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Abstract. Climate models’ outputs are affected by biases that
need to be detected and adjusted to model climate impacts.
Many climate hazards and climate-related impacts are asso-
ciated with the interaction between multiple drivers, i.e. by
compound events. So far climate model biases are typically
assessed based on the hazard of interest, and it is unclear
how much a potential bias in the dependence of the hazard
drivers contributes to the overall bias and how the biases in
the drivers interact. Here, based on copula theory, we develop
a multivariate bias-assessment framework, which allows for
disentangling the biases in hazard indicators in terms of the
underlying univariate drivers and their statistical dependence.
Based on this framework, we dissect biases in fire and heat
stress hazards in a suite of global climate models by con-
sidering two simplified hazard indicators: the wet-bulb globe
temperature (WBGT) and the Chandler burning index (CBI).
Both indices solely rely on temperature and relative humid-

ity. The spatial pattern of the hazard indicators is well repre-
sented by climate models. However, substantial biases exist
in the representation of extreme conditions, especially in the
CBI (spatial average of absolute bias: 21 °C) due to the bi-
ases driven by relative humidity (20 °C). Biases in WBGT
(1.1°C) are small compared to the biases driven by tem-
perature (1.9 °C) and relative humidity (1.4 °C), as the two
biases compensate for each other. In many regions, also bi-
ases related to the statistical dependence (0.85°C) are im-
portant for WBGT, which indicates that well-designed phys-
ically based multivariate bias adjustment procedures should
be considered for hazards and impacts that depend on multi-
ple drivers. The proposed compound-event-oriented evalua-
tion of climate model biases is easily applicable to other haz-
ard types. Furthermore, it can contribute to improved present
and future risk assessments through increasing our under-
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standing of the biases’ sources in the simulation of climate
impacts.

1 Introduction

Understanding and assessing the risk of high-impact events
induced by the combination of multiple climate drivers
and/or hazards, referred to as compound events, is chal-
lenging (e.g. Bevacqua et al., 2017; Manning et al., 2018;
Zscheischler et al., 2020). One of the reasons is that many
high-impact events are caused by multiple variables that may
not be extreme themselves, but their combination leads to
an extreme impact (Zscheischler et al., 2018). For exam-
ple, the risks associated with combined high temperature and
high/low relative humidity such as heat stress and fires can
manifest in heat-related human fatalities (Raymond et al.,
2020) and fire-induced tree mortality (Brando et al., 2014)
even if the two contributing variables are not necessarily ex-
treme in a statistical sense. In the future, combinations of
climate variables leading to disproportionate impacts will be
affected by global warming, and reliable risk assessments are
required (Fischer and Knutti, 2013; Russo et al., 2017; Schiir,
2016; Raymond et al., 2020; Jézéquel et al., 2020; Zscheis-
chler et al., 2020). Therefore, a better understanding of how
climate models represent the joint behaviour of variables be-
hind compound events, such as temperature and relative hu-
midity, is crucial to correctly quantify their associated haz-
ards today and in the future (Zscheischler et al., 2018).
Typically, the raw climate model data contain biases,
which lead to biased estimates of climate risks (Maraun et al.,
2017). Evaluating, i.e. assessing and understanding, such bi-
ases is a crucial step towards impact modelling and thus as-
sessment of future climate risks. Climate model evaluation
is very often univariate; i.e. it does not take into account the
multivariate nature of many hazards that are driven by the
interplay of multiple contributing variables (Vezzoli et al.,
2017; Zscheischler et al., 2018, 2019; Francois et al., 2020).
However, evaluating the model representation of the individ-
ual contributing variables individually, and hence disregard-
ing both the biases in the dependence between the contribut-
ing variables and how the biases in the drivers combine to
influence the hazard, cannot provide direct information re-
garding the biases in the resulting hazard indicator. Further-
more, evaluating the hazard indicator only, e.g. heat stress
regardless of the contributing variables temperature and rela-
tive humidity, may hide compensating biases in the contribut-
ing variables, even if the hazard indicator appears to be well
represented. An evaluation of climate models that considers
the underlying multivariate nature of the hazards can provide
a better physical understanding of the relevant model skills.
In turn, a better understanding of model skills can serve as
a basis for better adjustment of the biases and/or selection
of best-performing models, which are crucial for hazard as-
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sessment both in the present and future climate. However,
studies evaluating the climate model multivariate representa-
tion of hazard indicator are still rare (Bevacqua et al., 2019;
Zscheischler et al., 2021), and little is known on the effects
of those biases on multivariate hazards (Fischer and Knutti,
2013; Zscheischler et al., 2018).

In this study we propose a copula-based multivariate bias-
assessment framework, which allows for decomposing the
sources of bias in hazard indicators. We employ global cli-
mate model outputs from the fifth phase of the Coupled
Model Intercomparison Project (CMIP5) and consider two
simplified hazard indices, the Chandler burning index (CBI)
for fire hazard and the wet-bulb globe temperature (WBGT)
index for heat stress, both driven solely by temperature and
relative humidity. Figure 1 illustrates the main rationale of
the multivariate bias-assessment framework. Both hazard in-
dices, CBI and WBGT, are influenced by the bivariate distri-
bution of temperature and relative humidity (Fig. 1c). Based
on copula theory, such a bivariate distribution can be decom-
posed in terms of the marginal distributions of temperature
and relative humidity (Fig. 1a and d), as well as their statis-
tical dependence (Fig. 1b). Hence, such a copula-based de-
composition allows for understanding the biases in the haz-
ard estimates in terms of the contribution from the marginal
distributions individually (Fig. 1a and d; see difference be-
tween grey and black lines) and from their statistical depen-
dence (Fig. 1b) (Vezzoli et al. 2017; Bevacqua et al., 2019).
We present a methodology to quantify the role played by
the biases in temperature, relative humidity, and their depen-
dence in the final bias in the fire and heat stress indices as
simulated by climate models.

2 Data
2.1 Pre-processing

We employ 6-hourly data of 2m air temperature (7)
and relative humidity (RH) during the period 1979-2005
from ERA-Interim reanalysis (Berrisford et al., 2011;
Dee et al. 2011) and 12 models from the CMIP5 mul-
timodel ensemble (Taylor et al., 2012): ACCESSI1-0,
ACCESS1-3, BCC-CSM1.1-m, BNU-ESM, CNRM-CMS5,
GFDL-ESM2G, GFDL-ESM2M, INM-CM4, IPSL-CMS5A-
LR, NorESM1-M, GFDL-CM3, and IPSL-CM5A-MR; leap
days were removed. To allow for an intermodel comparison,
data were bilinearly interpolated to a 2.5° by 2.5° regular
latitude—longitude grid. All oceanic grid cells as well as those
beneath 60° S were removed from all analyses, given that ar-
guably no heat stress and fire risk exists in these areas.
Following Zscheischler et al. (2019), we restrict our analy-
sis to the hottest calendar month of the year, which is selected
based on the climatology of ERA-Interim data at each grid
point. This choice was made because arguably heat stress and
fire hazards tend to be more frequent during the warmest pe-
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Figure 1. Copula-based conceptual framework employed in this study to evaluate biases in CBI and WBGT indices. The framework is
illustrated for a representative location in Brazil (Amazonia, 5° S and 56.5° W; indicated via X markers in the next figures). Panel (c) shows
the bivariate distribution of 7" and RH based on ERA-Interim (grey) and IPSL-CMS5A-LR data (black) during 1979-2005. Isolines indicate
equal levels of CBI (orange) and WBGT (green). The decomposition of biases from the marginals (a, d) and the copula (b) are illustrated as
the discrepancies between the black IPSL-CM5A-LR model) and grey features (ERA-Interim).

riod of the year, and it avoids dealing with seasonality; how-
ever we note that this assumes that CMIP5 models correctly
reproduce the seasonality observed in ERA-Interim. Finally,
for each model and location, we consider the 7" and RH val-
ues at the daily 6-hourly time steps corresponding to the daily
maximum temperature within the hottest month. The above
results in a time series for each location and model, with daily
values of the pair (7, RH).

The resulting time series data are autocorrelated, which
can compromise the interpretation of the statistical tests that
we apply in the analysis (Yue et al., 2002; Dale and Fortin,
2009). Therefore, we carry out the analysis on the decor-
related time series, which are obtained from the original
through subsampling every N =9d, where N is the lag re-
quired to remove the autocorrelation in 7 and RH time se-
ries data everywhere (at 95 % confidence level). The value of
N was determined as follows: for all individual grid points
and years in ERA-Interim and the CMIP5 models, the auto-
correlation function was calculated; then, the minimum lag
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for which the autocorrelation was non-significant at the 95 %
confidence level was determined. Finally, the maximum of
all the minimum lags was selected, resulting in N =9 d. The
time series for all models and locations are sampled with the
frequency of N. This is done N times using different start
epochs, where the first sampled time series starts with time
epoch one, the second sampled time series with time epoch
two, and so on up to nine. The decorrelated time series of T
and RH will henceforth be simply referred to as samples in
the following sections.

In the Appendix, Fig. Al illustrates, for a representative
location in Brazil, one of the nine resulting samples of 7" and
RH for ERA-Interim and for a selection of CMIP5 models.
The figure also shows how the bivariate interaction of these
variables drives the fire and heat stress indices (coloured iso-
lines) introduced in the next section.

Nat. Hazards Earth Syst. Sci., 21, 1867-1885, 2021
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2.2 Fire hazard and heat stress indices

We quantify fire and heat stress hazards based on two indices,
i.e. CBI and WBGT, respectively. While more advanced and
sophisticated indices exist for both of these hazards (e.g. Van
Wagner, 1987; Fiala et al., 2011), here we employ these two
simplified indices. Our aim is to provide a methodological
framework for a compound-event-oriented evaluation of haz-
ard indicators. Hence, employing simplified indices allows
for the development of a test case of the methodological
framework. We do not aim at providing an accurate assess-
ment of the hazard; nevertheless, our results will provide in-
dications that can serve as a basis for follow-up studies of
more complex fire and heat stress hazards.

The CBI index was employed, for example, for studying
fire risk in the United States (McCutchan and Main, 1989)
and globally (Roads et al., 2008). The index is based on air
T (°C) and RH (%):

((110—1.73-RH) — 0.54 - (10.20 — T)) - 1.24 x 10~ 0-0142RH

CBI =
60

ey

The “simplified WBGT” (from now on WBGT for the sake
of brevity) index was developed by the American College
of Sports Medicine (ACSM, 1984) as an indicator of heat
stress for average daytime conditions outdoors. The index is
defined as

WBGT = 0.56T +0.393¢ 4 3.94, 2)

where e = (RH/100) - 6.105¢(1727T/C377+1)  is  water
vapour pressure (expressed in hPa), which depends on air
temperature and relative humidity. More details on the def-
initions of the CBI and WBGT are available at McCutchan
and Main (1989) and ACSM (1984).

3 Methods

This section presents the conceptual framework and a bias
decomposition methodology used to analyse the multivariate
indices described above. We then present an overview of the
data processing before detailing the conventional statistical
tests we have incorporated into our test suite.

3.1 Copula-based conceptual framework

As both CBI and WBGT are functions of 7 and RH, it fol-
lows that their distributions are determined by the joint dis-
tribution of 7 and RH. Copula theory provides us with a nat-
ural way to decompose the joint distribution of 7 and RH in
terms of the marginal distributions of 7" and RH (the distribu-
tions of the individual variables considered in isolation) and
a term, known as the copula, that describes the dependence
between T and RH (Fig. 1). This allows us to understand
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how bias in each of these components contributes to the bias
in CBI and WBGT.

A copula is a function that completely characterizes the
dependence structure between random variables, in our case
T and RH. Sklar’s theorem (Sklar, 1959) is a fundamental
result in copula theory, which states that the joint distribu-
tion of the random variables is determined by the marginal
distributions and their copula. Mathematically, in our bivari-
ate case, given the two variables T and RH, with marginal
cumulative distribution functions (CDFs) Fr and Fry, and
marginal probability density functions (PDFs) fr and fry,
following Sklar’s theorem, the joint PDF ft ry can be de-
composed as

ST ru(T,RH) = f1(T) - frRu(RH) - ¢(Ut, Urn), 3

where Ury = FRu(RH), Ut = F1(T) (note that U indicates
that both Uryg and Ut are uniformly distributed by construc-
tion on the domain [0,1]), and c is the copula density, which
describes the dependence of the joint distribution ft ry inde-
pendently from the marginal distributions fr and fry. Note
that Eq. (3) naturally extends to the case of an arbitrary
number of random variables (Bevacqua et al., 2017); how-
ever here we focus on the bivariate case. Copulas allow for
great flexibility in modelling complex dependence structures
between several variables, and there are a huge variety of
parametric copula families available for statistical modelling
purposes (Nelsen, 2006; Salvadori and De Michele, 2007;
Salvadori et al., 2007; Durante and Sempi, 2015; Bevacqua
et al., 2020a). However, note that following the methodolo-
gies developed by Rémillard and Scaillet (2009) and Vezzoli
et al. (2017), here we will consider a non-parametric frame-
work; i.e. we will consider empirical, rather than paramet-
ric, distributions within our testing procedures. This choice
avoids unnecessary parametric-based assumptions on the dis-
tributions that could bias the results about both univariate and
multivariate features.

A characteristic of copulas is the invariance property (Sal-
vadori et al. 2007, proposition 3.2); i.e. if g; and g are
monotonic (increasing) functions, then the transformed vari-
ables g1(7) and g>(RH) have the same copula as T and
RH. This property is crucial to the methodology described
in the following section, where the monotonic functions are
the marginal CDFs of 7' and RH (or their inverses).

3.2 Contribution of the bias in the drivers to the bias of
CBI and WBGT

We assess how biases in each of the marginal distributions of
Tmod and RHpyd, and Cog (the copula of Tinoq and RHpoq),
contribute to the bias in the representation of the extreme val-
ues of CBI and WBGT (extremes are defined based on 95th
percentiles (Q95)). This is achieved based on a methodology
originally introduced by Bevacqua et al. (2019) to attribute
changes in compound flooding to its underlying drivers (and
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employed by for example Manning et al., 2019, and Bevac-
qua et al., 2020b).

We carried out three experiments. In experiment i, we ob-
tained, via a data transformation, a bivariate pair (7;, RH;)
with copula C;, where one component of the three underly-
ing distributions (7;, RH;, C;) is the same as that of a given
CMIP5 model, and the other two components are the same as
ERA-Interim. We then perform the quantile tests described
in Sect. 3.3.3 for CBI (or WBGT) using values based on (73,
RH;) and (T¢rai, RHerai). The specific experiments carried out
are described below.

Experiment (a) assesses the bias contribution of Tpoq.
From the variable T, we calculated the uniformly dis-
tributed transformed random variable Ut erai = FT erai (Terai)-
From the variable T4 we calculated the empirical CDF
FT mod, through which we defined 7, = F{ Ilnod(UT’erai)' The
variable T, has the same distribution as Tiy0q, While the pair
(T,, RHerqi) has the copula of ERA-Interim.

Experiment (b) assesses the bias contribution of RHpoq.
This experiment follows the same structure as Experiment (a)
but with the roles of T¢r,; and RHe,y; reversed, from which we
get the pairs (Terai, RHp).

Experiment (c) assesses the bias contribution of Cpyoq.
From the variables Ty,04 and RHy,0q We calculated the asso-
ciated marginal empirical cumulative distributions (UT,mod,
URH,mod)- From the variables T¢;; and RHep,;, we defined
the empirical CDFs Fr erai and FrH,erai, through which we
defined T, = Fy L (Ur.moa) and RHe = Fyyi ..o (URH.moa)-
The pair of variables (7, RH.) have the same marginal distri-
butions as the pair (7Trai, RHerai), but the copula of the model,
i.e. Cmod, since (T, RH;) was obtained from (704, RHmod)
by monotonic transformations of the margins.

3.3 Description of the testing procedure

The full data processing procedure is shown in Fig. A2. We
began with the ERA-Interim and CMIP5 data and obtained
T and RH samples (see Sect. 2.1). The CMIP5 samples were
then subject to the transformation procedure described in
Sect. 3.2.4. This results in five sets of 7 and RH data cor-
responding to the ERA-Interim reference, the original model
sample, and the three experiments (a, b, and c¢) used to assess
the bias contributions of biases in CMIP5 model 7', RH, and
their copula. At this stage, the CBI and WBGT indices are
calculated on all five sets.

We execute univariate and multivariate non-parametric
statistical tests to evaluate the properties of CBI, WBGT, and
their driver variables (i.e. T, RH, and their dependence) prior
to proceeding with our bias decomposition approach. Details
for each of the tests are provided below, but, in general, we
follow a non-parametric approach similar to Vezzoli et al.
(2017). Each of the nine decorrelated ERA-Interim samples
was independently tested on a cell-by-cell basis against a dif-
ferent CMIP5 model sample; therefore each statistical test is
repeated nine times per model. To adjust for multiple test-
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ing, we use the conservative Bonferroni correction method,
which penalizes the significance level « using the number of
repeated tests m =9, so that the individual hypothesis tests
are evaluated at an o/ m significance level (Jafari and Ansari-
Pour, 2019). A 5 % significance level is used, after which the
Bonferroni correction was adjusted to 0.0056 for use in each
individual hypothesis test. All of our analysis was carried out
in R (R Core Team, 2019), and the functions used for each
test are detailed in their corresponding section below.

Graphically, the statistical test results are presented as a
percentage of all 108 CMIP5 model samples (9 samples
times 12 models) where the null hypothesis is rejected. The
percentage we consider is calculated at each grid cell, and
stippling is added where the null hypothesis is rejected in at
least 75 % (81/108) of all CMIPS model samples.

3.3.1 Univariate evaluation of 7', RH, CBI, and WBGT

In order to understand how faithfully the marginal distribu-
tions of T, RH, CBI, and WBGT from the ERA-Interim data
are represented in a given CMIP5 model, we perform the
two-sample Anderson—Darling (AD) test via the ad.test func-
tion of the kSamples R package (v1.2-9; Scholz and Zhu,
2019). This is a non-parametric procedure that considers the
null hypothesis: “the two samples are from the same distri-
bution”.

3.3.2 Dependence between 7 and RH

A simple way to test how well the dependence between the
variables 7 and RH in ERA-Interim is represented in a given
CMIP5 model is to compare the calculated values of some
statistical measure of association. Here we use Kendall’s
T rank correlation. The cor.test function of the core stats
R package was used to perform all t calculations (R Core
Team, 2019).

To test whether the values of 7 obtained from a given
model sample differ in a statistically significant way from the
corresponding ERA-Interim values, we begin by considering
the approximate 100(1 —«) % confidence interval (ti, Ty)
for t associated with the point estimator 7 given by

L =1 —2¢/20, Ty = T + 2a/20, )

where 62 is an estimator of var(?) and zg /2 is the quantile

of the standard normal distribution for «/2 (Hollander et al.,
2014). For our testing we calculate 62, 7, and the confidence
interval (71, ty) for each grid cell in all ERA-Interim sam-
ples, using a customized version of the kendall.ci function
included in the NSM3 R package (v1.15, Schneider et al.,
2020). The CMIP5 model samples are then evaluated in two
ways. Firstly, if the model sample value of 7 lies within the
confidence interval calculated for its corresponding ERA-
Interim sample, the model sample is judged to not signifi-
cantly differ from ERA-Interim in terms of the rank corre-
lation between T' and RH. Secondly, we calculated the z,/2
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and hence the « or p value for each sample; these were tested
for significance using the same Bonferroni-adjusted value
of 0.0056 used in the univariate testing. The results from
both testing methodologies are consistent with each other, we
present the ad hoc p-value test results in the main text, and
the confidence interval tests are included in the Appendix.

Note that different copulas may give rise to the same value
of t; therefore we cannot conclude that a model that faith-
fully reproduces the ERA-Interim values of t is accurately
representing the full dependence structure between T and
RH. Therefore, we account for differences in the depen-
dence structure by also carrying out hypothesis tests which
are based on the full copula function. We perform the non-
parametric test of copula equality based on the Cramér—
von Mises test statistic proposed by Remillard and Scaillet
(2009), used in Vezzoli et al. (2017) for testing the capabil-
ity of a climate-hydrology model to reproduce the depen-
dence between temperature, precipitation, and discharge for
the Po river basin in Italy, and recently employed by Zscheis-
chler and Fischer (2020) for evaluating the ability of climate
models to represent the dependence between temperature and
precipitation in Germany. The copula equality test has a null
hypothesis of Hy: Cerai = Cmod, Where Cepyi and Cpoq are
the copulas of 7 and RH represented in ERA-Interim and a
given model, respectively, with the alternative hypothesis be-
ing that these copulas differ. Unlike the AD test, which can
evaluate CMIP5 model performance in reproducing a single
marginal distribution, the copula equality test was specifi-
cally developed to test whether two empirical copulas are
equal and thus evaluates the capacity of models to repro-
duce the full dependency structure between 7 and RH. We
used the TwoCop function of the TwoCop R package (v1.0,
Remillard and Plante, 2012) to run the test.

3.3.3 Bias in the representation of extreme events of
CBI and WBGT

To evaluate how well CMIP5 models simulate extreme val-
ues of CBI and WBGT, we compare high quantiles (i.e. the
95th percentile Q95) of these indices from each model with
those of ERA-Interim. To assess whether the observed differ-
ences in the quantiles are statistically significant, we calcu-
late the 95 % confidence intervals for the Q95 of CBI and
WBGT at each location for ERA-Interim based on 1000
bootstrap samples. Like our evaluation of Kendall’s 7, if the
model index lies outside the confidence interval, we consider
the model has a significantly different representation of ex-
treme values of CBI and WBGT from ERA-Interim.
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4 Results
4.1 Univariate evaluation of 7, RH, CBI, and WBGT
4.1.1 CBI and WBGT

We began our analysis by visualizing the multimodel mean
of the mean values of CBI and WBGT during the hottest
months. According to reanalysis, the mean CBI is highest
in regions with dry and warm weather during the hottest
month, such as the Sahara, most of Australia, and the west-
ern USA and Mexico (Fig. 2a). In contrast, CBI tends to be
low in humid and warm regions such as the Amazon and
Congo basins. We move to evaluating the CMIP5 model bi-
ases in mean CBI, which appear large in magnitude (com-
pare Fig. 2b and a); most land masses are covered in dark red
or blue colours, indicating CMIP5 multimodel mean bias of
over 10°C from the ERA-Interim. In addition, AD test re-
sults show that 59 % of the global land mass has significant
differences between ERA-Interim and CMIP5 distributions
of CBI in at least 75 % of model samples. Despite such biases
in the representation of the mean CBI magnitude, the over-
all spatial patterns in mean CBI are well reproduced by the
models. In fact, the area-weighted pattern correlation (Pfahl
et al., 2017), from now on pattern correlation, between mod-
els and reanalysis of mean CBI is high for all CMIP5 mod-
els, with a minimum value of 0.77 for the BCC-CSM1.1-m
model (Fig. A3a shows the multimodel mean of mean CBI).

In the reanalysis data, mean WBGT values over 30 °C are
reached over most tropical land masses during each loca-
tion’s hottest month, with lower values in higher latitudes
and the highest values near the Equator (Fig. 2c). For WBGT,
the pattern correlation between models and ERA-Interim is
higher than for CBI, with a minimum value of 0.89 for the
BCC-CSM1.1-m model (Fig. A3b shows the multimodel
mean of mean WBGT). Mean multimodel bias in WBGT
shows large parts of the continents are within the £0.5°C
range relative to ERA-Interim. The AD test results indicate
that the WBGT distributions in CMIP models are typically
better than those of CBI; only 35 % of grid cells fail our per-
formance criterion (Fig. 2d).

Overall, CMIP5 models underperform in key regions as-
sociated with high fire and heat stress hazards. CBI’s dis-
tribution is not well represented by most CMIP5 models in
regions characterized by high fire hazard levels such as the
western USA and the Mediterranean basin, while CMIP5
WBGT results are significantly different from reanalysis in
regions of high heat stress such as the Indian subcontinent
and equatorial Africa.

4.1.2 T and RH
Following the evaluation of CBI and WBGT, we move to-

wards evaluating how CMIP5 models represent the driving
variables of the hazard indicators, i.e. T, RH, and their sta-
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Figure 2. Mean fire hazard index (CBI) value for ERA-Interim (a), and mean multimodel bias in mean CBI (b). Note that the palette is
non-linear, as it follows typical defined ranges of fire hazard levels based on the CBI, i.e. very low, low, moderate, high, very high, and
extreme. Mean heat stress index (WBGT) value for ERA-Interim (c¢), and mean multimodel bias in mean WBGT (d). Stippling indicates
locations where at least 75 % of CMIP5 models failed the AD two-sample test between the CMIP5 and ERA-Interim distributions of CBI
and WBGT. Bias was calculated as (CMIP5 minus ERA-Interim).

Figure 3. Mean temperature (7') of the hottest month in ERA-Interim reanalysis (a), mean CMIP5 multimodel bias in mean temperature (b),
mean relative humidity (RH) of ERA-Interim reanalysis (¢), and mean CMIP5 multimodel bias in mean RH (d). Stippling indicates locations
where at least 75 % of models failed the AD two-sample test between the CMIPS5 and ERA-Interim marginal distributions of 7 and RH. Bias
was calculated as (CMIP5 minus ERA-Interim).
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