
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
9
1
7
3
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
9
.
4
.
2
0
2
4

RESEARCH ARTICLE

Pulmonary mesenchymal stem cells are

engaged in distinct steps of host response to

respiratory syncytial virus infection

Melanie BrüggerID
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Abstract

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the

alveolar niche and fundamental regulators of homeostasis and regeneration. We interro-

gated their function during virus-induced lung injury using the highly prevalent respiratory

syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary

approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV

infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activa-

tion, characterized by a strong antiviral and pro-inflammatory phenotype combined with

mediators related to T cell function. In line with this, following in vivo infection, RSV invades

and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover,

the global transcriptional response of LR-MSCs appears to follow RSV disease, switching

from an early antiviral signature to repair mechanisms including differentiation, tissue

remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs

during virus-mediated acute lung injury and may have therapeutic implications.

Author summary

This work identifies a novel function of lung-resident MSCs during virus-induced acute

lung injury. These findings contribute to the understanding of host response and lung
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Citation: Brügger M, Démoulins T, Barut GT,

Zumkehr B, Oliveira Esteves BI, Mehinagic K, et al.

(2021) Pulmonary mesenchymal stem cells are

engaged in distinct steps of host response to

respiratory syncytial virus infection. PLoS Pathog

17(7): e1009789. https://doi.org/10.1371/journal.

ppat.1009789

Editor: Sabra L. Klein, Johns Hopkins Bloomberg

School of Public Health, UNITED STATES

Received: March 2, 2021

Accepted: July 8, 2021

Published: July 28, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.ppat.1009789
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repair mechanisms during a highly prevalent clinical situation and may have therapeutic

implications.

Introduction

The ability of organs to maintain homeostasis and regenerate following injury is vital to an

organism. These processes are maintained by many supportive cells including tissue-resident

mesenchymal stem and stromal cells (MSCs). MSCs are found in nearly every vascularized tis-

sue including the upper and lower respiratory tract. More specifically, they are localized in

perivascular niches of small and larger blood vessels and were shown to be lung-resident [1–

7]. In the alveolar niche, lung-resident (LR)-MSCs can interact with epithelial cells and pro-

mote alveolar cell growth, differentiation, and self-renewal. This is of particular importance

for epithelial maintenance as well as for repair and regeneration as demonstrated in artificial

rodent models of lung injury [8–10]. Failure of these mechanisms may play a role in the etiol-

ogy of several chronic lung diseases [11,12]. LR-MSCs can directly interact with various pul-

monary immune cell populations via cellular contact or in a paracrine manner by secretion of

soluble factors [13]. Characterization of immunomodulatory properties of mesenchymal cells

are of great clinical importance since non-resident MSCs are the subject of cell-based treat-

ment approaches for various lung disorders [14,15].

The human respiratory syncytial virus (RSV) is of high prevalence and causes a huge bur-

den on public health systems. Globally, RSV is the leading cause of severe acute lower respira-

tory tract infections in early childhood and suspected to have an underestimated impact on the

elderly [16,17]. Several animal models have been established to study RSV infection, with the

lamb model best reflecting anatomical and immunological properties of the neonatal human

lung. This model recapitulates the clinical features of the human pediatric disease and the

closely related bovine RSV is a natural pathogen of ruminants. Furthermore, unlike rodents,

lambs present a similar lung development, are susceptible to human RSV, and develop compa-

rable pulmonary lesions [18–20].

Despite intense research on MSCs, no information is available about their role during acute

respiratory infection and their contribution following virus-induced injury. Given the impor-

tant role of the mesenchymal compartment and LR-MSCs in lung regeneration and repair, we

hypothesize that this applies during respiratory virus infection. Therefore, we aimed to explore

the role of the pulmonary mesenchymal compartment, in particular LR-MSCs, during RSV

infection using an experimental approach based on primary LR-MSCs isolated from human

pediatric donors and a translational model of human RSV infection in lamb.

Results

LR-MSCs are highly permissive to RSV infection

To study the immunobiology of LR-MSCs during respiratory virus infection, we determined

first if these cells are susceptible towards RSV infection in comparison to a well described cel-

lular target of RSV, namely airway epithelial cells (AECs) [21–23]. We characterized the

LR-MSCs isolated from pediatric donors according to the three criteria proposed by the Mes-

enchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy

[24]. As shown in Fig 1A, LR-MSCs were positive for the three MSC surface markers CD73,

CD90, and CD105. Additionally, we confirmed plastic adherence of the cells and their triline-

age potential by differentiating them towards chondrocytes, osteocytes, and adipocytes (Fig

PLOS PATHOGENS Role of lung-resident MSCs during RSV infection
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Fig 1. LR-MSCs are highly permissive to RSV infection. (A) Representative histograms showing expression of the

surface markers CD73, CD90, CD105 on pediatric LR-MSCs. (B) Representative phase-contrast (PC) micrograph

showing morphology in culture and demonstrates plastic adherence. Representative images of Toluidine blue, Alizarin

Red S, and Oil Red O stainings after chondrogenic (C), osteogenic (O), and adipogenic (A) differentiation, respectively.

Magnification 40X (PC, O) and 200X (C, A). (C) mRNA expression levels of RSV receptors relative to 106 18S. A Mann-

Whitney U test was applied to compare the two cell types (AECs versus LR-MSCs). Boxplots indicate the median value

(centerline) and interquartile ranges (box edges), with whiskers extending to the lowest and the highest values. Each

symbol represents an individual donor (n = 5). �p<0.05, ��p<0.01. (D) Intracellular viral loads in AECs and LR-MSCs

over time following infection with RSV-A2 at a MOI of 1 PFU/cell expressed as RSV copies per 1012 18S copies. Each

symbol represents an individual donor (n = 5). (E) RSV F-protein positive LR-MSCs assessed by FCM and plotted over

time. LR-MSCs were infected with 0.1 PFU/cell with RSV-A2 (n = 3) or a clinical isolate RSV-ON1-H1 (n = 4–6). Each

symbol represents an individual donor. (F) Representative live-cell imaging of WD-AECs and LR-MSCs infected with

0.1–0.5 PFU/cell with RSV-mCherry and followed over time. The micrographs were taken at 16, 32, and 48 h p.i. in the

same area of the cellular layer. (G) Representative confocal microscopy evaluation of LR-MSCs noninfected (mock) or

infected with RSV-A2 at 1 PFU/cell 24 to 72 hours p.i. RSV, green; DAPI, dark blue; WGA, white. Scale bar, 20 μm. (H)
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1B). Next, we assessed mRNA expression levels of different putative RSV cell-surface recep-

tors/co-receptors [25–30], namely nucleolin, toll-like receptor 4 (TLR4), intercellular adhesion

molecule 1 (ICAM-1), annexin II, and CX3CR1 in pediatric LR-MSCs in comparison to

donor-matched AECs. All tested receptors were expressed in both cell types at various levels

(Fig 1C), suggesting that LR-MSCs are susceptible to RSV infection. Thereby, we detected fast

replication kinetics of RSV RNA in LR-MSCs similar to levels measured in infected AECs (Fig

1D). To confirm the replication of RSV in LR-MSC, we next used a flow cytometry (FCM)

approach. We infected LR-MSCs with a clinical isolate of RSV subtype A (RSV-ON1-H1) and

with RSV-A2 at low multiplicity of infection (MOI; 0.1 PFU/cell). After 144 hours post-infec-

tion (p.i.) 40–100% of LR-MSCs were infected depending on the donor (Fig 1E). However,

when using higher MOIs (1 PFU/cell), 144 hours p.i., both RSV-A2 and RSV-ON1-H1

infected nearly 100% of the cells (S1A Fig). Given that LR-MSCs are highly susceptible to RSV

infection, we were wondering how the virus spreads among the cells. To follow visually virus

spread in the two different cell types, we performed live imaging in specific areas of the cellular

layer following infection with a recombinant RSV construct expressing constitutively the

mCherry reporter (RSV-mCherry). While infected well-differentiated (WD)-AECs appear as

discrete RSV-positive cells, infected LR-MSCs showed up in discrete foci, suggesting RSV

spread via cell-to-cell contact (Fig 1F). In order to confirm that the increase of mCherry

reporter signal in LR-MSCs foci is due to RSV spread, we infected LR-MSCs with RSV-A2 and

visualized the presence of RSV over time using a high definition confocal microscopy

approach. Notably, while the RSV signal was often located at the plasma membrane at 24h p.i,

it increased over time and became mainly perinuclear and/or cytosolic at later time points,

suggesting replication (Fig 1G). To further confirm the distinct life cycles, we measured infec-

tious virus release over time in LR-MSCs in comparison to WD-AECs by applying a plaque-

forming unit (PFU) assay. Remarkably, at most of the time-points tested, there was signifi-

cantly higher infectious virus release in the apical washes of infected WD-AECs compared to

the supernatants of infected LR-MSC cultures. Moreover, while there was almost no infectious

virus detectable in the supernatants of LR-MSCs with both MOIs tested (Figs 1H and S1B), we

observed an exponential increase of the intracellular infectious RSV titers over time at both

MOIs tested (Figs 1I and S1C). Finally, when assessing the extracellular viral RNA loads in

WD-AECs in comparison to LR-MSCs, we observed a rapid exponential increase of virus

loads in the apical washes of WD-AECs and rather an accumulation of RSV RNA in the super-

natants of LR-MSCs, suggesting the presence of substantial levels of non-infectious RSV parti-

cles (Figs 1J and S1D). Altogether, these results demonstrate that primary pediatric LR-MSCs

are highly permissive to RSV infection and that RSV replicates in LR-MSC, although the life

cycle of RSV is distinct to AECs.

RSV infection is altering the immune properties of LR-MSCs

We aimed to establish if LR-MSCs can mount an antiviral response upon RSV infection.

Twenty-four hours p.i., we observed a significant increased expression of interferon stimulated

Supernatants of infected LR-MSCs or apical washes of infected WD-AEC cultures were analyzed by a PFU assay. Cells

were infected with RSV-ON1-H1 at a MOI of 0.1 PFU/cell. A Mann-Whitney U test was applied to compare the two

cell types (WD-AECs, n = 3 versus LR-MSCs, n = 5–6). Each symbol represents an individual donor. �p<0.05,
��p<0.01. (I) Intracellular infectious RSV titers in LR-MSCs infected with RSV-A2 or RSV-ON1-H1 at 0.1 PFU/cell.

Each symbol represents an individual donor (n = 3) (J). Extracellular RSV RNA load over time in supernatants of

infected LR-MSCs or apical washes of infected WD-AEC cultures. Cells were infected with RSV-ON1-H1 at a MOI of

0.1 PFU/cell. A Mann-Whitney U test was applied to compare the two cell types (WD-AECs, n = 3 versus LR-MSCs,

n = 4–6). Each symbol represents an individual donor. �p<0.05.

https://doi.org/10.1371/journal.ppat.1009789.g001
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genes (ISGs) commonly induced during RNA virus infections [31]. More specifically, RSV-A2

and RSV-ON1-H1 infection induced a significant upregulation of retinoic acid-inducible

gene-I (RIG-I), melanoma differentiation-associated protein 5 (MDA-5), 2’,5’-oligoadenylate

synthetase 2 (2’,5’-OAS), interferon (IFN)-induced dynamin-like GTPase (MxA), and virus

inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (Viperin) compared to

mock control (Fig 2A). Furthermore, the mRNA levels of both IFN-β and IFN-λ1 had a trend

towards significantly higher levels upon RSV infection (Fig 2B). We also verified if RSV infec-

tion-induced mRNA levels of type I and III IFNs resulted in an increased protein release. IFN-

β release was significantly stimulated by the two RSV strains over time and was quantified at

highly significant levels after 72 hours p.i. (Fig 2C). Furthermore, the protein levels of IFN-λ1/

3 were significantly elevated after 24 and 72 hours p.i. compared to mock control for RSV-A2

and had a trend towards significance for the RSV-ON1-H1 strain (Fig 2D). Notably, infection

of WD-AECs in comparison to LR-MSCs induced comparable IFN type I and III levels 24 to

72 hours p.i., suggesting a similar IFN response upon RSV infection (S2A, S2B, and S2C Fig).

Next, we wanted to evaluate whether infection has an impact on the immunomodulatory prop-

erties of LR-MSCs. First, we evaluated the cell-surface expression levels of two co-stimulatory

molecules, namely programmed death-ligand 1 (PD-L1) and major histocompatibility com-

plex (MHC) class I, described in LR-MSCs to be involved in their immunomodulatory charac-

teristics [32,33]. LR-MSCs expressed baseline levels of both co-stimulators. Poly(I:C), a ligand

mimicking RNA virus infection, induced a significant upregulation of both co-stimulatory

molecules in comparison to mock control. In line with this, RSV infection led to the induction

of slightly increased levels of PD-L1 and MHC class I expression compared to mock-treated

LR-MSCs, with differences not reaching significance, as shown in representative histograms

(S2D Fig) and upon quantification (S2E Fig). Next, we evaluated the secretory profiles of

LR-MSCs following RSV infection in comparison to WD-AECs. Upon infection of WD-AECs

with RSV-A2 or RSV-ON1-H1, the basolateral cytokine secretion revealed mainly CXCL10/

IP-10 and CXCL8/IL-8 release (Fig 2E). Contrary to WD-AECs, RSV infection of LR-MSCs

led to a massive secretion of several cytokines. In fact, 24 and 72 hours p.i., expression was

remarkably increased for most of the cytokines measured, including CXCL10/IP-10, CXCL8/

IL-8, IL-6, G-CSF, CCL5/RANTES, IL-9, IFN-γ, IL-5, and L-17 to name the most notable ones

(Fig 2F). Taken together, these data demonstrate that RSV infection leads to a robust activation

of LR-MSCs, characterized by a strong antiviral and pro-inflammatory phenotype combined

with cytokines modulating T cell function (Fig 2G).

RSV infection is causing lung injury in lamb

To study the MSC compartment of the lung and its role during an acute virus infection, we

applied an in vivo approach using the neonatal lamb model of RSV infection. Although data

are available on ovine MSCs derived from several tissues, ovine LR-MSCs have not been

described yet [34–36]. Thus, we isolated and expanded LR-MSCs cultures from healthy ovine

lung cell suspensions as described previously for human tissue [3]. Characterization by immu-

nophenotyping displayed a high level of cell surface markers typically found in MSCs such as

the hyaluronate receptor CD44 and CD29 (ITGB1). An additional marker, CD166 (ALCAM),

was also expressed on cultured MSCs (S3A Fig). The plastic-adherent cells were large with a

fibroblast-like morphology. Multilineage capacity was confirmed following specific culture

conditions, as ovine LR-MSCs transdifferentiated to chondrocytes, osteocytes, and adipocytes

(S3B Fig). Together, these features fulfill the accepted criteria to identify MSCs proposed by

the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular

Therapy [24]. Before infection of the animals, we performed an infection of ovine LR-MSC
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Fig 2. RSV infection is altering the immune properties of LR-MSCs. (A, B) mRNA levels of selected ISGs (A) and IFNs (B)

in LR-MSCs treated with mock control, poly(I:C) 10 μg/ml, RSV-A2, or RSV-ON1-H1 for 24 h at 1 PFU/cell. Boxplots

indicate the median value (centerline) and interquartile ranges (box edges), with whiskers extending to the lowest and the

highest values. Each symbol represents an individual donor (mock, n = 6; poly(I:C), n = 5; RSV-A2, n = 4; RSV-ON1-H1,

n = 6). The data were compared with the Kruskal–Wallis test followed by Dunn’s post hoc test. �p<0.05, ��p<0.01. (C, D)

IFN-β (C) and IFN-λ1/3 (D) protein levels in supernatants of LR-MSCs treated with mock control, poly(I:C) 10 μg/ml,

RSV-A2, or RSV-ON1-H1 for 24 h and 72 h at 1 PFU/cell. Boxplots indicate median value (centerline) and interquartile

ranges (box edges), with whiskers extending to the lowest and the highest values. Each symbol represents an individual

donor (mock, n = 6; poly(I:C), n = 5; RSV-A2, n = 4; RSV-ON1-H1, n = 6). A Kruskal–Wallis test followed by a Dunn’s post

hoc test was applied to compare the different groups. �p<0.05, ��p<0.01, ���p<0.001. The detection limits of the assays are
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cultures with human RSV. Virus replication was evident as observed by an increase of RSV

load of cell-associated viral RNA over time. Similarly to RSV-infected human LR-MSCs, the

infectious virus in the supernatants was undetectable or close to the detection limit suggesting

cell-to-cell spread (S3C Fig). Furthermore, ex vivo infection of ovine precision-cut lung slice

(PCLS) cultures with a recombinant RSV construct expressing constitutively the green fluores-

cent protein (RSV-GFP) led to an increase of the reporter signal over time, indicating replica-

tion (S3D Fig). When analyzing the infected PCLSs at higher magnification, the GFP signal

was mainly located in the alveolar wall suggesting infection of pneumocytes (S3E Fig). New-

born lambs were infected with human RSV-A2 and respiratory disease was evaluated during

the acute (3 and 6 days p.i.), recovery (14 days p.i.), and convalescence (42 days p.i.) phases. To

do so, at each timepoint p.i., we examined the lung tissue and the cellular components of

bronchoalveolar lavage (BAL) fluid (Fig 3A). RSV-infected neonates showed clear nasal dis-

charge, occasional coughing and wheezing. Macroscopic lesions were detected at necropsies

performed 3 and 6 days p.i. Lungs failed to collapse and showed multiple, irregular, mildly red-

dened areas with slightly increased consistency of up to 2 cm in diameter in all lung lobes. His-

topathological evaluation of the lungs revealed tissue consolidation, bronchiolitis, and

thickening of interalveolar walls 3, and 6 days following RSV infection (Fig 3B). Following

infection, alveolar type 2 cell hyperplasia was observed, indicating tissue injury (S4A Fig). In

addition, at 6 days p.i. we observed occasionally potential syncytial cells lining alveoli (S4A and

S4B Fig). These features disappeared 14 days p.i. (Fig 3B), indicating resolution of lesions after

RSV-mediated acute lung injury. Immunohistochemistry analysis of lung tissue sections

revealed the presence of RSV antigen in pneumocytes (Fig 3C). We evaluated the viral RNA

levels in the lung and BAL tissues. In the lung, the RSV loads decreased over time with no

virus detectable in 50% of the animals 14 days p.i. and in all animals 42 days p.i. In the cellular

fraction of the BAL, RSV copies were highest at 3 days p.i., with viral RNA detectable in 66%

of the animals 14 days p.i. and reaching undetectable levels 42 days p.i. There was a significant

difference in viral loads with approximately 100 times higher level of RSV copies detectable in

the BAL compartment compared to the lung at both, 3 and 6 days p.i. (Fig 3D). To confirm the

histopathological evaluation revealing RSV-mediated tissue injury, we assessed cell death by

quantifying cleaved caspase-3-positive cells using an approach summarized in S5 Fig. The per-

centage of cleaved caspase-3 positive cells in the lung, was significantly increased for infected

animals 3, and 6 days p.i. and similar 14, and 42 days p.i. compared to mock controls (Fig 3E).

Lung injury is further indicated by shedding of apoptotic cells into the bronchoalveolar space.

Indeed, there are significantly more cleaved caspase-3 positive cells 3 days p.i. assessed for

infected compared to mock-infected animals (Fig 3F). The impact of RSV infection on the

bronchoalveolar space is further indicated by an infiltration of cells as assessed in the BALs

from infected compared to mock-infected animals 3 to 14 days p.i. (Fig 3G). In summary, the

life cycle of RSV is similar in human and ovine LR-MSCs and infection of neonatal lambs with

human RSV is causing lung injury. These data support the use of the lamb model to investigate

LR-MSCs in RSV disease.

indicated with the dotted line at 7.7 pg/mL and 79.8 pg/mL for IFN-β and IFN-λ1/3, respectively. (E, F) Multiplex assay of

basolateral medium of WD-AECs (E) or supernatants of LR-MSCs (F), 24 and 72h after treatment with mock control, 10 μg/

ml poly(I:C), RSV-A2, or RSV-ON1-H1 for 24h and 72h at 1 PFU/cell. The concentration ranges of the different cytokines

are indicated (lower detection limit-highest concentration measured). An asterisk is present when the concentration of the

sample was higher than the upper range of the assay. Each column represents a different donor (mock, n = 6; poly(I:C),

n = 5; RSV-A2, n = 4; RSV-ON1-H1, n = 6; donors a-c for WD-AECs and d-i for LR-MSCs). (G) Overview of the impact of

RSV infection on LR-MSCs. RSV-mediated activation of LR-MSCs is characterized by an antiviral and pro-inflammatory

phenotype combined with cytokines promoting T helper cell (Th) polarization.

https://doi.org/10.1371/journal.ppat.1009789.g002
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LR-MSCs are a target for RSV infection in vivo
To determine if LR-MSCs can be a target for RSV in vivo, we designed an FCM assay allowing

the identification of the pulmonary epithelial (CD31-CD45-panCTK+) and mesenchymal

(CD31-CD45-panCTK-CD29+CD44+) compartments, as well as detection of RSV infection in
vivo (Fig 4A). In 13–80% of the infected animals, both RSV-positive epithelial cells and

LR-MSCs were detected in the lung cell suspensions 3, 6 and 14 days p.i. (Figs 4B and S6).

When RSV-positive LR-MSCs were plotted as a function of RSV-positive epithelial cells, a sig-

nificant positive association was found, suggesting that the spread of RSV infection to

LR-MSCs is linked to the extent of replication in the pulmonary epithelium (Fig 4C). Next,

MSCs derived from lung tissue and BALs, were isolated from each animal at the different time

Fig 3. RSV infection is causing lung injury in lamb. (A) Newborn animals were trans-tracheal inoculated with 108

PFU per animal of the human strain RSV-A2 or PBS (mock). Animals were euthanized 3, 6, 14, and 42 days p.i. and

lung and BAL tissues were harvested for histopathological evaluation, qPCR, and FCM analysis (B) Representative H&E

stained histopathological sections of the lung tissue from noninfected (mock) and RSV-infected lambs at 3, 6, 14, and 42

days p.i. Scale bar, 200 μm. (C) Histological lung sections from animals 6 days p.i. stained for RSV (red) and

counterstained with haematoxylin (blue). From left to right panels, scale bars 50 μm, 100 μm and 20 μm, respectively.

(D) Viral load in lungs and the cellular fraction of the BAL of infected lambs measured 3, 6, 14, and 42 days p.i.

Comparison of viral loads between BAL and lung tissues was done with a one-way ANOVA and the Tukey post-hoc

test. Each symbol represents an individual animal (n = 6 per timepoint). �p<0.05. (E, F) Frequency of cleaved caspase 3

(CASP3)-positive cells in the lung (E) and BAL (F) of infected animals 3 to 42 days p.i. Boxplots indicate the median

value (centerline) and interquartile ranges (box edges), with whiskers extending to the lowest and the highest values.

Each symbol represents an individual animal (mock, n = 3 and RSV, n = 6). Multiple comparison was done with a one-

way ANOVA and the Tukey post-hoc test. �p<0.05. (G) Total BAL cell counts in mock and RSV-infected animals 3, 6,

and 14 days p.i. pooled. Boxplots indicate the median value (centerline) and interquartile ranges (box edges), with

whiskers extending to the lowest and the highest values. Each symbol represents an individual animal (n = 9, mock and

n = 18, RSV). A Mann-Whitney U test was applied to compare the two groups. ��p<0.01.

https://doi.org/10.1371/journal.ppat.1009789.g003
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points p.i. and expanded in culture. When testing the presence of RSV within the lung-derived

MSC cultures, viral RNA was detectable in most cultures from the animals at 3 and 6 days p.i.

and in none of the cultures isolated from animals at 14 and 42 days p.i. In line with the higher

viral loads in the BAL cellular fraction compared to the lung tissue, we detected high levels of

RSV RNA in all BAL-derived MSCs from animals at 3 and 6 days p.i. and from 3 out of 7 ani-

mals isolated at 14 days p.i. RSV RNA levels were undetectable in all cultures isolated from ani-

mals at 42 days p.i. (Fig 4D). Interestingly, we noticed giant multinucleated cells in cultures

derived from infected animals which were never seen for mock animal-derived cultures (Fig

4E). Given that RSV spread in foci and infectious virus was rarely detected in the supernatants

of infected human and ovine LR-MSCs cultures, we hypothesized that these phenotypically

distinct cells were RSV-infected MSCs. This was confirmed by confocal microscopy

Fig 4. LR-MSCs are a target for RSV infection in vivo. (A) FCM gating strategy to identify RSV-infected epithelial

cells (CD31-CD45-panCTK+) and LR-MSCs (CD31-CD45-panCTK-CD29+CD44+). panCTK, pan-cytokeratin; G1,

gate 1. (B) Percentage of animals with RSV-positive epithelial and LR-MSCs 3 to 42 days p.i. The fractions indicate the

number of infected animals where infection was detected by FCM compared to the total number of animals. (C)

Correlation of RSV-positive LR-MSCs and RSV-positive epithelial cells at 3 and 6 days p.i. Associations were tested

using the Spearman rank correlation test. Each symbol represents an individual animal. (D) RSV loads in MSCs

isolated from lung and BAL tissues of RSV-infected animals 3, 6, 14, and 42 d p.i. and expanded in culture. Each

symbol represents an individual animal (n = 6–8). The filled dashed box indicates the samples below detection limit.

(E) Phase-contrast micrographs of LR-MSCs derived from BALs expanded in culture from noninfected (mock) or

infected (RSV) animals 3 days p.i. Magnification 100X. The yellow arrowheads indicate a cluster of nuclei of a potential

syncytium. (F) Representative confocal microscopy evaluation of LR-MSCs derived from BALs expanded in culture

from noninfected (mock) or infected (RSV) animals 3 days p.i. RSV, orange; DAPI, dark blue; WGA, light blue. Scale

bars, 15 μm (left and middle panels) and 10 μm for the 3D capture (right panels).

https://doi.org/10.1371/journal.ppat.1009789.g004
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visualization (Fig 4F) and by the infection of cultures from human and ovine LR-MSCs with

RSV-mCherry (S7A and S7B Fig). Together, these results indicate that the lung MSC compart-

ment is a target for RSV infection in vivo during the early phase of respiratory disease.

RSV infection leads to the expansion of the pulmonary MSC niche in vivo
To investigate the impact of virus-mediate lung injury on LR-MSCs in vivo, we analyzed the

mesenchymal compartment of RSV-infected newborn lambs during the acute, recovery, and

convalescence phases of RSV disease. As a mild to asymptomatic RSV disease control, adult

animals were infected for a period of 14 days (Fig 5A). Contrary to RSV-infected neonates,

infection of adults did not lead to any notable clinical manifestation nor macroscopic lesions,

while rare foci of interstitial thickening with leukocyte infiltrates and mild alveolar type 2

hyperplasia were visible histologically (Fig 5B). A colony-forming unit-fibroblast (CFU-F)

assay was applied to lung-derived cells from infected and mock-infected animals. This assay is

commonly used to assess the proliferative activity of MSCs and their ability to form discrete

fibroblast-like colonies [37,38]. The analysis revealed a significant effect of RSV infection on

the proliferative properties of LR-MSCs by increasing their activity already 3 days p.i. com-

pared to mock control (Fig 5C). Quantitative analysis confirmed significantly increased

CFU-F counts during the acute phase of infection 3 and 6 days p.i. Interestingly, there was still

a nonsignificant tendency of more CFU-F counts during later phases of RSV disease 14 and 42

days p.i. compared to age-matched non-infected animals (Fig 5D). CFU-F counts were around

Fig 5. RSV infection leads to the expansion of the pulmonary MSC niche in vivo. (A) Newborn or adult (average age

of 29 months) animals were trans-tracheal inoculated with 108 PFU per animal of the human strain RSV-A2 or PBS

(mock). Newborns were euthanized 3, 6, 14, and 42 days p.i. and adults 6 and 14 days p.i. and lung tissue was harvested

for CFU-F assay. Lung tissue of adults was harvested for histopathological evaluation (B) Representative H&E stained

histopathological sections of the lung tissue from noninfected (mock) and RSV-infected adults at 6 and 14 days p.i. scale

bar, 200 μm. (C, E) Representative images of the CFU-F assay for mock control and RSV-infected neonates (C) and

adults (E) 3 to 42 days p.i. and 6 and 14 days p.i., respectively. Each image represents an individual animal. (D, F)

Quantification of the CFU-F assay for each neonate (D) and adult (F) animals, given as CFU-F count relative to 3.33X105

nucleated cells over time. Boxplots indicate the median value (centerline) and interquartile ranges (box edges), with

whiskers extending to the lowest and the highest values. Each symbol represents an individual animal (neonates, per

timepoint: mock, n = 3–4; RSV, n = 6–8; adults: mock, n = 14; RSV, n = 3 per timepoint). A one-way ANOVA and the

Holm-Sydak post-hoc test was applied to compare differences between groups. �p<0.05, ���p<0.001, ����p<0.0001.

https://doi.org/10.1371/journal.ppat.1009789.g005
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20 times lower for control adults (average CFU-F count of 0.6) in comparison to control neo-

nates (average CFU-F count of 14.2), indicating an age-dependent effect on the steady-state

proliferative properties of LR-MSCs. However, RSV infection led to a significant increase of

these colonies 14 days p.i. with an average count of 6.3 (average CFU-F count of 29.9 for

infected neonates 14 days p.i.) (Fig 5E and 5F). These results provide evidence that RSV infec-

tion leads to a stimulation of the proliferative activity and the expansion of the pulmonary

MSC pool, particularly in neonates compared to older animals.

The transcriptional activity of LR-MSCs is related to the phases of RSV

disease

To investigate how RSV infection impacts LR-MSCs at the transcriptional level in vivo, we

applied an experimental approach developed by Spadafora et al., who showed that tracheal

aspirate-derived MSCs retain their transcriptional signature following a short expansion in

culture [39]. We undertook whole transcriptome analysis from expanded LR-MSCs isolated

from infected neonates during the acute, recovery and convalescent phases of RSV disease in

comparison to mock-infected neonates. To confirm identity of MSCs expanded in culture, we

calculated the transcripts per million (TPM) of markers used for their identification [24,40].

LR-MSCs had high transcriptional levels of ENG (CD105), NT5E (CD73), THY1 (CD90),

ITGB1 (CD29), CD44 and PDGFRA among others, and lacked transcripts of HLA-DR or

HLA-DQ, PTPRC (CD45), CD34, ITGAM (CD11b), or PECAM (CD31) confirming their

MSC identity (Fig 6A). Next, we compared the transcriptome profiles of LR-MSCs during the

acute phase of RSV disease (6 days p.i.) to mock-infected animal-derived LR-MSCs and found

14 differentially expressed genes (DEGs) to be significantly upregulated. The majority of them

belong to the IFN pathway and are associated with antiviral responses, such as RSAD2

(Viperin), OASL, ISG15, IFI44, and IFI44L and two pro-apoptotic genes, namely TNFSF10/

TRAIL and STC1 (Fig 6B). These findings are in line with our in vitro results derived from

human LR-MSC and support the idea that LR-MSCs mount an antiviral response against RSV

infection in vivo. Remarkably, while there was no significant difference in the recovery phase

(14 days p.i.) compared to mock-infected control (Fig 6C), there were 43 DEGs in LR-MSCs

isolated during the convalescence phase (42 days p.i.) (Fig 6D). Several of these genes are asso-

ciated with the secretory pathway, including MAGE2 (protein trafficking), TBC1D20 (autop-

hagosome maturation), MAP7D3 (microtubule assembly), and MARCHF9 (protein

processing). In line with this, high transcriptional activity of LR-MSCs during the convales-

cence phase is evidenced by the upregulation of various non-coding RNAs and ribonuclease

proteins involved in pre-RNA processing and regulation of transcription and/or translation.

Furthermore, genes linked with differentiation and developmental processes, such as SOX4,

NOC3L, and C2CD3 were differentially expressed during the convalescence phase. Remark-

ably, many of the upregulated DEGs were related to endothelial cell function and angiogenesis,

such as TRPC4 or KDR which codes for the vascular endothelial growth factor receptor 2

(VEGFR2), and ITGA9, the receptor of VCAM1. Finally, among the top downregulated DEGs

were two genes coding for matrix-metalloproteases (MMPs), MMP1 and MMP3, which are

involved in the remodeling of the extracellular matrix (ECM). The list of significant DEGs and

associated literature from infected versus noninfected animal-derived LR-MSCs is provided in

S1 Table. To confirm the interpretation of our findings, we used a computational method for

pathway enrichment analysis of the transcriptional profiles of LR-MSCs over RSV infection.

Gene set enrichment analysis (GSEA) revealed that the transcriptional signature of LR-MSCs

isolated from RSV- and mock-infected animals is retained during the short ex vivo culture

phase and is following the different phases of respiratory disease. During the acute phase of
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infection, the significant enriched hallmark gene sets were associated to IFN pathway, inflam-

mation, and stress response. Notably, the only enriched gene set downregulated in the acute

phase of RSV infection was Notch signaling, a central pathway regulating cell proliferation and

differentiation. During the recovery and the convalescence phases, shared gene sets associated

with cell cycle regulation, such as E2F and Myc pathway, were downregulated compared to

mock controls. Further, during the convalescence phase of RSV disease, five additional hall-

mark gene sets were upregulated. More precisely, the transcriptional signature of LR-MSCs

isolated from infected animals long after viral clearance revealed processes such as myogenesis,

epithelial-mesenchymal transition (EMT), angiogenesis, p53 pathway, and TGF-β signaling,

suggesting that LR-MSCs are involved in tissue repair and regeneration following virus-

induced injury (Fig 6E). To sum up, these results show that LR-MSCs are activated during

virus-induced lung injury by an increase in their proliferative activity and by mounting

dynamic transcriptional profiles leading to an early antiviral and inflammatory response fol-

lowed by mechanisms associated with tissue remodeling, repair and regeneration (Fig 6F).

Fig 6. The transcriptional activity of LR-MSCs is related to the phases of RSV disease. (A) Expression levels of selected

classical MSC markers expressed as log2TPM (TPM, transcripts per million). Each column is a different time p.i. (6, 14, and 42

days p.i.). (B-D) Volcano plots of the DEGs from the comparison of RSV infection and mock control 6 (B), 14 (C), and 42 (D)

days p.i. with padj<0.05 (red filed circles). (B) Pie chart with the 14 DEGs 6 days p.i. (padj<0.05) categorized according to their

function. (D) Pie chart with the 43 DEGs 42 days p.i. (padj<0.05) categorized according to their function. (E) Normalized

enrichment score of significant (false discovery rate, FDR<0.05) hallmark gene sets for the comparisons of RSV infection and

mock control 6, 14, and 42 days p.i. (downregulated, blue and upregulated, red) (F) Illustration summarizing the different

functions of LR-MSCs over the course of RSV disease.

https://doi.org/10.1371/journal.ppat.1009789.g006
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Discussion

This work was undertaken to explore the role of the pulmonary MSC compartment during

acute respiratory virus infection and its contribution to lung repair. Our investigations herein

reveal upon infection, LR-MSCs mount an antiviral response and release a variety of immuno-

modulatory mediators, which may have a biological impact on the pulmonary microenviron-

ment. Furthermore, we show that RSV-mediated lung injury activates and stimulates the

expansion of LR-MSCs which mount a dynamic transcriptional program related to mecha-

nisms of repair and regeneration.

Contrary to the well-described replication of RSV in AECs, the primary cellular target of

RSV infection [21–23], our data indicates a distinct life cycle in LR-MSCs with viral spread via

cell-to-cell contact. Such mechanism may improve virus dissemination and promote immune

evasion [41]. In a humanized mouse model, pulmonary mesenchymal cells were shown to be

susceptible to different viruses such as Middle East respiratory syndrome coronavirus, Zika

virus, and cytomegalovirus [42]. In addition, they were recently proposed as an immune-privi-

leged niche for M. tuberculosis persistence [43]. Since LR-MSCs are described to localize peri-

vascular and in close proximity to the respiratory and alveolar epitheliums, this makes them a

potential nonepithelial target for virus infection. Here, we show accessibility of LR-MSCs pos-

sibly through physical disruption of the alveolar epithelium. Indeed, already 3 days p.i., we

observed evidence of lung injury associated with alveolar infection and concomitant LR-MSCs

targeting by the virus. RSV infections can lead to a number of extrapulmonary manifestations

[44]. Assuming the presence of MSCs in most tissues, it is conceivable that in some circum-

stances, RSV may target other MSC niches throughout the body. In line with this, bone mar-

row and umbilical cord vein MSCs were shown to be susceptible to RSV infection in vitro
[45,46].

During the acute phase of RSV disease, we observed RSV-positive multinucleated LR-MSCs

in the BAL-expanded cultures, indicative of a cytopathic effect on these cells. Thereby, the con-

comitant expansion of the pulmonary MSC compartment is potentially indicative of a replen-

ishment of the lost fraction of LR-MSCs following RSV infection. Furthermore, we show that

RSV infection is signaled by LR-MSCs through the induction of antiviral and pro-inflamma-

tory mediators, both associated with RSV disease severity [47–49]. In addition, RSV infection

of LR-MSCs led to a type I and III IFNs release and ISGs induction, shifting LR-MSCs towards

an antiviral state. This is in line with the pro-inflammatory and antiviral transcriptional signa-

tures found in LR-MSCs, isolated from infected animals during the acute phase of RSV disease.

In mice, it has been shown that IFN signaling of the lung stromal compartment was protective

against influenza virus by reducing viral replication [50]. Massive lung infiltration of immune

cells following cytokine release, termed “cytokine storm”, is characteristic of severe respiratory

virus infections including RSV [51]. Among the most abundant chemokines in infants suffer-

ing from RSV bronchiolitis are CXCL10/IP-10, CXCL8/IL-8, CCL2/MCP-1 and CCL3/MIP-

1α. Similarly, in our setting, RSV infection of LR-MSCs led to a massive release of chemokines

with the potential to attract neutrophils, eosinophils, monocytes, and lymphocytes, such as

CXCL8/IL-8, CCL5/RANTES, CCL2/MCP-1, and CXCL10/IP-10, respectively. In RSV dis-

ease, it is believed that the cellular sources of the pulmonary chemokine responses are epithe-

lial and inflammatory immune cells; our data suggests that LR-MSCs might provide an

additional source [52].

Besides the vast chemokine production, RSV infection of LR-MSCs led as well to the release

of a number of other mediators and growth factors. Interestingly, the secretory profile of RSV-

infected LR-MSCs was very distinct to the one described for RSV infected BM-MSCs, support-

ing tissue specificity of MSC populations [45,53,54]. Notably, VEGF, a key mediator of
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angiogenesis, is released by pediatric LR-MSCs at increased levels after RSV infection. Also,

the transcriptional profiles of LR-MSCs isolated during the convalescence phase of RSV dis-

ease were related to endothelial biology and pathway analysis revealed pro-angiogenic

enriched gene sets. In line with this, using an adult rat model, VEGF signaling disruption was

shown to cause an enlargement of the air spaces and an alteration of the alveolar structure,

suggesting that VEGF has a crucial role during normal adult alveolarization [55]. Considering

the perivascular location of MSCs in tissues, our data indicate that LR-MSCs may modulate

endothelial cell activity during virus-induced lung injury.

TGF-β is a central regulator of the respiratory system and controls epithelial and mesenchy-

mal cell fate through several mechanisms such as promotion of EMT, myofibroblast differenti-

ation, and stimulation of ECM production and remodeling [56]. Our transcriptional data

from LR-MSCs isolated from infected animals during the convalescence phase of RSV disease,

revealed that these cells might play a role in these mechanisms. Indeed, compared to nonin-

fected control-derived LR-MSCs, their transcriptome profiles are linked with TGF-β signaling

and EMT. The latter is linked with the acquisition of more proliferative stem-like states provid-

ing an additional link between activation of EMT and wound healing [57]. In line with this,

the p53 pathway activation further supports the maintenance of MSC stemness for subsequent

repair processes [58]. Transcriptome analysis of LR-MSCs isolated long after virus clearance,

positively associated with myogenesis. Myofibroblasts, an activated type of mesenchymal cells

and an important source of ECM, participates in tissue repair but their persistence after

wound healing is linked to fibrotic disorders [59]. Thus, failure of these mechanisms may

potentially increase the risk of developing fibrotic abnormalities following respiratory virus

infections. Comorbidities such as recurrent wheezing and asthma are happening years after

RSV infection has resolved. To date, it remains unclear if pulmonary mesenchymal cells defi-

ciency in lung repair and regeneration are linked with such disorders [60,61].

Due to their immunomodulatory properties, MSCs are applied in cell-based therapies with

promising outcomes for the treatment of pulmonary morbidities such as idiopathic pulmonary

fibrosis (IPF), acute-respiratory distress syndrome (ARDS) and severe influenza infections

[14,62–65]. Furthermore, the current coronavirus disease 2019 (COVID-19) pandemic is lead-

ing to a strong interest in MSCs as a treatment option for severe COVID-19 cases. As a conse-

quence, an increasing number of clinical investigations of such MSC-based therapy

approaches are under evaluation [66–69]. Safety concerns regarding susceptibility of MSCs

towards different viruses, as well as potential viral reactivation events have been raised [70].

On one hand, our data indicate potential safety concerns due to the targeting of LR-MSCs dur-

ing the acute phase of virus infection. On the other hand, we provide evidence that LR-MSC

seem to have a beneficial effect after virus clearance, supporting the use of MSC-based thera-

pies to treat virus-induced lung injury.

The ovine lung is a classical model of the human respiratory tract due to similarities in size,

structure, development and immune system [71]. However, some limitations should be men-

tioned. First, we observed a high animal-to-animal variability in most endpoints measured,

probably due to the outbred nature of the animals. While this might look like a limitation, we

believe it reflects best the situation in humans compared to inbred models. Secondly, we used

the isolated LR-MSCs as a single population but previous single-cell transcriptomic studies

demonstrated that MSC, are a rather heterogeneous population composed of distinct MSC

subsets [8,9,72]. Third, due to the lung size, we analyzed three pooled specimens, representa-

tive of each lung region. This might explain why we didn’t detect RSV-positive cells for some

animals for whom infection was demonstrated by the assessment of the viral loads.

In summary, our data demonstrate the involvement of pulmonary MSCs during respiratory

virus infection. While being a target for RSV, these cells can respond to infection by switching
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to an antiviral state and by a profound remodeling of their immune phenotype. Furthermore,

LR-MSCs show hallmarks of tissue repair and regeneration processes after viral clearance. Our

findings identify a function of LR-MSCs in a highly prevalent clinical situation and constitute

a basis for further exploration of the pulmonary mesenchymal compartment during virus

infections.

Material and methods

Ethics statement

The experiments with lambs were performed in compliance with the Swiss animal protection

law (TSchV SR 455.1; TVV SR 455.163). They were reviewed by the cantonal committee on

animal experiments of the canton of Bern, Switzerland and approved by the cantonal veteri-

nary authority with the license number BE125/17 (Amt für Landwirtschaft und Natur

LANAT, Veterinärdienst VeD, Bern, Switzerland). For the isolation of the RSV-ON1-H1

strain, the caregivers gave informed consent for the donation of nasopharyngeal aspirates, and

all steps were conducted in compliance with good clinical and ethical practice and approved

by the local ethical committee at Hannover Medical School, Germany (permission number

63090/2012). The isolate was passaged up to five times in HEp-2 cells (ATCC, CCL-23). For

the isolation of primary pediatric MSCs, written informed consent was obtained for all the

patients and/or parent/guardian and the study protocol was approved by the local Ethics Com-

mission of the Canton of Bern, Switzerland (KEK-BE:042/2015).

Virus propagation and titration

Human RSV-A2 strain was derived from ATCC (VR-1540, GenBank accession number

KT992094.1). The recombinant RSV-mCherry is described elsewhere [73] and the RSV-GFP

construct was generated by Mark Peeples (Nationwide Children’s Hospital Columbus, USA)

[74] and kindly provided by Dominique Garcin (University of Geneva, Switzerland). The clini-

cal RSV isolate, RSV-ON1-H1, was isolated from a child below the age of five years with con-

firmed RSV infection, hospitalized at Hannover Medical School, Germany [75]. All RSV

strains were propagated on HEp-2 cells, cultivated in DMEM (Gibco) supplemented with 10%

fetal bovine serum (FBS, Gibco). Briefly, HEp-2 cells were infected at a MOI of 0.02 PFU/cell

for 2 hours before the addition of DMEM supplemented with 5% FBS. The cell-associated

virus was harvested by scraping the cell monolayer when 60% of cytopathic effect was

observed. The virus was released from the cells by one freeze-thaw cycle followed by centrifu-

gation to get rid of cell debris. Virus stocks were stored in aliquots containing 10% sucrose

(Sigma) at -150˚C. To prepare a mock control the same procedure was applied without adding

virus. A similar approach was applied to assess the intracellular RSV titers from infected

LR-MSCs. For virus titration, serial dilutions of supernatants were added to HEp-2 cells and

incubated for 48–96 h at 37˚C, 5% CO2. Next, the cells were washed with PBS, fixed with meth-

anol supplemented with 2% H2O2 and incubated with a biotinylated anti-RSV antibody (Bio-

Rad) in PBS containing 1% bovine serum albumin (BSA, Sigma) for 1 h, followed by 30 min

incubation with ExtrAvidin Peroxidase (Sigma) and staining with 3,30-diaminobenzidine sub-

strate (Sigma). Virus titers were expressed as PFU/ml.

Primary cells

Primary pediatric MSCs were obtained as described previously [32,72]. Briefly, healthy lung

tissue was obtained from pediatric patients undergoing elective surgery for congenital pulmo-

nary airway malformation and other various airway abnormalities (n = 9, age range: 5 days to
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181 months; S2 Table). Minced tissue was further disaggregated enzymatically using a solution

containing collagenase I and II (Worthington Biochemicals) at a concentration of 0.1 and

0.25%, respectively. Further, digestion buffer was supplemented with 0.2 mg/ml deoxyribonu-

clease I (Biochemicals) to the digestion buffer to prevent cell clumps and improve cell recov-

ery. To isolate MSCs, a FCM assay was applied using a panel of fluorescently-conjugated

human monoclonal antibodies: CD45, CD14, CD31, and EpCAM for negative and CD73 and

CD90 for positive selection. FCM-sorted MSCs were expanded in tissue culture flasks pre-

coated with 0.2% gelatin solution (Sigma) and in chemically defined growth medium consist-

ing of α-MEM with ribonucleosides (Sigma) supplemented with 1% FBS, GlutaMAX (Invitro-

gen), 10 ng/ml of recombinant human fibroblast growth factor 2 (FGF2, Life Technologies),

20 ng/ml of recombinant human epidermal growth factor (EGF, Life Technologies), human

insulin (Sigma), 100 units/ml of penicillin and 100 μg/ml streptomycin (Sigma). Cells were

maintained in a humidified atmosphere at 37˚C, 5% CO2 until confluence was reached. The

medium was aspirated carefully and replaced with fresh medium six days after plating and

after that point performed twice a week. Cells were used prior to passage 5 in all experiments.

WD-AECs isolated from independent healthy donors (MucilAir, Epithelix Sàrl, Geneva, Swit-

zerland) were used for RSV infection. The cultures were maintained on 24-well transwell

inserts (Corning) at the air-liquid interface (ALI) in MucilAir culture medium (Epithelix Sàrl,

Geneva, Switzerland) in a humidified incubator at 37˚ C, 5% CO2. Every 3 days culture

medium was changed. The apical surface was rinsed with Hank’s balanced salt solution

(HBSS, ThermoFisher) once a week and prior to infection, to washout the mucus.

Precision-cut lung slices

Isolated ovine lungs were infused with 1.5% low-melting point agarose (Promega) in DMEM

and subsequently put into cold PBS in order to allow the agarose to solidify. Next, the perfused

lung tissue was cut into pieces of 0.1–1 cm3 and embedded in 4% low-melting point agarose.

An automated vibrating microtome (VT1200S, Leica Biosystems) was used at a speed of 0.1

mm/sec and an amplitude of 2.5–2.8 mm to generate PCLS with a thickness of 200 μm. Uni-

formly sized slices were punched at a diameter of 8 mm. The PCLS were maintained in

DMEM, supplemented with 1% FBS, 100 units/ml of penicillin and 100 μg/ml streptomycin,

and 2.5 μg/ml of Amphotericin B (all from ThermoFisher) in a humidified atmosphere at

37˚C, 5% CO2. The culture medium was changed every 24 h and the PCLS cultures were

infected 2–3 days following preparation.

RSV infection

To perform infection of primary pediatric LR-MSCs and AECs with RSV-A2, RSV-mCherry,

or RSV-ON1-H1, 105 cells per well of a 12 well plate were seeded 24 h prior to infection and/or

stimulation. Cells were infected at selected MOIs of RSV or mock-control in FBS-free medium

for 1 h at 37˚C and 5% CO2. Subsequently, cells were washed three times with 1X PBS and

then incubated in growth medium. Ten μg/ml of poly(I:C) (Sigma) was applied in growth

medium and incubated alike until harvesting. At selected time points, supernatants and cells

were harvested and stored appropriately for further analysis. For infection of WD-AECs, virus

preparations were diluted in medium and virus dilutions were applied apically to the tissue,

assuming an average of 500’000 cells per insert. As a mock control, the culture supernatant of

mock-infected HEp-2 cells was used. Virus particles were allowed to adsorb for 3 h at 37˚C

and 5% CO2 before the inoculum was removed and each insert was carefully washed three

times with pre-warmed HBSS and placed on a new well containing fresh MucilAir culture

medium. For stimulation of the WD-AEC inserts, 10 μg/ml poly(I:C) were applied to the
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basolateral chamber containing the culture medium. For examination of infectious viral parti-

cle release 2, 24, 48, 72, and 144 hours p.i., 250 μl HBSS was added to the apical surface and

incubated for 20 min at 37˚C, harvested, and stored at −70˚C until further analysis. Basolateral

media was collected and similarly stored, and replaced with fresh media in the basolateral

chamber of the inserts. For the infection of ovine PCLS, 5x105 PFU of RSV-GFP per PCLS

were applied in growth medium, supplemented with 0.1% FBS and incubated for 24 h at 37˚C

and 5% CO2. Subsequently, the infection medium was changed to growth medium and media

was changed every 24 h.

RNA isolation and quantitative PCR

Total RNA of primary pediatric LR-MSCs, human AECs, and ovine lung- and BAL-derived

cultured MSCs was extracted using the Nucleospin RNA Plus Kit (Macherey-Nagel) according

to the manufacturer’s protocol. For the isolation of the total RNA from the supernatants of

infected LR-MSCs, we used the QIAamp Viral RNA kit following manufactures recommenda-

tions (Qiagen). For reverse transcription and synthesis of complementary DNA the Omnis-

cript RT Kit (Qiagen) using random hexamers (Invitrogen) was applied. Quantitative PCR

was performed with target-specific primers using the TaqMan Gene Expression Assay

(Applied Biosystems) or the Fast SYBR Green Assay (ThermoFisher) on an ABI Fast 7500

Sequence Detection System (Applied Biosystems). For lung tissue and the BAL cellular frac-

tion quantification was performed using AgPath-ID One-Step RT-PCR Reagents (Thermo-

Fisher), according to the manufacturer’s instructions. The data were analyzed using the SDS

software (Applied Biosystems). Relative expression was calculated with the ΔΔCT method

[76]. The expression levels of the genes of interest, were normalized to the housekeeping 18S

rRNA. For the analysis of viral loads, RNA copy numbers were interpolated from a standard

curve generated with the serial dilution of a plasmid containing the cDNA of the RSV L gene

or the housekeeping 18S rRNA. The sequence of all the primers and probes is summarized in

S3 Table.

Flow cytometry

FCM assays using different multicolor staining protocols were applied for the analysis of co-

stimulatory molecule expression and RSV infection of primary pediatric LR-MSCs, for the

identification and analysis of RSV infection of different cell types in lung cell suspensions

derived from lambs, the assessment of apoptosis in the lung and the alveolar space of infected

and mock-infected animals. Further, a combination staining was applied to evaluate the phe-

notype of cultured LR-MSCs. The detailed list of reagents used is summarized in S4 Table.

FCM acquisitions were performed using a BD FACS Canto II (BD Bioscience) using the DIVA

software and were further analysed with the FlowJo software version 10.6.0 (BD). Dead cells

were excluded by electronic gating in forward/side scatter plots, followed by exclusion of dou-

blets as well as LIVE/DEAD Fixable Dead Cell Staining (Invitrogen). Permeabilization and fix-

ation were undertaken according to the manufacturer’s protocol (BD and Invitrogen).

Trans-differentiation assay

For differentiation, pediatric LR-MSCs (passage 5) and ovine LR-MSCs (passage 3) were

plated in a 24-well plate in regular culture medium and placed in a humidified atmosphere at

37˚C with 5% CO2. After 48 hours, cells were washed with PBS and complete differentiation

media of the different StemPro Differentiation Kits (Thermofisher) was added. For adipogenic

induction cells were plated at 104 cells/cm2, for chondrogenic induction cells were plated at

2.7x104 cells/cm2, and to induce osteogenic differentiation, cells were plated at 5x103 cells/cm2.
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Medium was changed twice a week and after 15–21 days, cells were fixed with 4% PFA

(Sigma). Adipocytes were stained with Oil Red O (Sigma) to detect the formation of lipid

droplets and counterstained with hematoxylin (Carl Roth). Chondrocytes were stained with

Alcian Blue (Sigma) to visualize glycosaminoglycan synthesis and Alizarin Red S staining

(Sigma) was used to detect calcium deposits in osteocytes.

Microscopy analysis

Ovine BAL-derived MSCs and expanded pediatric LR-MSCs were cultured on a Nunc Lab-

Tek II Chamber Slide System with 50’000 cells per chamber (ThermoFisher). Next, the cells

were washed with cold PBS with Ca2+ and incubated with Wheat Germ Agglutinin (WGA)-

AF633 (ThermoFisher) for 10 min at 4˚C. Then, cells were fixed with 4% PFA for 10 min at

room temperature. Next, the cells were washed with 0.3% saponin (Sigma) and stained with

RSV-fusion protein antibody (Millipore) for 20 min at 4˚C. Then, 20 min incubation at 4˚C

with anti-mouse IgG2a-AF546 or -AF488 (both ThermoFisher) was applied. Finally, DAPI

(Sigma) was added for 5 min at 37˚C and cells were washed three times with cold PBS with

Ca2+ before mounting with MOWIOL 4–88 Reagent (Sigma). The detailed list of antibodies

used is summarized in S4 Table. Confocal microscopy analysis was performed with a Nikon

Eclipse Ti microscope (Nikon). All images were acquired using a 63X oil-immersion or a 40X

objective. The images were analyzed with IMARIS 7.7 software (Bitplane) with threshold sub-

traction and gamma correction. To monitor the spread of RSV-mCherry infection in

WD-AEC in comparison to MSC cultures, a Nikon BioStation CT was used (Nikon). The cul-

tures were followed over a period of 2 days with a 10X objective and images were acquired in

an automated sequence every 4 to 8 hours following infection. Reporter expression of RSV-

mCherry-infected pediatric LR-MSCs, ovine LR-MSCs, and RSV-GFP-infected ovine PCLS

was assessed using an Evos FL Auto 2 cell imaging system (ThermoFisher) or a Leica TCS-SL.

The micrographs from the trans-differentiation assays were captured using an inverted micro-

scope ECLIPSE TS100 with a Nikon DS-Fi3 camera using a DS-L4 application v.1.5.03 (all

from Nikon).

Immunoassays

When performing cytokine quantification, the supernatants and the basolateral medium from

RSV-A2 and RSV-ON1-H1 infections as well as of poly(I:C)-stimulated and unstimulated, and

mock-infected pediatric LR-MSCs and WD-AECs, respectively, were harvested after 24 and 72

h of culture at 37˚C with 5% CO2. Human IFN-β and IFN-λ1/3 concentrations were deter-

mined using commercial enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems)

following the manufacturer’s protocol. For the multiplex assay, the Pro Human Cytokine

27-plex Assay (Bio-Rad) was used according to the manufacturer’s protocol and read on a Bio-

Plex 3D suspension array system including a Bio-Plex Manager software v 6.0 (Bio-Rad).

Animals

Newborn lambs, males and females were allocated randomly to different groups (see below).

Before and during the experiment, they were kept with their ewes. In order to prevent second-

ary bacterial infections, the lambs received a prophylactic long-acting antibiotic treatment by

intramuscular injection of an oxytetracycline hydrochloride preparation (Cyclosol LA, 20 mg/

kg) starting at 18 to 24 h before RSV infection. The treatment was repeated 2 times with 4 days

interval. The trans-tracheal RSV inoculation was performed under sedation and analgesia by

intramuscular injection of a mixture of midazolam (Dormicum) 0.2 mg/kg and butorphanol

(Morphasol) 0.2 mg/kg. The trachea was punctured between the tracheal rings with a 0.9 x 40
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mm needle (20G) and a volume of 2 ml of virus (108 PFU) or PBS (mock-infected controls)

were injected. Body temperature, body weight and clinical status (respiratory and heart rates)

were assessed daily by a veterinarian, whenever possible by the same person to ensure unbiased

clinical assessment. At defined time points, namely at 3, 6, 14, and 42 days p.i., the lambs were

euthanized and examined for gross- and histopathology. The lung was processed for post-mor-
tem bronchoalveolar lavage.

Histopathological evaluation of lung tissue

Lung specimens were fixed in 4% buffered formalin for 48 h, embedded in paraffin and rou-

tinely processed for histology. Histological sections of 3 μm were stained with hematoxylin

and eosin coloration and observed by light microscopy. For immunohistochemistry, deparaffi-

nization of the sections was done with xylol for 5 minutes followed by rehydration in descend-

ing concentrations of ethanol (100, 95, 80, and 75%). H2O2 (3.25% in methanol, 10 min at

room temperature) inhibited endogenous peroxidase activity. Then, the slides were incubated

in boiling citrate buffer (pH 6.0) for 10 min for antigen retrieval. 1% BSA (10 min) was used

for blocking of nonspecific antibody binding, followed by an overnight incubation at 4˚C with

the primary antibody targeting RSV (ThermoFisher). For secondary antibody incubation and

signal detection LSAB and AEC Kits (DakoCytomation) were used following the manufactur-

ers protocol. Counterstaining was done with Ehrlich hematoxylin and cover slips were

mounted using Aquatex (Merck) [77].

Processing of lung tissue and bronchoalveolar lavage

One specimen per lung region (cranial, middle, and caudal) were pooled and dissociation was

done using a collagenase I and II and a DNase I enzyme mix (all from BioConcept) and the

gentleMACS Octo Dissociator (Miltenyi Biotec). Following this mechanical and enzymatical

dissociation, the samples were applied to a sieve, to remove any remaining particulate matter.

The cell suspensions were passed through cell strainers (100 and 70 μm pore-size, Falcon) and

centrifuged at 350g for 10 min at 4˚C to obtain single-cell suspensions. For the isolation of

cells from BALs, the lungs were isolated with the trachea, which was clamped before cutting, to

prevent blood from entering the lungs. Then, a PBS-containing antibiotic solution with 100

units/ml of penicillin and 100 μg/ml streptomycin (both Sigma), and 2.5 μg/ml Amphotericin

B was poured into the lungs through a sterile funnel (200–500 ml). The cell suspensions were

then passed through cell strainers (100 and 70 μm pore-size, Falcon) and centrifuged at 350g

for 10 min at 4˚C to obtain single cell suspensions. If needed, red blood cells were lysed by

resuspending the pellet with 2 ml of H2O and washed immediately in cold PBS before centrifu-

gation at 350g for 10 min at 4˚C. Cells were then processed for FCM analysis, CFU-F assay or

expanded in culture to obtain lung-derived MSCs. To isolate and expand MSCs in culture,

lung cell suspensions were seeded at a density of 3.5x104 cells per cm2 in tissue culture flasks as

described previously [3]. Cells were maintained in α-MEM (Thermofisher) supplemented

with 10% FBS (ThermoFisher), an antibiotic solution containing 100 units/ml of penicillin

and 100 μg/ml streptomycin, and 2.5 μg/ml Amphotericin B. After one to two days, the

medium was changed and cells were maintained at 37˚C with 5% CO2 until reaching ~80% of

confluence. Regular media changes were performed twice a week.

Colony-forming unit-fibroblast assay

Lung single-cell suspensions were seeded at a density of 3.5x104 cells per cm2 in a six-well plate

as described previously [3]. Cells were fixed after 7–14 days with ice-cold methanol for 20 min

and then washed with PBS. The cells were stained with Giemsa stain for 6 min, rinsed with
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H2O, and air-dried. Images were captured using an ImmunoSpot analyzer (CTL). Two experi-

enced investigators performed the CFU-F counts independently.

RNA isolation and mRNA sequencing and data analysis

For mRNA sequencing, total RNA was extracted from ovine LR-MSCs using TRIzol reagent

(ThermoFisher) in combination with the Nucleospin RNA Kit (Machery-Nagel) as previously

described [78]. In short, cells were lysed with 1 ml of TRIzol reagent and kept at -70˚C until

further processing. After thawing, 0.2 ml chloroform was added to the TRIzol lysate and the

samples were mixed vigorously and incubated for 2–3 min at room temperature. The extrac-

tions were then centrifuged at 12’000g for 15 min at 4˚C. The aqueous phase was collected and

mixed with 500 μl 75% ethanol and the RNA precipitated for 10 min at room temperature.

The RNA precipitate was further purified with the Nucleospin RNA kit according to the man-

ufacturer’s instructions. The quantity and quality of the extracted RNA was assessed using a

ThermoFisher Scientific Qubit 4.0 fluorometer with the Qubit RNA BR Assay Kit (Thermo

Fisher Scientific) and an Advanced Analytical Fragment Analyzer System using a Fragment

Analyzer RNA Kit (Agilent), respectively. Thereafter, cDNA libraries were generated using an

illumina TruSeq Stranded mRNA Library Prep (illumina) in combination with IDT for Illu-

mina–TruSeq RNA UD Indexes (Illumina). The illumina protocol was followed using the rec-

ommended input and quality of total RNA. The quantity and quality of the generated NGS

libraries were evaluated using a Thermo Fisher Scientific Qubit 4.0 fluorometer with the Qubit

dsDNA HS Assay Kit (ThermoFisher) and an Advanced Analytical Fragment Analyzer System

using a Fragment Analyzer NGS Fragment Kit (Agilent), respectively. The library pool was

paired end sequenced using a NovaSeq 6000 SP Reagent Kit v1.0, 100 cycles (illumina) on an

Illumina NovaSeq 6000 instrument. The quality of the sequencing runs was assessed using illu-

mina Sequencing Analysis Viewer (illumina version 2.4.7) and all base call files were demulti-

plexed and converted into FASTQ files using illumina bcl2fastq conversion software v2.20.

The average number of reads per library was 33.5 million. The RNA quality-control assess-

ments, generation of libraries and sequencing runs were performed at the Next Generation

Sequencing Platform, University of Bern, Switzerland. Analysis of the RNA-seq data was per-

formed at the Interfaculty Bioinformatics Unit at the University of Bern, Switzerland. RNAseq

data quality was assessed using fastqc v. 0.11.5 and RSeQC v. 2.6.4 [79]. The reads were

mapped to the Ovis aries reference genome (Oar_v3.1) with Hisat2 v.2.1.0 [80]. To count the

number of reads overlapping with each gene, as specified in the Ensembl annotation Feature-

Counts from Subread v.1.5.3 [81] was used. The Bioconductor package DESeq2 [82] was

applied to test for differential gene expression between the experimental groups. To evaluate

gene expression levels of MSC markers we applied the TPM normalization method [83]. The

molecular signatures database (MSigDB) with the Hallmark gene sets was used for GSEA [84].

Analysis was done using the Prism 8 software (GraphPad).

Statistical analysis

The Prism 8 software was used for statistical analysis. To determine differences between two

groups, non-parametric paired Wilcoxon test or Mann–Whitney U-test were used. For multi-

ple comparisons one-way ANOVA with Tukey post-hoc test or Kruskal-Wallis test with

Dunn’s correction were used. A p< 0.05 was considered statistically significant.

Supporting information

S1 Fig. Infection of pediatric LR-MSCs with RSV at a MOI of 1 PFU/cell. (A) RSV F-protein

positive LR-MSCs assessed by FCM and plotted over time. LR-MSCs were infected with 1
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PFU/cell with RSV-A2 (n = 3) or a clinical isolate RSV-ON1-H1 (n = 4–6). Each symbol repre-

sents an individual donor. (B) Supernatants of infected LR-MSCs or apical washes of infected

WD-AEC cultures were analyzed by a PFU assay. Cells were infected with RSV-ON1-H1 at a

MOI of 1 PFU/cell. A Mann-Whitney U test was applied to compare the two cell types

(WD-AECs, n = 3 versus LR-MSCs, n = 5–6). Each symbol represents an individual donor.
�p<0.05, ��p<0.01. (C) Intracellular infectious RSV titers over time in LR-MSCs infected with

RSV-A2 at 1 PFU/cell. Each symbol represents an individual donor (n = 3). (D) Extracellular

viral RNA loads over time in supernatants of infected LR-MSCs or apical washes of infected

WD-AEC cultures. Cells were infected with RSV-ON1-H1 at a MOI of 1 PFU/cell. A Mann-

Whitney U test was applied to compare the two cell types (WD-AECs, n = 3 versus LR-MSCs,

n = 4–6). Each symbol represents an individual donor. �p<0.05.

(TIFF)

S2 Fig. IFN mRNA levels and PD-L1 and MHC class I surface expression in RSV-infected

pediatric LR-MSCs. (A-C) mRNA levels of IFN-β (A), IFN-λ1 (B), and IFN-λ2/3 (C) in

LR-MSCs and WD-AECs infected with mock control or RSV-A2 at a MOI of 1 PFU/cell for 24

and 72 hours. Boxplots indicate the median value (centerline) and interquartile ranges

(box edges), with whiskers extending to the lowest and the highest values. Each symbol repre-

sents an individual donor (LR-MSCs, n = 4–6; WD-AECs, n = 3). The data were compared

with the Kruskal–Wallis test followed by Dunn’s post hoc test. (D) Representative histogram

of the surface expression of PD-L1 and MHC class I in pediatric LR-MSCs 24 h post-treatment

with mock, poly(I:C) 10 μg/ml, and RSV-A2 at 1 PFU/cell. (E) Median fluorescence intensity

(MFI) of PD-L1 and MHC class I expression. Each symbol represents an individual donor

(n = 3). The data were compared with the Kruskal–Wallis test followed by Dunn’s post hoc

test. �p<0.05.

(TIFF)

S3 Fig. RSV-infection of ovine PCLS and ovine LR-MSCs. (A) Representative histograms

showing expression of the surface markers CD29, CD44, and CD166. (B) Representative

phase-contrast (PC) micrograph showing morphology in culture and demonstrates plastic

adherence. Representative images of Toluidine blue, Alizarin Red S, and Oil Red O stainings

after chondrogenic (C), osteogenic (O), and adipogenic (A) differentiation, respectively. Mag-

nification 100X (PC, O), 200X (C, A). (C) Cell-associated RSV RNA loads expressed as RSV

copies per 109 18S copies (red empty circles) and infectious virus release in PFU per ml (blue

empty circles) over time following infection of primary ovine LR-MSCs with 0.1 PFU/cell of

RSV-A2 determined 24, 48, and 72 h p.i. Each symbol represents an individual donor (n = 3).

The positive control (P) is the virus preparation used for the infections having a titer of 2x107

PFU/ml. M, mock. (D-E) Ovine PCLS infected with RSV-GFP at 5x105 PFU per PCLS. Repre-

sentative fluorescence micrographs are shown at 72, 120, and 144 hours p.i. Scale bar, 650 μm

(D). Representative fluorescence micrographs indicating infection of pneumocytes. Scale bar,

125 μm (E).

(TIFF)

S4 Fig. Presence of potential syncytium in neonatal lungs following RSV infection. (A, B)

Representative histopathological sections of the lung tissue from lambs 6 days p.i. infected

with RSV-A2. The red and blue arrowheads indicate the presence of potential syncytia and the

green arrowheads indicate dome-shaped type 2 alveolar cells lining the alveolar wall, indicative

for type 2 alveolar cell hyperplasia. Scale bar, 50 μm.

(TIFF)

PLOS PATHOGENS Role of lung-resident MSCs during RSV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009789 July 28, 2021 21 / 28

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009789.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009789.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009789.s004
https://doi.org/10.1371/journal.ppat.1009789


S5 Fig. FCM assay for apoptosis detection in vivo. Gating strategy for the detection of cleaved

caspase-3-positive cells. G1, gate 1.

(TIFF)

S6 Fig. Infection of epithelial cells and LR-MSCs following neonatal RSV infection. RSV-

positive epithelial cells (Epith) and LR-MSCs in lung cell suspensions were detected with an

FCM assay 3, 6, 14, and 42 days following RSV-A2 infection of neonates. The dashed line

depicts the detection limits (0.6% for Epith and 0.8% for LR-MSCs). Boxplots indicate the

median value (centerline) and interquartile ranges (box edges), with whiskers extending to the

lowest and the highest values. Each symbol represents an individual animal (mock, n = 3–4;

RSV, n = 5–8).

(TIFF)

S7 Fig. Formation of syncytium upon RSV infection of human and ovine LR-MSCs. (A, B)

Representative micrographs of pediatric (A) and ovine (B) LR-MSCs infected with 0.1 PFU/

cell of RSV-mCherry 48–72 hours p.i. Giant multinucleated cells, indicative of syncytium for-

mation, were observed. Yellow arrowheads indicate clusters of nuclei and the yellow dashed

line indicates a giant multinucleated cell. PC, phase-contrast. Magnification 100X (PC, pediat-

ric LR-MSCs) and 400X (PC and RSV, ovine LR-MSCs). Scale bar, 125 μm.

(TIFF)

S1 Table. List of significant DEGs in RSV-infected versus mock-treated animals.

(DOCX)

S2 Table. Patient characteristics.

(DOCX)

S3 Table. List of qPCR primers.

(DOCX)

S4 Table. List of antibodies used.

(DOCX)
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84. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures

Database (MSigDB) hallmark gene set collection. Cell Syst. 2015; 1(6):417–25. Epub 2016/01/16.

https://doi.org/10.1016/j.cels.2015.12.004 PMID: 26771021; PubMed Central PMCID: PMC4707969.

PLOS PATHOGENS Role of lung-resident MSCs during RSV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009789 July 28, 2021 28 / 28

https://doi.org/10.1128/jvi.74.22.10508-10513.2000
https://doi.org/10.1128/jvi.74.22.10508-10513.2000
http://www.ncbi.nlm.nih.gov/pubmed/11044095
https://doi.org/10.1016/j.antiviral.2020.104774
http://www.ncbi.nlm.nih.gov/pubmed/32197980
https://doi.org/10.1038/sj.gt.3302930
http://www.ncbi.nlm.nih.gov/pubmed/17330086
https://doi.org/10.1177/1040638719861686
https://doi.org/10.1177/1040638719861686
http://www.ncbi.nlm.nih.gov/pubmed/31246162
https://doi.org/10.4049/jimmunol.1600672
https://doi.org/10.4049/jimmunol.1600672
http://www.ncbi.nlm.nih.gov/pubmed/27837108
https://doi.org/10.1093/bioinformatics/bts356
http://www.ncbi.nlm.nih.gov/pubmed/22743226
https://doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/24227677
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1007/s12064-012-0162-3
https://doi.org/10.1007/s12064-012-0162-3
http://www.ncbi.nlm.nih.gov/pubmed/22872506
https://doi.org/10.1016/j.cels.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26771021
https://doi.org/10.1371/journal.ppat.1009789

	1

