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Abstract We reassess the impact of short-distance con-
straints for the longitudinal component of the hadronic light-
by-light amplitude on the anomalous magnetic moment of the
muon, aμ = (g − 2)μ/2, by comparing different solutions
that have recently appeared in the literature. In particular,
we analyze the relevance of the exact axial anomaly and its
impact on aμ and conclude that it remains rather limited. We
show that all recently proposed solutions agree well within
uncertainties on the numerical estimate of the impact of short-
distance constraints on aμ, despite differences in the concrete
implementation. We also take into account the recently cal-
culated perturbative corrections to the massless quark loop
to update our estimate and outline the path towards future
improvements.

1 Introduction

The recent measurement of (g − 2)μ by the Fermilab Muon
g − 2 collaboration [1–4] has made the discrepancy with the
Standard-Model prediction [5–29] more serious, by bringing
it from the 3.7σ to the 4.2σ level when combined with the
previous Brookhaven measurement [30]. The concrete per-
spective of additional reductions of the experimental uncer-
tainty in the near future—mainly from subsequent Runs at
Fermilab [31], but also the future J-PARC experiment [32]
using a different technique—makes the need of further theo-
retical improvements more urgent. As is well known, the two
main sources of theoretical uncertainties are both hadronic.
The largest one is the hadronic vacuum polarization (HVP)
contribution, and the second hadronic light-by-light (HLbL)
scattering. A lot of work has been devoted to reducing the
uncertainty in the latter by separately analyzing each of the
different contributions to the HLbL amplitude. These involve
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different intermediate states and their calculation requires a
good understanding of the relevant physics. The present sta-
tus has been summarized in the White Paper (WP) on the
Standard Model prediction of (g − 2)μ [5], resulting in a
phenomenological estimate in agreement with lattice QCD
[28,33]. The behavior of the HLbL amplitude for asymptotic
values of its arguments is fixed by QCD and represents an
important, global constraint, which has a significant impact
on the estimate of this contribution. A detailed understanding
of which intermediate states play a role in satisfying this con-
straint is crucial to estimate its impact and reduce the overall
theoretical uncertainty.

There are two different regimes of asymptotic momenta
and correspondingly two different constraints. For g−2 kine-
matics, with one photon in the static limit, the HLbL ampli-
tudes only depend on the squared momenta of the remain-
ing three photons. The first regime is when two of them are
much larger than the third, whereas all of them being about
equally large defines the second. They represent two limiting
cases of a possible continuum of short-distance constraints
(SDCs) and we will refer to them as SDC1 (q2

1,2 � q2
3 ,

q2
1,2 � Λ2

QCD) and SDC2 (q2
1 ∼ q2

2 ∼ q2
3 � Λ2

QCD). Mel-
nikov and Vainshtein (MV) were the first to derive SDC1
[18] and, in particular, to point out that in the chiral limit and
for asymptotic values of q2

1,2, the leading 1/q2
3 behavior of

the longitudinal part receives no corrections neither at large
nor at small q2

3 values: in other words, the 1/q2
3 dependence

is exact across the whole range. This is a direct consequence
of the axial anomaly [34–38], see Sect. 2. The transverse part
in turn is constrained by the celebrated non-renormalization
theorems [39,40] for the vector–vector–axial-vector (VVA)
correlator. The SDC2 case was also discussed by MV on the
basis of the quark loop, but its derivation has only recently
been put on a firm basis by using the operator product expan-
sion (OPE) [25]. Moreover, both non-perturbative [41] and
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perturbative corrections [42] to the OPE have recently been
calculated, thereby reducing one source of uncertainty.

There has been much interest in finding a way to sat-
isfy these SDCs beyond the model solution discussed by
MV [18]. We proposed a Regge model of pseudoscalar res-
onances [26,27], whereas a solution based on the resumma-
tion of a tower of axial-vector resonances in a holographic
model of QCD (hQCD) was put forward in two more recent
papers [43,44]. A completely different approach based on
a set of interpolants between long and short distance has
been adopted by Lüdtke and Procura (LP) [45]. Some of
these works either appeared or were published after the WP,
where the estimate about the impact of the SDCs and of the
axial-vector contribution is significantly lower than what was
estimated in [18]. While none of the most recent papers has
criticized the estimate in the WP, there are statements in [44]
that their results also agree with those in [18], and with [43],
who in turn conclude that the MV model is not the correct
way to implement SDC1, which makes the whole situation
rather confusing. Given the relevance of the SDCs, which
currently represent the largest contribution to the theoretical
uncertainty of aHLbL

μ [5], it is important to understand the
differences between these solutions, clarify to what extent
they agree and where exactly differences arise, and reassess
the current situation.

From a theoretical point of view, the solution based on
hQCD is particularly relevant and appealing as it represents
the first hadronic model of QCD based on axial vectors that
exactly satisfies the axial anomaly and SDC1 in the chiral
limit. As we will discuss in Sect. 3 on the basis of general,
model-independent arguments, the solution has to arise from
a resummation of an infinite tower of axial vectors, as it does
in the hQCD models and as is expected when fulfilling SDCs
with hadronic states [46,47]. The model also has the advan-
tage that the resummation can be performed analytically, but
its simplicity comes at the price of lack of flexibility: once a
number of inputs is used to pin down the free parameters in
the model, any further quantity can be predicted and shows
some discrepancies with QCD phenomenology. In particu-
lar, in the simplest models on which we will focus here, the
fulfillment of the asymptotic constraints in general gener-
ates tensions with phenomenological low-energy constraints
[43,44].

The solution originally proposed by MV also exactly sat-
isfies the axial anomaly and SDC1 in the chiral limit, but
achieved this goal by a mere truncation: every hadronic con-
tribution beyond the pion pole for g − 2 kinematics was
simply dropped. Such an approximation is very well justi-
fied for the three-point function 〈VV A〉, as explicitly shown
in [44]. For what concerns the HLbL amplitude the situation
is different: the MV model extrapolates the OPE expression
to low q2

1,2, where it cannot be justified. It was first pointed
out in [26,27] that the largest contribution to aμ in the MV

model comes from the low-energy region, where additional
intermediate states would contribute. The first main point of
this paper is then to demonstrate that this conclusion applies
to all the recently proposed implementations, summarized
in Sect. 4, explaining why there is general consensus on the
numerical impact despite significant differences in the imple-
mentations themselves, see Sect. 5.

For instance, the hQCD and Regge models differ in their
use of pseudoscalar vs. axial-vector states. In [26,27] the
main motivation for adopting a Regge model of pseudoscalar
resonances is related to a peculiar property of their contribu-
tion to the HLbL tensor. In a dispersive approach [20,21,48–
51] the contribution of narrow-width resonances to the HLbL
tensor is in general ambiguous as it depends on the basis in
which the calculation is performed, unless a set of sum rules
is satisfied. Only in the case of pseudoscalars are these sum
rules automatically satisfied. The drawback of using pseu-
doscalar resonances is that in the chiral limit they do not
couple to the axial current and therefore cannot contribute to
the anomaly. We argued in [26,27] that such a model would
nonetheless represent a useful tool to make a realistic eval-
uation of the impact of the SDCs in the physical world, i.e.,
away from the chiral limit.

This view has been challenged by MV in [52]: they empha-
sized the importance of the axial anomaly as an exact con-
straint in the chiral limit, and considered its fulfillment essen-
tial in order to make a reliable estimate of the impact of the
SDCs on aμ. By a detailed comparison between the MV and
the hQCD model we will show, however, that the relevance of
the exact axial anomaly in determining the four-point func-
tion is limited to a kinematic region whose impact on the
calculation of aHLbL

μ is very small. This is one of the most
important conclusions of this paper, which extends and con-
firms the findings in [26,27], in line with earlier studies of
the relevant momentum regions [53].

Since each of the models discussed here cannot claim to
be a faithful representation of QCD but at best be a tool
to capture the essential features thereof in connection with a
particular aspect of the aμ calculation, it is instructive to com-
pare all three of them, even if they rely on different degrees
of freedom to fulfill the SDCs. Anticipating our conclusions,
we will find a satisfactory agreement between the hQCD and
the pseudoscalar Regge models. We will then use the latter to
update our earlier estimate taking into account the recently
calculated perturbative and non-perturbative corrections to
the OPE [41,42], see Sect. 6. This serves only to illustrate
the current status, because we believe that it is possible to
incorporate the good theoretical properties of hQCD models
into our dispersive formalism, after developing a coherent
formulation of axial vectors in the narrow-width approxima-
tion. This is the direction in which future work will evolve,
as we will sketch in the outlook in Sect. 7.
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2 The longitudinal OPE and non-renormalization
theorems

We concentrate here on the OPE for the longitudinal ampli-
tude, which concerns only one of the functions in the HLbL
tensor, namely the Π̂1 function introduced in [21]. Only this
function contains the contribution of the pion pole, which
can be written as1

Π̂1(q
2
1 , q2

2 , q2
3 , 0; s, t, u) = Fπγ ∗γ ∗(q2

1 , q2
2 )Fπγ γ ∗(q2

3 )

s − M2
π

+ G̃(q2
1 , q2

2 , q2
3 , 0; s, t, u). (1)

The transition form factor (TFF) of the pion is a single func-
tion, which appears both in the doubly-virtual and in the
singly-virtual case: Fπγ ∗γ ∗(q2, 0) = Fπγ γ ∗(q2). The func-
tion G̃ collects all additional contributions not containing any
poles at s = M2

π .
For the muon g − 2 calculation we need to take the limit

q4 → 0, which changes the kinematics as follows: s = q2
3 ,

t = q2
2 , and u = q2

1 , leading to

Π̄1(q
2
1 , q2

2 , q2
3 ) ≡ Π̂1(q

2
1 , q2

2 , q2
3 , 0; q2

3 , q2
2 , q2

1 )

= Fπγ ∗γ ∗(q2
1 , q2

2 )Fπγ γ ∗(q2
3 )

q2
3 − M2

π

+ G(q2
1 , q2

2 , q2
3 ), (2)

where G(q2
1 , q2

2 , q2
3 ) = G̃(q2

1 , q2
2 , q2

3 , 0; q2
3 , q2

2 , q2
1 ). We

stress that taking the limit q4 → 0 starting from the rep-
resentation in (1) unambiguously leads to (2). The splitting
between the first and second term is inherited from the split-
ting between pole term and the rest for general kinemat-
ics, but is nonetheless unique. If one wanted to identify the
pole term directly for g − 2 kinematics, the first term in (2)
should only have its residue as numerator, thereby separating
any additional q2

3 dependence carried by the TFFs: in other
words, separating the pseudoscalar poles from the vector-
meson ones in the TFFs (which correspond to cuts from 2π ,
3π , etc. intermediate states, if one does not take the narrow-
width approximation). Both definitions of the pion pole (for
general or g − 2 kinematics) are possible and the relation
between the two is completely understood. The connection
of this aspect with the SDCs has been discussed in detail in
[54]. Here we adopt the splitting between pion pole and the
function G given in (2) and concentrate our discussion on the
latter.

In the MV limit, q̂2 ≡ q2
1 = q2

2 � q2
3 , q̂2 � Λ2

QCD, with

no constraints on q2
3 , the function Π̄1 reads:

1 We work with q2
4 = 0, but q4 	= 0 and, for simplicity, only consider

the isospin-triplet component for now. The Mandelstam variables are
defined as s = (q1 + q2)

2, t = (q1 + q3)
2, u = (q2 + q3)

2.

Π̄1(q̂
2, q̂2, q2

3 ) = Fπγ ∗γ ∗(q̂2, q̂2)Fπγ γ ∗(q2
3 )

q2
3 − M2

π

+ G(q̂2, q̂2, q2
3 ), (3)

which can be further simplified taking into account the
leading-order OPE for the pion TFF [55,56]:

Fπγ ∗γ ∗(q̂2, q̂2) = −2Fπ

3q̂2 + O(q̂−3). (4)

We now carry out the separation between the pion pole in g−2
kinematics (in the chiral limit) from the rest, and rewrite the
expression for Π̄1 as follows:

Π̄1(q̂
2, q̂2, q2

3 ) = −2Fπ

3q̂2

[
Fπγ γ

q2
3

+ Fπγ γ ∗(q2
3 ) − Fπγ γ

q2
3

+ O(M2
π )

]

+ G(q̂2, q̂2, q2
3 ) + O(q̂−3), (5)

where

Fπγ γ := Fπγ γ ∗(0) = 1

4π2Fπ

. (6)

Since we know how the amplitude has to behave in the chiral
limit [18]:

Π̄1(q̂
2, q̂2, q2

3 )

∣∣∣
mq=0

= − 1

6π2

1

q̂2q2
3

+ O(q̂−3), (7)

we have to conclude that [27]

G(q̂2, q̂2, q2
3 )

∣∣∣
mq=0

= 2Fπ

3q̂2

Fπγ γ ∗(q2
3 ) − Fπγ γ

q2
3

∣∣∣∣
mq=0

+ O(q̂−3). (8)

This remarkable result is actually a consequence of the
non-renormalization of the axial anomaly [34–38], as first
discussed in [18] (see [39,40] for a full account of non-
renormalization theorems for the VV A correlator):

wL(q2
1 , q2

2 , (q1 + q2)
2) = 2NC

(q1 + q2)2 + O(M2
π ). (9)

The expression on the right-hand side looks like the pion-pole
contribution in the chiral limit, though without the (properly
normalized) TFF in the numerator. As discussed in detail in
[54,57] this implies a constraint between the contribution of
the pion and that of transverse degrees of freedom, such that
the only effect of their contribution in the chiral limit is to
replace the pion TFF by its value at q2

3 = q2
4 = 0. A crucial

point is that the constraint (8) applies for arbitrary values of
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q2
3 , but only for large values of q̂2 � Λ2

QCD (and q̂2 � q2
3 ),

where the OPE in the MV limit is valid: for non-asymptotic
values of q2

1,2 the connection between the four- and the three-
point function gets lost and nothing can be inferred on the
behavior of G(q2

1 , q2
2 , q2

3 ). The key point in assessing the
relevance of the non-renormalization theorem for 〈VV A〉
for the numerical evaluation of aμ thus concerns the weight
of the integration region in which the constraint applies, as
we will discuss in detail in Sect. 5.

3 On axial-vector contributions to the longitudinal
function in the dispersive approach

Since the non-renormalization theorems on the 〈VV A〉 func-
tion interrelate transverse and longitudinal degrees of free-
dom, it is clear that axial-vector states play a role in ful-
filling (8). Within the dispersive framework for HLbL, the
inclusion of axial-vector mesons suffers from two closely
related difficulties: on the one hand, the contribution of nar-
row states depends on the choice of basis—these ambiguities
apply to all narrow resonances beyond the pseudoscalar ones
and have been recently discussed for scalar contributions
[58]. As only the full HLbL scattering amplitude needs to be
basis independent, a phenomenological evaluation of axial-
vector effects thus must proceed in accordance with the other
contributions. The axial-vector exchanges discussed in the
context of SDCs, both in hQCD [43,44] and in other imple-
mentations [18,52,57,59–61], typically refer to a Lagrangian
model, which can differ by non-pole pieces from a dispersive
definition, depending on the choice of basis.2

The second difficulty in the dispersive approach concerns
kinematic singularities: while the basis of [21] is free from
kinematic singularities in the dispersed Mandelstam vari-
able, it still contains singularities in the photon virtualities,
with residues that vanish for the entire HLbL contribution
due to the presence of sum rules. As narrow resonances do
not fulfill the sum rules individually, a further ambiguity in
their contribution is introduced by the subtraction scheme
of the singular parts, which again disappears only for the
entire HLbL contribution. This second complication does
not affect pseudoscalar or scalar contributions, but appears
for axial and higher-spin resonances in the basis of [21]. By
employing the sum rules, we have now constructed a new
basis that explicitly removes all kinematic singularities from
axial-vector contributions, while leaving pseudoscalar and

2 Note that, in addition, all such estimates assume the validity of a
narrow-width approximation. Since the main branching fractions pro-
ceed into three- or higher-multiplicity final states, a full dispersive
treatment of axial-vector intermediate states is difficult, but for S- and
D-wave resonances that decay predominantly into two-meson states a
comparison to implementations in terms of γ ∗γ ∗ amplitudes [62–69]
is possible, see [58] for the scalar case.

scalar contributions unaltered, thereby solving this second
issue in the case of axial-vector contributions. In this basis
the contribution of a single axial-vector meson (with mass
MA) to the function G takes the form:

G(q2
1 , q2

2 , q2
3 ) = G2(q2

1 , q2
2 )G1(q2

3 )

M6
A

, (10)

where

G2(q
2
1 , q2

2 ) = (q2
1 − q2

2 )F1(q
2
1 , q2

2 )

+ q2
1F2(q

2
1 , q2

2 ) + q2
2F2(q

2
2 , q2

1 ),

G1(q
2) = F1(q

2, 0) + F2(q
2, 0) = G2(q2, 0)

q2 , (11)

and F1,2(q2
1 , q2

2 ) are two of the three TFFs of an axial-vector
meson, see [70] for the precise definitions. The third one,F3,
does not appear in the expression above but is related to F2

by the symmetry properties of the TFFs:

F1(q
2
1 , q2

2 ) = −F1(q
2
2 , q2

1 ),

F2(q
2
2 , q2

1 ) = −F3(q
2
1 , q2

2 ). (12)

The expression (11) shows that the dispersive contribution of
axial-vector mesons to the function G has the form of non-
pole terms, but does not vanish. Our new basis avoids any
kinematic singularities in (10) and makes the dependence on
the virtualities unambiguous for basis changes that preserve
this property, up to terms that are subleading for q2

i � M2
A.

As the remaining ambiguities become irrelevant for
asymptotic virtualities, (10) leads to an interesting model-
independent conclusion. The light-cone expansion deter-
mines the asymptotic behavior of F1 = O(1/q6

i ), F2 =
O(1/q4

i ), with coefficients determined via decay constants
in analogy to (4), see [70]. This implies that, asymptotically,

G2(q̂
2, q̂2) = O(1/q̂2), G1(q

2
3 ) = O(1/q4

3 ). (13)

Since (10) factorizes into parts dependent on q2
1,2 and q2

3 ,
respectively, we find that (8) decomposes into two equations
that need to be fulfilled separately:

lim
q̂2→∞

x
G2(q̂2, q̂2)

M4
A

= − 2

3q̂2 + O(q̂−3),

G1(q2
3 )

xM2
A

= −Fπ

Fπγ γ ∗(q2
3 ) − Fπγ γ

q2
3

, (14)

with x an unknown, but constant factor that depends on the
axial-vector TFFs. While the asymptotic form of G2 thus
matches, the axial-vector contribution to G1(q2

3 ) decreases
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Q
2 G

1(-
Q
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)

L3 dipole ansatz
pion
eta
eta'
Leutgeb-Rebhan HW2
Leutgeb-Rebhan HW2 (UV-fit)

Fig. 1 Singly-virtual TFF of the ground-state axial-vector meson
f1(1285): comparison of the dipole ansatz used to fit the L3 data (black
curve and gray band) [71], the HW2 hQCD model representations (blue
dashed and turquoise dot-dashed curves) [43], and the one obtained
from (14) using as input the π0, η, and η′ TFFs (green, yellow, and red
curves) from [27]

too fast, mirroring the need for an infinite tower of axial-
vector states in the hQCD models. This mismatch can also
be illustrated by comparing Q2G1(−Q2)/G1(0) evaluated
from the axial-vector TFFs with (14), see Fig. 1, where we
concentrated on the contribution from F2, given that F1 is
suppressed for several reasons: for small virtualities its anti-
symmetry implies F1(−Q2, 0) ∼ Q2, for large virtualities
due to the asymptotic behavior, and phenomenologically due
to small couplings [72]. The comparison curves for η and η′
show that this qualitative behavior does not depend on the
isospin channel, reinforcing that a single state is not suffi-
cient to implement the SDCs.

4 Three approaches to satisfy short-distance constraints

In this section we compare the different solutions to the SDCs
that have been proposed so far in the literature [18,26,27,
43,44,52], in terms of the different representations of the
functions wL(q2) ≡ wL(q2, 0, q2) and G(q2

1 , q2
2 , q2

3 ), as
constrained by the non-renormalization theorem (9) and the
asymptotic behavior (8) in the chiral limit. We consider the
models as they are, in other words, we take each one of them
as an approximation to the total contribution to wL and the
longitudinal SDC. The question of building a better model,
possibly by combining features or degrees of freedom of the
present ones will be touched upon in Sect. 7. The analysis
based on interpolants [45] will be included in the numerical
comparison in the following section.

4.1 The Melnikov–Vainshtein model

After deriving the SDC for the HLbL tensor, MV go beyond
the asymptotic limit and propose a model that by construction
satisfies (7):

Π̄MV
1 (q2

1 , q2
2 , q2

3 ) = Fπγ ∗γ ∗(q2
1 , q2

2 )Fπγ γ

q2
3 − M2

π

, (15)

with the shift in the pole position from zero to M2
π as the

only effect of the light quark masses considered. This implies
that, even though no additional contributions beyond the pion
pole are introduced explicitly, such additional contributions
are implicitly assumed to be completely determined not only
in the asymptotic region, as implied by (8), but everywhere:

GMV(q2
1 , q2

2 , q2
3 ) = −Fπγ ∗γ ∗(q2

1 , q2
2 )

Fπγ γ ∗(q2
3 ) − Fπγ γ

q2
3

+ O(M2
π ). (16)

Equation (16) is a very strong assumption, with no appar-
ent physical justification: it extrapolates a constraint only
valid at asymptotically high energies (8) to all possible val-
ues of q2

1,2, all the way down to q2
1 = q2

2 = 0. As such, it
has the potential to significantly affect the value of the HLbL
contribution to aμ—a quantity most sensitive to low q2

i . That
this indeed happens has already been shown explicitly in [27],
and will be discussed in more detail below.

Regarding the three-point function, the MV model reads

wMV
L (q2) = 2NC

q2 − M2
π

, (17)

which again amounts to including as only chiral correction
the one that shifts the pole in the pion propagator. Since chi-
ral corrections become negligible at large q2, (17) is a well-
motivated model at all q2, with small deviations from the
truth expected only at intermediate energies (chiral correc-
tions may become more sizable for the η and η′ channels).

4.2 The Leutgeb–Rebhan and
Cappiello–Catà–D’Ambrosio–Greynat–Iyer models

In two recent papers, Leutgeb–Rebhan [43] (LR) and Cap-
piello et al. [44] (CCDGI) have proposed models based on
hQCD to satisfy the SDCs. As the discussion in Sect. 3 shows,
a solution in terms of a single axial-vector meson (per isospin
channel) is essentially excluded, and indeed in these models
the solution emerges from a resummation of an infinite tower
of axial-vector mesons. For simplicity, we concentrate here
on the model presented by CCDGI in [44], which is equiv-
alent to the HW2 model in [43], although the two groups
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make different choices for the parameters.3 The representa-
tion of this model for the function G reads (in the notation
of CCDGI)

GHW2(q2
1 , q2

2 , q2
3 ) = − Fπγ ∗γ ∗(q2

1 , q2
2 )Fπγ γ ∗(q2

3 )

q2
3

− F2
πγ γ

q2
3

∫ z0

0
dz α′(z)v1(z)v2(z)v3(z),

(18)

where α(z) = 1 − z2/z2
0, with z0 = (

√
2πFπ )−1 and

vi (z) = zQi

[
K1(zQi ) + K0(z0Qi )

I0(z0Qi )
I1(zQi )

]
, (19)

with Kn(x) and In(x) modified Bessel functions [44]. The
same function vi (z) also determines the pion TFF

Fπγ ∗γ ∗(q2
1 , q2

2 ) = −Fπγ γ

∫ z0

0
dz α′(z)v1(z)v2(z). (20)

This representation correctly reproduces the high-q2 limit
of the TFF shown in (4), the Brodsky–Lepage limit of the
singly-virtual pion TFF [55,56]:

Fπγ γ ∗(q̂2) = −2Fπ

q̂2 + O(q̂−3), (21)

as well as, by construction, the normalization atq2
1 = q2

2 = 0.
A convenient rewriting for G is

GHW2(q2
1 , q2

2 , q2
3 ) = −Fπγ ∗γ ∗(q2

1 , q2
2 )

Fπγ γ ∗(q2
3 ) − Fπγ γ

q2
3

− F2
πγ γ

q2
3

∫ z0

0
dz α′(z)v1(z)v2(z)v̄3(z),

(22)

where v̄3(z) = v3(z) − 1, as it shows that there is no diver-
gence at q2

3 = 0 (the integral vanishes for q2
3 → 0). Note that

the first term in (22) coincides, up to chiral corrections, with
the MV model, which can therefore be viewed as a truncated
version of the hQCD model. In the HW2 model, however,
the first and the second non-factorizable term always come
together as they have the same physical origin: both arise
from the resummation of the whole tower of axial-vector
mesons. In the numerical analysis below we will see that,
while the first term is dominant for asymptotic values of
q2

1 ∼ q2
2 , for low momenta, they are equally important and

in fact cancel each other.

3 We will not consider the HW1 model discussed in [43] simply because
it does not offer a simple analytic representation like HW2.

We also observe that the HW2 model offers a compact and
convenient representation for the function Π̄1:

Π̄HW2
1 = Fπγ ∗γ ∗(q2

1 , q2
2 )

Fπγ γ

q2
3 − M2

π

×
[

1 + M2
π (Fπγ γ ∗(q2

3 ) − Fπγ γ )

q2
3 Fπγ γ

]

− F2
πγ γ

q2
3

∫ z0

0
dz α′(z)v1(z)v2(z)v̄3(z), (23)

where one can clearly see that the corrections to the 1/q2
3

behavior, i.e., the pion pole in g − 2 kinematics, vanish in
the chiral limit—the integral behaves as O(q̂−4).

Finally, for the VV A correlation function the HW2 model
gives

wHW2
L (q2) = 2NC

q2 − M2
π

[
1 + M2

π (Fπγ γ ∗(q2) − Fπγ γ )

q2Fπγ γ

]
,

(24)

which shows that the first term again corresponds to the
MV model. In this case it is evident that the correc-
tions to the MV model are of O(M2

π ) for any value of
q2, and therefore expected to be small everywhere. This
expression also shows that the first term in the repre-
sentation of the four-point function (23) takes the form
Fπγ ∗γ ∗(q2

1 , q2
2 )Fπγ γ wL(q2

3 )/(2NC ). While there is no harm
in approximating the wL function with (17), it is dropping
the non-factorizable second term in (23) that amounts to an
uncontrolled approximation. Its numerical impact will be
shown in Sect. 5.

4.3 Regge model of excited pseudoscalars

In the model we presented in [26,27], we considered only
the contribution of excited pseudoscalars to the function G:

GeP(q2
1 , q2

2 , q2
3 ) =

∞∑
i=1

FPiγ ∗γ ∗(q2
1 , q2

2 )FPiγ γ ∗(q2
3 )

q2
3 − M2

Pi

. (25)

Clearly, by dropping axial-vector intermediate states, which
contribute to this function according to (10), we are transfer-
ring their unique role in the chiral limit to the pseudoscalars,
which amounts to effectively changing their chiral behavior,
in particular the coupling of the excited pseudoscalars to the
axial-vector current, which has to vanish in the chiral limit.
This procedure cannot be strictly justified, but is similar in
spirit to models that use constituent quark masses. In order
to remove some of the model dependence, after matching to
the behavior dictated by the OPE we are replacing our model
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Fig. 2 Comparison of the MV, the HW2, and our model (solid) for
the isovector component of −Q2wL (−Q2) as a function of Q. Our
model is also broken down into pion and sum of excited pseudoscalar
contributions

in the asymptotic region with the perturbative QCD quark
loop.

We have imposed as constraint to our model that it sat-
isfy (8) only for q2

3 � ΛQCD, which is a less ambitious goal
than the one reached by both models described above:

lim
q̂2→∞

q̂2GeP(q̂2, q̂2, q2
3 ) = − 1

6π2q2
3

+ O(q−3
3 ). (26)

By construction, our model takes into account singularities
that are known to be present in the spectrum of QCD (the
low-lying pseudoscalar excitations). The resummation of all
higher excitations is used essentially to achieve the matching
to the asymptotic behavior, but its precise form is inessential.

The resulting representation for the longitudinal compo-
nent of the VV A correlator becomes4

weP
L (q2) = 2NC

Fπγ γ

[
Fπγ γ ∗(q2)

q2 − M2
π

+
∞∑
i=1

FPiγ γ ∗(q2)

q2 − M2
Pi

]
. (27)

We stress that this model was not conceived to approximate
this function other than for asymptotic values of its argument,
and its use in [26,27] was limited to the four-point function.
However, we find it instructive to provide this expression and
compare it numerically to the other models.

5 Numerical comparison of the three models

In this section we compare the three models numerically,
first for the wL(q2) function, then the G function and its
contribution to aμ.

4 Note that here we are using a peculiarity of our model that
FPi γ ∗γ ∗ (q̂2, q̂2) = − 1

6π2Fπγ γ q̂2 + O(q̂−3) for all i .

5.1 The wL function

A numerical comparison between the hQCD model and the
MV model for the wL function was provided and discussed
in [44] and clearly showed that the difference between the
two models amounts to chiral corrections neglected by MV,
which the hQCD model estimates to be numerically very
small. The picture that emerges from the comparison is that
the wL function is essentially determined by its low-energy
(fixed by the pion pole) and its high-energy behavior, with
no room for any structure in between. In Fig. 2 we repeat the
comparison for the isovector channel and show in addition
the contribution of the pion if one includes its transition form
factor in the numerator—in other words, according to the dis-
persive definition of the pion contribution for general kine-
matics. The difference between the π0 and the CCDGI/HW2
curves is the contribution of the axials, but its main effect is
to remove the TFF from the numerator, as the minute differ-
ence to the MV model shows. The hQCD models confirm
that the MV model appears to be an excellent approxima-
tion to the true wL function in QCD. It is instructive to see
algebraically how the contribution of the axial-vector states
manages to remove the TFF from the pion-pole contribution
and also to be able to estimate the additional corrections to
it, but for all practical purposes, and unless the highest preci-
sion is required, the MV model seems to provide an excellent
description of wL . In the same plot we also show our model
of excited pseudoscalars. This is designed to agree with the
other two for asymptotic values of q2, as indeed it does. At
low energy, where the pion contribution dominates, it also
agrees with the other two, but the transition region is not
as smooth and shows some structure, with up to 30% dis-
crepancy with the other two models. There is nothing to be
read into this discrepancy other than the fact that the model
was never designed to provide a good description of wL : the
structure it shows in the intermediate region just reflects the
fact that it was not required to fulfill any constraints here. If
required, the model could be refined to improve the transi-
tion between low- and high-energy constraints. Whether this
is of relevance in the context of the four-point function will
be discussed in the following.

5.2 The G function and the role of wL

Such a good understanding of the function wL and the simple
and accurate description provided by the MV model raises the
question which role the three-point function plays in deter-
mining the four-point function: how strongly does the accu-
rate knowledge of wL constrain Π̄1 or G? MV have shown
that for asymptotic values of q2

1 ∼ q2
2 , the leading behavior of

G is completely fixed by wL , but how relevant is the asymp-
totic region in determining the contribution of G to aμ? In
[52] it is argued that the kinematic region q2

1 ∼ q2
2 � q2

3
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Fig. 3 Comparison between the non-factorizable (NF) and the MV
term (second and first term in (22), respectively, for q2

1 = q2
2 = −Q2

and q2
3 = −Q2

3) in the CCDGI model (set 2)

“provides the largest contribution to aHLbL
μ ,” but we are not

aware of any quantitative basis for such a statement. When we
proposed an alternative way to fulfill the SDCs and compared
to MV [26,27], we showed that the large difference between
ours and the MV model arose precisely in the low-q2

i region
and, moreover, that the largest contribution to aHLbL

μ in the
MV model itself came from the same region.

The hQCD models, which satisfy exactly the anomaly and
the MV constraints, allow us to test the approximation made
in the MV model in a more quantitative way. As discussed
above, there are two approximations made by MV in their
representation of Π̄1: the first is to neglect chiral correction in
wL(q2

3 ), which is a very good one as we have just seen, but the
second one is to neglect non-factorizable corrections, which
in the hQCD models are given by the integral term in (23). To
establish the relevance of the function wL in the calculation
of the four-point function and its contribution to aμ we can
therefore compare the non-factorizable and the MV term:
the region where the latter dominates is the region where
the MV limit matters, i.e., where the wL function plays an
important role, and the MV model is a good approximation.
This comparison is shown in Fig. 3: even for the modest
requirement that the non-factorizable term amounts to at most
30% of the MV term, the minimum value of Q for which this
is satisfied is above 2 GeV. At the matching point Qmatch =
1.7 GeV, adopted in [26,27] for the transition between the
hadronic and the pQCD description, and which will again
be used below, the non-factorizable term is at least a 50%
correction to the MV term.

This suggests that if we compare the MV and the hQCD
models at the level of the function G, the agreement is going
to be much worse than for the function wL . To verify this
expectation, we plot the isovector component of the function

0 1 2 3 4
Q(GeV)

0

0.02

0.04

0.06

0.08

0.1

-Q
32  G

(-Q
2 ,-Q

2 ,-Q
32 )/ 

F πγ
γ

2

Q3 = 6 GeV
Q3 = 2 GeV
Q3 = 0.5 GeV

Fig. 4 Comparison of the MV (dot-dashed), the HW2 (dashed), and
our model (solid) for −Q2

3G(−Q2,−Q2,−Q2
3)/F

2
πγ γ as a function of

Q for different values of Q3

−Q2
3G(−Q2,−Q2,−Q2

3) as a function of Q2, see Fig. 4.
The dashed curves show the HW2 model, whereas the dot-
dashed ones only show the first term of (22), which corre-
sponds to the MV model. The plot shows very clearly that the
latter two versions tend to the same asymptotic limit, even for
low values of Q3, but that they differ significantly at low Q2.
While at large Q2 the second term in (22) is subdominant
and can be neglected, it compensates exactly the first one for
low Q2, so that their sum vanishes. This is expected for axial-
vector mesons, and is already seen in Fig. 4. If one keeps just
the first term, i.e., the MV model, this grows at low Q2, reach-
ing a finite limit for Q2 = 0 (not visible in the plot range,
because it is quite large). Figure 4 also displays our model
(solid curves), which has non-vanishing limits for Q2 = 0,
too. This is well understood, however, because excited pseu-
doscalars do couple to two real photons (even in the chiral
limit). As detailed in [27], these couplings are compatible
with the available phenomenological information, which still
suffers from large uncertainties. By construction, our model
also agrees with the other two for large Q2 and Q2

3, whereas
for low Q2

3 it does not agree well with the other two even as
Q2 grows.

5.3 Contribution to aμ of the function G

We can now address the question of how these differences
are reflected in the calculation of the contribution to aμ.
We do so by breaking down the contributions from different
kinematic regions and separating the isovector channel from
the isoscalar and isosinglet ones. Identifying the isoscalar
and isosinglet pieces with the physical states ignores mix-
ing effects, which implies that the η/ f1 and η′/ f ′

1 cannot be
compared separately. In general, the correct implementation
of mixing effects requires two mixing angles (see [73] for a
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Table 1 Contribution of G to aμ (referred to as the longitudinal SD
contribution in [26,27] and the longitudinal axial-vector contribution in
[43,44]) from the isovector and isoscalar plus isosinglet channels bro-
ken down in different integration regions (Qmatch = 1.7 GeV). The
notation for the mixed regions includes the respective crossed ver-
sions, e.g., the second line gives the contribution from Π̄1 in the region
Q2

1,2 > Q2
match > Q2

3 and from Π̄2 in the region Q2
1,3 > Q2

match > Q2
2,

in such a way that the region in which the SDC1 applies is contained
in this (and partly the first) row, while the third row has a scaling 1/Q4

in the hard momenta. Due to different mixing patterns the η/ f1 and
η′/ f ′

1 contributions cannot be compared separately. Note that the Regge-
model contribution to the asymptotic region is not yet replaced by the
OPE result. The numbers for LP refer to the “reference interpolant”
of [45]. The HW1 model, which we have not considered here, gives a
higher contribution Δaμ = 23.2 × 10−11 [43]. All entries are under-
stood to be accurate at the level of ±0.1 due to the applied numerical
integration methods, other (model-dependent) errors are not shown

MV CCDGI LR LP PS Regge

set 1 set 2 HW2 HW2UV-fit

Δaπ/a1
μ × 1011

Q2
i > Q2

match ∀i 1.4 0.5 0.8 0.6 0.8 0.9 0.7

Q2
1,2 > Q2

match > Q2
3 1.4 0.8 1.0 0.8 1.0 0.3 0.4

Q2
i,3 > Q2

match > Q2
j i 	= j 	= 3 0.8 0.2 0.3 0.2 0.3 0.4 0.4

Q2
i > Q2

match > Q2
j,k i 	= j 	= k 0.8 0.3 0.4 0.3 0.4 0.3 0.2

Q2
match > Q2

i ∀i 11.8 2.2 1.7 2.3 1.8 0.7 1.0

Total 16.2 4.0 4.2 4.2 4.3 2.6 2.7

Δa
η/ f1+η′/ f ′

1
μ × 1011

Q2
i > Q2

match ∀i 3.4 1.4 1.7 1.7 2.5 2.5 3.1

Q2
1,2 > Q2

match > Q2
3 2.1 2.1 2.3 2.5 3.0 0.6 1.1

Q2
i,3 > Q2

match > Q2
j i 	= j 	= 3 1.9 0.6 0.7 0.6 0.9 1.2 1.6

Q2
i > Q2

match > Q2
j,k i 	= j 	= k 1.7 0.8 0.9 0.9 1.1 0.7 0.9

Q2
match > Q2

i ∀i 12.9 5.6 5.1 6.8 5.4 1.5 3.1

Total 22.1 10.4 10.7 12.5 12.8 6.5 9.9

Grand total (π/a1 + η/ f1 + η′/ f ′
1) 38.3 14.3 14.9 16.7 17.1 9.1 12.6

review), but the differences can be illustrated based on the
simple U(3) formula

Γ (P → γ γ )

Γ (P ′ → γ γ )
= MP

MP ′
cot2 (

θA − θ0), θ0 = arcsin
1

3
, (28)

which for P = f1 gives θA = 62(5)◦ [71,74], but θA =
84.8(6)◦ for P = η. For this reason, we only compare the sum
of η and η′ with the sum of f1 and f ′

1 contributions, which are
not affected by this ambiguity. Table 1 shows that, although
the CCGDI/HW2 and our model completely differ in the
degrees of freedom that are used to satisfy the relevant SDCs,
they give similar numerical contributions to aμ. The MV
model, which satisfies (8) exactly, much like CCGDI/HW2,
but by neglecting any contribution to Π̄1 beyond the pion pole
in g−2 kinematics, gives instead a much larger contribution.

The breakdown of the contribution to aμ in different inte-
gration regions shows that there is in general a rather good
agreement (with a few exceptions) between the Regge and
the CCDGI/HW2 models. In particular in the pion/a1 chan-
nel, the agreement is very good in the “asymptotic” region,
the first row in the table. At low q2 there are differences,
but these are expected, because the two models describe dif-
ferent degrees of freedom there. The situation is similar in

the η/ f1 + η′/ f ′
1 channels, where again the largest differ-

ences occur in the low-energy region. However, there are also
some non-negligible differences even in the large-Q2

i region,
which might be related to the fact that the HW2 models do
not fully saturate the SDC2 [44]. Overall, the PS Regge and
also the hQCD models are largely compatible with the LP
interpolants, which are independent of the choice of degrees
of freedom. As far as the MV model is concerned, all regions
where at least one of the Qi is large are in reasonable agree-
ment with the other two models, but it is the region where
all Qi are small where the MV model estimates significantly
larger effects; as expected, since in this region the truncation
of the non-factorizable contributions, see Sect. 5.2, cannot
be justified. The table also shows that the kinematic region
Q2

1 ∼ Q2
2 � Q2

3, Q2
1,2 > Qmatch, all contained in part of the

first row and in the second row, provides a small contribution
to the total. This is particularly true for the MV model.

Another way to visualize the impact on aμ of the different
kinematic regions is to plot the contribution to aμ as a func-
tion of a lower cutoff Qmin < Qi , as shown in Fig. 5. The
plot shows again that although there are differences in the Qi

dependence between the Regge and the hQCD models, these
are not so significant with respect to aμ and lead to a similar
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Fig. 5 Contribution to aμ for Qi ≥ Qmatch: the longitudinal part of the
massless perturbative QCD quark loop (dotted red), the MV model (dot-
dashed green), the CCDGI model (dashed and dotted-dashed magenta),
the LR HW2 model (dashed and dotted-dashed turquoise), the LP model
(solid black), and our model (solid blue). The blue point indicates the
final value in (30)

final number. The MV model, on the other hand, only comes
close to the other two for large values of Qmin, whereas it esti-
mates a much larger effect in the region of low Qi . Finally,
we have also shown the result obtained with the interpolants
by LP, which is compatible with both the Regge as well as
the hQCD models, even though somewhat lower for low-
Q2. This may have to do with the fact that it does not include
any explicit resonances and lacks the corresponding low-Q2

enhancements. However, as explained in [45], the method
of interpolants can be generalized to explicitly include reso-
nance contributions, once their model-independent descrip-
tion becomes available (and might offer a valuable alterna-
tive to the resummation of a tower of states). For axial-vector
states this is not yet the case, however: a phenomenologically
driven evaluation seems within reach at least for the f1 con-
tribution [72], but it will require a detailed understanding of
sum-rule ambiguities.

The present numerical comparison seems to be at odds
with the conclusions drawn by CCDGI [44], who claim to
be in agreement with the MV estimate. They reach this con-
clusion on the basis of two comparisons: a detailed one at
the level of the 〈VV A〉 correlation function and one at the
level of the total contribution to aμ. The first one has been
discussed above and indeed shows that the two models agree
very well. However, the comparison of the contribution to
aμ at the level of the total without separation of the poles
of the ground-state pseudoscalars risks to be misleading: the
total number is dominated by the poles due to the Goldstone
bosons and even small differences in the evaluation of the
latter (necessary because of our improved understanding of
their TFF) may obscure the comparison for the remainder.
LR [43], whose model coincides algebraically with that of

21 1.5 2.5 3

Q
min

 (GeV)
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15

a μ× 
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11

OPE: LO

OPE: LO+NLO

excited PS

sum PS

Fig. 6 Matching between the NLO OPE and the Regge model for pseu-
doscalars (red curve). The blue curve shows the contribution of only the
excited pseudoscalars, excluding the π0, η, and η′. The gray band refers
to the uncertainty in setting the αs input, see [42] for more details

CCDGI and numerically differs very little, make the com-
parison after first subtracting the Goldstone-boson poles and
come to the same conclusion we reached here.

6 Impact of the perturbative corrections to the OPE

We can now evaluate the effect of the recently calculated
gluonic corrections to the OPE [42], as illustrated in Fig. 6.
The NLO corrections lead to a reduction of the massless
quark loop that for integrated quantities tends to evaluate
around 1 − αs/π , e.g., one has at the symmetric point Q1 =
Q2 = Q3 = Q [42]

Π̄1
∣∣
NLO

Π̄1
∣∣
LO

= C1
αs

π
,

C1 = −75Δ(1) − 2Δ(3) − 360ζ3

54
≈ −0.86, (29)

where Δ(n) = ψ(n)(1/3) − ψ(n)(2/3) in terms of the
polygamma function ψ(n) and ζ3 ≈ 1.202 (the coefficient
of the αs corrections becomes exactly −1 in the MV limit
[45]). In the following, we use the full corrections from [42].

As the hQCD models and the Regge model agree reason-
ably well at the numerical level, we will rely only on the latter
in the following. We essentially repeat the matching proce-
dure described in [27], replacing the plain massless quark
loop with the one containing O(αs) corrections. The result-
ing shift, even down to momentum cutoffs of about 1 GeV is
small, as can be seen in Fig. 6, but the most relevant improve-
ment is the reduction of the uncertainties, which had been
estimated to be O(20%) of the massless quark loop in [27]
and is reduced to a few percent after the NLO calculation [42],

123



Eur. Phys. J. C           (2021) 81:702 Page 11 of 13   702 

much smaller than the uncertainties on the hadronic side. As a
consequence, the procedure to determine the matching point
by minimizing the total uncertainties would not work any-
more. Instead, we keep it fixed at 1.7(5) GeV as we did in
[27]. With these changes, our updated estimate of the impact
of longitudinal SDCs on aμ reads

ΔaLSDC
μ = [

8.7(5.3)PS-poles + 4.2(1)q-loop
] × 10−11

= 13(5) × 10−11, (30)

where the first number in brackets is the contribution from
the region below the matching momentum of 1.7 GeV, eval-
uated as resummation of excited pseudoscalars, and the sec-
ond from the region above 1.7 GeV, evaluated with the NLO
quark loop. A welcome feature of the perturbative corrections
is that they push the OPE curve down, thereby improving the
matching with the hadronic model, which now seems to work
perfectly already around 2 GeV.

If one takes into account the large uncertainties on the
hadronic curve (not shown in Fig. 6) and the rather small esti-
mated perturbative and non-perturbative uncertainties, one
would be led to push the matching point towards 1 GeV: this
would reduce the importance of both hadronic and model
uncertainties and lead to smaller total uncertainties. To illus-
trate the point we mention the number we get for a match-
ing point at the lower end of the range we considered, for
1.2 GeV: ΔaLSDC

μ = [
5.7(2.8)PS-poles, par + 8.1(5)q-loop

] ×
10−11 = 14(3) × 10−11, where the error in the hadronic
model only refers to the parametric uncertainty—reduced
from the 3.6×10−11 it contributes to (30)—while the remain-
der of the error estimate, especially the variation of the match-
ing point, does not adapt in a straightforward way to the lower
scale. Most notably, the central value only changes slightly,
well within the uncertainties of the hadronic model, which
shows that the information coming from the perturbative side
agrees with the hadronic estimate. Of course, it is not obvi-
ous that at such low energies power corrections beyond the
ones calculated in [41] remain irrelevant, and to be on the
safe side one may consider increasing a bit the uncertainties
on the OPE side (also perturbative corrections, estimated in
[42] via scale variation in αs , could play a role at such low
energies). In any case, this brief discussion is just meant to
underline the relevance of the calculation of the corrections to
the massless quark loop and their possible impact in reducing
the uncertainties of this contribution: a full implementation
of this is left for future work.

7 Conclusions and outlook

In this paper we have discussed our current understanding of
the role and impact of longitudinal SDCs on the HLbL con-

tribution to (g − 2)μ and updated it to take into account the
recent calculation of the NLO perturbative corrections to the
OPE [42]. On the low-energy, hadronic side different solu-
tions for the matching to the SDCs have been proposed, some-
times accompanied by contradicting statements. To clarify
the situation we have compared these models both at the
level of the longitudinal component wL of three-point func-
tion 〈VV A〉 and in terms of the function G, defined in (2),
which collects all contributions beyond the pion pole to the
Π̄1 function of the HLbL tensor—the only one relevant for
the longitudinal SDCs. In this way, the core assumptions and
features of each implementation become most transparent,
facilitating the comparison of the different proposed solu-
tions.

Our conclusions can be summarized as follows:

1. Both the original MV model and the recent hQCD models
satisfy the axial anomaly in the chiral limit exactly. When
compared at the level of the three-point function and the
longitudinal component wL(q2), they agree very well,
supporting that the MV model is an excellent approxi-
mation to QCD for this particular quantity. We have also
compared our Regge model for excited pseudoscalars
[27] and showed that, as expected, it satisfies the axial
anomaly only asymptotically and at low q2.

2. A comparison between the MV and the hQCD models for
the four-point function, and in particular the function G,
can be done analytically and is very transparent: the MV
model can be viewed as a truncation of the hQCD models
and amounts to dropping all contributions beyond the
pion pole for g−2 kinematics. In the hQCD models these
additional contributions are expressed in terms of a single
integral over Bessel functions, which cannot be factorized
into a function ofq2

1,2 and one ofq2
3 . We have analyzed the

relative importance of the non-factorizable and the MV
term and shown that the latter is dominant only for rather
large values of q2

1,2: neglecting the former term leads to a

significant overestimate of the low-q2
1,2 contribution. The

hQCD and the MV model, which agree almost exactly
on the axial anomaly, thus differ substantially in their
estimate of aHLbL

μ .
3. The two approaches that achieve a matching to the OPE

by resumming a tower of hadronic states provide very
similar estimates of the impact on aμ, even though one
is based on excited pseudoscalars in a Regge model [27]
and the other on axial-vector mesons in a hQCD model
[43,44], with the aforementioned differences in wL(q2)

in the transition region between low and high momenta.
This again shows that the role of the axial anomaly in
determining the HLbL amplitude and its contribution to
aμ is rather limited.
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4. The hQCD models [43,44] provide an explicit, analytic
solution of the SDC1 in terms of a tower of axial-vector
resonances, which offers useful insights in the mecha-
nism by which SDC1 is fulfilled. Simple versions of these
models, such as HW2, depend on very few parameters,
which can be pinned down by imposing a number of
phenomenological constraints, but once this is done fur-
ther comparisons to phenomenology show discrepancies.
This can be improved by considering more complicated
versions of these models, such as HW1.

5. In the chiral limit the axial-vector mesons have to play
an important role in satisfying the SDCs, and the hQCD
models provide a concrete realization of the underlying
mechanism. In the future it will be critical to achieve
a full, model-independent understanding of how axial-
vector resonances contribute to HLbL (in analogy to
scalar states [58]), at least in the narrow-width approx-
imation. Otherwise a combination with other contribu-
tions to HLbL scattering evaluated within a dispersive
approach would not be justified. Here, we have presented
the expression for the dispersive axial-vector contribution
to Π̄1 in a particular choice of basis that is compatible
with all contributions evaluated dispersively so far, but
sum-rule ambiguities that are reflected in a basis depen-
dence still need to be addressed together with a numerical
analysis based on any TFF input.

6. The final estimates of ΔaLSDC
μ obtained with the hQCD

and our Regge model agree quite well with each other as
well as with a solution of the SDCs based on interpolants
[45]. On this basis, we have updated the final result given
in [27] to incorporate the perturbative corrections to the
OPE calculated in [42]:

ΔaLSDC
μ = 13(5) × 10−11. (31)

Even with the slight reduction of the total uncertainty,
this covers all realistic estimates of the impact of the
longitudinal SDCs on aHLbL

μ present in the literature.

As we argued above, further reductions of the uncertainties
in the HLbL contribution due to the fulfillment of the SDCs
are possible, also in view of the smallness of the perturbative
corrections to the OPE and their uncertainties down to ∼
1 GeV [42]. This will require an improved and less model-
dependent description on the hadronic side before trying to
optimize the matching and exploiting at best the result of the
perturbative calculation. Some of the recent developments
discussed here have paved the way to this goal. Future steps
in this direction include:

(i) fully clarifying how to evaluate the contribution of axial-
vector resonances to aHLbL

μ in an unambiguous way;

(ii) understanding how to incorporate the solution of the
SDCs in the chiral limit provided by the hQCD models
in a more general, dispersively motivated framework
based on axial-vector mesons;

(iii) while our discussion here was only concerned with the
SDC for the longitudinal amplitude, a solution in terms
of axial vectors can address at the same time both the
longitudinal and the transverse SDCs;

(iv) once the treatment of axial-vector mesons in the general
dispersive formalism will become possible, the reasons
to use a Regge model of pseudoscalars as a tool to esti-
mate the impact of the SDCs will cease to exist: only
the few lightest excited pseudoscalars will need to be
included.

Work along these lines is ongoing.
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