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Each day, approximately 27,000 people become ill with tuberculosis (TB), and 4,000 die

from this disease. Pulmonary TB is the main clinical form of TB, and affects the lungs

with a considerably heterogeneous manifestation among patients. Immunomodulation

by an interplay of host-, environment-, and pathogen-associated factors partially

explains such heterogeneity. Microbial communities residing in the host’s airways have

immunomodulatory effects, but it is unclear if the inter-individual variability of these

microbial communities is associated with the heterogeneity of pulmonary TB. Here, we

investigated this possibility by characterizing the microbial composition in the sputum

of 334 TB patients from Tanzania, and by assessing its association with three aspects

of disease manifestations: sputum mycobacterial load, severe clinical findings, and

chest x-ray (CXR) findings. Compositional data analysis of taxonomic profiles based on

16S-rRNA gene amplicon sequencing and on whole metagenome shotgun sequencing,

and graph-based inference of microbial associations revealed that the airwaymicrobiome

of TB patients was shaped by inverse relationships between Streptococcus and

two anaerobes: Selenomonas and Fusobacterium. Specifically, the strength of these

microbial associations was negatively correlated with Faith’s phylogenetic diversity (PD)

and with the accumulation of transient genera. Furthermore, low body mass index

(BMI) determined the association between abnormal CXRs and community diversity

and composition. These associations were mediated by increased abundance of

Selenomonas and Fusobacterium, relative to the abundance of Streptococcus, in

underweight patients with lung parenchymal infiltrates and in comparison to those

with normal chest x-rays. And last, the detection of herpesviruses and anelloviruses in

sputum microbial assemblage was linked to co-infection with HIV. Given the anaerobic

metabolism of Selenomonas and Fusobacterium, and the hypoxic environment of lung
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infiltrates, our results suggest that in underweight TB patients, lung tissue remodeling

toward anaerobic conditions favors the growth of Selenomonas and Fusobacterium

at the expense of Streptococcus. These new insights into the interplay among

particular members of the airway microbiome, BMI, and lung parenchymal lesions in

TB patients, add a new dimension to the long-known association between low BMI and

pulmonary TB. Our results also drive attention to the airways virome in the context of

HIV-TB coinfection.

Keywords: tuberculosis, airway microbiome, sputum, clinical phenotype, chest X-ray, BMI, anaerobes, HIV-TB

coinfection

1. INTRODUCTION

Pulmonary TB is the main clinical form of TB; an airborne
infectious disease caused by members of the Mycobacterium
tuberculosis (MTB) complex, and the leading cause of death
from a single infection. Worldwide during 2018, TB claimed
the lives of 1.5 million people and caused 10 million new cases
(WHO, 2019) who further spread the disease via coughing or
sneezing MTB-carrying droplets. These droplets originate in
lung lesions that formed after inhaled MTB bacilli reached the
alveoli at the end of the lower airways, subverted local immunity,
replicated inside infected alveolar macrophages, and triggered
inflammatory responses with concomitant lung damage. Lung
lesions might be asymptomatic (latent TB) or might progress
to more extended lung tissue damage with formation of
consolidations and/or cavities and accompanied of signs and
symptoms (active TB). Signs and symptoms for TB include
weight loss, fever, night sweats, and productive coughing which is
required for sustained TB transmission. Latent and active TB are
opposite ends in a more complex spectrum of infection outcomes
and disease manifestations (Lin and Flynn, 2018).

During active pulmonary TB, patients display considerable
inter-individual variability on multiple aspects of disease
manifestations: including symptoms, the extent of lung damage,
and in the characteristics of lung lesions (Lenaerts et al.,
2015); together they are complementary indicators of disease
severity. Our understanding of what determines such a
wide heterogeneity in TB disease manifestations/severity is
still incomplete. However, evidence suggests an interplay
of factors associated with the host, the pathogen, and the
environment (Gagneux et al., 2006; Chandrasekaran et al.,
2017; Bastos et al., 2018). Among these factors, the microbial
communities inhabiting the host’s respiratory tract (i.e., the
airways microbiome) have the potential to improve our yet
limited understanding of pulmonary TB (Naidoo et al., 2019).

The respiratory tract environment not only experiences
shifts in physico-chemical and immunological conditions during
diseased states but also shifts in the composition of resident
microbial communities. These microbial communities are not
merely a reflection of local physiological conditions (Quinn
et al., 2018a, 2019), they modulate inflammatory responses which
mediate lung injury, and are associated with disease severity and
mortality (Wu and Segal, 2017). For instance, patients with severe
asthma have bronchial airways enriched with Actinobacteria and

Klebsiella species (Huang et al., 2015), and 1-year mortality of
hospitalized COPD patients was associated with baseline sputum
microbial composition (Leitao Filho et al., 2019).

In pulmonary TB, evidence of the relationship between
resident microbial communities of the distinct compartments
of the respiratory tract (i.e., airway microbiome) and disease
severity is limited to three studies; one in rhesus macaques
(Cadena et al., 2018) and the other two in humans (Zhou et al.,
2015; Nakhaee et al., 2018). The comparability of their results is
not only limited by the different host types but also by different
types of respiratory samples and different definitions of disease
severity. Definitions of disease severity included the degree of
pulmonary inflammation, lung side involvement (Cadena et al.,
2018), presence/absence of lung lesions (Zhou et al., 2015), and
clinical symptoms (Nakhaee et al., 2018).

Given the scant knowledge of the airway microbiome in
TB patients and of the relationship with disease severity,
we performed a large cross-sectional study of patients with
active pulmonary TB from a high TB burden setting, Dar es
Salaam (Tanzania). For this human cohort, we characterized the
microbial composition of expectorated sputum by 16S-rRNA-
gene amplicon (16S-A) and whole-metagenome shotgun (WMS)
sequencing, and aimed at identifying biomarkers associated with
TB severity. Instead of using a single definition of disease severity,
we preferred to investigate associations with multiple aspects of
disease manifestations, which encompass complementary forms
of disease severity. Thus, we investigated associations with
mycobacterial load in the sputum, radiographic signs (chest x-
rays), and clinical findings (signs and symptoms). We controlled
for the potential effects of sex, age, physical health status
(underweight, anemia, smoking, and alcohol abuse), season, and
co-infections with HIV, respiratory pathogens, and helminths.

This study presents a comprehensive investigation of
the hypothesis that inter-individual variability of the airway
microbiome in TB patients is associated with differences in
TB-disease manifestations; specifically aiming at identifying
biomarkers associated with TB-disease severity in a non-
invasively collected respiratory sample, the expectorated sputum.

2. MATERIALS AND METHODS

2.1. Study Setting
We included TB patients from an ongoing prospective cohort
that studies the clinical and molecular epidemiology of TB in the
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Temeke district of Dar es Salaam, Tanzania (TB-DAR). Tanzania
is among the top 20 countries with the highest TB incidence;
142,000 new TB cases were estimated in Tanzania during 2018,
28% of them were co-infected with HIV (WHO, 2019). The city
of Dar es Salaam has the highest TB incidence in the country (20
% of TB cases notified during 2018) (NTLP, 2018). The Temeke
district is a densely populated urban setting accounting for one
third of the TB cases from Dar es Salaam (Said et al., 2017).

2.2. Study Population and Procedures
We conducted a cross-sectional study nested within the ongoing
TB-DAR cohort. The study population and the procedures of
this cohort have been previously described in detail (Mhimbira
et al., 2016, 2017, 2019; Steiner et al., 2016; Hiza et al., 2017;
Said et al., 2017; Hella et al., 2018; Sikalengo et al., 2018).
Briefly, at the Temeke district hospital and since November 2013,
TB-DAR have been recruiting sputum smear positive or Xpert
MTB/RIF positive adult TB patients (≥ 18 years of age). TB was
further confirmed by sputum culture in Lwenstein-Jensen (LJ)
solid media; clinical isolates were further analyzed by lineage-
specific allele probes in real-time PCR for singleplex SNP-typing
according to standard protocols (Applied Biosystems, Carlsbad,
USA) and as previously described (Stucki et al., 2018). In this
study, we only included newly diagnosed TB patients, without
previous history or diagnosis of TB, recruited between November
2013 and November 2015. Included TB cases were randomly
chosen to obtain a representative subset of the entire cohort
during the recruitment period.

At the time of TB diagnosis, participants were interviewed
to collect data on socio-demographic characteristics, lifestyle,
symptoms, previous use of medications, and health-seeking
behavior (Said et al., 2017). Patients underwent physical and chest
X-ray examination (CXR). Before initiation of TB treatment,
biological specimens (sputum, naso-pharyngeal swabs, blood,
urine, and stool) were collected for further investigation of
anemia and co-infections, as previously described (Mhimbira
et al., 2017, 2019; Hella et al., 2018). Investigated co-infections
included HIV (Mhimbira et al., 2017; Hella et al., 2018),
helminths (Mhimbira et al., 2017), and respiratory pathogens
(Mhimbira et al., 2019). For HIV-positive patients, CD4+ T cell
counts were also obtained (Mhimbira et al., 2017).

2.3. Collection of Sputum Samples and
DNA Extraction
To ensure comparability and quality of sputum samples,
health-care workers provided video-guided instructions to all
participants and asked them to only submit specimens collected
during early-morning. The use of the sputum submission
instructional video, for improvement of sputum quality, was
previously validated by Mhalu and colleagues (Mhalu et al.,
2015). At the time of specimen reception, laboratory technicians
visually assessed quality and volume; second samples were
requested if salivary-like (transparent and watery specimen with
bubbles) specimens were submitted. Accepted sputum samples
were transported from Temeke district hospital at 4◦C to
the Bagamoyo Research and Training Center for processing.
Total DNA was extracted from sputum specimens using the

QIAamp DNAKit (Qiagen, Germany) according to the supplier’s
instructions (Spin Protocol for DNA purification from Blood or
Body Fluids).

2.4. Amplicon Sequencing
We followed Illumina’s 16S amplicon sequencing library
preparation protocol (Illumina, 2013). The protocol included:
(i) PCR amplification of the V3-V4 region of the 16S rRNA
gene with primers PCR1_Forward (50 bp, 5′-TCGTCGGCA
GCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCW
GCAG-3′), and PCR1_Reverse (55 bp, 5′-GTCTCGTGGGCT
CGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC
TAATCC-3′); (ii) library preparation with the Nextera XT Index
Kit, and (iii) paired-end sequencing (2 × 300 bp, v3 chemistry)
on the MiSeq platform (Illumina, San Diego, CA), samples
were distributed across three sequencing runs. To account for
potential sequencing batch effects, we included the sequencing
run number as a co-factor in multivariate models.

2.5. Whole Metagenome Shotgun
Sequencing
DNA samples were first selected based on their quality (limited
degradation and high concentration) as assessed by DNA gel
electrophoresis (1:10 DNA dilutions run on 1% agarose gels
at 90 volts for 45 min). DNA concentration was determined
by PicoGreen quantification with Qubit and normalized to 0.2
ng/ul. Dual-indexed paired-end libraries were prepared using
the Nextera XT DNA Library Prep kit; the standard protocol
was followed at the sequencing facility of FISABIO (Foundation
for the Promotion of Health and Biomedical Research in the
Valencian Community). Paired-end sequencing (2 × 150 bp)
on the HiSeq 2,500 platform was done at the Department of
Biosystems Science and Engineering (D-BSSE) of ETH Zeich.
To minimize batch effects, we used three sequencing runs to
repeatedly sequence all samples and sample pools per lane
combined samples picked in a random order. Background
controls (water) and a mock community (20 strain even mix

genomic material, ATCC R© MSA-1002
TM

) were included during
the entire workflow.

2.6. Data Definitions
Newly diagnosed TB cases were defined as TB patients that
never received TB treatment or received TB treatment for
<1 month. We further stratified those patients by multiple
aspects of disease manifestations: mycobacterial load in their
sputum, severity of clinical findings (signs and symptoms),
and presence of radiologic signs (lung parenchymal infiltrates,
cavities, lymphadenopathy, micronodules, pleural efussion, etc.)
in chest X-rays (CXRs).

To define sputum mycobacterial load as low or high, we
used sputum acid-fast bacilli (AFB) smear results. Following
the World Health Organization/International Union Against
Tuberculosis and Lung Disease (WHO/IUATLD) guidelines,
sputum AFB smear results were expressed as quantitative
categories (“Scanty,” “1+,” “2+,” and “3+”) that grade the number
of AFB per number of microscopic fields (Mhimbira et al., 2017).
As previously described (Mhimbira et al., 2019), we defined
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sputum mycobacterial burden as high if AFB smear results were
“2+” (1–10 AFB per field, 50 fields) or “3+” (> 10 AFB per field,
20 fields); and as low if AFB smear results were “Scanty” (1–9
AFB in 100 fields) or “1+” (10–99 AFB in 100 fields).

To define clinical findings for pulmonary tuberculosis as
mild or severe, we adapted the TB score (Mhimbira et al.,
2017) defined by Wejse and colleagues (Wejse et al., 2008).
The TB score was expressed as cumulative points (from 0 to
12) that quantify the number of clinical findings observed in
a patient during physical examination. Twelve clinical findings
were considered, each one counted as one if present: (i) cough, (ii)
haemoptysis, (iii) dyspnoea, (iv) chest pain, (v) night sweating,
(vi) anemic conjuctivae, (vii) positive finding at lung auscultation
(crepitation, rhonci, subdued, or complete absence of respiratory
sounds), (viii) fever (temperature > 37◦C), (ix) mid upper arm
circumference (MUAC) <220mm, (x) MUAC <200mm, (xi)
body mass index (BMI) <18 kgm−2, and (xii) BMI <16 kgm−2

(see Figure 1). As in Mhimbira and colleagues (Mhimbira et al.,
2017), we defined clinical findings for pulmonary tuberculosis as
severe if the TB score was ≥ 6; and as mild, otherwise. To screen
for lung abnormalities, double readings of CXRs were performed
by board-certified radiologists, and discrepancies were resolved
by an independent reader.

To account for differences in disease manifestations due to
delay in diagnosis, duration of diagnostic delay was included
based on the longest reported TB-related symptom and
categorized into: ≤ 3 weeks and > 3 weeks, as previously
described by Said and colleagues (Said et al., 2017). Differences in
clinical manifestations might be associated to differences in the
genetic background of MTB, thus we included the SNP-typing
results of theMTB clinical isolates.

Socio-demographic variables included sex and age. Physical
health status parameters included BMI, hemoglobin (Hb) levels
(kg dL−1), smoking, and alcohol abuse. To assess adult nutritional
status, we followed WHO’s BMI-based definitions (Bailey and
Ferro-Luzzi, 1995), as follows: (i) “Underweight” (BMI < 18.5),
(ii) “Normal weight” (BMI, 18.5–24.9), and iii) “Obesity” (BMI
≥ 25). Similarly, we followedWHO’s Hb cut-offs to define “Non-
Anemia” (Hb ≥ 12 for women, and Hb ≥ 13 for men), “Mild”
(11–11.9 for women, and 11–12.9 formen), “Moderate” (8.0–10.9
for women and men), and “Severe” (< 8.0 for women and men)
anemia (WHO, 2011).

2.7. Taxonomic Profiling
16S-rRNA-gene amplicon sequencing (hereafter 16S-AS) reads
were processed with QIIME2 plugins v2019.7 (Bolyen et al.,
2019). We first carried out a quality inspection of paired-end
reads with QIIME2’s “demux” plugin which revealed reverse
reads had poor quality at the 3’end and had to be trimmed
off before merging read pairs with DADA2 v1.10 (Callahan
et al., 2016); this resulted in a 90% loss of the data (analysis
is available at https://git.scicore.unibas.ch/TBRU/tbdarbiome_
cases/-/blob/master/notebooks/00_MOT_qiime2-qc-denoising-
features_pairedreads.ipynb). Therefore, we decided to only use
the forward reads of every pair, which were processed as follows.
First, we run the denoise-single method of QIIME2’s dada2
plugin, followed default parameter settings but adjusted the

number of bases trimmed at the 5′- and 3′- ends. To create a
phylogenetic tree of the resulting amplicon sequence variants
(ASVs), we run the q2-fragment-insertion plugin which uses the
SAT-enabled phylogenetic placement (SEPP, Mirarab et al., 2012)
algorithm to insert our ASVs into the reference phylogeny of 16S
rRNA gene sequences (Greengenes v13.8, reference sequences
clustered at 99% sequence similarity) (Janssen et al., 2018);
unplaced ASVs were removed. Finally, we used the q2-feature-
classifier plugin (Bokulich et al., 2018) to assign taxonomic
classifications to our ASVs; we first retrained the classifier with
16S V3-V4 fragments extracted from the Greengenes v13.8
reference sequences. The workflow is available as a Jupyter
notebook at https://git.scicore.unibas.ch/TBRU/tbdarbiome_
cases/-/blob/master/notebooks/01_MOT_qiime2-qc-dada2_
denoising_features_read1.ipynb.

Whole-metagenome shotgun (WMS) reads were processed
with an in-house analysis pipeline that performs quality pre-
processing, taxonomic profiling, and functional profiling.
Quality pre-processing included adapter/quality trimming,
and filtering with fastp (Chen et al., 2018); removal of reads
derived from human DNA with BBTools’ (Bushnell, 2014)
bbsplit; and removal of duplicated reads with BBTools’ clumpify.
Taxonomic profiling was performed with MetaPhlAn2 (Truong
et al., 2015). The pipeline is available at https://git.scicore.unibas.
ch/TBRU/MetagenomicSnake and details of its execution for
this publication are available in a Jupyter notebook at https://
git.scicore.unibas.ch/TBRU/tbdarbiome_cases/-/blob/master/
notebooks/02_MOT_metasnk-wms-data-processing.ipynb.
For each species detected, we obtained the reported mode of
metabolism (i.e., oxygen requirement) by manually querying
https://bacdive.dsmz.de, https://www.lgcstandards-atcc.org/,
https://microbewiki.kenyon.edu/, http://www.homd.org, and
Pubmed Central R© (PMC); the resulting table is available at
https://git.scicore.unibas.ch/TBRU/tbdarbiome_cases/-/blob/
master/data/raw/metadata/species_oxygen_tolerance.csv.

2.8. Identification of Potential
Contaminants
We used R package decontam v1.6 (Davis et al., 2018) to
identify contaminant DNA sequences. For the 16S-AS dataset,
decontam used the DNA concentration of sputum samples to
identify contaminant ASVs whose frequency varied inversely
with total DNA concentration (frequency-based identification).
For the WMS dataset, frequency-based identification was
complemented with presence of contaminants in background
controls (prevalence-based identification) and in a mock
community (20 strain even mix genomic material, ATCC R©

MSA-1002
TM

). The analysis is available at https://git.scicore.
unibas.ch/TBRU/tbdarbiome_cases/-/blob/master/notebooks/
03_MOT_decontam.ipynb.

2.9. Diversity Estimations
To quantify diversity within each sputum sample (alpha
diversity), we used the 16S-AS taxonomic profiles to compute
Faith’s phylogenetic diversity (PD) metric (Faith, 1992), as
implemented in QIIME2 v2019.7 (Bolyen et al., 2019). We
favored the PD metric as it considers phylogenetic differences
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between taxa which makes PD to account the limited
contribution of closely related taxa to diversity (Matsen,
2015). To minimize the effect of differences in sequencing
depth, we computed rarefaction curves to set a threshold for
even sampling (i.e., equal number of sequences) across all
samples before computing the PD metric. Analysis available
at https://git.scicore.unibas.ch/TBRU/tbdarbiome_cases/-/blob/
master/notebooks/06_MOT_alpha-rarefaction.ipynb.

To quantify differences in community composition among
samples (beta diversity) and identify variability patterns,
we computed Aitchison distances which acknowledge the
compositional nature of the taxonomic profiles (Gloor et al.,
2017; Quinn et al., 2018b). Aitchison distances correspond
to Euclidean distances among taxonomic profiles (i.e., taxon
abundances) that were centered log-ratio (CLR) transformed.
The CLR transformation takes compositional vectors (i.e.,
relative abundances) from a constrained space (i.e., the unit
simplex) to an unconstrained space of logratio vectors (logarithm
of the ratio between the abundance of a taxon in a sample and
the geometric mean of all taxon abundances in the same sample).
Resulting CLR-transformed vectors are scale-invariant and
subcompositionally coherent which implies that rarefying the
taxonomic profiles to a constant value across samples will not
have significant effects on the relationships between samples and
between taxa; therefore we computed Aitchison distances on
non-rarefied taxonomic profiles. To circumvent the limitation of
undefined values when computing the logarithm of zero values,
zero abundances were replaced followingMartin-Fernndez et al.’s
Bayesian-multiplicative replacement strategy (Martín-Fernández
et al., 2014); implemented in cmultRepl of the R package
zCompositions v1.3.4. To visualize community composition
profiles across samples, we created heatmaps with sputum
samples and taxa sorted according to agglomerative hierarchical
clustering based on Aitchison distances; analysis available at
https://git.scicore.unibas.ch/TBRU/tbdarbiome_cases/-/blob/
master/notebooks/08_MOT_taxonomic-summaries.ipynb. To
visualize relationships among taxa across sputum samples,
we created relative variation biplots following Aitchison
and colleagues rules for creation and interpretation of such
biplots (Aitchison and Greenacre, 2002). Analysis is available
at https://git.scicore.unibas.ch/TBRU/tbdarbiome_cases/-/
blob/master/notebooks/10_MOT_inference-of-genus-genus-
interactions.ipynb.

2.10. Compositional Network
Reconstruction
To infer associations among taxa, we created genus-level
and species-level interaction networks with SParse InveresE
Covariance Estimation for Ecological ASociation Inference
(SPIEC-EASI); available as an R package (SpiecEasi v1.0.7).
SPIEC-EASI uses CLR-transformed abundances to infer a
graph model where nodes represent taxa and edges represent
associations between taxa that cannot be explained by alternative
paths in the graph (Kurtz et al., 2015). We selected the
neighborhood selection method of SPIEC-EASI. Inferred

interactions were also confirmed by Spearman’s rank-
order correlation. Additionally, we also used the SparCC
method (Friedman and Alm, 2012), as implemented in the R
package SpiecEasi.

To infer species-level interaction networks, we used the
WMS-S taxonomic profiles and considered only those species
present in at least 3 samples. To infer genus-level interaction
networks, we used the 16S-AS taxonomic profiles and considered
only those genera present in at least 5% of the samples included
in the dataset; genera are more likely to be shared across
samples, thus we increased the presence threshold. Analyses
are available at https://git.scicore.unibas.ch/TBRU/tbdarbiome_
cases/-/blob/master/notebooks/10_MOT_inference-of-genus-
genus-interactions.ipynb and at https://git.scicore.unibas.ch/
TBRU/tbdarbiome_cases/-/blob/master/notebooks/11_MOT_
inference-of-spp-spp-interactions.ipynb.

2.11. Statistical Analysis
We performed statistical analysis with the R software
environment v3.6. Associations of categorical demographic
and clinical characteristics with TB disease manifestations were
assessed by chi-squared test or Fisher’s exact test if expected
frequencies were below five. Associations with continuous
variables were assessed by student t-tests or Wilcoxon rank-
sum test when normality could not be assumed; normality
was evaluated with Shapiro-Wilk test and Q-Q plots. Single
test significance level was Bonferroni adjusted for multiple
comparisons. Analyses are available at https://git.scicore.unibas.
ch/TBRU/tbdarbiome_cases/-/blob/master/notebooks/07_
MOT_characteristics-of-cohort.ipynb.

To test associations of Faith’s PD with TB disease
manifestations (mycobacterial load, severity of clinical findings,
and peresence of radiologic signs), we used the R-package
car v3.0 to create two multi-way ANCOVA models with log
transformed Faith’s PD as response variable. With the first
ANCOVA model, we simultaneously assessed the marginal
effects of abnormal CXR-findings and high mycobacterial load
of sputum; a decision based on previous analysis indicating
that these clinical manifestations were not associated with each
other. The model was adjusted for age, sex, physical health status
parameters (underweight, anemia, smoking, and alcohol abuse),
co-infections (HIV, helminths, viral, and bacterial pathogens),
season, delay in diagnosis, non-TB medications, sequencing
depth and sequencing batch; two-way interactions of CXR-
findings or mycobacterial sputum burden with age, sex, physical
health status parameters, co-infections and season were also
evaluated. With the second model, we tested the marginal effect
of clinical findings severity (as assessed by a TB score) while
adjusting for delay in diagnosis, and the covariates included in
the first model; except for BMI and anemia which are parameters
used to compute the TB score. Interaction terms in both models
were selected using stepwise-selection based on the Akaike
information criterion (AIC), as implemented in the function step
of the R package stats. On selected models, we tested normality of
residuals, homoscedascity, non-multicolinearity, independence
of errors and effect of influential observations. To assess the
effect sizes of factors within selected models, we computed the
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partial eta squared statistic (h2p), which is the proportion of the
Sum of Squares (SS) of the effect and the error that is attributable
to the effect (Maher et al., 2013). Post-hoc tests included t-tests
on adjusted means with R-package emmeans v1.4. The analysis
is available at https://git.scicore.unibas.ch/TBRU/tbdarbiome_
cases/-/blob/master/notebooks/12_MOT_alpha-diversity-and-
clinical-features.ipynb.

Similarly, to investigate if compositional and structural
changes of the microbial communities in the sputum of
TB patients were associated with disease manifestations of
pulmonary TB, we performed transformation-based redundant
analysis (tb-RDA) with stepwise selection of interaction terms,
and Permutational Analysis of Variance (PERMANOVA) as
implemented in the R-package vegan v2.5. Response variables
were CLR-transformed genus-level abundances. Continuous
explanatory variables were always scaled. When comparing
means among groups, p-values were adjusted for multiple
comparisons following Holm-Bonferroni method. Analyses are
available at https://git.scicore.unibas.ch/TBRU/tbdarbiome_case
s/-/blob/master/notebooks/13_MOT_beta-diversity-and-clinical
-features.ipynb.

3. RESULTS

3.1. Cohort Characteristics
From November 2013 to November 2015, 663 new TB cases
were enrolled at the Temeke district hospital in Dar es Salaam,
Tanzania. Although it was originally planned to include all the
sputa stored during these 2 years of patient enrollment, we did
not have enough DNA extraction kits and ended up choosing
a subset. We selected at random 4 9 × 9 boxes of sputa stored
at –20◦C; this resulted in 324 sputa. We still had reagents for
another 10 DNA extractions, therefore we selected 10 more sputa
from a randomly-picked 5th stored box. Thus, we included 334
(53%) sputa to investigate the potential relationship between
sputum microbial composition and three aspects of TB-disease
manifestations, at time of diagnosis, which include: (i) high
mycobacterial load in sputum, (ii) severe clinical findings (signs
and symptoms), and (iii) chest X-ray findings (see Figure 1).
Sputum volumes were consistent across categories of TB-disease
manifestations (Supplementary Figure S1).

In our study population and across categories of TB-disease
manifestations, the distributions of demographics, physical
health status, co-infections, non-TB medication, delay in
diagnosis, season, andMTB genetic background are summarized
in Table 1. Consistent with previous studies on this cohort
(Mhimbira et al., 2017, 2019; Hella et al., 2018), most TB cases
were males (72%), had anemia (74%), and were underweight
(53%). A large proportion of TB cases were recruited during
the Dry season (42%). Also, significant proportions were co-
infected with HIV (24%), helminths (34%), viral (21%) and
bacterial (34%) respiratory pathogens; 16% were smokers and
19% were alcohol abusers. Additionally, 69% reported a delay in
TB diagnosis of more than 3 weeks, and 94% reported to have
received non-TB medications before diagnosis.

Pulmonary TB manifests in CXRs as parenchymal
infiltrates/consolidations, cavities, pleural effusion,

lymphadenopathy, and micronodules. As summarized in
Table 2, in this cohort, parenchymal infiltrates were the most
common (63%, n = 157), followed by cavities (36%, n = 89),
pleural effusion (12%, n = 29), lymphadenopathy (10%, n = 25),
and micronodules (5%, n= 13).

3.1.1. Factors Associated With Manifestations of

Active Pulmonary TB
After Bonferroni adjustment of significance level (0.05) for
multiple comparisons, we observed a few associations with any
of the three aspects of disease manifestations investigated in this
study (see Table 1): i) HIV with normal CXRs (p < 0.001; Chi-
squared test), 49% of patients with normal CXRs had HIV as
compared to only 18% of those with abnormal CXRs; and ii)
underweight nutritional status and higher respiratory rate with
severe clinical findings, as compared to patients withmild clinical
findings. These associations are expected given that these factors
were clinical parameters considered in the TB score used to grade
the severity of clinical findings.

3.1.2. Associations Among Manifestations of Active

Pulmonary TB
We also investigated if clinical manifestations were associated
with each other (see Table 2). In this cohort, and at a Bonferroni-
adjusted significance level of 0.05, severe clinical findings for TB
were neither associated with high mycobacterial load in sputum
nor with abnormal CXRs. In addition, abnormal CXRs were
not associated with high mycobacterial load. However, when
looking at specific types of CXR findings, the presence of lung
cavities was associated with lower BMI (p < 0.001; t-test; see
Supplementary Table S1). Additionally, there was a significant
effect for sex (p = 0.002; Chi-squared test) on the presence
of parenchymal infiltrates, 76% of patients with lung infiltrates
were males as compared to 56% of those without lung infiltrates
detected on chest X-rays (see Supplementary Table S1).

3.2. Description of the Sequencing Data
We analyzed the total DNA of all sputum samples (334 patients)
by 16S rRNA gene amplicon sequencing (16S-AS). We obtained
about 24.6 million reads, median reads per sample was 55,672
(IQR: 36,666–98,143). After filtering, denoising and chimera
removal with DADA2, about 12.4 million sequences remained;
28,231 (IQR: 19,227–45,916) median reads per sample. Samples
had a median of 171 (IQR:111–252) amplicon sequence variants
(ASVs). Additional filtering removed 8 ASVs flagged as potential
contaminants byDecontam, as described in section Identification
of Potential Contaminants (Supplementary Figure S2), and 27
observations which had <12,000 reads (threshold at which
most samples approached plateau in richness rarefaction
curves; Supplementary Figure S3), which resulted in 307 16S-AS
abundance profiles.

Based on DNA concentration and quality (limited
fragmentation, see methods), 125 samples were selected for
Whole-Metagenome Shotgun sequencing (WMS-S). We
obtained about 3.96 × 109 reads, median reads per sample was
28,948,058 (IQR: 22,116,534–37,234,300), and the percentage of
reads annotated as human ranged from 2.6 to 92.1. After filtering
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FIGURE 1 | Schematic summary of the study. In this study, we included 334 participants of the newly diagnosed adult TB patients (≥ 18 years old) recruited within

November 2013 and November 2015 for an ongoing prospective cohort study (TB-DAR). TB-DAR studies the clinical and molecular epidemiology of TB in the

Temeke district of Dar es Salaam, Tanzania. Baseline clinical and demographic characteristics were retrieved for each TB patient. Early-morning expectorated sputum

samples were collected to characterize the taxonomic microbial composition by targeted 16S-rRNA-gene amplicon sequencing (16S-AS) and whole-metagenome

shotgun sequencing (WMS-S). Briefly, the data analysis workflow is shown. We assessed the potential association of the sputum microbial composition with three

aspects of TB disease manifestations: (i) mycobacterial load in the sputum; (ii) chest X-rays findings; and (iii) severity of clinical findings, estimated by a TB disease

score considering signs and symptoms for TB. As shown in the figure, top right, clinical findings included cough, haemoptysis (i.e., expectoration of blood), chest

pain, dyspnoea (i.e., shortness of breath), night sweating, fever, anemic conjuctivae, positive finding at lung auscultation, MUAC <220mm, MUAC <200mm, BMI

<18 kgm−2, and BMI <16 kgm−2. BMI, Body Mass Index; MUAC, Mid-Upper Arm Circumference: URI, Upper Respiratory Infection.

out human and low-quality reads, about 1.11 × 109 reads
remained; median reads per sample was 4,836,788 (IQR:
3,366,538–7,818,888). Additional filtering removed five species
identified as contaminants (Supplementary Figure S4) by
Decontam, three species not expected as part of a mock
community (Supplementary Figure S5), 19 samples with more
than 20% reads assigned to contaminant species, two samples
with 100% of unclassified reads, and 15 samples with <50%
of reads assigned to human DNA; thus, 89 WMS-S abundance
profiles were included in further analyses.

16S-AS and WMS-S provided complementary snapshots of
the microbial composition in the sputum of TB patients (see
Figure 2). Although 16S-AS was able to profile a larger number
of samples, species-level resolution was limited; most (86%)
of the ASVs detected by DADA2 did not have a species
classification. WMS-S on the other hand, provided a cross-
domain and species-level resolution, evidenced by the detection
of viruses and fungi, and by the accurate taxonomic profiling
of a mock community composed of even abundances of 20

species (ATCC R© MSA-1002TM; Supplementary Figure S5A).
However, WMS-S resolution came at the cost of losing detection
of low abundant taxa; WMS-S detected 78 bacterial genera
while 16S-AS detected 319 genera, and genera not-detected by
WMS-S had mean relative abundances generally below 0.01%
(Supplementary Figure S6).

Based on these observations, we decided to use the 16S-AS
dataset for genus-level analysis as this dataset included more
samples and captured 2.5 times more genera than the WMS-
S dataset. Considering the limited species-level accuracy in
our 16S-AS and the accurate taxonomic profiling of a mock
community by our WMS-S processing pipeline, we used the
WMS-S dataset for species-level analysis.

3.3. Microbial Composition of Sputum in
TB Patients
Taxonomic assignments derived from 89 WMS abundance
profiles showed that microbial communities in the sputum of
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TABLE 1 | Characteristics of TB patients and associations with disease manifestations.

Mycobacterial loadd Clinical findingse CXR findingsf

Characteristics Total Low High p-valuea Mild Severe p-valuea Normal Abnormal p-valuea

(N = 334) (N = 127) (N = 207) (N = 223) (N = 111) (N = 58) (N = 189)

Demographics

Sex 0.660 0.559 0.646

Male 240 (71.86%) 89 (70.08%) 151 (72.95%) 163 (73.09%) 77 (69.37%) 38 (65.52%) 132 (69.84%)

Female 94 (28.14%) 38 (29.92%) 56 (27.05%) 60 (26.91%) 34 (30.63%) 20 (34.48%) 57 (30.16%)

Age (years) 0.434 0.159 0.742

Median (IQR) 33.00 (14.00) 33.00 (14.00) 33.00 (14.00) 34.00 (14.50) 31.00 (13.00) 33.00 (13.50) 33.00 (15.00)

Physical health parameters

BMI (kg/m2) 0.663 <0.001 0.586

Median (IQR) 18.26 (3.85) 18.27 (4.26) 18.26 (3.62) 19.49 (3.02) 16.07 (1.84) 19.09 (3.24) 18.22 (3.72)

Nutritional status 0.788 <0.001 0.061

Normal weight 145 (43.41%) 56 (44.09%) 89 (43.00%) 137 (61.43%) 8 (7.21%) 34 (58.62%) 79 (41.80%)

Underweight 176 (52.69%) 65 (51.18%) 111 (53.62%) 73 (32.74%) 103 (92.79%) 23 (39.66%) 100 (52.91%)

Obesity 13 (3.89%) 6 (4.72%) 7 (3.38%) 13 (5.83%) 0 (0.00%) 1 (1.72%) 10 (5.29%)

Hemoglobin (g/dL) 0.120 0.004 0.500

Median (IQR) 11.25 (2.92) 11.60 (3.30) 11.10 (2.90) 11.65 (2.80) 10.70 (3.10) 11.30 (3.45) 11.10 (2.70)

Missing 18 7 11 15 3 7 6

Anemia status 0.074 0.051 0.294

No 81 (25.63%) 38 (31.67%) 43 (21.94%) 61 (29.33%) 20 (18.52%) 16 (31.37%) 42 (22.95%)

Yes 235 (74.37%) 82 (68.33%) 153 (78.06%) 147 (70.67%) 88 (81.48%) 35 (68.63%) 141 (77.05%)

Missing 18 7 11 15 3 7 6

Respiration rate

(breaths/min)

0.157 <0.001 0.558

Median (IQR) 17.00 (5.00) 16.00 (4.00) 17.00 (5.00) 16.00 (4.00) 19.00 (8.00) 16.00 (5.00) 18.00 (4.00)

Smoker 0.006 0.151 >0.999

no 280 (83.83%) 116 (91.34%) 164 (79.23%) 192 (86.10%) 88 (79.28%) 51 (87.93%) 165 (87.30%)

yes 54 (16.17%) 11 (8.66%) 43 (20.77%) 31 (13.90%) 23 (20.72%) 7 (12.07%) 24 (12.70%)

Cigarettes per day 0.545† 0.433† >0.999†

Median (IQR) 7.00 (6.25) 6.00 (7.00) 8.00 (5.00) 8.00 (9.50) 7.00 (5.00) 6.00 (4.50) 6.50 (4.50)

Alcohol abuse 0.230 >0.999 0.616

no 269 (80.54%) 107 (84.25%) 162 (78.26%) 180 (80.72%) 89 (80.18%) 49 (84.48%) 152 (80.42%)

yes 65 (19.46%) 20 (15.75%) 45 (21.74%) 43 (19.28%) 22 (19.82%) 9 (15.52%) 37 (19.58%)

Co-infections

HIV 0.217 0.583 <0.001

Negative 244 (76.49%) 86 (72.27%) 158 (79.00%) 162 (75.35%) 82 (78.85%) 27 (50.94%) 150 (81.52%)

Positive 75 (23.51%) 33 (27.73%) 42 (21.00%) 53 (24.65%) 22 (21.15%) 26 (49.06%) 34 (18.48%)

Missing 15 8 7 8 7 5 5

CD4+ T cell counts

(cells/ul)

0.940 0.604 0.222

<200 22 (52.38%) 9 (56.25%) 13 (50.00%) 15 (48.39%) 7 (63.64%) 8 (44.44%) 12 (70.59%)

>=200 20 (47.62%) 7 (43.75%) 13 (50.00%) 16 (51.61%) 4 (36.36%) 10 (55.56%) 5 (29.41%)

Previous ART 0.914 0.776 >0.999

No 309 (94.50%) 116 (95.08%) 193 (94.15%) 204 (94.01%) 105 (95.45%) 51 (94.44%) 180 (95.24%)

Yes 18 (5.50%) 6 (4.92%) 12 (5.85%) 13 (5.99%) 5 (4.55%) 3 (5.56%) 9 (4.76%)

Missing 7 5 2 6 1 4 0

Respiratory virusesb 0.310 0.228 >0.999

Negative 227 (78.82%) 82 (75.23%) 145 (81.01%) 155 (81.15%) 72 (74.23%) 40 (76.92%) 124 (77.99%)

Positive 61 (21.18%) 27 (24.77%) 34 (18.99%) 36 (18.85%) 25 (25.77%) 12 (23.08%) 35 (22.01%)

Missing 46 18 28 32 14 6 30

(Continued)
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TABLE 1 | Continued

Mycobacterial loadd Clinical findingse CXR findingsf

Characteristics Total Low High p-valuea Mild Severe p-valuea Normal Abnormal p-valuea

(N = 334) (N = 127) (N = 207) (N = 223) (N = 111) (N = 58) (N = 189)

Respiratory bacteriab 0.661 0.924 0.576

Negative 174 (66.16%) 66 (64.08%) 108 (67.50%) 112 (66.67%) 62 (65.26%) 30 (62.50%) 99 (68.28%)

Positive 89 (33.84%) 37 (35.92%) 52 (32.50%) 56 (33.33%) 33 (34.74%) 18 (37.50%) 46 (31.72%)

Missing 71 24 47 55 16 10 44

Helminthsc >0.999 0.503 0.772

Negative 222 (66.47%) 84 (66.14%) 138 (66.67%) 145 (65.02%) 77 (69.37%) 39 (67.24%) 133 (70.37%)

Positive 112 (33.53%) 43 (33.86%) 69 (33.33%) 78 (34.98%) 34 (30.63%) 19 (32.76%) 56 (29.63%)

Season 0.466 0.075 0.689

Short Rains

(October–February)

120 (36.04%) 51 (40.16%) 69 (33.50%) 86 (38.74%) 34 (30.63%) 20 (34.48%) 75 (39.68%)

Long Rains

(March–May)

74 (22.22%) 26 (20.47%) 48 (23.30%) 53 (23.87%) 21 (18.92%) 14 (24.14%) 47 (24.87%)

Dry (June–September) 139 (41.74%) 50 (39.37%) 89 (43.20%) 83 (37.39%) 56 (50.45%) 24 (41.38%) 67 (35.45%)

Missing 1 0 1 1 0 0 0

MTBC lineage >0.999 0.960 0.096

L1 39 (17.33%) 14 (17.28%) 25 (17.36%) 25 (16.89%) 14 (18.18%) 6 (22.22%) 25 (17.48%)

L2 8 (3.56%) 3 (3.70%) 5 (3.47%) 5 (3.38%) 3 (3.90%) 1 (3.70%) 5 (3.50%)

L3 102 (45.33%) 37 (45.68%) 65 (45.14%) 69 (46.62%) 33 (42.86%) 6 (22.22%) 68 (47.55%)

L4 76 (33.78%) 27 (33.33%) 49 (34.03%) 49 (33.11%) 27 (35.06%) 14 (51.85%) 45 (31.47%)

Missing 109 46 63 75 34 31 46

TB Diagnostic delayg >0.999 0.034 0.892

Delay <= 3 weeks 102 (30.54%) 39 (30.71%) 63 (30.43%) 77 (34.53%) 25 (22.52%) 19 (32.76%) 58 (30.69%)

Delay >3 weeks 232 (69.46%) 88 (69.29%) 144 (69.57%) 146 (65.47%) 86 (77.48%) 39 (67.24%) 131 (69.31%)

Non-TB medication 0.458 0.188 0.872

No 20 (5.99%) 10 (7.87%) 10 (4.83%) 17 (7.62%) 3 (2.70%) 4 (6.90%) 10 (5.29%)

Penicillins 264 (79.04%) 100 (78.74%) 164 (79.23%) 172 (77.13%) 92 (82.88%) 46 (79.31%) 150 (79.37%)

Other 50 (14.97%) 17 (13.39%) 33 (15.94%) 34 (15.25%) 16 (14.41%) 8 (13.79%) 29 (15.34%)

aAssociations of categorical demographic and clinical characteristics with TB disease manifestations were assessed by chi-squared test. Associations with continuous variables were

assessed by student t-tests or Wilcoxon rank-sum test (†) when normality could not be assumed. In bold, values below Bonferroni-adjusted significance criteria (α = 0.05/20);
bAnyplexTM II RV16 and AllplexTM Respiratory Panel 4, Seegene. 16 respiratory viruses and 6 bacterial species; c8 helminth parasites: Ascaris lumbricoides, Enterobius vermicularis,

hookworm, Hymenolepis diminuta, Schistosoma haematobium, Schistosoma mansoni, Strongyloides stercoralis and Trichuris trichiura; dMycobacterial load in the lungs was derived

from Acid-Fast Bacilli (AFB) sputum smear grading (scanty, 1+, 2+, 3+) and categorized into ‘Low’ (scanty or 1+) and ‘High’ (2+ or 3+); eTo define clinical findings as mild or severe, we

used an adapted TB score (0–12) (Mhimbira et al., 2017) that quantify the number of clinical findings observed in a patient during physical examination. As in Mhimbira and colleagues

(Mhimbira et al., 2017), we defined clinical findings as severe if the TB score was ≥ 6; and as mild, otherwise; fTo screen for lung abnormalities, double readings of chest x-rays were

performed by board-certified radiologists, and discrepancies were resolved by an independent reader; gDuration of diagnostic delay was calculated based on the longest reported

TB-related symptom and categorized into: “≤3 weeks” and “>3 weeks”; CXR, chest x-rays; IQR, interquartile range; ART, antiretroviral therapy.

TB patients were primarily composed of bacteria (90.6, 83.7–
97%; mean, 95% CI) and viruses (9.4, 5.6–19.6%; mean, 95%
CI) (Figure 2A). The presence of members of the Eukaryota
or Archaea domains was rather rare, or below detection limit:
only one sample, among those screened by WMS-S, had reads
assigned to Candida albicans and four samples, among those
screened by 16S-AS, hadMetanobrevibacter ASVs.

Taxonomic assignments derived from 307 16S-AS abundance
profiles showed that the bacterial content of the sputum in TB
patients was dominated by 10 phyla (Figure 2B): Firmicutes,
Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria, TM7
(Saccharibacteria), Spirochaetes, GN02 (Gracilibacteria), SR1
(Absconditabacteria), Tenericutes; together they accounted for
99.3% of the total bacterial relative abundance measured by

16S-AS. At the genus level (Figure 2C), 16 genera which had
mean relative abundances of at least 1% covered approximately
82% of the total bacterial relative abundance. In agreement with
previous studies (Krishna et al., 2016; Hong et al., 2018; Sala et al.,
2020), the top 10 most abundant genera included: Streptococcus,
Neisseria, Veillonella, Prevotella, Haemophilus, Porphyromonas,
Fusobacterium, Campylobacter, Rothia, and Lautropia.

3.3.1. Limited Detection of MTB
As in previous studies, the relative abundance of putative
MTB in the airways microbial communities of TB patients
was low. One Mycobacterium ASV was detected in 52% of
the 16S-AS profiles, median relative abundance per sample was
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TABLE 2 | Associations among TB-disease manifestations.

Mycobacterial loada Clinical findingsb

Variable Total Low High p-valuec Mild Severe p-valuec

(N = 334) (N = 127) (N = 207) (N = 223) (N = 111)

Mycobacterial load - >0.999

Low 127 (38.02%) 127 (100.00%) 0 (0.00%) 85 (38.12%) 42 (37.84%)

High 207 (61.98%) 0 (0.00%) 207 (100.00%) 138 (61.88%) 69 (62.16%)

Clinical findings >0.999 -

Mild 223 (66.77%) 85 (66.93%) 138 (66.67%) 223 (100.00%) 0 (0.00%)

Severe 111 (33.23%) 42 (33.07%) 69 (33.33%) 0 (0.00%) 111 (100.00%)

CXR findings 0.067 0.292

Normal 58 (23.48%) 29 (30.21%) 29 (19.21%) 43 (25.75%) 15 (18.75%)

Abnormal 189 (76.52%) 67 (69.79%) 122 (80.79%) 124 (74.25%) 65 (81.25%)

Missing 87 31 56 56 31

Lung infiltrates 0.165 0.011

Absent 91 (36.84%) 41 (42.71%) 50 (33.11%) 71 (42.51%) 20 (25.00%)

Present 156 (63.16%) 55 (57.29%) 101 (66.89%) 96 (57.49%) 60 (75.00%)

Missing 87 31 56 56 31

Lung cavities 0.313 0.023

Absent 159 (64.37%) 66 (68.75%) 93 (61.59%) 116 (69.46%) 43 (53.75%)

Present 88 (35.63%) 30 (31.25%) 58 (38.41%) 51 (30.54%) 37 (46.25%)

Missing 87 31 56 56 31

Pleural effusion 0.926 0.706

Absent 218 (88.26%) 84 (87.50%) 134 (88.74%) 146 (87.43%) 72 (90.00%)

Present 29 (11.74%) 12 (12.50%) 17 (11.26%) 21 (12.57%) 8 (10.00%)

Missing 87 31 56 56 31

Lymphadenopathy 0.925 0.527

Absent 222 (89.88%) 87 (90.62%) 135 (89.40%) 152 (91.02%) 70 (87.50%)

Present 25 (10.12%) 9 (9.38%) 16 (10.60%) 15 (8.98%) 10 (12.50%)

Missing 87 31 56 56 31

Micronodules 0.044 >0.999

Absent 234 (94.74%) 87 (90.62%) 147 (97.35%) 158 (94.61%) 76 (95.00%)

Present 13 (5.26%) 9 (9.38%) 4 (2.65%) 9 (5.39%) 4 (5.00%)

Missing 87 31 56 56 31

aMycobacterial load in the lungs was derived from Acid-Fast Bacilli (AFB) sputum smear grading (scanty, 1+, 2+, 3+) and categorized into “Low” (scanty or 1+) and “High” (2+ or 3+); bTo

define clinical findings as mild or severe, we used an adapted TB score (0–12) (Mhimbira et al., 2017) that quantify the number of clinical findings observed in a patient during physical

examination. As in Mhimbira and colleagues (Mhimbira et al., 2017), we defined clinical findings as severe if the TB score was ≥ 6; and as mild, otherwise; cAssociations of categorical

demographic and clinical characteristics with TB disease manifestations were assessed by chi-squared test. Associations with continuous variables were assessed by student t-tests

or Wilcoxon rank-sum test (†) when normality could not be assumed. In bold, values below Bonferroni-adjusted significance criteria (α = 0.05/7).

0.01% (IQR:0.0–0.14%). However, this ASV was classified as
Mycobacterium gordonae. ASVs were determined using only the
first reads from our 16S-AS paired-end dataset which reduced
the length of our fragments and therefore the capability to
discriminate closely related species. Thus, QIIME2’s taxonomic
classifier might be incorrectly assigningMTB ASVs to speciesM.

gordonae. Conversely, MetaPhlAn2 detected the MTB complex

in 30% of the WMS-S profiles, median relative abundance per
sample was 0.0% (IQR: 0.0–0.04%). The relative abundances

of neither the putative Mycobacterium ASV nor the species

identified as part of the MTB complex were correlated with the

sputum Mycobacterial load, as assessed by AFB smear grading

(Supplementary Figures S7, S8).

3.4. Microbial Associations Linked to
Diversity and Structuring of Sputum
Microbial Assemblages in TB Patients
3.4.1. Inverse Relationships Between Streptococcus

and Anaerobes
To have an initial overview of the microbial composition in
the sputum of TB patients and of the underlying structuring
of those communities, we created heat-maps to visualize
the relative abundances for genera and species across all
samples (Figures 2E,F). Since we found high correlations
between ordinations based on Aitchison distances of rarefied
and non-rarefied abundances (Procrustes R2 = 0.98, p =

0.001; Supplementary Figure S9), samples and taxa were sorted
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according to hierarchical clustering using Aitchison distances
computed on non-rarefied taxonomic profiles.

Although preliminary visualizations with heat-maps did
not show clear-cut clustering of the microbial communities,
they showed a trade-off between genera Streptococcus and
Neisseria; as the abundance of Streptococcus decreased, Neisseria
increased (Figure 2E). This relationship was further supported
by compositional biplots where vectors representing variation
of these two genera, relative to the geometric mean of the
other genera within a sample, pointed in different directions
(Figure 3A); moreover, the relative abundance (log10) of both
taxa were negatively correlated (Spearman ρ = −0.56, p < 0.001;
Figure 3C).

In compositional biplots, the length of the line (i.e., link)
connecting the tips of two vectors representing two taxa is
proportional to the variation of the corresponding log-ratio of
their abundances. In this sense, the genus-level compositional
biplot suggests that genus Streptococcus also has an inverse
relationship with genus Selenomonas and that their log-ratio
is even more variable than the one between Streptococcus and
Neisseria (Figure 3A). However, these qualitative observations
have to be interpreted carefully because the axis of the biplot
only explained 21.6 % of the total variation in community
composition. Thus, we plotted the relative abundances of these
genera, which confirmed their inverse relationship (Figure 3C
and Supplementary Figure S10B).

Compositional biplots suggest that there are other associations
among taxa abundances in the sputum of TB patients, including
strong positive correlations (i.e., constant ratios across sputum
samples). However, as mentioned earlier, observations based
on our compositional biplots were limited by the quality of
their projections (small proportion of variance explained).
To have a better representation and inference of associations
among taxa, we applied the SParse InveresE Covariance
Estimation for Ecological ASociation Inference (SPIEC-EASI)
to infer genus- and species-level interaction networks. At
the genus level, the inferred network confirmed the inverse
relationship of Streptococcus with Selenomonas (Figure 3B
and Supplementary Figures S11, S12). However, no direct
interaction between Streptococcus and Neisseria was inferred.
Instead, the reconstructed network suggested an indirect
negative relationship between Streptococcus and Neisseria
as a result of cascading effects in the network, triggered
by negative interactions of Streptococcus with anaerobic
genera Selenomonas and Fusobacterium (Figure 3B and
Supplementary Figure S12); an observation supported by the
positive correlation between the Streptococcus-to-Neisseria
and the Streptococcus-to-Selenomonas log-ratios (Spearman
ρ = 0.67, p < 0.001; Figure 3C right). These microbial
associations were also confirmed by the SparCC approach
(Supplementary Figure S13). To simultaneously visualize the
relationships among the relative abundance of the four genera
(Streptococcus, Neisseria, Selenomonas, and Fusobacterium), we
created bar plots per sample with the relative abundance of
the four genera (Supplementary Figure S14). Together, these
observations indicate that the inverse relationships between
Streptococcus and anaerobes Selenomonas and Fusobacterium

structure the TB-associated sputum microbial communities
in the following way: at one extreme of the spectrum there
is dominance of Streptococcus while at the other extreme
there is an elevated content of Neisseria, Fusobacterium, and
Selenomonas, but Streptococcus is depleted. This spectrum
includes intermediate states with a relative balance between these
taxa (Figure 3A bottom and Supplementary Figure S14).

Although we observed an inverse relationship at the
species-level between Neisseria sicca and Streptococcus
parasanguinis (Supplementary Figure S15 left), the species-
level network reconstructed using the WMS-S dataset did
no show a direct interaction between these two species
(Supplementary Figures S15, S16). Three Selenomona spp. (S.
flueggei, S. noxia, and S. sputigena) were detected in the WMS-S
dataset, however, they were detected in only three samples
or less (Supplementary Figure S17). The limited detection of
Selenomonas spp. in the WMS-S dataset is expected considering
the low relative abundance of Selenomonas (mean= 1.05% SD=

1.9; 16S-AS dataset).

3.4.2. The Strength of Interactions Between

Streptococcus and Anaerobes Impacts Negatively

Phylogenetic Diversity
Multiple studies of ecological communities have shown that
the strength of interactions between members of a community
can determine the structure and diversity of the community
(McCann et al., 1998; Ratzke et al., 2020). Indeed,We observed in
the genus-level compositional biplot a gradient of phylogenetic
diversity that decreases in the direction of Streptococcus but
increases in the direction of Selenomonas and other anaerobes
(Figure 3A). Thus, we hypothesized that the strength of the
network-based interactions of Streptococcus with Selenomonas
or Fusobacterium within individual assemblages might have an
impact on diversity. Consequently, for each sputum sample, we
measured the strength of the interaction between these genera
as the absolute value of the log-ratio of their abundances. Large
values indicate large differences in their relative abundance and
therefore large negative effects of one taxon on the other, while
small values indicate co-occurrence and therefore weak mutual
exclusion. To measure diversity within individual microbial
assemblages, we computed Faith’s phylogenetic diversity (PD).
We found negative correlations of PD with the strength of the
Streptococcus-Selenomonas interaction (Spearman ρ = −0.62,
p < 0.001) and with the strength of the Streptococcus-
Fusobacterium interaction (Spearman ρ = −0.52, p < 0.001).
Consistent with a recent study by Ratzke et al. (2020), this result
suggests that strong negative interactions in sputum microbial
assemblages impact negatively the diversity of the community
(Figure 3D).

Both the SPIEC-EASI and the SparCC genus-level interaction
networks, derived from the 16S-AS dataset, also revealed
a group of isolated nodes in the networks (Figure 3B and
Supplementary Figure S18A) whose accumulation in sputum
samples was positively correlated with Faith’s PD (Spearman
ρ = 0.83, p < 0.001, SPIEC-EASI network; Spearman
ρ = 0.85, p < 0.001, SparCC network; Figure 3D and
Supplementary Figures S18B,C left). These isolated nodes
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FIGURE 2 | Detailed overview of the sputum microbial composition in TB patients. Per sequencing dataset, mean relative abundances (%) at the domain (including

viruses) level (A), bacterial-phylum level (B), and bacterial-genus level which includes genera with at least 0.1% relative abundance (C); in the legends, below

"Unclassified", taxa are arranged from high to low abundance. Heatmap of relative abundances (%) for domains and viruses (D); viral composition is break down into

species-level components; columns (sputum samples, N = 89) were annotated with the HIV status of the TB patient; taxonomic profiles were derived from WMS-S

data. Bacterial composition is break down into species- and genus-level components; species-level abundance profiles were derived from WMS-S data and

genus-level abundance profiles were derived from 16S-AS data. Heatmap of bacterial genus-level abundance profiles (E) displays genera detected in at least 50% of

sputum samples while heatmap of bacterial species-level abundance profiles (F) displays species detected in at least 15% of sputum samples. Sputum samples and

bacterial species/genera are sorted according to hierarchical clustering using Aitchison distances (for additional details, see methods). For the heatmap of bacterial

species-level abundance profiles, bacterial species are annotated by reported mode of metabolism. Sputum samples are annotated by different aspects of TB disease

manifestations (sputum mycobacterial load, chest X-ray, and clinical findings) and linked demographic and clinical characteristics; annotation labels (variable:level)

include the variable’s name and its level displayed in black in the annotation colors, which are gray for alternative levels and white for missing values.
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FIGURE 3 | Genus-level community interactions. (A) Relative variation biplot of genus-level community compositions (centered log-ratio transformed) shows the

relative variation of the log-ratios for the top 35 taxa (arrows, taxa best represented by the axes of the biplot), and sputum samples (dots); the length of the imaginary

line connecting the tips of two arrows, representing two taxa, is proportional to the variation of the log-ratio of the corresponding abundances; sputum samples are

colored by the Faith’s phylogenetic diversity, and the relative abundances of genera Streptococcus, Neisseria, and Selenomonas. (B) Interaction network inferred with

the SParse InversE Covariance Estimation for Ecological ASociation Inference (SPIEC-EASI) method where nodes represent genera, colored by the corresponding

phylum, and of sizes corresponding to the relative abundance (%) averaged across sputum microbial assemblages and in logarithmic scale; we display the labels of

(Continued)
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FIGURE 3 | the top 10 taxa best represented by the relative variation biplot (See Supplementary Figure S8 for the complete set of labels). (C) The relative

abundances of Streptococcus and genera negatively interacting with it as function of the abundance log-ratio between Streptococcus and the genus interacting with

it; Spearman’s rank-order correlation coefficient (ρ) between the relative abundances (log10) are shown. The relationship between the Streptococcus-to-Neisseria and

Streptococcus-to-Selenomonas log-ratios is also shown. (D) Faith’s PD as a function of the strength of the interactions between Streptococcus and the anaerobes

Selenomonas and Fusobacterium, and as a function of the number of isolated nodes in the interaction network. In addition, the relationship between the latter and the

strength of the interaction between Streptococcus and Selenomonas is shown. Monotonic relationships were assessed by Spearman’s rank-order correlation (ρ).

represent genera whose presence was not consistent across all
sputum samples or whose abundance was not associated with
the abundance of other genera. In decreasing order of mean
relative abundance, these genera included: Porphyromonas,
Mycobacterium, Moraxella, Lactobacillus, Corynebacterium,
Cardiobacterium, Pyramidobacter, Lachnoanaerobaculum,
Pasteurela, Filifactor, Butyrivibrio, Helicobacter, Streptobacillus,
putative genus SHD-231, Johnsonella, and Peptococcus. These
genera belongs to different phyla, which supports their effect
on increasing Faith’s PD when they accumulate within a
sputum sample.

Consistent with our finding that Faith’s PD was negatively
correlated with the strength of the Streptococcus-Selenomonas
interaction, we also found a negative correlation between the
latter and the accumulation of these potentially transient genera
(Spearman ρ = −0.63, p < 0.001, SPIEC-EASI network;
Spearman ρ = −0.59, p < 0.001, SparCC network; Figure 3D
and Supplementary Figures S18B,C right).

Taken together, these findings suggest a key role of interactions
between Streptococcus and certain anaerobes in shaping the
composition and structure of the microbial communities in the
sputum of TB patients.

3.5. Microbial Diversity and Composition of
Sputum and Manifestations of Pulmonary
TB
3.5.1. Underweight Status Determines the

Association Between Faith’s PD and Abnormal CXRs
Abnormal CXRs in this cohort comprised five types of CXR signs:
parenchymal lesions (infiltrates/consolidations), cavities, pleural
effusion, lymphadenopathy, and micronodules. Parenchymal
lesions were the most frequent type (63.3%, n = 157) of
CXR signs in this cohort and were present alone (32%, n =
50) or together with the other CXR signs (Figure 4A). For
instance, 78 out of the 80 (97.5%) patients with lung cavities,
included in the ANCOVA models, had also parenchymal lesions.
Although variation of Faith’s PD was neither associated with high
mycobacterial load in the sputum of TB patients nor with severe
clinical findings, multi-way ANCOVA models (see methods)
revealed that underweight status (BMI < 18.5) determined an
association between Faith’s PD and abnormal CXR findings
(p = 0.002, ANCOVA; Figure 4B). More specifically, differences
in the estimated marginal means of Faith’s PD between TB
patients with abnormal CXRs and those with normal CXRs were
significant in underweight TB cases (p = 0.001, t-test) but not in
those with BMI above 18.5 (Figure 4C). In a separate ANCOVA
model that included the genetic background of MTB, neither
MTB genetic background nor the interaction Underweight

status * CXR findings had significant effects on Faith’s PD
(Supplementary Figure S13), potentially as a consequence of
considerable reduction in degrees of freedom (Total df = 103).

To further characterize the association of abnormal CXRs
with Faith’s PD, among underweight TB patients, we re-
categorized abnormal CXRs into 5 groups: i) parenchymal lesions
(only), no additional CXR signs; ii) parenchymal lesions with
cavities but no additional CXR signs; iii) parenchymal lesions
and other, where ’other’ refers to any additional CXR sign
accompanied or not by cavities; iv) pleural effusion (only),
no additional lesions; and v) other, which aggregates patients
without parenchymal lesions and one patient with pleural
effusion and cavities. We found that among underweight TB
cases, the association of abnormal CXRs with Faith’s PD was
mediated by increased levels of Faith’s PD in TB patients with
lung parenchymal infiltrates, in comparison to those with normal
CXRs (padj = 0.05, t-test; Figure 4D). Since we observed that
Faith’s PD was positively correlated with an accumulation of
potentially transient genera (i.e., isolated nodes in the genus-
level interaction network, Figure 3D), we, therefore expected
higher levels of transient genera in underweight TB patients
with lung parenchymal infiltrates, in comparison to underweight
TB patients with normal CXRs. A Wilcoxon rank-sum test
confirmed our expectation (padj = 0.019; Figure 4E). These
observations suggest that accumulation of transient genera
potentially drives the increased levels of Faith’s PD in the sputum
microbial community of underweight TB patients with lung
parenchymal infiltrates.

3.5.2. Underweight Status Determines the

Association Between Compositional Variation and

CXRs Findings
Following up on the observed associations with Faith’s PD,
we also evaluated if inter-patient variation (β diversity)
of genus-level abundance profiles (CLR-transformed) was
associated with CXR findings categorized by the type of
lesions. Using transformation-based redundancy analysis
(tb-RDA), step-forward selection of two-way interactions,
and PERMANOVA, we also found that underweight status
determined an association between compositional variation
and CXR findings (p = 0.007, PERMANOVA; adjusted for
age, sex, physical health status parameters, co-infections,
season, mycobacterial load, delay in diagnosis, non-TB
medications, sequencing depth, and sequencing batch). As
it was observed for Faith’s PD, differences in genus-level log-ratio
abundances were associated with CXRs findings in underweight
TB cases (p = 0.01, PERMANOVA; adjusted for age, sex,
mycobacterial load, delay in diagnosis, HIV, and sequencing
depth) but not in those with BMI above 18.5 (Figure 5A).
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FIGURE 4 | Associations with Faith’s phylogenetic diversity (PD). (A) Venn diagram showing the distribution of TB patients across the five types of lesions comprising

abnormal CXRs findings. (B) The graph illustrates a multi-way ANCOVA model testing for associations with Faith’s PD (log10); the height of the bars correspond to the

proportion of Faith’s PD variance accounted by variables included in the model (marginal effect sizes), and measured by the partial Eta squared statistic (h2p, see

methods); the adjusted R-squared statistic, the significance of the model and of the variables are shown: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. (C)

Plot showing the estimated marginal means of Faith’s PD by Chest x-ray findings and underweight status, based on the ANCOVA model showed in B; gray bars

correspond to 95% confidence intervals of the estimated means. (D) Distribution of Faith’s PD (log10), by CXR categories and underweight status; Student t-tests

were applied for pairwise comparison of means (reference: “Normal” CXRs). (E) Distribution of the number of isolated nodes, from the genus-level interaction network,

by CXR categories and underweight status; Wilcoxon rank-sum tests were applied for pairwise comparison of means (reference: “Normal” CXRs). In (D,E), CXR

categories were defined as “Normal” (none of the five CXR signs), “Infiltration” (only parenchymal infiltrates observed in CXRs), “Infiltration and Cavitation” (infiltrates

with cavities, but no additional CXR signs), “Infiltration (other)” (infiltrates with any other CXR sign, accompanied or not by cavities), “Pleural effusion” (no additional

CXR signs) and “Other” (patients without parenchymal lesions and one patient with pleural effusion and cavities). In (D,E), p-values were adjusted for multiple

comparisons with Holm-Bonferroni Method.
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As expected, this association was mediated by the Streptoccocus-
to-Selenomonas log-ratio (p = 0.001, PERMANOVA;
Figure 5B) and the Streptoccocus-to-Fusobacterium log-
ratio (p = 0.01, PERMANOVA, Figure 5C). More specifically,
we found that only among underweight TB cases, and in
comparison to those with normal CXRs, TB patients with
parenchymal infiltrates showed a significant decrease of both
the Streptoccocus-to-Selenomonas log-ratio (padj = 0.02,
Wilcoxon rank-sum test; Figure 5D) and the Streptoccocus-to-
Fusobacterium log-ratio (padj = 0.03, Wilcoxon rank-sum test;
Figure 5E).

Together, our results suggest that in underweight TB patients
with lung parenchymal infiltrates, a change of the local lung
environment is associated with a shift in the composition
and diversity of the sputum microbiome. An accumulation of
transient genera and an increase in the abundance of anaerobic
genera Selenomonas and Fusobacterium with depletion of genus
Streptococcus potentially mediated this shift.

3.6. Presence of Opportunistic Viruses in
Microbial Assemblages Linked to HIV
Co-infection
DNA Viruses were detected in 37% of the samples screened by
WMS-S; the most common viruses were Human Herpesvirus 4
(HHV-4, also known as Epstein-Barr virus) and Torque Teno
Virus (TTN) (Figure 2D). A few sputum samples (n = 7) had
excessive viral relative abundance (> 51 %, equivalent tomean+
2SD), dominated by one or few species (Streptococcus phages,
HHV-4, and unclassified Roseolovirus). Although, both HHV-4
and TTN viruses are generally carried asymptomatically, these
viruses can expand or cause (respiratory) infections, specially in
immuno-compromised individuals (Thom and Petrik, 2007; Reid
et al., 2016). Thus, we investigated if the detection of viruses in
the sputum of TB patients, which in this cohort is dominated
by both HHV-4 and TTN viruses, was linked to HIV. The
proportion of HIV in TB patients with detectable viral DNA in
their sputa was 43%, as compared to 21% of TB patients with
no viral DNA detected in their sputa. However, a chi-squared
test of independence showed a borderline significant association
between the two variables (p = 0.06).

To look for associations between the identified viruses
and bacterial species, we included virus abundances when
reconstructing the network of microbial associations with
SpiecEasi (Supplementary Figure S21A). SpiecEasi inferred
direct positive associations between TTVs, Moraxella catarrhalis
and Streptococcus vestibularis (Supplementary Figure S21A).
However, we have to be skeptical about these associations
because they were derived from the detection of both M.
catarrhalis and S. vestibularis in few sputum samples (n = 3), see
Supplementary Figure S21B.

Although our observations of the viral fraction of the
microbial communities in the sputum of TB patients are
exploratory, they highlight the overlooked importance of the
virome in the airways of TB patients co-infected with HIV.

4. DISCUSSION

Patients with pulmonary TB show remarkable disease
heterogeneity (Lin and Flynn, 2018). Likewise, inter-individual
variability of the microbial communities in the airways of TB
patients is also large (Zhou et al., 2015; Hong et al., 2016).
Whether those two sources of variation among TB patients
are related should be explored in large human cohorts, where
potential confounding factors can also be considered. Here, we
present such a study. In a large human cohort of patients with
pulmonary TB, stratified by three types of disease manifestations,
we first assessed the distribution of potential confounding factors:
demographics, physical/nutritional status, co-infections, and
previous medication intake. We then characterized the diversity,
composition, and structure of the microbial communities in
the sputa. And finally, we assessed if the overall variability
in diversity and community structure could be explained by
differences in disease manifestations or by other co-factors or
interactions with them.

As previously reported for the human microbiome and
more recently for the airway microbiome (Faust et al., 2012;
Einarsson et al., 2019), we found numerous associations among
members of microbial communities in the respiratory tract
of TB patients. However, we are reporting for the first time
key microbial associations that were involved in shaping the
structure of microbial assemblages found in the sputa of patients
with pulmonary TB. In particular, our results showed that
negative associations of genus Streptococcus with Selenomonas
and Fusobacterium were important drivers of diversity and
compositional variation; sputum microbial communities could
be separated into groups where one taxa dominated over the
other. This finding is not entirely surprising, considering well
known phylum-level trade-offs (e.g., Bacteroidetes/Firmicutes)
described for the gut microbiome in relation to obesity
(Turnbaugh et al., 2009). Interestingly and in agreement
with a recent study (Ratzke et al., 2020), the Streptococcus-
to-Selenomonas/Fusobacterium trade-offs were also important
drivers of Faith’s PD. For instance, PD reached highest
levels when Streptococcus and Selenomonas co-existed at equal
proportions (approximately 1% relative abundance for both taxa,
and dropped as Selenomonas or Streptococcus became extinct.
This result is an example of the effect that the strength of a single
microbial interaction can have on the overall diversity of the
community (Ratzke et al., 2020).

Our findings support two scenarios linked to the
immigration/elimination model for the lower airways. This
model postulates that constant microaspiration and inhaling
of microbes is balanced out by mucociliary clearance and local
immunity, to maintain a low microbial biomass in the lower
airways (Dickson and Huffnagle, 2015). However, when this
immigration/elimination balance is disrupted, two scenarios
become plausible: (i) otherwise transient immigrants accumulate
and consequently lead to an increase in diversity, and (ii) if
changes of the local environment favors certain opportunists,
they might overtake the community thus causing extinction of
other members and a drop in diversity (Dickson and Huffnagle,
2015; Dickson et al., 2015). The first scenario is supported by our
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FIGURE 5 | Associations with compositional variation and log-ratios of interacting taxa. (A) Relative variation biplots, stratified by underweight status (BMI < 18.5 and

BMI ≥ 18.5), show the effect of underweight status on the association between differences in genus-level log-ratio abundances and CXRs categories. (B) Marginal

(Continued)
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FIGURE 5 | effect sizes (partial eta squared) of variables included in a PERMANOVA model testing associations with the Streptococcus-to-Selenomonas log-ratio. (C)

Marginal effect sizes of variables included in a PERMANOVA model testing associations with the Streptococcus-to-Fusobacterium log-ratio. (D) Distribution of the

Streptococcus-to-Selenomonas log-ratio by CXR categories and underweight status. (E) Distribution of the Streptococcus-to-Fusobacterium log-ratio by CXR

categories and underweight status. In (B,C), the significance of the variables are shown: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001; ‡ The F-statistic

and the p-value of the model correspond to a model considering only significant terms. In (D,E), Wilcoxon rank-sum tests were applied for pairwise comparison of

means (reference: “Normal” CXRs); shown p-values were adjusted for multiple comparisons with Holm-Bonferroni method.

finding that Faith’s PD increased with the random accumulation
of transient genera in the sputum of TB patients. On the other
hand, the second scenario would be supported by situations
where Streptococcus or Neisseria became dominant and covered
more than 50% of the bacterial content. If there is an optimal
window for the Streptococcus-to-Selenomonas/Fusobacterium
balance, deviations from it would indicate dysbiotic (unbalanced)
states; an argument that should be explored in healthy cohorts to
identify such optimal window.

It was striking to find that only among underweight TB
patients (BMI ≤ 18.5), abnormal CXRs but neither high
mycobacterial load in sputum nor severe clinical findings (TB
score ≥ 6) were associated with changes of the Streptococcus-to-
Selenomonas balance, and therefore with overall compositional
variation and Faith’s PD. This finding is interesting but
not unexpected, considering that abnormal CXRs represent
pulmonary damage which is a dramatic change of the local
lung environment. It is even more interesting to find that
the Streptococcus-to-Selenomonas/Fusobacterium balance shifted
toward increased levels of Selenomonas and Fusobacterium in
patients with lung parenchymal infiltrates when no cavities were
observed in CXRs. Lung parenchymal infiltrates/consolidations
in adult patients with pulmonary TB have been shown to be
severely hypoxic, which exacerbates tissue destruction (Belton
et al., 2016). This anaerobic environment plus the availability
of nutrients as a result of concomitant tissue destruction are
potentially the factors for increased levels of Selenomonas
and Fusobacterium, fastidious gram-negative anaerobes, in
parenchymal infiltrates.

At first sight, our findings might disagree with a recent study
of MTB-infected cynomolgus macaques, where there was no
association of compositional changes in the airways microbiome
with lung inflammation or involvement (Cadena et al., 2018).
However, in that study, subjects were not stratified by BMI.
Among participants with normal BMI, we also did not observe
compositional changes associated with lung damage. However,
in underweight patients, increased levels of Selenomonas and
Fusobacterium were associated with parenchymal infiltrates. A
potential explanation for the interaction with BMI, might be
provided by the gut-lung axis cross-talk in TB. Based on previous
studies, increased levels of certain anaerobes in the gut of
underweight TB patients can result in increased levels of short-
chain fatty acids (SCFAs) (Maji et al., 2018), which are by-
products of anaerobic bacterial metabolism. SCFAs are immuno-
modulators that can reach the blood stream and act as anti-
inflammatory signaling molecules (Tilg and Moschen, 2015).
Furthermore, SCFAs in the lungs can suppress the production of
pro-inflammatory cytokines and increase the risk of developing
TB in HIV patients with latent TB infection (Segal et al., 2017).

Thus, it is plausible that an unbalanced gut microbiome in
underweight TB patients might set the immunological tone that
favors proliferation of not onlyMTB but also of certain anaerobes
in hypoxic lungs. This hypothesis is supported by a previous
study reporting an association of impaired cytokine response
with low BMI in patients with latent TB (Anuradha et al., 2016).

In our inferred network, Selenomonas positively interacts with
Fusobacterium and with seven other anaerobes (Campylobacter,
Treponema, Schwartzia, Leptotrichia, Magasphera, unclassified
Veillonellaceae, and Bulleidia), thus forming an anaerobic
consortium where Selenomonas is a central hub (i.e., high degree
node). This finding is in line with previous network inferences
reporting Selenomonas as a central hub inmicrobial communities
from the oral cavity (i.e., dental plaque) (Faust et al., 2012)
and the upper airways (Einarsson et al., 2019). Also, similar
anaerobic consortia have been found in colorectal carcinomas
(Warren et al., 2013). Even more relevant, Selenomonas
together with Veillonella have been proposed as salivary
biomarkers of lung cancer (Yan et al., 2015). Furthermore, in
a seminal study, Kolenbrander and colleagues (Kolenbrander
et al., 1989) demonstrated that Selenomonas organisms (S.
sputigena, S. flueggei, S. infelix, and S. noxia) co-aggregated
with Fusobacterium nucleatum through cell-to-cell interactions;
except for S.infelix, we found these species in the sputum of
TB patients. Recently, it has been shown that S. sputigena
has a heavily glycosylated flagella (Rath et al., 2018) which
likely contributes to the capability of Selenomonas spp. to form
multispecies aggregates (biofilms) with members of other genera
in dental plaque. Putting together our findings with those of
previous studies, there is compelling evidence supporting a
key role for Selenomonas in shaping the structure of microbial
communities in the sputum of TB patients. The implication being
that Selenomonas spp. potentially migrate to the lower airways as
a multispecies co-aggregate of anaerobes which together might
tone-down immune responses, probably through production of
SCFAs (Mirković et al., 2015; Segal et al., 2017).

Another important finding of this study was that the sputum
microbial assemblages of TB patients with HIV were more likely
to contain herpesviruses (Epstein-Barr virus) and anelloviruses
(Torque Teno virus); in some cases these viruses even dominated
the microbial assemblage. This group of viruses are common in
human populations, acquired early in life, and are usually non-
infectious during a lifetime (Reid et al., 2016). However, these
viruses can expand in immuno-compromised individuals, such
HIV patients (Miller et al., 2006; Thom and Petrik, 2007; Monaco
et al., 2016) and those receiving immunosupressives (Abbas et al.,
2017). It is unclear what effect these two types of viruses have on
HIV infection particularly in the context of HIV-TB co-infection.
Therefore, our finding drives attention to a so far neglected aspect
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of HIV-TB coinfection, which is the viral component of the
airway microbiome.

4.1. Limitations
Our findings should be considered in the light of some
limitations. First, a large proportion (94%) of TB patients in
the cohort reported the previous intake of non-TB medications;
patients mostly took penicillin-derivatives (78%). Similar to the
previously reported lack of effect of TB treatment on sputum
microbial composition (Sala et al., 2020), the distribution of non-
TB medications neither differed among the levels of TB-disease
manifestations nor were they associated with compositional
variation of the sputum microbial communities. Therefore, we
are confident that the intake of non-TB medications did not bias
the observed associations. Nonetheless, given the well-known
impact of medications on human microbiomes, and the serious
burden self-medication or miss-treatment poses in low and
middle-income countries, we think previous medication-intake
should be considered in study designs; excluding participants
that received previous medications might neglect the role of
medication-intake as a potential mediator or modifying factor in
the microbiome-disease interplay in particular study settings.

Second, we followed sputum collection practices to ensure
that sputum specimens were produced and collected consistently
across participants. These practices included the use of
instructional videos, collection of early morning sputum, and
qualitative assessment of the specimen’s color and viscosity at
the time of collection by experienced laboratory technicians.
Although these practices were proven to reduce the collection of
salivary-like specimens and improve the quality of the sputum
for detection of MTB (Mhalu et al., 2015), there are additional
quantitative measurements that can improve the discrimination
of sputum from salivary-like specimens. For instance, the
number of squamous epithelium cells or leukocytes, or their
ratio, quantified by smear microscopy (Wong et al., 1982).
We encourage future studies to incorporate such quantitative
measurements to improve the assessment of sputum quality for
microbiome studies.

Third, our study observed no correlation between
Mycobacterial reads abundance and AFB smear results;
likely as a result of our DNA extraction methodology which
did not specifically targeted for MTB DNA or for removal
of host’s DNA. We made this decision because both MTB
DNA enrichment and human DNA depletion would result in
distorted compositional profiles of the microbial communities
that we are interested in characterizing. For instance, MTB
enrichment would inevitably affect the estimation of the MTB
abundance relative to other microorganisms. On the other hand,
due to enzymatic/chemical/mechanical steps to differentially
filter/lyse host cells and degrade exposed DNA, human DNA
depletion steps can cause an overall loss of microbial DNA or
bias toward microorganisms that are less susceptible to such
steps. Nonetheless, we must acknowledge that mycobacterial
relative abundances estimated from both 16S-AS and WMS-S
reads might be an under-representation or miss-representation
of the actualMTB load in the sputum.

Fourth, even though sputum originates in the lower airways,
its passage through the upper airways during expectoration
inevitably results in a sample mixed with microbes from the
upper respiratory tract and the oral cavity. Therefore, future
studies with respiratory samples better rendering the lung
lesion environment must verify the reported associations with
abnormal CXRs (lung parenchymal infiltrates in particular).
Fifth, we report microbial interactions based on the relationships
of taxon abundances across a large set of sputum microbial
assemblages. However, further experimentation is needed to
imply ecological processes such as antagonism or co-existence;
for instance, correlations based on absolute abundances
measured by quantitative PCRs would confirm the microbial
associations reported in this study.

And sixth, our analysis of the WMS-S dataset was limited by
the high host-to-microbial DNA ratio. On average 90% of the
reads were mapped to a human reference genome and filtered
out; remaining reads were not enough for a good coverage of the
microbial community and therefore biased against low-abundant
members. This bias affects the sensitivity of functional profiling
methods to estimate the contribution of microbial species with
low-covered genomes to a functional pathway or to a gene family.
For this reason we decided to limit our analysis of the WMS-S
dataset to perform only a species-level taxonomic profiling that
could complement the 16S-AS profiles.

4.2. Conclusions
In summary, this study sheds light on the relationship
between pulmonary TB and the host’s airway microbiome. We
have identified specific microbial interactions responsible for
structuring the microbial communities in the sputum of TB
patients. More importantly, our results suggest underweight
nutritional status (BMI ≤ 18.5) as a determinant factor
for sputum microbial associations with hypoxic lesions in
pulmonary TB. Thus, our hypothesis that variations in TB
disease manifestations are associated with microbial composition
variation in the airways of TB patients, partly holds; the
association is restricted to pulmonary damage and determined by
underweight status. Finally, but importantly, our study points out
a non explored nexus between TB and HIV, the airways virome.
These new insights should guide further research to unravel the
underlying mechanisms behind the observations presented here.
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