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Abstract
Extreme climate events, such as droughts and heatwaves, can have large impacts on 
the environment. Disentangling their individual and combined effects is a difficult 
task, due to the challenges associated with generating controlled environments to 
study differences in their impacts. One approach to this problem is creating artificial 
climate forcing with varying magnitude of univariate and compound extremes, which 
can be applied to process-based impact models. Here, we propose and describe a set of 
six 100-year long climate scenarios with varying drought-heat signatures that are de-
rived from climate model simulations whose mean climate is comparable to present-
day climate conditions. The changes in extremes are most notable in the 3 months in 
which vegetation activity is highest and where arguably hot and dry extremes may 
have the largest impacts. Besides a control scenario representing natural variability 
(Control), one scenario has neither heat nor drought extremes (Noextremes), one has 
univariate extremes but no compound extremes (Nocompound), one has only heat 
extremes but few droughts (Hot), one has only droughts but few heatwaves (Dry), 

www.wileyonlinelibrary.com/journal/gdj3
mailto:﻿
https://orcid.org/0000-0001-9062-2396
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.4385445
mailto:elisabeth.tschumi@climate.unibe.ch
mailto:elisabeth.tschumi@climate.unibe.ch
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fgdj3.129&domain=pdf&date_stamp=2021-08-01


2  |      TSCHUMI et al.

1  |   INTRODUCTION

Climate extremes such as droughts, heatwaves, storms and 
floods are important stressors to the natural environment. 
They can lead to large and devastating impacts on ecosys-
tems and society (Frank et al., 2015; IPCC, 2012; Reichstein 
et al., 2013; Tschumi & Zscheischler, 2020). Extreme im-
pacts, in turn, may also be caused by meteorological condi-
tions that are not necessarily extreme in a statistical sense 
(Van der Wiel et al., 2020; Vogel et al., 2021; Zscheischler 
et al., 2016). In many cases, impacts are caused by multi-
ple extremes or a combination of anomalous meteorological 
drivers (Flach et al., 2017), also referred to as compound 
events (Zscheischler et al., 2018, 2020). The multiple drivers 
behind compound events are often correlated (Leonard et al., 
2014; Zscheischler & Seneviratne, 2017). Furthermore, the 
combined impact of compound extremes can be more severe 
than a simple linear combination of univariate extremes, for 
instance, the effect of drought and heat on terrestrial carbon 
uptake (Zscheischler et al., 2014b) or crop yields (Cohen 
et al., 2020; Ribeiro et al., 2020). Hence, quantifying the dif-
ferential impact of compound versus univariate extremes and 
the relevance of driver dependence is important for a better 
understanding of climate risks.

The land biosphere plays an important role in the global 
carbon cycle, taking up between a quarter and a third of an-
thropogenic CO2 emissions (31% in the last decade accord-
ing to the most recent estimate of the Global Carbon Project, 
Friedlingstein et al., 2020). Different factors enhance this 
land sink such as increased atmospheric CO2 concentrations 
and warmer temperatures in the high latitudes, which increase 
the growing season length in the high latitudes (Zhu et al., 
2016). However, at the local scale, vegetation productivity 
can be limited by factors such as water availability, tempera-
ture conditions, light conditions, availability of nutrients and 

CO2 concentrations (Schlesinger & Bernhard, 2013). These 
factors can vary greatly, especially during extreme climate 
conditions.

The effect of climate extremes on vegetation and the 
terrestrial carbon cycle can be studied from different per-
spectives, for instance based on (a) lab or field experiments 
(Beier et al., 2012; De Boeck et al., 2011; Song et al., 2019), 
(b) observational data such as long-term forest observations 
(Anderegg et al., 2013) and local measurements of carbon ex-
change (Ciais et al., 2005; Pastorello et al., 2020; von Buttlar 
et al., 2018), (c) indirect estimates from satellite observations 
(Ciais et al., 2005; Stocker et al., 2019; Zhao & Running, 
2010; Zscheischler et al., 2013) and (d) dynamical vegeta-
tion models (Bastos et al., 2020; Ciais et al., 2005; Pan et al., 
2020; Rammig et al., 2015; Xu et al., 2019; Zscheischler 
et al., 2014a, 2014b, 2014c, 2014d). Hereby, process-based 
vegetation models allow for the development and testing 
of novel hypotheses in a controlled environment and at the 
global scale. Arguably, drought and heat are amongst the most 
damaging hazards to terrestrial vegetation (Allen et al., 2010; 
Frank et al., 2015; Reichstein et al., 2013; Sippel et al., 2018; 
Zscheischler et al., 2014b). However, differentiating impacts 
between drought and heat alone and compound drought and 
heat remains a challenging task. Despite the large model un-
certainties, it is widely acknowledged that drought and heat 
extremes will increase in frequency and severity in many land 
regions in the future (Seneviratne et al., 2012). Though it is 
still uncertain exactly how these increases will affect the ter-
restrial biosphere, there are concerns they might substantially 
reduce the current terrestrial carbon sink (Reichstein et al., 
2013).

Temperature and precipitation are strongly correlated in 
most land regions in the warm season (Madden & Williams, 
1978; Trenberth & Shea, 2005), and this dependence controls 
the occurrence of compound drought and heatwave events 

172476) and from the European Union's 
Horizon 2020 Research and Innovation 
Programme under grant agreement no. 
821003 (project 4C, Climate-Carbon 
Interactions in the Current Century). The 
work reflects only the authors' view; the 
European Commission and their executive 
agency are not responsible for any use that 
may be made of the information the work 
contains

and one has many compound heat and drought extremes (Hotdry). These scenarios 
differ only moderately in their global mean climate (about 0.3°C in temperature and 
6% in precipitation) and do not contain any long-term trends. The data are provided 
on a daily timescale over land (except Antarctica and parts of Greenland) on a regular 
1° × 1° grid. These scenarios were constructed primarily to investigate the impact 
of varying drought-heat signatures on vegetation and the terrestrial carbon cycle. 
However, we believe that they may also prove useful to study the differential impacts 
of droughts and heatwaves in other areas, such as the occurrence of wildfires or crop 
failure. The data described here can be found on zenodo (https://doi.org/10.5281/
zenodo.4385445, Tschumi et al., 2020).
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(Zscheischler & Seneviratne, 2017). Similar to regional bi-
ases in mean temperature and precipitation, climate models 
can have biases in the temperature-precipitation dependence, 
that is, in the correlation between temperature and precip-
itation. Given the relevance of drought and heat for carbon 
dynamics and, in particular, the disproportional impacts of 
compound drought and heat (Allen et al., 2010; von Buttlar 
et al., 2018; Zscheischler et al., 2014d), differences in the de-
pendence between temperature and precipitation in the cli-
mate forcing might affect estimates of carbon dynamics and 
uptake. In particular, Earth system models collected in the 
coupled model intercomparison projects (e.g. CMIP5 Taylor 
et al., 2012) show a substantially stronger dependence than 
the forcing that is used in the regular carbon budget esti-
mates provided by the Global Carbon Project (Friedlingstein 
et al., 2020) in the Southern Hemisphere (Zscheischler & 
Seneviratne, 2017). It is unclear whether these differences 
originate from an overestimation of the dependence in climate 
models or a lack of observational constraint in observation-
based gridded climate datasets. However, independent of a 
potential bias with respect to observations, differences in this 
dependence across climate models may contribute to uncer-
tainties in carbon-cycle climate feedbacks with ongoing cli-
mate change (Friedlingstein et al., 2014).

Disentangling the effects of varying temperature-
precipitation dependence and the associated occurrence of 
compound drought and heat on terrestrial carbon dynamics 
is challenging, as non-stationarity and the use of different 
vegetation models in different Earth system models con-
found the assessment. Here, we present a range of climate 
scenarios that have been developed specifically to study the 
differential effects of single or compound drought and heat 
events and their impacts on vegetation and the terrestrial car-
bon cycle with dynamical vegetation models. The scenarios 
span a period of 100 years, and all have a similar mean cli-
mate but differ in their occurrence frequency and intensity 
of droughts, heatwaves and compound drought and heatwave 
events during the peak of the growing season. Although the 
scenarios are somewhat tailored to study carbon dynamics, 
they may also be used to explore the effects of drought and 
heat on other climate impacts, for example, wildfires or crop 
failure.

2  |   DATA DESCRIPTION

This section describes the climate model simulations from 
that the scenarios were sampled. We further provide an as-
sessment of biases in precipitation and temperature and show 
that our climate simulations with approximately constant 
forcing result in a stationary vegetation composition over 
time. Finally, we describe how we sampled scenarios with 
different drought-heat signatures.

2.1  |  EC-Earth climate simulations

The data for the drought-heat scenarios were sampled from 
a large ensemble climate modelling experiment. This experi-
ment consisted of 2000 years of simulated present-day cli-
mate data, which were created with the fully coupled global 
climate model EC-Earth (v2.3, Hazeleger et al., 2012). The 
large ensemble was built out of 400 short five-year runs, 
which were unique in initial condition and/or stochastic 
physics seed. EC-Earth combines atmospheric, oceanic, land 
and sea-ice model components and simulates the global cli-
mate including feedbacks between, for example, land and 
atmosphere. The horizontal resolution in the atmosphere for 
the simulations was T159 (approximately 1.1°). For creating 
the scenarios, the climate model output has been bilinearly 
interpolated to a regular 1° × 1° grid. All analysis was based 
on daily data.

In the large ensemble experiment, we defined the ‘present-
day climate’ by means of the observed global mean surface 
temperature over the years 2011–2015. We selected the five 
year EC-Earth model period (2035–2039) that minimized 
the difference between simulations and observation of the 
global mean surface temperature from 16 transient climate 
runs (1861–2100, RCP8.5). Each of these 16 runs were then 
used, at the start of the selected period, as an initial condition 
for an ensemble of 25 members of 5 years each. By choosing 
different seeds for the atmospheric stochastic perturbations 
(Buizza et al., 1999), each of these members developed unique 
weather. Together this resulted in 16 × 25 × 5 = 2000 years of 
simulated present-day climate data. More details on the large 
ensemble climate model experiment setup are provided in 
Van der Wiel et al. (2019c). Note that, within the ensemble, 
the influence of forced climate change is small. We, there-
fore, assume that all variability in the dataset is due to natural 
variability in the climate system.

2.2  |  Regional biases in annual 
temperature and precipitation

Despite the annual mean surface temperature being unbi-
ased at the global scale by experimental design (Section 2.1), 
model biases may exist at the regional and seasonal scale. 
We, therefore, compare a random 100 year sample from the 
EC-Earth data to a 30-year climatology of the climate data 
from the Climate Research Unit (CRU TS3.26) (Harris et al., 
2014). We compared against the time period 1988–2017, 
though using a shorter time period of 2011–2015 (the same 
time period as represented by EC-Earth) results in very similar 
biases. Generally, averaged over land (excluding Antarctica 
and most of Greenland), temperature differs by −0.5°C and 
precipitation by 7% compared to CRU. However, biases 
can be relatively large at the regional scale. In the tropics 
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(between 23.5°S and 23.5°N), EC-Earth has a cold bias of 
−1.8°C compared to CRU (Figure  1a). In the extratropics, 
EC-Earth has a small warm bias of about 0.2°C on average, 
with most of this bias being concentrated in the very high 
latitudes and nearly no bias in the mid-latitudes (Figure 1a). 
With respect to annual precipitation, many land regions have 
a wet bias in EC-Earth compared to CRU (Figure 1b). The 
extratropics have a wet bias of about 43.5%. In the trop-
ics, some regions are drier (e.g. the Amazon and Indonesia) 
whilst others have very little bias in EC-Earth compared to 
CRU (tropical Africa). Note, however, that observation-
based estimates differ strongly in their absolute precipitation 
amounts (Sun et al., 2018).

2.3  |  LPX-Bern stability

LPX-Bern v1.4 (Lienert & Joos, 2018) is a Dynamic Global 
Vegetation Model (DGVM) based on Lund-Potsdam-Jena 
(LPJ) model (Sitch et al., 2008). The model features coupled 
water, nitrogen and carbon cycles and represents different 
types of vegetation using Plant Functional Types (PFTs). 
Here, only natural vegetation is considered, which is inter-
nally represented by eight tree PFTs and two herbaceous PFTs 
competing for resources and adhering to bioclimatic limits. 
In this study, daily temperature, precipitation and short-wave 
radiation are provided to the model. Additionally, the model 
uses information on the soil type (Wieder et al., 2014), CO2 
concentration in the atmosphere at 1901 level (296.8 ppm), 
and nitrogen deposition (NMIP; Tian et al., 2018). A spin-
up of 1,500 years (recycling the first 30 years of the climate 
forcing) was performed to make sure all carbon pools are in 
equilibrium.

To make sure that the climate forcing is appropriate for cli-
mate impact modelling, we assessed whether LPX-Bern sim-
ulations are stable over the course of the entire 2,000 years of 
EC-Earth data. Except for a slight decreasing trend in tropi-
cal broadleaved evergreen trees (TrBE), the global fraction of 
each of the 10 PFTs present in LPX-Bern shows no apparent 

trends over the 2,000 years (Figure S1). Hence, despite the 
relatively large biases at the regional scale (Section 2.2), 
LPX-Bern seems to be stable using input from this global 
climate model. This gives us confidence to use this control 
simulation as a baseline to estimate the effect of climate sce-
narios with different drought-heat signatures. We can assume 
that any trends and non-stationarities in the LPX-Bern output 
will be due to the scenarios. In addition, this test run was used 
for the sampling described in Section 2.4.

2.4  |  Scenario sampling

This section describes the steps taken to create climate sce-
narios with varying drought-heat signatures. We sampled 
100-year long scenarios from the original 2,000 years of EC-
Earth data. The selection of the different scenarios was based 
on temperature and precipitation values during the time of 
the year where the vegetation is most active. Arguably, the 
vegetation is most vulnerable to climate extremes during 
the growing season (Orth et al., 2016; Zscheischler et al., 
2017). Therefore, for the scenario creation we focused on the 
3 months around the most productive month in the climatol-
ogy. We first identified the most productive month at each 
pixel, that is, the month with the highest net primary produc-
tion (NPP) in the mean seasonal cycle of NPP, as simulated 
by LPX-Bern (Section 2.3). The month of maximum NPP 
differs from pixel to pixel, depending on the geographical 
location (Figure S2). For instance, in the northern mid and 
high latitudes, July is typically the most productive month, 
whereas it is January or February in most of the southern mid 
and high latitudes. In contrast, in the tropics and subtropics, 
the most productive month varies quite strongly across lo-
cations, depending on the dominant rainy season (Wang & 
Ding, 2008).

We selected the six different scenarios for each pixel sep-
arately based on mean temperature and precipitation over 
the 3  months around the month of highest vegetation pro-
ductivity: Control, Noextremes, Nocompound, Hot, Dry and 

F I G U R E  1   Biases in EC-Earth simulations with respect to observation-based data from CRU. (a) Difference in annual mean temperature 
between EC-Earth and CRU in °C. (b) Relative difference in annual precipitation between EC-Earth and CRU in %. The time period 1988–2017 
was used for CRU and randomly sampled 100 years (representing 2011–2015) for EC-Earth. The land regions depicted in grey in (b) are desert 
regions with a mean annual precipitation of less than 250 mm in the CRU dataset and were excluded in the maps to avoid dividing by very small 
numbers

(a) (b)
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Hotdry. Years contributing to the scenarios were sampled 
based on quantiles of the 3 month temperature and precipi-
tation averages as indicated in Figure 2, where the quantiles 
were computed based on the full 2,000-year EC-Earth sim-
ulation. If more than the required number of years fall into 
the quantiles in question, a random selection was performed. 
If less years than necessary were available, some randomly 
chosen years were selected multiple times.

•	 For Control, 100 years were sampled randomly out of the 
2,000 years (Figure 2a).

•	 For Noextremes, 100 years were sampled for which tem-
perature and precipitation are both within the 40th to 60th 
percentile (Figure 2b).

•	 For Nocompound, 100 years were sampled for which tem-
perature and precipitation do not exceed the 85th percentile 
in any direction at the same time (Figure 2c).

•	 For Hot, 50  years were sampled for which temperature 
exceeds the 85th percentile and precipitation is within the 
40th to 60th percentile and 50  years were sampled ran-
domly from the rest (Figure 2d).

•	 For Dry, 50  years were sampled for which precipitation 
lies below the 15th percentile and temperature is within 
the 40th to 60th percentile and 50 years were sampled ran-
domly from the rest (Figure 2e).

•	 For Hotdry, 50 years were sampled for which temperature 
lies above the 85th percentile and precipitation lies below 
the 15th percentile at the same time and 50 years were sam-
pled randomly from the rest (Figure 2f).

The reason for only selecting 50 years from the extreme 
quantile for the Hot, Dry and Hotdry scenarios is twofold. 
Firstly, for many pixels, not a huge amount of years fall into 
the extreme quantiles. Sampling only 50 years from there re-
duces the numbers of times a year is resampled. Secondly, the 
mean climatology is kept more similar to the other scenarios 
if only half the years were sampled with extreme conditions 
and the other half from the rest.

This method of scenario creation, for each pixel sepa-
rately, destroys any spatial coherence, so that the climate 
in a pixel is not correlated to the climate in nearby pixels. 
Furthermore, due to the sampling of individual years, there 
are always slight discontinuities between 31 December and 
1 January in the climate forcing. The same is true for leap 
years, since all leap days (29 February) were removed.

2.5  |  Available variables

To allow for impact modelling for a wide range of sectors, we 
provide temperature variables (mean, minimum, maximum), 
precipitation, radiation (short- and longwave downward 

radiation and shortwave net radiation) and wind (zonal [east-
ward, u] and meridional [northward, v], see Table 1) at daily 
timescales. For this study, we only analysed mean tempera-
ture and precipitation to quantify differences in the occur-
rence of droughts and heatwaves between the scenarios. All 
variables are available at a regular 1° × 1° grid over land, 
except Antarctica and large parts of Greenland. Leap days 
were removed, so there are 365 × 100 time steps for each 
scenario. Whenever global means are given, they are area-
weighted means over all land cells except Antarctica and 
Greenland. The data can be accessed via zenodo (https://doi.
org/10.5281/zenodo.4385445, Tschumi et al., 2020).

3  |   SCENARIO 
CHARACTERIZATION

A key goal of the design of the different scenarios is that they 
vary in their characteristics of climate extremes, in particular 
droughts and heatwaves, whilst differing only little in their 
mean climate conditions. The scenarios differ moderately 
in their global land-mean temperature and annual precipita-
tion sums and all scatter closely around global CRU aver-
ages (Figure  3). Temperature differences are in the order 
of 0.3°C and precipitation differences are up to 6%, which 
corresponds to about one and two standard deviations of the 
inter-annual variability in CRU, respectively. The precipita-
tion differences between scenarios and with respect to CRU 
are thus noticeably smaller than the difference across differ-
ent precipitation datasets (Sun et al., 2018). Spatially, explicit 
differences illustrate that the difference in annual mean tem-
perature is mostly below 1°C for the Hot and Hotdry scenario 
at the regional scale, and much smaller for the other scenarios 
(Figure S3). Similarly, the difference in annual precipitation 
at the regional scale is mostly below 20% for the Hot, Dry and 
Hotdry scenario and much smaller for the others (Figure S4).

3.1  |  Heatwaves

Temperature extremes were quantified based on cooling de-
gree days (CDD). Being aware of the multitude of heatwave 
indices (Perkins, 2015), we chose this index because it is an 
integrative measure for cumulative magnitude, frequency and 
duration of the heatwaves (Laufkötter et al., 2020). Choosing 
another index would result in different numbers but likely not 
affect the ranking between the different scenarios. Heating 
and cooling degree days are generally used in the energy sec-
tor to determine the energy needed to heat or cool a building, 
which is directly proportional to the number of heating or 
cooling degree days. Here, we calculated CDD as the sum 
of all temperature exceedances over a high threshold, in this 

https://doi.org/10.5281/zenodo.4385445
https://doi.org/10.5281/zenodo.4385445
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case, the 90th percentile of the control scenario at each pixel, 
using daily temperature data:

Here, i indicates daily time steps, N is the total number of 
time steps (100 × 365 = 36,500 days), T90 denotes the 90th 
percentile of the local temperature time series and I denotes 
the indicator function, which is 1 if Ti > T90 and 0 otherwise.

In the Control scenario, CDD varies between close to zero 
and about 100°C per year, with higher numbers for regions 
further away from the equator, which can be explained by 
the higher temperature variability in extratropical regions 
compared to the tropics (Figure 4a). The Noextremes (global 
area-weighted mean relative difference between Noextremes 
and Control: 0.06%), Nocompound (global mean difference 
6.9%) and Dry (global mean difference 4.7%) scenarios are 
very close to the Control in terms of CDD (Figure 4b,c,e). 
In contrast, in the Hot (global mean difference 42.7%) and 
Hotdry (global mean difference 47.9%) scenarios the CDDs 

(1)CDD =

N
∑

i= 1

(T
i
− T90)I

T
i
>T90

.

F I G U R E  2   Sampling of scenarios 
from their respective quantiles, details 
provided in the main text. Two colouring 
shades (for Hotdry, Hot and Dry) means 
50 years were sampled from each shade. 
The quantiles were calculated based on the 
full 2,000 years EC-Earth data

(a)

(b)

(c)

(d)

(e)

(f)
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increase by up to 160%, with the increases being slightly 
larger in the Hotdry scenario.

3.2  |  Droughts

For the quantification of droughts we rely on the Standardized 
Precipitation Index (SPI) (McKee et al., 1993), one of the 
most widely used drought indicators. We use a three-month 
timescale based on monthly precipitation values and calcu-
late SPI with the R package SPEI (Vicente-Serrano et al., 
2010). The SPI is computed by fitting the three-month run-
ning mean monthly precipitation data to a Gamma distribu-
tion for each calendar month. The fitted Gamma distribution 
is then transformed to a standard normal distribution (McKee 

et al., 1993). We investigate how the scenarios differ in their 
occurrence likelihood of severe droughts, defined as SPI 
<−1.5. Given that SPI is standard normally distributed, the 
occurrence probability of severe droughts is about 6.7%, 
which is captured well by most locations in the Control, ex-
cept in the Sahara desert (Figure  5a). There is a slight re-
duction in number of severe droughts for the Noextremes 
scenario of −22.5% in the global mean (Figure 5b), whereas 
the Nocompound (−4.7%) and the Hot (3.4%) scenario are 
fairly similar to the control (Figure 5c,d). The Dry (54.1%) 
and Hotdry (89.2%) scenario show large and very large in-
creases in severe drought occurrence, up to 200% with respect 
to the control (Figure 5e,f). We repeated the drought analy-
sis using the Standardized Precipitation-Evapotranspiration 
Index (SPEI) (Vicente-Serrano et al., 2010) instead of SPI. 
The SPEI also takes the effects of evapotranspiration into 
account and thus requires precipitation as well as tempera-
ture for its calculation (calculated here with the Hargreaves 
function based on monthly minimum/maximum temperature 
and precipitation; Vicente-Serrano et al., 2010). The spatial 
patterns are similar overall, though the changes are larger in 
particular for the Hotdry scenario (Figure S5).

3.3  |  Compound extremes

Temperature and precipitation are negatively correlated dur-
ing the most productive months in most regions of the world 
with a global mean Pearson correlation coefficient of −0.47 in 
the control scenario (Figure 6). This inter-annual correlation 
was calculated using the vegetation periods most productive 
3-month mean value per year for temperature and precipita-
tion (the same 3 months that were used for the sampling). In 
contrast, in the Noextremes scenario, temperature and pre-
cipitation are hardly correlated at all (global mean −0.02). 
The Nocompound (−0.31), Hot (−0.37), and Dry (−0.34) 

T A B L E  1   Available variables with a daily time step over land (except Antarctica and large parts of Greenland) on a 1° × 1° grid

Variable Variable name Unit Description

Mean temperature tas °C Mean daily near-surface (2 m) 
temperature

Minimum temperature tasmin °C Minimum daily near-surface (2 m) 
temperature

Maximum temperature tasmax °C Maximum daily near-surface (2 m) 
temperature

Precipitation pr mm/day Daily precipitation

Shortwave net radiation sw J day−1 m−2 Shortwave net radiation

Shortwave downward radiation swd J day−1 m−2 Shortwave downward radiation

Longwave downward radiation lwd J day−1 m−2 Longwave downward radiation

Zonal wind uas m/s Near-surface (10 m) eastward wind

Meridional wind vas m/s Near-surface (10 m) northward wind

F I G U R E  3   Global annual average temperature and precipitation 
over land (excluding Antarctica and much of Greenland) for all 
scenarios and CRU (1988–2017). The bars on CRU indicate one 
standard deviation of annual means over the entire time period
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scenarios all show a negative correlation between tempera-
ture and precipitation, but slightly less so compared to the 
control. The Hotdry scenario is the only scenario that features 
a strongly increased negative correlation between tempera-
ture and precipitation, with a global average of −0.72.

To measure the occurrence of compound hot and dry con-
ditions, we assess the occurrence of compound hot and dry 
years. To this end, we calculate the frequency F of years for 
which the 3-month temperature lies above the 90th percentile 
and the 3-month precipitation lies below the 10th percentile 
of the control scenario.

In this equation (unlike Equation 1) i denotes a yearly 
time steps, ranging from 1 to the total number of years, that 
is, 100. If temperature and precipitation were completely 
independent, we would expect one out of 100 years to be a 
compound extreme year (F  =  10%  ×  10%  =  1). However, 
since they are strongly correlated over most land regions 
(Figure 6a) the global mean of compound hot and dry years 
for the control scenario is 3.6 years (Figure 7a). We further 
investigate probability ratios of compound extreme occur-
rence between scenarios and Control. Numbers smaller than 

one mean fewer years with compound extremes than in the 
Control and vice versa. The Noextremes scenario contains 
no years with compound extremes (Figure 7b), and there are 
very few in the Nocompound scenario (probability ratio of 
0.03, Figure 7c). In the global mean, Hot (0.65, Figure 7d) 
and Dry (0.66, Figure 7e) have a slight reduction of the num-
ber of years with compound extremes compared to Control. 
The Hotdry scenario shows a large increase in the occurrence 
of compound hot and dry years, with a probability ratio of 
11.23 in the global average (Figure 7f). This shows that our 
scenario selection method, aimed to either remove or increase 
compound event occurrence, has been successful.

4  |   DISCUSSION AND 
CONCLUSIONS

Disentangling the effects of single and compound drivers of 
climate impacts is challenging due to the difficulty to cre-
ate a controlled environment, the representativity of local 
climate change experiments and many confounding factors 
related to non-stationarities in the climate system. One ap-
proach that allows to overcome most of these challenges is 
the use of climate models in combination with process-based 
impact models. Climate models allow for generating climate 
conditions without long-term trends that are representative 

(2)F =

100
∑

i= 1

I
T

i
>T90

I
P

i
<P10

∕100.

F I G U R E  4   Cooling Degree Days (CDD, normalized per year) as a metric for temperature extremes. (a) CDD in the Control scenario in °C. 
(b–f) Relative difference in CDD with respect to the Control scenarios in % (Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f)). 
Note the different colour scales

(a)

(b)

(c)

(d)

(e)

(f)
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F I G U R E  5   Severe droughts. (a) Occurrence probability of severe droughts (SPI <−1.5) in the Control scenario. (b–f) Relative difference in 
the percentage of severe droughts with respect to the Control scenario in % (Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f)). 
Note the different colour scales

(a)

(b)

(c)

(d)

(e)

(f)

F I G U R E  6   Inter-annual correlation between temperature and precipitation during the 3 months when vegetation is most active. (a–f) The 
correlations between temperature and precipitation for Control (a), Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f)

(a)

(b)

(c)

(d)

(e)

(f)
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of the present-day climate, as well as scenarios with vary-
ing intensity and frequency of single and compound drivers. 
Process-based impact models can then be used to estimate the 
effects of such varying climate conditions on different types 
of impacts for different regions.

Here, we present a dataset of daily climate forcing with 
varying drought-heat signatures for modelling climate im-
pacts. Six 100-year long scenarios cover different conditions, 
varying from very few extremes overall, over many single 
drought or heat extremes, to many compound drought and 
heat events. The scenarios were sampled from a 2,000-year 
climate dataset representing present-day climate simulated 
with a global circulation model at 1° × 1° spatial resolution. 
Despite differences in the occurrence of droughts and heat-
waves between scenarios, their mean climate is comparable 
and representative of the observed climate of 2011–2015.

The climate forcing was generated with EC-Earth, a fully 
coupled global climate model (Hazeleger et al., 2012). The 
2,000-year climate dataset and its companions with +2°C 
and +3°C global climate change has already been used to 
identify drivers of crop failure (Vogel et al., 2021), study ex-
treme river discharge in a warmer world (Van der Wiel et al., 
2019c), evaluate extremes in the renewable energy sector 
(Van der Wiel et al., 2019a, 2019b), assess changes in heat-
waves in India (Nanditha et al., 2020) and detect changes in 

mountain-specific climate indicators in a warmer world in 
High Mountain Asia (Bonekamp et al., 2020), highlighting 
its applicability for assessing climate impacts.

In addition to temperature and precipitation, we provide 
a range of variables that are common inputs to climate im-
pact models, including radiation and wind speed (Table 1). 
Despite a good alignment of global mean temperatures with 
present-day conditions, EC-Earth is not free of biases at the 
local to regional scale (Section 2.2). In particular, there is a 
cold and dry bias in the tropics and a warm and wet bias in 
the high latitudes (Figure 1). Depending on the application, 
these biases need to be accounted and potentially be adjusted 
for when modelling impacts (Vogel et al., 2021). For global 
vegetation models, a spin-up to equilibrate carbon pools is 
probably required. Furthermore, given the method presented 
for the creation of the scenarios, there is no spatial coherence 
in the dataset, and hence, no correlation in weather condi-
tions between neighbouring locations or around the world. 
Again, this needs to be taken into account when modelling 
impacts and precludes modelling impacts for which spatial 
interactions matter (e.g. many hydrological applications).

The presented scenarios are primarily designed to study 
the effect of varying drought and heat conditions on terres-
trial carbon dynamics. The scenario design, therefore, focuses 
on creating different likelihoods of dry and/or hot conditions 

F I G U R E  7   Occurrence of compound extremes. (a) Number of years where temperature exceeds the 90th percentile and precipitation lies 
below the 10th percentile in the Control scenario. Temperature and precipitation are averaged over the 3 months where vegetation is most active. 
(b–f) Probability ratio (scenario/control) for the compound hot and dry years (Noextremes (b), Nocompound (c), Hot (d), Dry (e) and Hotdry (f))

(a)

(b)

(c)

(d)

(e)

(f)
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during the peak of the growing season, when plants are most 
vulnerable (Section 2). In this context, the scenarios could 
form the basis for model intercomparison projects (MIPs) 
using a suite of global vegetation models (Bastos et al., 2020; 
Friedlingstein et al., 2019; Pan et al., 2020; Zscheischler et al., 
2014b). Despite the focus on the carbon cycle during the de-
sign of the scenarios, we believe they also could be well-suited 
for studying the differential effects of droughts and heatwaves 
on other impact types, for instance with the impact models 
used in the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP, https://www.isimip.org; Warszawski et al., 
2014). Two impact types that we deem of particular relevance 
here are wildfire occurrence and agriculture. Outside hot and 
dry conditions, factors such as wind speed, lightning occur-
rence and land-use change govern wildfire risk. Our scenar-
ios could be used to investigate how wildfire regimes change 
under different drought-heat regimes and may help pin down 
reasons behind the large differences in modelled fire charac-
teristics across models (Forkel et al., 2019; Teckentrup et al., 
2019). Common protocols for modelling wildfire occurrence 
have already been set up in the FireMIP (Rabin et al., 2017). 
Note, however, that the effect of spatial interactions cannot be 
simulated with our scenarios, as there is no spatial coherence. 
Another possible area of application of the scenarios are crop 
models, as for instance collected in the Agricultural Model 
Intercomparison and Improvement Project (AgMIP, https://
agmip.org, Rosenzweig et al., 2013). AgMIP focuses specif-
ically on agricultural impacts and is designed to study and 
improve world food security. Crops are highly sensitive to 
hot and dry conditions (Cohen et al., 2020; Shah & Paulsen, 
2003) and crop models differ strongly in their response to cli-
mate extremes and climate change (Rosenzweig et al., 2014) 
though uncertainties have been reduced recently (Toreti et al., 
2020). Our scenarios might help to disentangle how differ-
ent crop models respond to different types of droughts, heat-
waves and compound drought and heatwave events.
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