opposite is observed when the stimulation level is close to390

the tinnitus precursor, resulting in RE with a maximum effect when stimulated391

exactly at the tinnitus precursor.392

3.3 Tinnitus after Temporary Sensory Deprivation393

The simulated behavioral response for the synthetic non-tinnitus subject (κt =394

0.001) is shown in Figure 8. In the first 250 seconds the subject perceives silence395

due to the low precision of the tinnitus precursor. Between 250 and 1200 seconds,396
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the restriction parameter for the second level of the tinnitus precursor (mb) is397

reduced to mimic deprived sensory cells caused by earplugs or a silent environment.398

This causes the precision of the tinnitus precursor to increase (i.e. a decrease399

in the yellow shaded areas in the lower panel of Figure 8). Over time, the the400

non-tinnitus subject is perceiving the tinnitus. After resetting the parameter mb,401

(i.e. the earplugs are removed or the subject leaves the acoustic chamber) the402

tinnitus gradually disappears. Figure 9 shows the behavioral responses for the403

second synthetic non-tinnitus subject with minimal tinnitus precursor volatility404

(i.e. κt = 0.0001). No tinnitus could be perceived in this subject.405
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4 Discussion406

This study presents the tHGF, a Bayesian generative computational model that407

enables to estimate the behavioral response of tinnitus subjects in experiments408

involving acoustic stimulation. The applicability of the model was demonstrated in409

three common perceptual tinnitus phenomena: RI, RE, and occurrence of tinnitus410

after sensory deprivation.411

4.1 Residual Inhibition and Residual Excitation412

Sedley et al. (2016a) introduced the term "tinnitus precursor" to describe the413

sensory input that corresponds to the spontaneous activity along the auditory414

pathway. They suggested that a bottom-up compensation could be reflected as a415

modulation of the tinnitus precursor. Furthermore, resetting the default silence416

prediction could be considered as a maladaptive top-down compensation. Increasing417

the precision of the tinnitus precursor (with an inherently low precision in non-418

tinnitus cases) would lead to the occurrence of tinnitus, while shifting the mean419

value of the default silence prediction to a certain intensity would contribute to420

the development of chronic tinnitus. Temporary tinnitus suppression following421

acoustic stimulation (i.e. RI) could be understood as a decrease in the precision or422

intensity of the tinnitus precursor. Presentation of a stimulus that is perceptually423

similar to the tinnitus precursor would lead to a shift of the prediction distribution424

towards the tinnitus precursor or a decrease of the prediction precision, resulting in425

a stronger belief in the perception of tinnitus at a higher intensity (i.e. RE). Both426

phenomena, RI and RE, would result in a decrease in precision-weighted prediction427

errors. Since the amplitude of gamma oscillations in the auditory cortex has been428
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assumed to reflect precision-weighted prediction errors (Sedley et al., 2016a), the429

approach explains the paradox of reduced gamma oscillations in both RI and RE.430

For the RI scenario, the overall acceptable correlation between the model-431

generated and measured behavioral responses demonstrates the applicability of the432

tHGF model. Roberts et al. (2008) suggested that RI corresponds to a temporal433

re-balancing of neural excitation and inhibition after the presentation of a stimulus434

with sufficient intensity, which manifests as a decrease in neuronal synchronicity in435

deafferent regions.436

Since the tinnitus precursor represents a sensory input, we argue that reducing437

its precision relatively limits the excitatory influence on the auditory cortex and438

thus could be considered as restoring the balance of excitation and inhibition.439

Furthermore, hearing loss could lead to an increase in the sensitivity of cells440

in deafferented regions to detect the missing information (Hullfish et al., 2019b).441

According to our model, this is reflected in the increase in the precision of the tinnitus442

precursor. With sufficient stimulation the sensitivity is temporarily downgraded443

leading to RI. In addition, low frequency neural oscillations have been discussed444

as being responsible for modulating the precision of the tinnitus precursor. The445

decrease in precision in tHGF can be interpreted as the observed decrease in low446

frequency oscillations in the auditory cortex during RI in the human neuronal447

imaging studies (Adjamian et al., 2012, Kahlbrock and Weisz, 2008, Sedley et al.,448

2012, 2015), while the decrease in gamma oscillations could be interpreted as a449

minimization of precision-weighted prediction errors of the tinnitus precursor as450

mentioned above. Alternatively, RI could be explained by forward masking of451

spontaneous activity in the auditory pathway, which would reduce the intensity of452

the tinnitus precursor instead of its precision (Sedley et al., 2016a).453
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In the RE scenario, stimulation of the subject’s individual fitted tinnitus454

precursor resulted in increased precision of the tinnitus precursor, which would455

lead to a stronger belief of the subject in the tinnitus precursor. Since the tinnitus456

precursor (obtained through model fitting) has a higher intensity than the original457

tinnitus loudness, both prediction and posterior perception would update towards458

a higher perceptual intensity hence a higher tinnitus perception after acoustic459

stimulation. Similar to the RI scenario, the model reproduces reduced precision-460

weighted prediction errors of the tinnitus precursor during stimulation. The reduced461

prediction errors can be interpreted as a reduction in gamma oscillations, as observed462

in previous tinnitus studies for both RI and RE (Arnal et al., 2011, Sedley et al.,463

2016b). Considering the successful generation of synthetic behavioral responses464

after acoustic stimulation that reflected the RE phenomenon in all subjects in our465

cohort, it is worth discussing whether all tinnitus subjects could experience RE466

through a specific stimulus at their tinnitus precursor that is of higher intensity467

than the tinnitus loudness. In previous studies, RE was observed in the minority468

(from a range of about 7-27%) subjects (Neff et al., 2019, Sedley et al., 2012).469

According to the tHGF model, one explanation for the occurrence of RE in a470

limited number of subjects could be the coincidental use of an acoustic stimulation471

level close to the individuals’ tinnitus precursor.472

The transition of behavioral responses using different levels of stimulation also473

suggests that no change in tinnitus perception, RI, and RE might be experienced474

by the same subject. In our case, a stimulation level close to that of the tinnitus475

precursor produces an enhancement of the tinnitus for a subject who experienced476

RI when using a sufficiently high stimulation level, or no change in perception477

when simulating with a level not similar to the tinnitus precursor (below or above478
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the tinnitus precursor). Future work to investigate this speculation, not only479

considering the similarity in stimulation level but also spectral characteristics, is480

worth to be performed. In line with the literature (Terry et al., 1983), Figure 7481

also illustrates the transition from low RI effect to a substantial RI effect when482

sweeping from low to high stimulation levels.483

4.2 Tinnitus Precursor Coupling Factor484

In our model, the suppression effect (i.e. the depth and duration of RI) is influenced485

by the coupling factor of the tinnitus precursor. The uncertainties (i.e., inverse486

precision) of the tinnitus precursor increase logarithmically to saturation to prevent487

them from becoming infinite, while the growth rate depends positively on the488

coupling factors κt. Therefore, we argue that the volatility of individuals’ belief in489

the perception of tinnitus, which depends on the external environment, is controlled490

by a certain strength κt. The less confident a subject is about the tinnitus precursor,491

the stronger their belief in the perception of silence after the stimulation will be. A492

full suppression of tinnitus can only be achieved by saturation of the uncertainty493

of the tinnitus precursor. Lower coupling factors κt result in an overall lower RI494

depth (i.e. less suppression). In the extreme case of κt = 0, the subject perceives495

the tinnitus at the previous level immediately after the stimulation offset. In other496

words, these subjects experience neither tinnitus suppression nor enhancement.497

Conversely, larger coupling factors, i.e. the strength of volatility to the change in498

the external environment, also lead to a faster recovery of uncertainty, resulting499

in a shorter RI time. Interestingly, in our previous work we observed a slightly500

increased maximal suppression effect immediately after the stimulation offset, but a501
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modestly shortened RI time after ten consecutive RI assessments (Hu et al., 2021).502

In combination with tHGF, this might be explained by a minor increase in coupling503

factors after ten repetitions of RI.504

The coupling parameters control the volatility of beliefs in the tinnitus precursor.505

Partyka et al. (2019) have postulated that the predisposition to developing tinnitus506

may be contingent on an individual’s tendency to engage in auditory predictive507

processing (i.e. strength of reliance on pre-existing beliefs). Here, the proposition508

is that individuals with tinnitus exhibited stronger expectations which in turn509

induce the pre-activation of tonotopically specific stimulus templates in the auditory510

cortex in order to pre-empt expected inputs. This notion has some neurobiological511

plausibility since, in the visual cortex, it has been shown that expectations induce512

similar patterns of cortical activation compared to the actual visual stimulus (Kok513

et al., 2017).514

4.3 Stimulation Duration515

Using the tHGF, we demonstrated that the RI depth and duration saturate with516

increased stimulus durations as the precision of the tinnitus precursor saturates.517

This is in accordance to the work of Terry et al. (1983), who observed a non-linear518

saturation effect. Further studies, with refined stimulation protocols need to be519

performed to test the predictions of the tHGF model.520

4.4 Tinnitus Occurrence in Non-tinnitus Subjects521

The occurrence of tinnitus in non-tinnitus individuals is a common phenomenon.522

According to current tinnitus model proposed by Sedley et al. (2016a), non-tinnitus523
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subjects have a tinnitus precursor with a relatively high uncertainty. In a previous524

study, auditory phantom sensation could be induced in the majority of subjects525

after placing them in a sound-proven booth within 20 minutes (Tucker et al.,526

2005). Similarly, the majority of subjects who used earplugs experienced a phantom527

sound (Brotherton et al., 2019, Schaette et al., 2012). This phenomenon may be528

explained by an increase in neural gain, based on the theory of gain adaptation529

and/or homeostatic plasticity in response to auditory deprivation. The increased530

neural gain in turn may be reflected as an increased bottom-up sensory expectation531

or an increased tinnitus precursor precision for Bayesian brain-based tinnitus532

theories. In the case of the tHGF, the neuronal changes in the auditory system533

might be accounted by the model parameters at the higher levels of the tinnitus534

precursor. Therefore, we expected the occurrence of tinnitus in non-tinnitus subjects535

after adjusting the values of model parameters in the second level of the tinnitus536

precursor, that mimic the consequences of sensory deprivation, e.g., gain adaptation537

mechanism and homeostatic plasticity. In this study, we have demonstrated that the538

tHGF enables the reversible occurrence of tinnitus by modulation of the restriction539

parameter mb, which functions to prevent the subject from infinitely increasing540

the belief of perceiving an intensity as the tinnitus precursor. The decreased mb541

could reflect gain adaptation or homeostatic plasticity and allows the synthetic542

subject to increase the belief in the tinnitus precursor, resulting in an increase in543

auditory perception. After resetting mb to the original value, the synthetic subject’s544

perception returns to silence, which is consistent with a previous study in which545

earplugs were used to produce a tinnitus-like perception that disappeared after the546

earplugs were removed (Schaette et al., 2012). Furthermore, the tinnitus was not547

perceived by the synthetic subject with minimal tinnitus precursor volatility. The548
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different results due to individual model parameters could provide an explanation549

for the subgroup without tinnitus after staying in a silent environment.550

4.5 Prediction of Residual Excitation Stimulation551

The model provides the opportunity to quantitatively test the speculation of the552

experience of RE in individuals with RI. Based on the tinnitus loudness, stimulation553

level, and the behavioral response of a subject, a stimulation level that can produce554

RE (i.e., at the fitted level of the tinnitus precursor) could be estimated. A study555

paradigm including this hypothesis could provide strong evidence for or against556

the basic assumptions underlying our model.557

4.6 Strengths and Limitations558

The tHGF demonstrates the potential of computational modeling and may provide559

new insights into tinnitus research. We believe that the use of computational560

modeling can bridge the gap between current tinnitus theories and behavioral561

and physiological observations by enabling the quantitative investigation of the562

proposed hypotheses. The assumption that insignificant and inconsistent results in563

the literature due to multiple synergistic mechanisms of tinnitus could be verified564

with a computational and empirically tested model has been proposed (Sedley,565

2019). In addition, the model could be used as a basis for model development in566

future studies with refined behavioral tasks. Another capability of the model is567

the inference of its latent variables with behavioral and physiological states of the568

subjects after input stimuli. Combined with the estimation of individual model569

parameters for each subject, the model has the potential to guide specific treatment570
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outcomes for the individual.571

One limitation of our study is the lack of evidence to associate the latent model572

parameters with physiological characteristics of the subjects. The RI test paradigm573

applied in this study (Hu et al., 2019) does not provide sufficient behavioral data574

to estimate the full range of model parameters or trajectories in the latent states575

that might enable an interpretation of physiological parameters. Therefore, the576

fitted model may be challenged with an overestimation of the parameters that577

may have reached local minima during optimization. Further model-optimized578

tasks, e.g. performing RI with different stimulation levels and durations or tasks579

suitable for measuring mismatch negativity (MMN), are required in future studies580

to validate and advance the model. Furthermore, the presented model does not581

include the entire range of tinnitus-related psychoacoustic features. The model582

could be further advanced by including other factors such as tinnitus laterality and583

spectral information.584

Another limitation of our work is that the behavioral responses used for model585

fitting applied a sigmoid function mapped from the original discrete responses586

from a Likert scale of ten trials. The preprocessing the raw data could introduce587

additional information that would contaminate the model fit. This was performed588

due to the small amount of sparsely sampled data and the potential inherent589

uncertainties of the subjects in behavioral decisions. Future studies could either590

apply behavioral test paradigms with continuous responses or directly use binary591

(Mathys et al., 2014) or categorical levels with a higher sampling rate as model592

input (i.e. without preprocessing) for fitting. Furthermore, although we used LME593

to account for the model complexity and model fit, the paradigm of using a single594

stimulation level in this work may not provide enough observations to cover the595
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full range of the data distribution, leading to possible overfitting and the potential596

problem of local minima. Future experiments with different stimulation levels that597

provide additional information complementing the necessary observations would598

improve the goodness of fit. Also, responses with more time stamps would provide599

more information that would enable the development of a more sophisticated600

response model for estimating subject-specific behavior. In this study only a single601

group of tinnitus subjects with RI was included, and no neuroimaging analysis602

was performed. The combination of computer modeling, functional neuroimaging603

and clinical measures could further extend the model and enable model-based604

neuroimaging analyses such as fMRI and EEG/MEG. A correlation between model605

parameters and trajectories of hidden states with neuronal activity in specific606

regions in the auditory system and other part of the brain of different subgroups607

(i.e. with the control group) would consolidate the model and provide evidence for608

the role of the Bayesian brain in tinnitus physiology. Nevertheless, the presented609

work is part of an ongoing study involving within-subject EEG measurements in610

combination with repeatable RI. The collected EEG data will be analysed together611

with tHGF. Further details on the measurement procedure are available in (Hu612

et al., 2019). Beside the bottom-up compensation in the auditory system, previous613

studies showed that other non-auditory systems, including memory, attention and614

limbic systems, can be involved in the development and maintenance of tinnitus615

(De Ridder et al., 2014b, 2015, Rauschecker et al., 2015, Roberts et al., 2013). The616

necessity of establishing a default tinnitus prediction has been suggested to cause617

chronic tinnitus (Sedley et al., 2016a). To simplify the model, the development of618

tinnitus chronification was not included in the tHGF. Nevertheless, the precision619

of us = 0 (i.e. Π0) can be used to model the belief in the perception of silence.620
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Modulation of Π0 can therefore represent a shift of the default prediction from621

silence toward tinnitus.622

In future work, the model can be extended to include modulation of top-down623

and bottom-up mechanisms to describe the development of tinnitus. For instance,624

an additional component can be introduced that is automatically updated over time625

in response to the external and internal environment to control for maladaptive top-626

down compensation and thus the default tinnitus prediction. It can be speculated627

that the updating of this component is related to the failure of noise cancellation628

from the frontostrial gating model and modifications in the salience and memory629

network. Furthermore, its changes in responses to sensory input can provide630

predictions for restoring the default prediction of silence. In addition, the model631

may include a component related to hearing impairment that automatically modifies632

the model parameters of the tinnitus precursor to reflect the consequence of sensory633

deprivation, e.g. gain adaption, homeostatic or allostatic plasticity. Alternatively,634

other tinnitus-related computational models that focus on the microscopic level can635

be used to link to the specific model parameters (Schaette and Kempter, 2012).636

5 Conclusion637

We present a computational model based on the Bayesian brain framework to quan-638

titatively and qualitatively explain perceptual tinnitus phenomena. The replication639

of RI as well as the simulation of other common perceptual tinnitus phenomena640

demonstrates the applicability of the model to capture processes involved in tinnitus.641

Our approach introduces generative computational modeling to the research field642

of tinnitus. It has the potential to quantitatively link experimental observations to643
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theoretical hypotheses and to support the search for neural signatures of tinnitus644

by finding correlates between the latent variables of the model and measured645

physiological data, and consequently to predict the outcomes of specific treatments646

for individuals.647
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Supplementary material653

Table S1: Overview of demographic details, tinnitus characteristics and residual
inhibition outcomes of 46 subjects with substantial residual inhibition (RI depth
≤ −4) and RI time less than 5 minutes. HL = hearing level; PTA = pure-tone
average over 0.5, 1, 2, 4 and 8 kHz; THI = tinnitus handicap inventory; HADS =
hospital anxiety and depression scale; SL = sensation level. Continuous variables
are summarized with their mean values (± standard deviation).

RI (n=46)

Gender

Female 16 (35%)
Male 30 (65%)

Age, years 49.3 (±13.3)
Hearing threshold at tinnitus pitch, dB HL 40.0 (±25.6)
Hearing threshold (PTA), dB HL 15.5 (±13.6)

Tinnitus chronicity, years 9.84 (±10.1)
Tinnitus form

Noise-like 8 (17%)
Pure-tone 38 (83%)

Tinnitus laterality

Bilateral 20 (43%)
Central 9 (20%)
Unilateral 17 (37%)

Tinnitus pitch, kHz 8.7 (±3.1)
Tinnitus loudness, dB SL 0.3 (±7.5)
Minimum masking level, dB SL 16.9 (±12.5)
Loudness discomfort level, dB SL 46.0 (±15.5)
THI score 28.0 (±20.3)
HADS-A score 5.3 (±3.1)
HADS-D score 3.8 (±3.4)

Averaged maximum RI depth -4.7 (±0.3)
Averaged maximum RI time, seconds 93.3 (±49.4)
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Table S2: Summary of fitted parameter values of tHGF. Fixed parameters vary
between subjects.

Parameter Description Mean (min - max) Fixed / Fitted

Model Input/Output

Sensory Stimulation us Stimulation level (dB SL) 35.77 (17 - 69.50) Fixed

Πs Precision with stimulation 1.38 (0.01 - 8.12) Fitted

Π0 Precision without stimulation 48.03 (1.94 - 436.44) Fixed

Responses y Auditory perception (dB SL) N/A N/A

Perceptual Model

Perception µ
(0)
1 Initial mean of inferred perception 6.54 (1 - 36.5) Fixed

σ
(0)
1 Initial variance of µ1 5.68 (0.52 - 26.31) Fitted

κ1 Coupling strength to π1 0.05 Fixed

ω1 Learning rate of π1 2.53 (-1.35 - 6.25) Fixed

µ
(0)
2 Initial mean of 2nd level 0 Fixed

σ
(0)
2 Initial variance of 2nd level 17.14 (0.29 - 140.05) Fitted

ϑ2 Learning rate of π1 0.23 (3 ∗ 10−5 - 3.61) Fixed

m1 Restriction parameter 0.5 Fixed

Tinnitus Precursor µ
(0)
t Mean of tinnitus precursor 9.05 (1.32 - 43.43) Fitted

κt Coupling strength to πt 0.05 Fixed

ωt Learning rate of πt 2.19 (-0.19 - 4.42) Fixed

b(0) Initial mean of 2nd level 0 Fixed

σ
(0)
b Initial variance of 2nd level 4.97 (1.42 - 14.86) Fitted

ϑb Learning rate of πb 0.04 (0.02 - 0.27) Fixed

mb Restriction parameter 4.93 (0.97 - 10.76) Fitted

Response Model ζ Inverse decision 0.06 (2 ∗ 10−4 - 0.77) Fitted
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(a) Collection of behavioral data using ten consecutive RI assessments

(b) Preprocessed single continuous behavioral response
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Figure 2: (a) Behavioral data collection using ten consecutive trials with acoustic
stimulation of 60 seconds duration. After stimulus offset, the subjects were asked
to indicate the residual inhibition (RI) depth on a Likert scale. Consecutive trials
were initiated after the subjects indicated the return of the tinnitus to the initial
loudness level. (b) The categorical behavioral responses collected during the
residual inhibition task were mapped to continuous dB sensation level (SL) values
and fitted with a sigmoid function to produce a single continuous trajectory for
each subject. The black diamonds represent the combined behavioral responses
of ten trials, while the blue line indicates the fitted trajectory. (c) To generate
the model output, the fitted trajectory was replicated ten times, interleaved by
the acoustic stimulation. In addition, eight-minute non-stimulus periods before
and after the assessment task were added (green areas). The black dashed line
represents the model input with 0 dB SL for silence and a subject-specific level
(here: 20 dB SL) for acoustic stimulation. The blue solid line represents the model
output reflecting the auditory perception.
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stimulation (model input)
behavioral response 
tinnitus precursor
model output
uncertainty of the tinnitus precursor

PWPE of the tinnitus precursor

(a) Prediction weighted error of the tinnitus precursor 

(b) Example model parameter trajectories of the tHGF during RI

(c) Uncertainties of the tinnitus precursor

(d) Perceived tinnitus suppression

Figure 3: Panels (a) and (b) demonstrate the trajectories of the tHGF during
residual inhibition shown for three out of ten repetitions. (a) Precision-weighted
prediction error (PWPE) of the tinnitus precursor. (b) Acoustic stimulation level
(model input; black line), mapped behavioral response of the subject (red line),
tinnitus precursor (yellow line) and the simulated behavioral response from the
tHGF model (model output; blue line). The yellow shaded area represents the
uncertainty (95% confidence interval) of the tinnitus precursor. Panels (c) and
(d) show the effect of the coupling factor κt demonstrated in a single trial with a
60-second stimulus with 53 dB SL. The black dotted line represents the stimulus
offset. The uncertainties of the tinnitus precursor are shown in (c). The trajectories
in (d) represent the auditory perception (posterior µ1).
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(a) Uncertainty of the tinnitus precursor

(b) Perceived tinnitus suppression

          

        

 

  

  

  

  

  

  

 
 
  
 
 
  
 
 
  
 
 
 
  
  
 
  
 
 

                  

         

          

          

           

            

                                 

 

   

 

   

 

   

 

 
 
 
 
 
 
 
 
  
 
 
  
 
 

                 

         

          

          

           

          

        

 

  

  

  

  

  

  

  

  

 
 
 
 
  
 
  
  
  
 
  
  

                  

         

          

          

           

            

                                 

 

  

  

  

  

  

  

  

  

 
 
 
 
  
 
  
  

                 

         

          

          

           

Figure 4: RI during stimulation (left hand side; solid lines) and after stimulation
(right hand side; solid and dashed lines) for stimuli presented at 53 dB SL: Panel
(a) shows the tinnitus precursor uncertainty for stimulus durations: 5 seconds
(blue), 10 seconds (red), 60 seconds (yellow) and 180 seconds (purple). Panel (b)
shows the perceived tinnitus suppression (i.e., posterior µ1) of the four different
stimulation durations.
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Figure 5: Linear regression coefficient between the tHGF model output and the
behavioral responses of 46 tinnitus subjects. Example trajectories are shown for very
low (0.16), low (0.42), medium (0.78) and high (0.95) linear regression coefficients.
Red points indicate the raw behavioral responses and blue lines indicate the output
of the tHGF model.
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(a) Prediction weighted error of the tinnitus precursor 

(b) Perceived tinnitus enhancement

             

        

 

   

   

   

   

 
 
 
 
 
  
 
  
  

                              

Figure 6: Trajectories of the tHGF in a simulated case of residual excitation.
(a) Precision-weighted prediction error (PWPE) of the tinnitus precursor. (b)
Acoustic stimulation level (model input, black line), simulated behavioral response
of the subject (model output, blue line) and the tinnitus precursor (yellow line).
In the RE scenario, the stimulation is presented at the mean value of the tinnitus
precursor. The yellow and blue shaded areas represent the uncertainty (95%
confidence interval) of the tinnitus precursor and the posterior, respectively.
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Figure 7: Behavioral response of an exemplary subject for different stimulation
levels two seconds after stimulus offset, illustrating the predicted transition from a
weak RI effect to RE and to strong RI, eventually saturating for high stimulation
levels.
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(a) Prediction weighted error of the tinnitus precursor 

(b) Perceived tinnitus in a silent environment

            
 

   

   

 
 
 
 
  
 
  
  

                              

Figure 8: Simulated behavioral data of a synthetic non-tinnitus subject (κt = 0.001).
(a) Precision-weighted prediction error (PWPE) of the tinnitus precursor. (b) Zero
acoustic stimulation level (model input, black line), simulated behavioral response
of the subject (model output, blue line) and the tinnitus precursor (yellow line).
The yellow shaded area represents the uncertainty (95% confidence interval) of
the tinnitus precursor. The black dotted lines represent the modification times of
the model parameter. The synthetic subject perceives the tinnitus in the period
between 250 and 1200 seconds.
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(a) Prediction weighted error of the tinnitus precursor 

(b) Perceived tinnitus in a silent environment

            
 

   

   

 
 
 
 
  
 
  
  

                              

Figure 9: Simulated behavioral data of a synthetic non-tinnitus subject with
minimal tinnitus precursor volatility (i.e. κt = 0.0001). (a) Precision-weighted
prediction error (PWPE) of the tinnitus precursor. (b) Zero acoustic stimulation
level (model input, black line), simulated behavioral response of the subject (model
output, blue line), and the tinnitus precursor (yellow line). The yellow shaded area
represents the uncertainty (95% confidence interval) of the tinnitus precursor. The
black dotted lines represent the modification times of the model parameter. In this
case, no tinnitus is perceived by the synthetic subject.
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