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Abstract. Climate models’ outputs are affected by biases that
need to be detected and adjusted to model climate impacts.
Many climate hazards and climate-related impacts are asso-
ciated with the interaction between multiple drivers, i.e. by
compound events. So far climate model biases are typically
assessed based on the hazard of interest, and it is unclear
how much a potential bias in the dependence of the hazard
drivers contributes to the overall bias and how the biases in
the drivers interact. Here, based on copula theory, we develop
a multivariate bias-assessment framework, which allows for
disentangling the biases in hazard indicators in terms of the
underlying univariate drivers and their statistical dependence.
Based on this framework, we dissect biases in fire and heat
stress hazards in a suite of global climate models by con-
sidering two simplified hazard indicators: the wet-bulb globe
temperature (WBGT) and the Chandler burning index (CBI).
Both indices solely rely on temperature and relative humid-

ity. The spatial pattern of the hazard indicators is well repre-
sented by climate models. However, substantial biases exist
in the representation of extreme conditions, especially in the
CBI (spatial average of absolute bias: 21 ◦C) due to the bi-
ases driven by relative humidity (20 ◦C). Biases in WBGT
(1.1 ◦C) are small compared to the biases driven by tem-
perature (1.9 ◦C) and relative humidity (1.4 ◦C), as the two
biases compensate for each other. In many regions, also bi-
ases related to the statistical dependence (0.85 ◦C) are im-
portant for WBGT, which indicates that well-designed phys-
ically based multivariate bias adjustment procedures should
be considered for hazards and impacts that depend on multi-
ple drivers. The proposed compound-event-oriented evalua-
tion of climate model biases is easily applicable to other haz-
ard types. Furthermore, it can contribute to improved present
and future risk assessments through increasing our under-
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standing of the biases’ sources in the simulation of climate
impacts.

1 Introduction

Understanding and assessing the risk of high-impact events
induced by the combination of multiple climate drivers
and/or hazards, referred to as compound events, is chal-
lenging (e.g. Bevacqua et al., 2017; Manning et al., 2018;
Zscheischler et al., 2020). One of the reasons is that many
high-impact events are caused by multiple variables that may
not be extreme themselves, but their combination leads to
an extreme impact (Zscheischler et al., 2018). For exam-
ple, the risks associated with combined high temperature and
high/low relative humidity such as heat stress and fires can
manifest in heat-related human fatalities (Raymond et al.,
2020) and fire-induced tree mortality (Brando et al., 2014)
even if the two contributing variables are not necessarily ex-
treme in a statistical sense. In the future, combinations of
climate variables leading to disproportionate impacts will be
affected by global warming, and reliable risk assessments are
required (Fischer and Knutti, 2013; Russo et al., 2017; Schär,
2016; Raymond et al., 2020; Jézéquel et al., 2020; Zscheis-
chler et al., 2020). Therefore, a better understanding of how
climate models represent the joint behaviour of variables be-
hind compound events, such as temperature and relative hu-
midity, is crucial to correctly quantify their associated haz-
ards today and in the future (Zscheischler et al., 2018).

Typically, the raw climate model data contain biases,
which lead to biased estimates of climate risks (Maraun et al.,
2017). Evaluating, i.e. assessing and understanding, such bi-
ases is a crucial step towards impact modelling and thus as-
sessment of future climate risks. Climate model evaluation
is very often univariate; i.e. it does not take into account the
multivariate nature of many hazards that are driven by the
interplay of multiple contributing variables (Vezzoli et al.,
2017; Zscheischler et al., 2018, 2019; Francois et al., 2020).
However, evaluating the model representation of the individ-
ual contributing variables individually, and hence disregard-
ing both the biases in the dependence between the contribut-
ing variables and how the biases in the drivers combine to
influence the hazard, cannot provide direct information re-
garding the biases in the resulting hazard indicator. Further-
more, evaluating the hazard indicator only, e.g. heat stress
regardless of the contributing variables temperature and rela-
tive humidity, may hide compensating biases in the contribut-
ing variables, even if the hazard indicator appears to be well
represented. An evaluation of climate models that considers
the underlying multivariate nature of the hazards can provide
a better physical understanding of the relevant model skills.
In turn, a better understanding of model skills can serve as
a basis for better adjustment of the biases and/or selection
of best-performing models, which are crucial for hazard as-

sessment both in the present and future climate. However,
studies evaluating the climate model multivariate representa-
tion of hazard indicator are still rare (Bevacqua et al., 2019;
Zscheischler et al., 2021), and little is known on the effects
of those biases on multivariate hazards (Fischer and Knutti,
2013; Zscheischler et al., 2018).

In this study we propose a copula-based multivariate bias-
assessment framework, which allows for decomposing the
sources of bias in hazard indicators. We employ global cli-
mate model outputs from the fifth phase of the Coupled
Model Intercomparison Project (CMIP5) and consider two
simplified hazard indices, the Chandler burning index (CBI)
for fire hazard and the wet-bulb globe temperature (WBGT)
index for heat stress, both driven solely by temperature and
relative humidity. Figure 1 illustrates the main rationale of
the multivariate bias-assessment framework. Both hazard in-
dices, CBI and WBGT, are influenced by the bivariate distri-
bution of temperature and relative humidity (Fig. 1c). Based
on copula theory, such a bivariate distribution can be decom-
posed in terms of the marginal distributions of temperature
and relative humidity (Fig. 1a and d), as well as their statis-
tical dependence (Fig. 1b). Hence, such a copula-based de-
composition allows for understanding the biases in the haz-
ard estimates in terms of the contribution from the marginal
distributions individually (Fig. 1a and d; see difference be-
tween grey and black lines) and from their statistical depen-
dence (Fig. 1b) (Vezzoli et al. 2017; Bevacqua et al., 2019).
We present a methodology to quantify the role played by
the biases in temperature, relative humidity, and their depen-
dence in the final bias in the fire and heat stress indices as
simulated by climate models.

2 Data

2.1 Pre-processing

We employ 6-hourly data of 2 m air temperature (T )
and relative humidity (RH) during the period 1979–2005
from ERA-Interim reanalysis (Berrisford et al., 2011;
Dee et al. 2011) and 12 models from the CMIP5 mul-
timodel ensemble (Taylor et al., 2012): ACCESS1-0,
ACCESS1-3, BCC-CSM1.1-m, BNU-ESM, CNRM-CM5,
GFDL-ESM2G, GFDL-ESM2M, INM-CM4, IPSL-CM5A-
LR, NorESM1-M, GFDL-CM3, and IPSL-CM5A-MR; leap
days were removed. To allow for an intermodel comparison,
data were bilinearly interpolated to a 2.5◦ by 2.5◦ regular
latitude–longitude grid. All oceanic grid cells as well as those
beneath 60◦ S were removed from all analyses, given that ar-
guably no heat stress and fire risk exists in these areas.

Following Zscheischler et al. (2019), we restrict our analy-
sis to the hottest calendar month of the year, which is selected
based on the climatology of ERA-Interim data at each grid
point. This choice was made because arguably heat stress and
fire hazards tend to be more frequent during the warmest pe-
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Figure 1. Copula-based conceptual framework employed in this study to evaluate biases in CBI and WBGT indices. The framework is
illustrated for a representative location in Brazil (Amazonia, 5◦ S and 56.5◦W; indicated via X markers in the next figures). Panel (c) shows
the bivariate distribution of T and RH based on ERA-Interim (grey) and IPSL-CM5A-LR data (black) during 1979–2005. Isolines indicate
equal levels of CBI (orange) and WBGT (green). The decomposition of biases from the marginals (a, d) and the copula (b) are illustrated as
the discrepancies between the black (IPSL-CM5A-LR model) and grey features (ERA-Interim).

riod of the year, and it avoids dealing with seasonality; how-
ever we note that this assumes that CMIP5 models correctly
reproduce the seasonality observed in ERA-Interim. Finally,
for each model and location, we consider the T and RH val-
ues at the daily 6-hourly time steps corresponding to the daily
maximum temperature within the hottest month. The above
results in a time series for each location and model, with daily
values of the pair (T , RH).

The resulting time series data are autocorrelated, which
can compromise the interpretation of the statistical tests that
we apply in the analysis (Yue et al., 2002; Dale and Fortin,
2009). Therefore, we carry out the analysis on the decor-
related time series, which are obtained from the original
through subsampling every N = 9 d, where N is the lag re-
quired to remove the autocorrelation in T and RH time se-
ries data everywhere (at 95 % confidence level). The value of
N was determined as follows: for all individual grid points
and years in ERA-Interim and the CMIP5 models, the auto-
correlation function was calculated; then, the minimum lag

for which the autocorrelation was non-significant at the 95 %
confidence level was determined. Finally, the maximum of
all the minimum lags was selected, resulting in N = 9 d. The
time series for all models and locations are sampled with the
frequency of N . This is done N times using different start
epochs, where the first sampled time series starts with time
epoch one, the second sampled time series with time epoch
two, and so on up to nine. The decorrelated time series of T
and RH will henceforth be simply referred to as samples in
the following sections.

In the Appendix, Fig. A1 illustrates, for a representative
location in Brazil, one of the nine resulting samples of T and
RH for ERA-Interim and for a selection of CMIP5 models.
The figure also shows how the bivariate interaction of these
variables drives the fire and heat stress indices (coloured iso-
lines) introduced in the next section.
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2.2 Fire hazard and heat stress indices

We quantify fire and heat stress hazards based on two indices,
i.e. CBI and WBGT, respectively. While more advanced and
sophisticated indices exist for both of these hazards (e.g. Van
Wagner, 1987; Fiala et al., 2011), here we employ these two
simplified indices. Our aim is to provide a methodological
framework for a compound-event-oriented evaluation of haz-
ard indicators. Hence, employing simplified indices allows
for the development of a test case of the methodological
framework. We do not aim at providing an accurate assess-
ment of the hazard; nevertheless, our results will provide in-
dications that can serve as a basis for follow-up studies of
more complex fire and heat stress hazards.

The CBI index was employed, for example, for studying
fire risk in the United States (McCutchan and Main, 1989)
and globally (Roads et al., 2008). The index is based on air
T (◦C) and RH (%):

CBI=
((110− 1.73 ·RH)− 0.54 · (10.20− T )) · 1.24× 10−0.0142·RH

60
.

(1)

The “simplified WBGT” (from now on WBGT for the sake
of brevity) index was developed by the American College
of Sports Medicine (ACSM, 1984) as an indicator of heat
stress for average daytime conditions outdoors. The index is
defined as

WBGT= 0.56T + 0.393e+ 3.94, (2)

where e = (RH/100) · 6.105e(17.27T/(237.7+T )) is water
vapour pressure (expressed in hPa), which depends on air
temperature and relative humidity. More details on the def-
initions of the CBI and WBGT are available at McCutchan
and Main (1989) and ACSM (1984).

3 Methods

This section presents the conceptual framework and a bias
decomposition methodology used to analyse the multivariate
indices described above. We then present an overview of the
data processing before detailing the conventional statistical
tests we have incorporated into our test suite.

3.1 Copula-based conceptual framework

As both CBI and WBGT are functions of T and RH, it fol-
lows that their distributions are determined by the joint dis-
tribution of T and RH. Copula theory provides us with a nat-
ural way to decompose the joint distribution of T and RH in
terms of the marginal distributions of T and RH (the distribu-
tions of the individual variables considered in isolation) and
a term, known as the copula, that describes the dependence
between T and RH (Fig. 1). This allows us to understand

how bias in each of these components contributes to the bias
in CBI and WBGT.

A copula is a function that completely characterizes the
dependence structure between random variables, in our case
T and RH. Sklar’s theorem (Sklar, 1959) is a fundamental
result in copula theory, which states that the joint distribu-
tion of the random variables is determined by the marginal
distributions and their copula. Mathematically, in our bivari-
ate case, given the two variables T and RH, with marginal
cumulative distribution functions (CDFs) FT and FRH, and
marginal probability density functions (PDFs) fT and fRH,
following Sklar’s theorem, the joint PDF fT,RH can be de-
composed as

fT,RH(T ,RH)= fT(T ) · fRH(RH) · c(UT,URH), (3)

where URH = FRH(RH), UT = FT(T ) (note that U indicates
that both URH and UT are uniformly distributed by construc-
tion on the domain [0,1]), and c is the copula density, which
describes the dependence of the joint distribution fT,RH inde-
pendently from the marginal distributions fT and fRH. Note
that Eq. (3) naturally extends to the case of an arbitrary
number of random variables (Bevacqua et al., 2017); how-
ever here we focus on the bivariate case. Copulas allow for
great flexibility in modelling complex dependence structures
between several variables, and there are a huge variety of
parametric copula families available for statistical modelling
purposes (Nelsen, 2006; Salvadori and De Michele, 2007;
Salvadori et al., 2007; Durante and Sempi, 2015; Bevacqua
et al., 2020a). However, note that following the methodolo-
gies developed by Rémillard and Scaillet (2009) and Vezzoli
et al. (2017), here we will consider a non-parametric frame-
work; i.e. we will consider empirical, rather than paramet-
ric, distributions within our testing procedures. This choice
avoids unnecessary parametric-based assumptions on the dis-
tributions that could bias the results about both univariate and
multivariate features.

A characteristic of copulas is the invariance property (Sal-
vadori et al. 2007, proposition 3.2); i.e. if g1 and g2 are
monotonic (increasing) functions, then the transformed vari-
ables g1(T ) and g2(RH) have the same copula as T and
RH. This property is crucial to the methodology described
in the following section, where the monotonic functions are
the marginal CDFs of T and RH (or their inverses).

3.2 Contribution of the bias in the drivers to the bias of
CBI and WBGT

We assess how biases in each of the marginal distributions of
Tmod and RHmod, and Cmod (the copula of Tmod and RHmod),
contribute to the bias in the representation of the extreme val-
ues of CBI and WBGT (extremes are defined based on 95th
percentiles (Q95)). This is achieved based on a methodology
originally introduced by Bevacqua et al. (2019) to attribute
changes in compound flooding to its underlying drivers (and
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employed by for example Manning et al., 2019, and Bevac-
qua et al., 2020b).

We carried out three experiments. In experiment i, we ob-
tained, via a data transformation, a bivariate pair (Ti , RHi)
with copula Ci , where one component of the three underly-
ing distributions (Ti , RHi , Ci) is the same as that of a given
CMIP5 model, and the other two components are the same as
ERA-Interim. We then perform the quantile tests described
in Sect. 3.3.3 for CBI (or WBGT) using values based on (Ti ,
RHi) and (Terai, RHerai). The specific experiments carried out
are described below.

Experiment (a) assesses the bias contribution of Tmod.
From the variable Terai we calculated the uniformly dis-
tributed transformed random variableUT,erai = FT,erai (Terai).
From the variable Tmod we calculated the empirical CDF
FT,mod, through which we defined Ta = F

−1
T,mod(UT,erai). The

variable Ta has the same distribution as Tmod, while the pair
(Ta, RHerai) has the copula of ERA-Interim.

Experiment (b) assesses the bias contribution of RHmod.
This experiment follows the same structure as Experiment (a)
but with the roles of Terai and RHerai reversed, from which we
get the pairs (Terai, RHb).

Experiment (c) assesses the bias contribution of Cmod.
From the variables Tmod and RHmod we calculated the asso-
ciated marginal empirical cumulative distributions (UT,mod,
URH,mod). From the variables Terai and RHerai, we defined
the empirical CDFs FT,erai and FRH,erai, through which we
defined Tc = F

−1
T,erai(UT,mod) and RHc = F

−1
RH,erai(URH,mod).

The pair of variables (Tc, RHc) have the same marginal distri-
butions as the pair (Terai, RHerai), but the copula of the model,
i.e. Cmod, since (Tc, RHc) was obtained from (Tmod, RHmod)
by monotonic transformations of the margins.

3.3 Description of the testing procedure

The full data processing procedure is shown in Fig. A2. We
began with the ERA-Interim and CMIP5 data and obtained
T and RH samples (see Sect. 2.1). The CMIP5 samples were
then subject to the transformation procedure described in
Sect. 3.2.4. This results in five sets of T and RH data cor-
responding to the ERA-Interim reference, the original model
sample, and the three experiments (a, b, and c) used to assess
the bias contributions of biases in CMIP5 model T , RH, and
their copula. At this stage, the CBI and WBGT indices are
calculated on all five sets.

We execute univariate and multivariate non-parametric
statistical tests to evaluate the properties of CBI, WBGT, and
their driver variables (i.e. T , RH, and their dependence) prior
to proceeding with our bias decomposition approach. Details
for each of the tests are provided below, but, in general, we
follow a non-parametric approach similar to Vezzoli et al.
(2017). Each of the nine decorrelated ERA-Interim samples
was independently tested on a cell-by-cell basis against a dif-
ferent CMIP5 model sample; therefore each statistical test is
repeated nine times per model. To adjust for multiple test-

ing, we use the conservative Bonferroni correction method,
which penalizes the significance level α using the number of
repeated tests m= 9, so that the individual hypothesis tests
are evaluated at an α/m significance level (Jafari and Ansari-
Pour, 2019). A 5 % significance level is used, after which the
Bonferroni correction was adjusted to 0.0056 for use in each
individual hypothesis test. All of our analysis was carried out
in R (R Core Team, 2019), and the functions used for each
test are detailed in their corresponding section below.

Graphically, the statistical test results are presented as a
percentage of all 108 CMIP5 model samples (9 samples
times 12 models) where the null hypothesis is rejected. The
percentage we consider is calculated at each grid cell, and
stippling is added where the null hypothesis is rejected in at
least 75 % (81/108) of all CMIP5 model samples.

3.3.1 Univariate evaluation of T , RH, CBI, and WBGT

In order to understand how faithfully the marginal distribu-
tions of T , RH, CBI, and WBGT from the ERA-Interim data
are represented in a given CMIP5 model, we perform the
two-sample Anderson–Darling (AD) test via the ad.test func-
tion of the kSamples R package (v1.2-9; Scholz and Zhu,
2019). This is a non-parametric procedure that considers the
null hypothesis: “the two samples are from the same distri-
bution”.

3.3.2 Dependence between T and RH

A simple way to test how well the dependence between the
variables T and RH in ERA-Interim is represented in a given
CMIP5 model is to compare the calculated values of some
statistical measure of association. Here we use Kendall’s
τ rank correlation. The cor.test function of the core stats
R package was used to perform all τ calculations (R Core
Team, 2019).

To test whether the values of τ obtained from a given
model sample differ in a statistically significant way from the
corresponding ERA-Interim values, we begin by considering
the approximate 100(1−α)% confidence interval (τL,τU)

for τ associated with the point estimator τ̂ given by

τL = τ̂ − zα/2σ̂, τU = τ̂ + zα/2σ̂, (4)

where σ̂ 2 is an estimator of var(τ̂ ) and zα/2 is the quantile
of the standard normal distribution for α/2 (Hollander et al.,
2014). For our testing we calculate σ̂ 2, τ̂ , and the confidence
interval (τL,τU) for each grid cell in all ERA-Interim sam-
ples, using a customized version of the kendall.ci function
included in the NSM3 R package (v1.15, Schneider et al.,
2020). The CMIP5 model samples are then evaluated in two
ways. Firstly, if the model sample value of τ lies within the
confidence interval calculated for its corresponding ERA-
Interim sample, the model sample is judged to not signifi-
cantly differ from ERA-Interim in terms of the rank corre-
lation between T and RH. Secondly, we calculated the zα/2
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and hence the α or p value for each sample; these were tested
for significance using the same Bonferroni-adjusted value
of 0.0056 used in the univariate testing. The results from
both testing methodologies are consistent with each other, we
present the ad hoc p-value test results in the main text, and
the confidence interval tests are included in the Appendix.

Note that different copulas may give rise to the same value
of τ ; therefore we cannot conclude that a model that faith-
fully reproduces the ERA-Interim values of τ is accurately
representing the full dependence structure between T and
RH. Therefore, we account for differences in the depen-
dence structure by also carrying out hypothesis tests which
are based on the full copula function. We perform the non-
parametric test of copula equality based on the Cramér–
von Mises test statistic proposed by Remillard and Scaillet
(2009), used in Vezzoli et al. (2017) for testing the capabil-
ity of a climate–hydrology model to reproduce the depen-
dence between temperature, precipitation, and discharge for
the Po river basin in Italy, and recently employed by Zscheis-
chler and Fischer (2020) for evaluating the ability of climate
models to represent the dependence between temperature and
precipitation in Germany. The copula equality test has a null
hypothesis of H0: Cerai = Cmod, where Cerai and Cmod are
the copulas of T and RH represented in ERA-Interim and a
given model, respectively, with the alternative hypothesis be-
ing that these copulas differ. Unlike the AD test, which can
evaluate CMIP5 model performance in reproducing a single
marginal distribution, the copula equality test was specifi-
cally developed to test whether two empirical copulas are
equal and thus evaluates the capacity of models to repro-
duce the full dependency structure between T and RH. We
used the TwoCop function of the TwoCop R package (v1.0,
Remillard and Plante, 2012) to run the test.

3.3.3 Bias in the representation of extreme events of
CBI and WBGT

To evaluate how well CMIP5 models simulate extreme val-
ues of CBI and WBGT, we compare high quantiles (i.e. the
95th percentile Q95) of these indices from each model with
those of ERA-Interim. To assess whether the observed differ-
ences in the quantiles are statistically significant, we calcu-
late the 95 % confidence intervals for the Q95 of CBI and
WBGT at each location for ERA-Interim based on 1000
bootstrap samples. Like our evaluation of Kendall’s τ , if the
model index lies outside the confidence interval, we consider
the model has a significantly different representation of ex-
treme values of CBI and WBGT from ERA-Interim.

4 Results

4.1 Univariate evaluation of T , RH, CBI, and WBGT

4.1.1 CBI and WBGT

We began our analysis by visualizing the multimodel mean
of the mean values of CBI and WBGT during the hottest
months. According to reanalysis, the mean CBI is highest
in regions with dry and warm weather during the hottest
month, such as the Sahara, most of Australia, and the west-
ern USA and Mexico (Fig. 2a). In contrast, CBI tends to be
low in humid and warm regions such as the Amazon and
Congo basins. We move to evaluating the CMIP5 model bi-
ases in mean CBI, which appear large in magnitude (com-
pare Fig. 2b and a); most land masses are covered in dark red
or blue colours, indicating CMIP5 multimodel mean bias of
over 10 ◦C from the ERA-Interim. In addition, AD test re-
sults show that 59 % of the global land mass has significant
differences between ERA-Interim and CMIP5 distributions
of CBI in at least 75 % of model samples. Despite such biases
in the representation of the mean CBI magnitude, the over-
all spatial patterns in mean CBI are well reproduced by the
models. In fact, the area-weighted pattern correlation (Pfahl
et al., 2017), from now on pattern correlation, between mod-
els and reanalysis of mean CBI is high for all CMIP5 mod-
els, with a minimum value of 0.77 for the BCC-CSM1.1-m
model (Fig. A3a shows the multimodel mean of mean CBI).

In the reanalysis data, mean WBGT values over 30 ◦C are
reached over most tropical land masses during each loca-
tion’s hottest month, with lower values in higher latitudes
and the highest values near the Equator (Fig. 2c). For WBGT,
the pattern correlation between models and ERA-Interim is
higher than for CBI, with a minimum value of 0.89 for the
BCC-CSM1.1-m model (Fig. A3b shows the multimodel
mean of mean WBGT). Mean multimodel bias in WBGT
shows large parts of the continents are within the ± 0.5 ◦C
range relative to ERA-Interim. The AD test results indicate
that the WBGT distributions in CMIP models are typically
better than those of CBI; only 35 % of grid cells fail our per-
formance criterion (Fig. 2d).

Overall, CMIP5 models underperform in key regions as-
sociated with high fire and heat stress hazards. CBI’s dis-
tribution is not well represented by most CMIP5 models in
regions characterized by high fire hazard levels such as the
western USA and the Mediterranean basin, while CMIP5
WBGT results are significantly different from reanalysis in
regions of high heat stress such as the Indian subcontinent
and equatorial Africa.

4.1.2 T and RH

Following the evaluation of CBI and WBGT, we move to-
wards evaluating how CMIP5 models represent the driving
variables of the hazard indicators, i.e. T , RH, and their sta-
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Figure 2. Mean fire hazard index (CBI) value for ERA-Interim (a), and mean multimodel bias in mean CBI (b). Note that the palette is
non-linear, as it follows typical defined ranges of fire hazard levels based on the CBI, i.e. very low, low, moderate, high, very high, and
extreme. Mean heat stress index (WBGT) value for ERA-Interim (c), and mean multimodel bias in mean WBGT (d). Stippling indicates
locations where at least 75 % of CMIP5 models failed the AD two-sample test between the CMIP5 and ERA-Interim distributions of CBI
and WBGT. Bias was calculated as (CMIP5 minus ERA-Interim).

Figure 3. Mean temperature (T ) of the hottest month in ERA-Interim reanalysis (a), mean CMIP5 multimodel bias in mean temperature (b),
mean relative humidity (RH) of ERA-Interim reanalysis (c), and mean CMIP5 multimodel bias in mean RH (d). Stippling indicates locations
where at least 75 % of models failed the AD two-sample test between the CMIP5 and ERA-Interim marginal distributions of T and RH. Bias
was calculated as (CMIP5 minus ERA-Interim).
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tistical dependence. We first confirm that the expected lat-
itudinal variation in T is present in ERA-Interim reanaly-
sis (Fig. 3a) and that RH is low over known desertic areas
(Fig. 3c).

The spatial pattern of mean T is well represented by
CMIP5 models (Fig. A3c), with all models showing a pat-
tern correlation over land with ERA-Interim above 0.93, con-
sistent with an acceptable representation of the first-order
global-scale atmospheric circulation. However, significant
differences in the representation of the distributions (based
on the AD test) are found over the Amazon basin, where
the multimodel mean bias in mean T is positive, and over
Northern Africa and the Middle East, where the bias in mean
T is negative (Fig. 3b). Overall, we found that the area-
weighted multimodel mean of the absolute value of the T
bias is 1.6 ◦C. The AD test results show that CMIP5 models
fail to reproduce the observed ERA-Interim distribution of T
over 40 % of the global land mass.

We find worse model skills in representing the RH dis-
tribution; in fact, models failed the AD test over 59 % of the
global land mass (Fig. 3d). The spatial pattern of RH is not as
well represented as that of T , with minimum and maximum
pattern correlations of 0.75 and 0.90, respectively (Fig. A3d).
The mean multimodel bias in RH is particularly large in the
Amazon basin. Nevertheless, there are areas where the bias
is relatively small, e.g. in Australia, the Sahara, and eastern
Asia. Notably, there is a clear resemblance between the bias
patterns of mean RH (Fig. 3d) and CBI (Fig. 2b), with re-
gions with high positive bias in RH corresponding to regions
with strong negative bias in CBI, and an identical percent-
age of land mass showing significant differences. No similar
behaviour is found for WBGT; i.e. the WBGT bias spatial
pattern is similar neither to that of T nor RH bias. We will
investigate this behaviour in CBI and WBGT in further detail
in Sect. 4.3.

4.2 Dependence between T and RH

The results for our tests on the dependency structure of T
and RH in CMIP5 models are shown in Fig. 4. Figure 4a
and b show Kendall’s τ correlation between T and RH based
on ERA-Interim reanalysis and the mean multimodel bias of
this correlation, respectively. T and RH are strongly nega-
tively correlated (Fig. 4a), with an area-weighted mean value
of −0.50 (virtually all land mass has a significant correla-
tion; not shown are results based on the indepTest function
of the copula R package; v0.999–19.1; Hofert et al., 2018).
The presence of a negative correlation is illustrated in Fig. 1
(and A1 for a representative location). The area-weighted ab-
solute mean multimodel bias in τ is 0.095. The bias in τ is
not significant for most of the global land mass for most of
the models; i.e. the modelled correlations lie within the 95 %
confidence interval of τ of ERA-Interim (see infrequent stip-
pling over 5.3 % and 9.3 % of land masses in Figs. 4b and A4,
respectively). Results are similar for the copula equality test

Figure 4. Mean ERA-Interim correlation (τ ) between T and
RH (a), mean CMIP5 multimodel bias in τ (b), and the proportion
of CMIP5 samples where the copula equality was rejected (c). Stip-
pling in panel (b) indicates locations where the correlations of more
than 75 % of CMIP5 model samples have significantly different
values compared to ERA-Interim, as calculated using Bonferroni-
corrected p values. Bias was calculated as (CMIP5 minus ERA-
Interim).

(Fig. 4c), with an over 80 % agreement in copula structure
between ERA-Interim and models for 52 % of land masses
and 60 %–80 % agreement in 33 % of land masses. Overall,
the regions where we detect the highest amount of statisti-
cally significant differences in the copula structure and τ in-
clude parts of the Horn of Africa, India, and the Amazon
basin (see also Fig. A1c and d, where the model values have
different distributions compared to ERA-Interim).
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Figure 5. ERA-Interim (a) and CMIP5 multimodel mean (b) 95th quantile CBI values. Note that the palette is non-linear, as it follows typical
defined ranges of fire hazard levels based on the CBI, i.e. very low, low, moderate, high, very high, and extreme. Mean CMIP5 multimodel
bias in Q95 CBI (c), and its decomposition into bias due to the T (d), RH (e), and copula (f) components of the models. Stippling indicates
locations where more than 75 % of CMIP5 model sample values lie outside the 95 % confidence interval for ERA-Interim estimated based
on bootstrap samples. Bias was calculated as (CMIP5 or transformation minus ERA-Interim).

4.3 Contribution of the bias in the drivers to the bias in
CBI and WBGT extremes

4.3.1 Drivers of the biases in CBI extremes

We now assess the biases in the representation of extreme
events (95th quantile, Q95) in the CBI index and the associ-
ated drivers of the biases (Fig. 5). The spatial pattern of the
CMIP5 multimodel mean of Q95 (Fig. 5b) is very similar to
that of ERA-Interim (Fig. 5a). Figure 5c shows the biases
in extreme CBI, whose highest values are in South Amer-
ica, central North America, and parts of central Asia, which
is in line with the biases in mean CBI (Fig. 2b). The area-
weighted mean of absolute bias in the CMIP5 model CBI
is 21 ◦C, which is large compared to the area-weighted mean
CBI in ERA-Interim of 84 ◦C (i.e. corresponding to 25 %). In

fact, the stippling over 75 % of land masses in Fig. 5c indi-
cates that the models differ significantly from ERA-Interim.

The bias in RH is the main contributor to total mean bias
in extreme CBI values (Fig. 6d–f). The relevance of RH for
the bias in CBI is visible from the similarities in magnitude
and spatial distribution of bias between Fig. 5c and e. Fur-
thermore, while the area-weighted mean of absolute bias in
CBI is 21 ◦C, the corresponding mean biases due to T , RH,
and the dependency between them are 3, 20, and 3 ◦C, re-
spectively. The relevant contribution of RH to the CBI index
bias is consistent with the definition of the index, which is
mainly influenced by RH and to a lesser extent by T (see
nearly horizontal CBI isolines in Fig. 1); hence, also the de-
pendency between T and RH plays a negligible role. As a
result, while RH bias contributions drive significant biases in
CBI about everywhere but in the Sahara and Australia (see
stippling over 73 % of land masses in Fig. 5c), T and de-
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pendence do not drive significant biases in CBI (see near-
complete absence of stippling in Fig. 5d and f).

A closer examination of the bias decomposition results
shows, for a site with large positive bias in Brazil, that the
results shown in the multimodal mean bias plots (Fig. 5c
and e) reflect intermodel model behaviour at the local level.
That is, CMIP5 models with high RH bias contributions also
show high overall CBI bias (Fig. 6a). At this location, there
is a positive intermodel correlation between the biases driven
by T and RH (τ = 0.82; Fig. 6b). Such behaviour is due to
the combination of the following two reasons: (1) a nega-
tive intermodel correlation between the biases in T and RH,
i.e. CMIP5 models simulating temperatures that are too high
also tend to simulate relative humidity that is too low (as dis-
cussed by Fischer and Knutti, 2013); and (2) the fact that
CBI is high for low RH and high T . This feature is discussed
in more detail in Sect. 5. Similar results to those discussed
above for the site in Brazil are also observed for another rep-
resentative location in South Africa with large negative bias
in CBI (Fig. A5a). These locations are indicated throughout
map plots with X markers.

4.3.2 Drivers of the biases in WBGT extremes

The spatial pattern of Q95 in ERA-Interim (Fig. 7a) and in
the CMIP5 multimodel mean (Fig. 7b) is similar, with low
values concentrated along mountain ranges such as the An-
des and Himalayas and in high latitudes and with the high-
est values located in South America and the Indian subcon-
tinent. In several regions worldwide, CMIP5 models tend to
underestimate Q95 values of WBGT (global area-weighted
mean bias of −0.35 ◦C) and show significant biases relative
to ERA-Interim along the tropics and subtropics (Fig. 7c).
However, in terms of values of the bias, the CMIP5 repre-
sentation of the WBGT appears better than that of CBI. The
area-weighted mean of absolute bias in the index is 1.1 ◦C
(Fig. 7c), which is small compared to the area-weighted
mean WBGT in ERA-Interim, i.e. 29 ◦C (Fig. 7a).

The decomposition of the bias shows that unlike CBI there
is no single dominating source of bias in extreme values of
WBGT (Fig. 7d–f); all three possible sources contribute to
the overall bias. Importantly, a degree of compensating bi-
ases is evident when comparing the multimodel mean biases
driven by T (Fig. 7d) and RH (Fig. 7e). Large biases of oppo-
site signs are evident over South America, central Asia, and
other land masses; hence, in these areas, the resulting biases
in WBGT tend to be small (Fig. 7c). Significant but opposite
biases in T and RH (see stippling in Fig. 7d and e) result in
nonsignificant biases in WBGT (Fig. 7c) over regions such
as North America’s Mississippi basin and around Zaire in
central Africa. Globally, this compensating behaviour can be
observed in the percentages of land masses where each bias
component is significant. T - and RH-driven biases are sig-
nificant over 69 % and 48 % of the global land mass, respec-
tively, while copula biases are significant over 12 %; how-

ever, the total bias in WBGT is only significant over 39 % of
land masses. Further evidence for these compensating biases
can be found by observing that the area-weighted average
of absolute bias in Q95 WBGT, i.e. 1.1 ◦C, is smaller than
the contributions from T and RH, i.e. 1.9 and 1.4 ◦C, respec-
tively. In addition, we observe a tendency towards a lower
bias, on average, driven by the copula component (global
area-weighted average of absolute bias equal to 0.85 ◦C);
note that, however, some relevant positive bias contributions
exist over eastern Brazil and central Africa, where the cop-
ula test shows higher frequencies of rejection (Fig. 4c), and
a negative contributions over northern Russia, the central
United States, and eastern Europe (Fig. 7f).

The compensating bias in T and RH found above is in
line with the findings of Fischer and Knutti (2013). Their
results indicate that, at the local scale and for individual
models, the biases in WBGT driven by T and RH tend to
cancel each other out, resulting in small biases in the heat
stress index. We find that this behaviour in individual mod-
els is reflected in the multimodel mean result (Fig. 7c) in re-
gions where most models have similar behaviours, e.g. where
most models show a positive WBGT bias contribution from
T (Fig. 7d) and a negative one from RH (Fig. 7e). We con-
firm the behaviour in individual models for two representa-
tive locations. In Brazil, the small mean bias in WBGT Q95
for all CMIP5 models results from mostly positive and neg-
ative biases driven by T and RH, respectively, across models
(Fig. 8a; the figure also indicates that the bias driven by the
dependence is small and positive). In particular, models af-
fected by a positive T bias contribution in WBGT because of
T that is too high tend also to be affected by a negative RH
bias contribution because of RH that is too low (Fig. 8b). The
compensation of the biases in individual models arises from
(1) opposite biases in T and RH (models simulating tempera-
tures that are too high also tend to simulate relative humidity
that is too low; Fischer and Knutti, 2013) and (2) the WBGT
tendency to be high (low) for humid and warm (dry and cold)
conditions. Figure A6 illustrates such a cancellation of the
bias in WBGT for a location in South Africa, where the neg-
ative dependency between T and RH leads to a small bias
in WBGT. In this location, the model biases driven by T are
negative; therefore those driven by RH are positive.

5 Discussion

Our results underline the importance of understanding the
sources of the biases in hazard indicators through multivari-
ate procedures. In fact, hazard indicators can have biases re-
sulting from a complex combination of biases in the driving
variables of the indicator and in biases in the dependence be-
tween the variables. We find that biases in CBI extremes are
mainly driven by biases in relative humidity, while biases in
WBGT extremes are often driven by biases in temperature,
relative humidity, and their statistical dependence.
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Figure 6. Spread of mean total bias in the 95th quantile (Q95) of CBI and its contribution from T , RH, and their copula for individual
CMIP5 models (a), and a scatter plot of the T and RH contributions to Q95 CBI bias, with their Kendall rank correlation coefficient
(p value< 0.001) (b). Shown are the results for a grid point in Brazil (Amazonia, 5◦ S and 56.5◦W). Bias was calculated as (CMIP5 or
transformation minus ERA-Interim). Equal axes are used in panel (b) to highlight the differences in spread between both bias components.

Biases in WBGT are smaller than the bias contributions
from T and RH, i.e. the biases in the two variables compen-
sate. In particular, in line with Fischer and Knutti (2013),
models which tend to simulate T that is too high also tend to
simulate RH that is too low (and vice versa), which results in
relatively smaller absolute biases in the WBGT of individual
models. A negative intermodel correlation between the con-
tributions of T and RH to WBGT biases reduces the biases
in WBGT in the CMIP5 average. For the fire hazard, despite
that fact that a positive intermodel correlation between the
bias driven by T and RH exists, no enhancement of the CBI
bias occurs because the index is mainly controlled by RH
(see isolines in Fig. 1c), which also controls the bias of the
index. The WBGT index shows additional complexity due to
the contribution of the biases in the copula between T and
RH in areas such as eastern Brazil, Africa, and parts of cen-
tral North America and India.

These findings exemplify the need for multivariate bias ad-
justment methods, which can adjust climate model biases in
the dependencies between multiple drivers of hazards (Fran-
cois et al., 2020; Vrac, 2018). Furthermore, relying on cli-
mate models that plausibly represent large-scale atmospheric
circulation (Maraun, 2016; Maraun et al., 2017) would im-
prove our confidence in the simulation of multivariate haz-
ards. The relevance of multivariate bias adjustment methods
is also supported by the fact that adjusting biases variable
by variable may even increase biases in impact-relevant indi-
cators (Zscheischler et al., 2019). Nevertheless, in line with
our findings, Zscheischler et al. (2019) found that univari-
ate bias adjustment is relatively efficient in the case of CBI,
while multivariate methods lead to much stronger reductions
in the case of WBGT. It should be noted, however, that the
considered fire indicator CBI is overly simplistic. In practice,
weather conditions that promote fires are also related to wind

speed and previous rainfall, which are for instance included
in the Forest Fire Weather Index (FWI, Van Wagner, 1987),
as well as fuel availability and aridity.

The presented bias decomposition method would poten-
tially become even more relevant when considering more
complex hazard indicators driven by more than two variables,
such as the case of fire hazard as outlined above. This would
require an extension of the bivariate copula framework. For
example, in the case of three variables – X1, X2, and X3 –
we would have to investigate the behaviour of marginals, the
dependence between X1 and X2 (with the two-dimensional
copula C12), X2 and X3 (C23), and X1 and X3 (C13), and
then the joint behaviour of the three variables with the three-
dimensional copula (C123). Alternatively, vine copula de-
compositions could be employed (Hobæk Haff et al., 2015).
Similar considerations apply for the consideration of tem-
poral dependencies. The analysis can be done using both a
parametric or non-parametric approach. For instance, in Vez-
zoli et al. (2017), a non-parametric approach has been used
to analyse the behaviour of the three variables precipitation,
temperature, and runoff.

Given the critical importance of addressing com-
pound/multivariate events that are often associated with ex-
treme impacts (Leonard et al., 2014; Zscheischler et al.,
2018), we assessed the bias decomposition for high quan-
tiles of CBI and WBGT. The extremes of the considered in-
dicators are not necessarily caused by extreme values of the
drivers. Hence, the characterization of the dependence struc-
ture between their climate drivers (i.e. T and RH) was per-
formed in terms of their full joint distribution to capture all
the events; i.e. we did not only consider the combination of
simultaneous T and RH extremes. However, depending on
the type of hazard considered, investigating biases in the tail
dependence between the drivers may be relevant to under-
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Figure 7. ERA-Interim (a) and CMIP multimodel mean (b) 95th quantile WBGT values. Mean CMIP5 multimodel bias in Q95 WBGT (c)
and its decomposition into bias due to the T (d), RH (e), and copula (f) components of the models. Stippling indicates locations where more
than 75 % of CMIP5 model sample values lie outside the 95 % confidence interval for ERA-Interim estimated based on bootstrap samples.
Bias was calculated as (CMIP5 or transformation minus ERA-Interim).

standing the biases in the hazard. For example, the tail de-
pendence between storm surge and precipitation, which is
relevant for compound coastal flooding, may be slightly un-
derestimated in CMIP5 models (Bevacqua et al., 2019). Sim-
ilarly, there is evidence that the tail dependence between hot
and dry conditions may be underestimated by climate models
in some cases (Zscheischler and Fischer, 2020).

The present methodology can be used for assessing the
sources of bias in other types of compound events (Zscheis-
chler et al., 2020) caused by other sets of dependent drivers,
such as compound drought and heat (Zscheischler and
Seneviratne, 2017) and compound coastal flooding (Bevac-
qua et al., 2020b). Other types of compound events, e.g. tem-
poral clustering of storms (Bevacqua et al. 2020c; Priestley
et al., 2017) and simultaneous extreme events in distant re-
gions (Kornhuber et al., 2020) can also lead to large im-
pacts and are therefore relevant for the impact community.
A compound-event-oriented evaluation of impacts similar to

that proposed here, i.e. disentangling the biases in the indi-
vidual physical drivers, could be adopted in future studies to
aid present and future impact assessments.

6 Conclusions

Climate model data contain biases that need to be evaluated
and ultimately adjusted to avoid misleading risk assessments.
However, while many climate-related extreme impacts are
caused by the combination of multiple variables, i.e. com-
pound events, climate model evaluation methods typically
do not consider the multivariate nature of the hazards. In
this study, we took a compound event perspective and, based
on copula theory, introduced a multivariate bias-assessment
framework, which allows for disentangling and better under-
standing the multiple sources of biases in hazard indicators.
Through a non-parametric procedure, here we investigated
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Figure 8. Spread of mean total bias in the 95th quantile (Q95) of WBGT and its contribution from T , RH, and their copula for individual
CMIP5 models (a), and a scatter plot of the T and RH contributions to Q95 WBGT bias, with their respective Kendall rank correlation
coefficient (p value< 0.001). Shown are results for a grid point in Brazil (Amazonia, 5◦ S and 56.5◦W). Bias was calculated as (CMIP5 or
transformation minus ERA-Interim). Equal axes are used in panel (b) to highlight the differences in spread between both bias components.

how the biases in temperature, relative humidity, and their
dependence affect the overall biases in fire and heat stress
indicators (CBI and WBGT, respectively). We found that bi-
ases in CBI are mainly driven by biases in relative humidity,
in line with the fact that the index is only marginally affected
by temperature. In contrast, the biases in WBGT are often
driven by biases in temperature, relative humidity, and their
statistical dependence (e.g. in areas including eastern Brazil,
Africa, and parts of central North America and India). Op-
posing biases in temperature and relative humidity tend to
compensate for each other, resulting in relatively small bi-
ases in WBGT. The results highlight areas where a careful
interpretation of these indicators is required and where multi-
variate bias corrections of temperature and relative humidity
should be considered future risk assessments.

Given the relevance of compound weather and climate
events for societal impacts, the presented framework could
be useful in further studies aiming at disentangling and bet-
ter understanding the drivers of the biases in the represen-
tations of other impacts. The framework could also be use-
ful to assess biases among drivers of hazards when data for
the hazard indicators are not available. A compound-event-
oriented model evaluation of modelled impacts and associ-
ated drivers would be beneficial for disaster risk reduction
and, ultimately, could feed back into climate model develop-
ment processes and stimulate the design of new bias adjust-
ment methods.
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Appendix A: Information

Figure A1. Samples of hourly 2 m air T (◦C) vs. RH (%) during the period 1979–2005 for ERA-Interim reanalysis (grey points) and four
models (black points) from the CMIP5 multimodel ensemble (BNU-ESM (a), GFDL-CM3 CNRM-CM5 (b), GFDL-CM3 (c), and IPSL-
CM5A-LR (d)) for a grid point in Brazil (Amazonia, 5◦ S and 56.5◦W) indicated throughout map plots in the Results section (Sect. 4) with
X markers. The isolines illustrate equal levels of the hazard indices of fire (orange) and heat stress (green), corresponding to CBI and WBGT
indices, respectively, which are both functions of T and RH.
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Figure A2. Block diagram showing the data and methods used. Temperature (T ) and relative humidity (RH) decorrelated samples from
CMIP5 models’ biases are analysed using univariate and multivariate statistical tests using ERA-Interim as reference dataset. We also create
transformed CMIP5 model samples, which allow for assessing the bias in the extreme values of the hazard indicator (CBI and WBGT) driven
by biases in T , RH, and their statistical dependence.

Figure A3. CMIP5 multimodel mean fire hazard index (CBI) value (a), heat stress index (WBGT) value (b), temperature (T ) value (c), and
relative humidity (RH) (d).
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Figure A4. As Fig. 4b but where stippling indicates locations where more than 75 % of CMIP5 model sample values lie outside the 95 %
confidence interval for ERA-Interim.

Figure A5. As Fig. 6 for a grid point in South Africa (32.5◦ S and 23.5◦ E), with Kendall rank correlation p value= 0.12.

Figure A6. As Fig. 8 for a grid point in South Africa (32.5◦ S and 23.5◦ E), with Kendall rank correlation p value= 0.063.
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