
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
9
0
1
3
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
3
.
4
.
2
0
2
4

Magn Reson Med. 2021;00:1–12.	﻿	     |  1wileyonlinelibrary.com/journal/mrm

Received: 15 April 2021  |  Revised: 26 June 2021  |  Accepted: 15 July 2021

DOI: 10.1002/mrm.28947  

R E S E A R C H  A R T I C L E

Defect distribution index: A novel metric for functional lung MRI 
in cystic fibrosis

Anne Valk1,2   |   Corin Willers1   |   Kamal Shahim1  |   Orso Pusterla1,3,4,5   |   
Grzegorz Bauman3,4   |   Robin Sandkühler4  |   Oliver Bieri3,4  |   Florian Wyler1   |   
Philipp Latzin1

1Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, 
Switzerland
2Division of Paediatric Pulmonology and Allergology, Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, 
Nijmegen, The Netherlands
3Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland
4Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
5Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland

This is an open access article under the terms of the Creat​ive Commo​ns Attri​butio​n-NonCo​mmerc​ial-NoDerivs License, which permits use and distribution in any medium, 
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine

Correspondence
Philipp Latzin, Division of Paediatric 
Respiratory Medicine and Allergology, 
Department of Paediatrics, Inselspital, Bern 
University Hospital, University of Bern, 
Freiburgstrasse 8, 3010 Bern, Switzerland.
Email: philipp.latzin@insel.ch

Funding information
Supported by the Swiss National Science 
Foundation (SNSF), grant number: 182719. 
a.v. acknowledges support from the Dutch 
Cystic Fibrosis Foundation (NCFS) and the 
Swiss-European Mobility Program (SEMP). 
o.p. acknowledges support from the 
Strategic Focus Area initiative, Personalized 
Health and Related Technologies (PHRT), 
grant 2018-223 of the ETH Domain, 
Switzerland

Purpose: Lung impairment from functional MRI is frequently assessed as defect 
percentage. The defect distribution, however, is currently not quantified. The pur-
pose of this work was to develop a novel measure that quantifies how clustered or 
scattered defects in functional lung MRI appear, and to evaluate it in pediatric cystic 
fibrosis.
Theory: The defect distribution index (DDI) calculates a score for each lung voxel 
categorized as defected. The index increases according to how densely and how far 
an expanding circle around a defect voxel contains more than 50% defect voxels.
Methods: Fractional ventilation and perfusion maps of 53 children with cystic fibro-
sis were previously acquired with matrix pencil decomposition MRI. In this work, 
the DDI is compared to a visual score of 3 raters who evaluated how clustered the 
lung defects appear. Further, spearman correlations between DDI and lung function 
parameters were determined.
Results: The DDI strongly correlates with the visual scoring (r = 0.90 for ventilation; 
r = 0.88 for perfusion; P < .0001). Although correlations between DDI and defect 
percentage are moderate to strong (r = 0.61 for ventilation; r = 0.75 for perfusion; P 
< .0001), the DDI distinguishes between patients with comparable defect percentage.
Conclusion: The DDI is a novel measure for functional lung MRI. It provides com-
plementary information to the defect percentage because the DDI assesses defect 
distribution rather than defect size. The DDI is applicable to matrix pencil MRI data 
of cystic fibrosis patients and shows very good agreement with human perception of 
defect distributions.
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1  |   INTRODUCTION

Progressive lung disease is the main cause of morbidity and 
mortality in patients with cystic fibrosis (CF).1,2 High resolu-
tion CT is the current gold standard to assess structural lung 
damage.3-5 Although low-dose CT scans are available, the cu-
mulative ionizing radiation risk remains the main drawback of 
using CT in life-long monitoring of CF patients.5-8 Sensitive 
pulmonary function tests, such as the multiple breath wash-
out technique,9,10 lack precise spatial information.

MRI could serve as a nonionizing radiation alternative to 
the clinically established imaging modalities. An additional 
advantage of MRI is the possibility of functional imaging. 
Ventilation imaging can be obtained with hyperpolarized 
or fluorinated gas MRI,11-13 whereas perfusion is routinely 
assessed using contrast-enhanced MRI techniques.14 A less 
invasive alternative for ventilation and perfusion imaging is 
provided by proton-based functional imaging, for example, 
using Fourier decomposition15-18 or matrix pencil decompo-
sition (MP) MRI.19 No breathing maneuvers, tracer gases, or 
contrast agents are required.

Current MP MRI outcomes for radiological evaluation are 
maps of fractional ventilation and perfusion and the derived 
impaired fractional ventilation and impaired perfusion rela-
tive to lung volume, that is, expressed as a defect percent-
age (DP) (Figure 1).20 RFV and RQ are computed from the 
ventilation and perfusion maps, respectively, by classifying 
all voxels below a certain threshold of the signal intensity 
histogram as defect.

Although RFV and RQ are well suited to monitor CF lung 
disease,20,21 they only indicate overall defect percentage. This 
measure ignores much of the spatial information, specifically 
the clustering of defect, and therefore does not capture the 
true potential of lung imaging. To fully understand the course 
of disease and treatment effects and to improve phenotyping, 
a comprehensive assessment of existing data is necessary.22 
Two important aspects are currently missing. First, radiolo-
gists usually describe spatial location of disease on the basis 
of anatomical boundaries such as lung lobes. To the best of 
our knowledge, lobe segmentation is not routinely available 
for lung MRI.23 The second missing aspect is the defect dis-
tribution, which is described by radiologists as either dis-
seminate and scattered on one hand, or as consolidated and 
clustered on the other. Describing this distribution of defects 
with an automatic, comparable method may add valuable 
clinical information.

Smith et al. reported the number of defects and largest 
contiguous defect for hyperpolarized gas ventilation MRI in 

CF patients,24 giving an indication of the defect distribution. 
However, a measure that quantifies clustered defects is cur-
rently lacking. This would allow for observer-independent 
assessment of the defect distribution and would facilitate lon-
gitudinal analysis and interindividual comparison. The main 
purpose of this work was therefore to develop a measure that 
quantifies clustered defects in functional lung MRI and to 
apply it to MP MRI defect maps of a pediatric CF population.

2  |   THEORY

The defect distribution index (DDI) is applicable to func-
tional lung defect maps (eg, Figure 1C,D). These can be sin-
gle slices or part of a group of k slices of the same lung. For 

K E Y W O R D S
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F I G U R E  1   Exemplary MP MRI perfusion maps of 2 patients 
with CF and corresponding perfusion defect map with similar defect 
percentage but different distribution pattern. (A) and (C) exemplary 
slice of a 17-year-old girl with RQ: 26.3% (FEV1: −2.2 z-scores, 
LCI: 12.8 TO). (B) and (D) exemplary slice of a 7-year-old boy with 
RQ: 26.2% (FEV1: −0.9 z-scores, LCI: 8.5 TO). (A) and (B) relative 
perfusion map, with blue indicating low perfusion. (C) and (D) 
perfusion defect (red) map with defect percentage. CF, cystic fibrosis; 
FEV1, forced expiratory volume in 1 s; LCI, lung clearance index; MP, 
Matrix Pencil decomposition; RQ, impaired relative perfusion; TO, 
lung volume turnovers

(A) (B)

(D)(C)
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explanatory purposes, in this section the DDI is computed on 
an artificial lung map, sketched in Figure 2A.

For each slice, we have a segmented 2D lung map, con-
taining voxels xi:

Additionally, defect maps distinguish between healthy and 
defect lung tissue voxels:

We calculate the parameter Alung, which is the mean num-
ber of lung tissue voxels across the k slices of the lung under 
consideration:

This is used as an area normalization. Areas within the 
lung maps in units of voxels are not inherently meaningful; 

however, as a fraction of the above approximation of lung 
size they allow comparisons between different scales (eg, 
Supporting Information Figure S1) and resolutions.

A DDI(xi) is calculated voxelwise for every target defect 
voxel at position xi according to the following steps:

1.	 For a circle centered on the target voxel, with radius r, 
we can calculate the defect ratio DR(xi, r). It is computed 
as the number of defected voxels D(xi, r) divided by the 
total number of voxels A(xi, r), with centers contained 
within the circle of radius r (Figure 2B,C):

2.	 From this we calculate the cluster score C(xi,r), as well as 
the normalized area N(xi,r), as a function of r (Figure 2D).
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F I G U R E  2   Exemplary DDI calculation. (A) The input for the DDI is a functional lung defect map (eg, Figure 1C,D). Defect voxels are 
labeled in red, non-defect lung voxels in gray, and non-defect background voxels (regions outside the lung) in white. A DDI(xi) is calculated for 
every defect voxel. Note that for simplicity, an artificial lung defect map with a very low number of voxels is displayed here. The reference size of 
this artificial lung map is 39 voxels. (B) A DDI(xi) is calculated by centering a circle around the target voxel (x0, outlined in black) and gradually 
increasing its radius. An example circle radius r of 2.5 voxel side lengths is displayed (dashed outline). The number of voxels that have their center 
(marked by dots) inside this radius is 21, so A(x0, 2.5) = 21 voxels. The number of defect voxels among those is D(x0, 2.5) = 11, and the defect ratio 
is therefore DR(x0, 2.5) = 11/21 = 0.52. (C) Defect ratio DR(x0, r) plotted against A(x0, r) for increasing radii r centered around the target voxel. 
Plotted as a vertical line is A(x0, 2.5) and as an area plot the corresponding value of DR(x0, 2.5) from Figure 2B). The horizontal line indicates 
the threshold parameter T = 0.5. (D) Cluster score C(x0, r) plotted against normalized area N(x0, r). The cluster score C(x0, r) corresponds to the 
values of DR(x0, r) greater than the threshold T, scaled from 0 to 100. N(x0, r) is obtained by dividing A(x0, r) by Alung. The DDI(xi) is obtained by 
calculating the area plotted in red (see Equation 1). (D) The DDI output map showing the DDI(xi) for all defect voxels. The value for our target 
voxel is DDI(x0) = 28. The mean DDI per defect voxel for this lung map is DDI = 11.6. DDI, defect distribution index

(A) (B) (D)

(C)

(E)
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T is a parameter that defines a minimum defect ratio required 
for a collection of voxels to be considered a cluster. It could 
theoretically be any number between 0 and 1. Values closer 
to 0 tend to capture more loosely connected defects as single 
clusters. Values close to 1 lead to defect clusters being identi-
fied only if they contain no healthy voxels, which makes the 
algorithm more sensitive to noise. Here, voxels are considered 
to be part of a cluster if their surroundings are made up of more 
defect voxels than non-defect voxels. T was therefore chosen to 
be 0.5. More information on the rationale for using parameter T 
and its effects can be found in the Supporting Information and 
Supporting Information Figure S2, available online.

Defect voxels that are surrounded by defect at a density 
greater than the minimum defect ratio T therefore have a positive 
cluster score C(xi, r). The cluster score for any given circle cen-
tered around the target voxel is 100 if it is completely made up of 
defect voxels, and 0 if the defect ratio is exactly equal to T.

Defect voxels, which are part of a denser or more ex-
tended defect cluster, have an increased and positive value of 
C(xi, r) for the same value of r compared to defect voxels in 
less dense or less extended clusters (Figure 3).

Values for the normalized area are expressed as multiples 
of the lung area approximation Alung. A value of N(xi, r) = 
1 corresponds to a circle whose value of A(xi, r) is the same 
as the area of the lung. Note that values of N(xi, r) can go 
beyond 1 because circles of radius r can contain non-lung 
background voxels and be larger than the lung. Including 
non-lung background voxels in the calculation of the defect 
ratio ensures that identical clusters of defect accumulate the 
same DDI when they are located at the edge of the lung as in 
the center of a lung slice.

3.	 Finally, we perform a stepwise integration of the discrete 
values of cluster score C(xi, r) as a function normalized 
area N(xi, r) as we increase the value of r. We continue to 
increase r as long as C(xi, r) remains positive.

For the set of increasing radii r0, r1, …, rn with distinct as-
sociated values of A(xi, r), where rn is the largest radius with 
a positive value of C(xi, r), we define the DDI as follows:

To obtain the outcomes on the slice and patient level, it is now 
possible to calculate the mean of the DDI(xi) across any subset 
of defect voxels, whether that is all defect voxels across the k 
slices (for a patient level outcome) or a subregion of 1 slice 

(Figure 2E). The use of a shared normalization by Alung across 
the k slices of the same lung ensures that defect clusters of iden-
tical size and shape receive the same DDI within the same lung, 
regardless of the size of the slice they are located in.

2.1  |  Example of DDI on artificial 
lung images

The DDI is illustrated for different exemplary patterns of defect 
distributions (homogeneously scattered, multiple smaller clus-
tered defects, 1 clustered defect) with the exact same extent of DP 
of 25% in Figure 4. The DDI is most sensitive for large round-
shaped clustered defects. The DDI assesses to what extent each 
defect voxel in the defect map is located in the middle of a defect 
cluster. This results in increasing DDI for clustered defects, as 
well as for increasing DP. Further examples of DDI are presented 
in the Supporting Information Figure S3, available online.

3  |   METHODS

3.1  |  Study design

This methodological study used MRI data that was previously 
obtained in a single-center, cross-sectional, observational 
study between March 2016 and January 2019 at the University 
Children’s Hospital of Bern (Bern, Switzerland).20,21

3.2  |  Study population

Data of 53 pediatric CF patients were included. Eligibility 
criteria were 1) a confirmed CF diagnosis, 2) the ability to 
perform MRI and pulmonary function tests, and 3) no re-
quirements for supplementary oxygen. Study participants 
successively underwent nitrogen multiple breath washout, 
spirometry, body plethysmography, and MRI measurements 
during 1 visit. Functional MRI scans were followed by mor-
phological MRI scans from which the Eichinger score was 
derived as an overall marker of disease severity.25 Informed 
consent was provided by parents, or by participants if they 
were older than 14 years of age. Ethical approval was ob-
tained for this study (EKNZ 2015-326 and KEK 2017-
00279), and some of the data were published before.20,21 
More detailed descriptions on functional and morphological 
MRI and pulmonary function tests can be found here as well.

3.3  |  MRI data acquisition

Subjects underwent MRI measurements without sedation 
using a 1.5 Tesla whole body MRI scanner (Magnetom 
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Aera; Siemens Healthineers, Erlangen, Germany) with a 
12-channel thorax and a 24-channel spine receiver coil array. 
An ultrafast steady-state free precession pulse sequence26 
was used to obtain time-resolved 2D image series of the 
lungs. Images were acquired at 6-11 coronal slice positions 

to cover the whole lung. Pulse sequence parameters were as 
follows: FOV = 450 × 450 mm2, matrix size = 128 × 128, 
TE/TR = 0.67/1.46 ms, flip angle = 60°, slice thickness = 12 
mm, bandwidth = 2056 Hz/voxel, acquisition time per image 
= 110 ms, acquisition rate = 3.3 images/s, acquisition time 

F I G U R E  3   DDI(xi) depends on the surrounding defect distribution. The maps shown in (A) and (B) contain the same number of defect 
voxels (red) and the same number of non-defect voxels (gray). The calculation for the central voxel in black is shown. (A) Target voxel in black is 
surrounded by defect voxels (red) in a solid cluster. (B) Target voxel is surrounded by a scattered defect distribution. In this case, each new annulus 
is occupied by the same number of defect- and non-defect voxels. (C) and (D): The target defect voxels have an identical number of defect voxels 
present in the same map but different values of defect ratio for circles of any given area centered around the target voxel. (E) and (F) This results in 
different cluster scores and therefore different DDI(x0) outputs

F I G U R E  4   DDI applied to artificial lung defect maps with different defect distributions. (A) Homogeneously scattered defect. (B) Multiple 
smaller clustered defects. (C) One clustered defect. Left image: artificial lung defect map with DP = 25%. Defect voxels are labeled in red, non-
defect lung voxels in gray. Right image: corresponding visualization of the DDI, darker colors indicate higher DDI per defect voxel (range = 0-15). 
DP, defect percentage

(A) (B) (C)
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per slice = 48 s, GRAPPA factor = 2, and predefined default 
shim settings (tune-up).

3.4  |  Functional imaging and defect 
quantification

An algorithm that aligns lung structures while maintain-
ing ventilation and perfusion signal modulations27 was ap-
plied to register the 2D image time series to an image in 
the midrespiratory state (baseline image). Subsequently, 
fractional ventilation and relative perfusion maps were ob-
tained from the registered time-series using the MP method 
(Figure 1A,B).19

Automatic segmentation with vessel exclusion was per-
formed on the baseline images using an artificial neural 
network as previously described,28 after which the DP was 
determined.20,29 The DP equals the number of defect lung 
voxels divided by the number of lung area voxels for each 
slice. All voxels below 70% of the median value of the sig-
nal intensity histogram were defined as defect, resulting in 
a binary lung defect map. Per participant, RFV and RQ were 
calculated by dividing the total number of defect voxels by 
the total number of lung area voxels of all the slices for venti-
lation and perfusion, respectively (Figure 1C,D).20

3.5  |  The visual scoring system

A visual scoring system that describes the presence of clus-
tered defects within a functional lung defect map was devel-
oped prior to developing the DDI. The score ranges from 1 
(scattered distribution of defects) to 6 (1 clustered defect) 
(Figure 5). The MP MRI defect maps of the study population, 
395 perfusion- and thereafter 395 ventilation-defect slices, 
were rated independently by 3 different raters. Raters had, 
respectively, 6 (R1), 12 (R2), and 24 (R3) months of experi-
ence with MP MRI data. R1 scored the defect slices twice 
(24 h apart). Mean visual scores of 3 raters were reported on 
the level of individual slices. On the patient level, a weighted 
arithmetic mean based on the slice size was calculated from 
the mean visual scores of the individual slices. This was done 
to ensure a proportional contribution of each slice to the pa-
tient level visual score, preventing uneven contributions of 
small anterior or posterior slices.

3.6  |  The defect distribution index

The DDI algorithm was applied to the MP MRI defect maps 
of the study population. On the slice level, DDI output maps 
were created, and the mean DDI was calculated. On the pa-
tient level, the mean DDI over all slices was calculated.

3.7  |  Statistical analysis

Study population characteristics were expressed as median 
(interquartile range) values. Spearman’s rank correlation co-
efficients (r) were reported for all correlations because data 
distributions were skewed according to Shapiro-Wilk tests 
and visual inspection. P values < .05 were considered sta-
tistically significant. For multiple comparisons, a Bonferroni 
correction was applied. The intraclass correlation coefficient 
(ICC) was calculated to assess intra- and interrater agreement 

F I G U R E  5   Visual scoring system describing the defect 
distribution for MP MRI defect maps with examples for score 1 to 6. 
For each visual score, an image example is displayed
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of the visual scoring system. Based on the ICCs and their 
corresponding 95% confidence intervals (CI), agreement is 
defined as moderate (0.40-0.59), good (0.60-0.79), or very 
good (>0.80).30 Analyses were reported for ventilation and 
perfusion separately.

First, agreement between the new index and human per-
ception of defect distributions was determined on the slice 
level. The visual scoring was carried out on the slice level, 
and the mean of 3 raters was compared to the slice level 
mean of the DDI. To create a patient level mean of the vi-
sual scoring, visual scores of slices were weighted by their 
size. This weighted arithmetic mean score was then com-
pared to the mean of the DDI across all the slices of a patient. 
Additionally, correlations between the DDI on the patient 
level, and the DP, lung clearance index (LCI in turnovers), 
forced expiratory volume in 1 s, forced expiratory flow 25%-
75%, and Eichinger score were calculated.

MatLab version 2019b (MathWorks, Natrick, MA) and 
Stata version 16.0 (StataCorp, College Station, TX) were 
used.

4  |   RESULTS

4.1  |  Study population

The main study population characteristics can be found in 
Table 1. MRI measurements were performed successfully in 
all 53 CF patients. LCI data were missing for 9 study par-
ticipants because ≥ 2 quality-controlled measurements could 
not be obtained. Spirometry data were missing for 3 differ-
ent participants. Calculation of DDI was feasible for all MRI 
data. The mean calculation time per patient (ventilation and 
perfusion together) is 3.2 s (SD = 3.3 s). The median DDI is 
1.77 (1.35 to 2.68) and 1.32 (0.87 to 2.60) for ventilation- and 
perfusion-defect maps, respectively.

4.2  |  Defect distribution index versus visual 
scoring system

Intrarater agreement for the visual scoring system is very 
good, with an ICC of 0.88 (95% CI: 0.84-0.91) for ventila-
tion- and 0.88 (95% CI: 0.85-0.90) for perfusion-weighted 
defect maps. Interrater agreement is good (ICC = 0.75 (95% 
CI: 0.72-0.79) for ventilation; ICC = 0.74 (95% CI: 0.70-
0.77) for perfusion). All P values are < .001.

Strong correlations between the DDI and the mean vi-
sual score are found on the slice and the patient level for 
both ventilation (r = 0.90 on slice level; r = 0.89 on patient 
level) and perfusion (r = 0.88 on slice level, r = 0.91 on 
patient level) with P values < .0001 (Figure 6). Examples 

of MP MRI defect maps with similar DPs but different de-
fect distributions (and thus visual scores), as well as the 
corresponding DDI outcomes, are shown in Figure 7. As 
can be seen in the images, the DDI distinguishes between 
more scattered and more clustered defect distributions over 
a different range of DPs.

4.3  |  Lung function parameters

Correlations between the DDI, DP, lung function parameters, 
and the CF structural disease score are provided in Table 2 
and are shown as scatter plots in the Supporting Information 
Figure S4. DDI correlates moderately to strongly with the DP 
(r = 0.61 for ventilation; r = 0.75 for perfusion) (Figure 8). 
Moderate correlations are found with the LCI (r = 0.48 for 
ventilation; r = 0.55 for perfusion), and Eichinger score (r 
= 0.51 for ventilation; r = 0.54 for perfusion). Correlations 
with spirometry outcome measures are weak and not statisti-
cally significant for ventilation defect maps.

T A B L E  1   Study population characteristics. Median (interquartile 
range) [range] is reported

CF patients (N = 53)

Age (years) 11.9 (9.1 to 14.7) [6.1 to 17.8]

Gender (n, males/
females)

19/34

LCI (TO) (n = 44) 9.9 (8.2 to 12.4) [6.5 to 17.6]

FEV1 (z-scores) 
(n = 50)

−1.0 (−2.1 to −0.3) [−5.5 to 1.8]

FEF25%-75% (z-scores) 
(n = 50)

−1.2 (−2.3 to 0.1) [−4.7 to 1.6]

Eichinger score 
(n = 53)

5 (2 to 10) [0 to 22]

Defect percentage

RFV (%) 25.9 (19.3 to 28.1) [9.9 to 35.9]

RQ (%) 23.0 (18.5 to 25.6) [11.8 to 
31.4]

Defect distribution 
index

DDI ventilation 1.7 (1.3 to 2.7) [0.5 to 6.4]

DDI perfusion 1.3 (0.9 to 2.6) [0.4 to 4.1]

Visual image score1 

Ventilation 3.4 (2.9 to 3.9) [1.5 to 5.3]

Perfusion 3.2 (2.6 to 3.7) [1.7 to 4.8]

CF, cystic fibrosis; DDI, defect distribution index; FEF25%-75%, forced expiratory 
flow 25%-75%; FEV1, forced expiratory volume in 1 s; LCI, lung clearance 
index; TO, lung volume turnovers; RFV, impaired fractional ventilation; RQ, 
impaired relative perfusion.
1Mean visual score, patient.
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5  |   DISCUSSION

5.1  |  Main findings

The DDI quantifies the defect distribution in functional lung 
MRI. The DDI distinguishes scattered from clustered defects 
and is applicable to MP MRI lung data of a large CF popula-
tion. This new index shows very good agreement with a newly 
developed visual scoring system, resembling human perception 
of defect distributions. Correlations between the DDI and well-
established lung function parameters indicate that the DDI is 
complementary to currently reported outcomes.

5.2  |  Comparison with previous studies

There are various methods to describe the defect distribu-
tion in lung MRI. A straightforward method is describing the 

defects by anatomical regions, such as lung lobes. However, 
lobar lung segmentation in MRI is challenging and currently 
not widely available. A study in adults showed that it may be 
possible, using a CT-based lung lobe library; however, the 
authors themselves conclude that the results should be better 
interpreted as an estimate, and the method is computationally 
very intensive.23,31 Several research groups addressed this by 
geometrically subdividing the lungs.17,29,32,33 Although al-
lowing for defect localization, it does not describe the defect 
distribution as an entity itself and thereby differs from the 
DDI.

The largest defect and number of defects were determined 
from hyperpolarized gas MRI in CF patients.24 Those mea-
sures give an estimation of the defect distribution as well. 
In general, the DDI is higher for large defects and lower in 
case of multiple (smaller) defects. However, the largest de-
fect and number of defects reflect only 1 single image com-
ponent each. The DDI, on the other hand, makes use of all 

F I G U R E  6   DDI versus visual scoring system for (A) ventilation and (B) perfusion MP MRI slices and for (C) ventilation and (D) perfusion 
patient-level outcomes. In (A) and (B), the data is grouped per visual score, where gray circles represent individual slices and solid lines represent 
the median and the interquartile range. As an additional x-axis, the exact number of slices per visual score is given on gray background. The upper 
left box in each graph represents the Spearman rank correlation coefficient and corresponding P value. P values < .05 are considered statistically 
significant

(A)

(D)(C)

(B)
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information present within the image. It reflects the overall 
density of all the defects within the lung. As an illustration, 
the largest defect and number of defects would be the same 
for a lung image with 1) 2 large defects; and 2) 1 large and 1 
relatively small defect. The DDI could distinguish between 
both situations, giving a higher score to the lung image with 
2 large clustered defects.

5.3  |  Strengths and limitations

A strength of this research is that we developed a metric that 
assesses a new aspect of the defect image than the currently 
reported DP does. Not only defect size but also defect distri-
bution are now quantified, and more spatial information is 
gained from functional defect maps. The interpretation of the 

DDI is rather intuitive. It has a minimum value that approxi-
mates 0, which corresponds to a scattered defect distribution. 
The more the defects are clustered, the higher the DDI be-
comes. Another strength of the DDI is that it is applicable to 
any binary lung mask. The use of the DDI is not limited to 
MP MRI but is generalizable to any quantitative MRI tech-
nique from which lung defect maps are obtained.

In addition, the DDI is tested in a large dataset of CF pa-
tients. These data were previously obtained from a study in 
which adherence to the study protocol was always warranted 
and standardized equipment was used.20,21 The index is val-
idated against a visual scoring system, confirming its po-
tential to quantify the defect distribution in accordance with 
human perception. The visual scores correlate strongly with 
the DDI on the slice and patient levels. The DDI is scalable 
and thereby independent of lung size. This makes it suitable 

F I G U R E  7   DDI applied to exemplary MP MRI perfusion defect maps of CF patients with different defect distributions (columns) over a 
range of defect percentage (rows). Left image = perfusion-weighted MP MRI defect map. Right image = corresponding visualization of the DDI; 
darker colors indicate higher DDI per defect voxel (color range = 0-15). Top left: LCI = 6.5 TO; FEV1 = −0.44 z-scores. Top right: LCI = 10.1 
TO; FEV1 = 0.52 z-scores. Mid-left: LCI = n/a; FEV1 = −1.40 z-scores. Mid-right: LCI = n/a; FEV1 = −0.36 z-scores. Bottom left: LCI = 12.7 
TO; FEV1 = −1.86 z-scores. Bottom right: LCI = 14.7 TO; FEV1 = −1.50 z-scores
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for longitudinal analysis and interindividual comparison of 
defect distributions.

It should be noted that the visual scoring system seems 
to be dependent on the DP. Relatively large clustered defects 
are more likely to be recognized as clusters by the human eye 
than relatively small clustered defects. In agreement with this 
human perception of defect distributions, the DDI depends 
on the DP as well. The DDI is designed to quantify large clus-
tered defects; we had hypothesized that large clustered de-
fects are more clinically relevant than small ones. This makes 
the DDI inherently dependent on the DP. One could argue 
that this decreases the additional value of the DDI to the DP. 
However, DDI values differ for lung images with similar DPs 
but different defect distributions. This shows that, although 
being correlated, the DP and DDI still reflect different as-
pects of the same images.

Because the DDI depends on the DP, it inherently also de-
pends on the chosen defect quantification method. In the cur-
rent work, the DDI was applied to defect maps for which the 
method of defect quantification was previously validated.29 
In theory, the DDI is applicable to defect maps obtained 
using any method of defect quantification.

5.4  |  Clinical relevance and next steps

From the correlations between the DDI and existing lung func-
tion parameters, it can be concluded that the DDI assesses a 
different aspect of lung impairment. The DP quantifies defect 
size, whereas the DDI assesses defect distribution. The LCI is 
a measure of overall ventilation inhomogeneity, which can be 
insensitive to nonventilated regions and such a situation can be 
hypothesized in the case presented in Figure 1B.34,35 The DDI, 
on the other hand, is extremely sensitive for clustered defect 
regions. The DDI is calculated from functional lung imaging, 
which was proven to detect lung disease already in an early 
stage.36 In contrast, FEV1 is nowadays reported in advanced 
lung disease37,38 and therefore not associated strongly to DDI. 
The DDI is thus complementary to existing lung function pa-
rameters. Reporting the DDI next to those parameters provides 
additional information on lung disease.

5.5  |  Outlook

The DDI allows for observer-independent intra- and interin-
dividual comparison of defect distributions. Because this is a 
methodological study, we would suggest applying the DDI in 
a clinical research setting to investigate how differences in de-
fect distributions affect clinical outcomes. It seems worthwhile 
to investigate the complementary information of the DDI as 
outcome measure in addition to other outcome measures of 

T A B L E  2   Overview of correlation coefficients between the DDI 
and lung function parameters and cystic fibrosis structural disease 
score (Eichinger score)

DDI ventilation DDI perfusion

r P value r P value

DP (%) (n = 53) 0.61 < .0001a  0.75 < .0001a 

LCI (TO) (n = 44) 0.48 .0011a  0.55 .0001a 

FEV1 (z-scores) 
(n = 50)

−0.24 .14 −0.49 .0007a 

FEF25%-75% (z-
scores) (n = 50)

−0.31 .026 −0.47 .0005a 

Eichinger Score 
(n = 53)

0.51 .0001a  0.54 < .0001a 

r = Spearman’s rank correlation coefficient; DP = defect percentage (RFV for 
ventilation; RQ for perfusion).
aA Bonferroni correction is applied, and P values < .005 (0.05/10) are 
considered statistically significant.

F I G U R E  8   Correlation between the DDI and the DP (RFV for ventilation; RQ for perfusion) for (A) ventilation and (B) perfusion MP MRI 
data of 53 CF patients. Correlation coefficients are statistically significant. RFV, impaired fractional ventilation; RQ, impaired relative perfusion

(A) (B)
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lung disease in CF such as LCI or DP. Further, effectiveness 
of inhaled drugs, for example, antibiotics in patients with CF, 
depends on regional lung function.39-41 Quantifying the distri-
bution of functional lung defects may give insight in whether 
inhalation therapy might be beneficial for specific patients, 
which would allow for personalized treatment.

The DDI is currently applied to 2D MRI data. It could be 
adapted for 3D as well by using spheres instead of rings for 
identification of voxels that contribute to the DDI. Application 
of the DDI to 3D data assesses the whole lung situation more 
closely and may provide even more insight in lung disease.

6  |   CONCLUSION

The DDI is a novel index for functional lung MRI defect 
maps, describing another aspect of the images than the cur-
rently reported defect percentage. It allows for quantification 
of defect distributions, which at the moment is only qualita-
tively described by radiologists. It is applicable to MP MRI 
data, as shown for a large pediatric CF population.
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the Supporting Information section.
FIGURE S1 Scalability of DDI. Normalizing the DDI by the 
lung area (ie, number of lung voxels), makes the DDI scal-
able. As presented in the figure, lung images with the same 
defect pattern (1 circular cluster, 25% defect), but different 
numbers of lung voxels (ie, either sizes or resolutions), re-
ceive the same DDI. DDI: Defect Distribution Index
FIGURE S2 Effects of varying values of parameter T and 
varying amount of defect, as a hypothetical result of different 
defect quantification approaches. From left to right the value 
of parameter T increases, resulting in a decrease in DDI. 
From bottom to top, the amount of defect increases, resulting 
in an increase in DDI
FIGURE S3 DDI and defect shape. A) Artificially created 
defect maps (Lung area = 4000 voxels; DP = 20%) showing 
1) round-, 2) square-, 2) rectangle-, and 4) serpentine-shaped 
defects. B) Corresponding visualization of the DDI; darker 
colors indicate higher DDI per defect voxel (range = 0-15). 
The DDI algorithm calculates a DDI using a variable circle 
size. In addition, defect voxels in proximity of the target voxel 
contribute more to the DDI than defect voxels that are further 
away. Therefore, the DDI is most sensitive for round-shaped 
clustered defects. DDI: Defect Distribution Index
FIGURE S4 Scatter plots of the DDI with lung function 
parameters and cystic fibrosis structural disease score 
(Eichinger score). Scatter plots for LCI are shown in A) 
and B), for FEV1 in C) and D), for FEF25-75% in E) and 
F) and for Eichinger score in G) and H). r: Spearman’s rank 
correlation coefficient (A Bonferroni correction is applied 
and P-values < 0.005 (0.05/10) are considered statistically 
significant, see Table 2 in the main manuscript); LCI: lung 
clearance index; TO: lung volume turnovers; FEV1: forced 
expiratory volume in 1 second; FEF25-75%: forced expira-
tory flow 25-75%
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