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A central challenge in today’s care of epilepsy patients is that the disease dynamics are

severely under-sampled in the currently typical setting with appointment-based clinical

and electroencephalographic examinations. Implantable devices to monitor electrical

brain signals and to detect epileptic seizures may significantly improve this situation

and may inform personalized treatment on an unprecedented scale. These implantable

devices should be optimized for energy efficiency and compact design. Energy efficiency

will ease their maintenance by reducing the time of recharging, or by increasing the

lifetime of their batteries. Biological nervous systems use an extremely small amount

of energy for information processing. In recent years, a number of methods, often

collectively referred to as brain-inspired computing, have also been developed to

improve computation in non-biological hardware. Here, we give an overview of one

of these methods, which has in particular been inspired by the very size of brains’

circuits and termed hyperdimensional computing. Using a tutorial style, we set out to

explain the key concepts of hyperdimensional computing including very high-dimensional

binary vectors, the operations used to combine and manipulate these vectors, and the

crucial characteristics of the mathematical space they inhabit. We then demonstrate

step-by-step how hyperdimensional computing can be used to detect epileptic seizures

from intracranial electroencephalogram (EEG) recordings with high energy efficiency,

high specificity, and high sensitivity. We conclude by describing potential future clinical

applications of hyperdimensional computing for the analysis of EEG and non-EEG

digital biomarkers.

Keywords: brain-inspired computing, intracranial EEG, epilepsy, hyperdimensional space, digital biomarker,

personalized medicine

1. INTRODUCTION

At the Sleep-Wake-Epilepsy-Center of the University of Bern, we typically see patients who
are not seizure free every 3–6 months. These check-ups often also include recording an
electroencephalogram (EEG) with extracranial electrodes for a duration of <1 h. This rate of
appointments may be considered typical for a tertiary or quaternary epilepsy center in many parts
of the world. However, there is huge potential for improvements for several fundamental reasons.
It has, for example, been clearly demonstrated that the patients’ accounts of seizure occurrences are
not reliable (1). The main explanation is not the occasional patient who does not want to report
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seizures to avoid a suspension of the driver’s license or other
social and professional consequences, but the fact that many
patients are actually willing but not able to give an accurate
seizure count. Their seizures may occur during sleep, they
may lose consciousness during the seizures, and nobody may
tell them afterwards that a seizure occurred, or their seizures
may impair their memory, as is typically the case in temporal
lobe epilepsy. Furthermore, recent landmark studies (2, 3)
have proven that epileptiform activity is far from constant, but
exhibits fluctuating dynamics with often robust and patient-
specific circadian and multidien periodicities, which are severely
under-sampled by the typical sporadic appointment-based
short-term EEG recordings (4, 5). Devices that could provide
more accurate seizure counts and monitor the individual
dynamics of epileptiform activity therefore have a large potential
to improve and also personalize the care of epilepsy patients.
Nonetheless, a decisive aspect of these devices is that they
have to be as unobtrusive and non-visible to others as possible
to not aggravate the stigmatization that epilepsy patients are
often still exposed to—as most impressively described in the
recent autobiography by the American author and journalist
Kurt Eichenwald (6). There are several, not mutually exclusive,
ways to minimize the obtrusiveness of the devices: one might,
for example, restrict EEG recordings to night-time (7), or
the device might be attached or integrated into personal
accessories. Lee et al. (8) developed a strategy to use elastomeric
composites with conductive nanomaterials for designing
customized, multifunctional electronic eyeglasses that allow
for recording EEG, electrooculogram, ultraviolet intensity, and
body movements. Steady skin contact of their highly conductive
and deformable carbon nanotube/polydimethylsiloxane EEG
electrodes was maintained by a spring-coupled pressure device.
The electrodes’ positions near the ears allowed to accurately track
the dynamics of occipital EEG alpha rhythms. Alternatively, EEG
electrodes have been integrated into caps or individualized ear
pieces (9), or they may be implanted subcutaneously (10, 11) or
into the skull (12–14). In all of these cases, however, the devices
should be designed to be as small as possible and this is why
it is imperative that they are highly energy efficient. Energy
efficiency is a hallmark of biological nervous systems and a set of
methods, referred to as “brain-inspired computing,” has emerged
over recent years. These methods aim at replicating principles
of biological nervous systems into artificial substrates and
thereby allowing the design of a new generation of highly energy
efficient hardware. Here, we set out to introduce computing with
hyperdimensional (HD) vectors (15), one of the most powerful
and elegant of these approaches.

The paper is structured as follows: In section 2, we first give an
introduction to the main characteristics of computing with HD
vectors. Then we provide a detailed account of how computing
with HD vectors has been successfully used to detect epileptic
seizures from intracranially recorded EEG signals (iEEG) in
section 3. Next, we dedicate section 4 to describing examples
of emerging nanotechnology hardware, which is particularly
well suited for implementation of computing with HD vectors.
We conclude in section 5 by summarizing our main points,
giving an outlook on future developments, and important

neurologic applications of computing with HD vectors. Finally,
we recommend resources for further reading, mainly aimed at
clinical neurophysiologists or epileptologists.

2. HYPERDIMENSIONAL COMPUTING

One way to conceive of computation in a very general sense
is as the emergence, change, combination, and dissolution of
patterns. While in biological systems, computation is considered
to mainly rely on self-organization (16, 17), in the case of human
artifacts, computation is engineered. In today’s typical computer,
the patterns used are short bit strings consisting of zeros and
ones (18, 19). The central idea of computing with HD vectors,
as developed by Finnish neuroscientist Pentti Kanerva, is to use
random patterns that are much larger, i.e., in the order of 10,000
(15, 20). These patterns are still made from zeros and ones,
but they are identically and independently distributed (i.i.d.),
and are referred to as “dense random binary hypervectors” (21).
The notion of a “hypervector” is due to the interpretation of
these patterns as vectors or points in a very high-dimensional or
“hyperspace.” Kanerva (15, 20), Plate (22), and Gayler (23) were
inspired to design such a novel and unique data type of random
HD vectors after studying biological central nervous systems
as well as psychological models of human analogy processing.
Hence, the notion of computing with HD vectors is inspired by
these aspects of brains where information is often represented by
very large spatiotemporal distributions of probabilistic neuronal
population firing patterns (24).

Crucially, in HD vectors the information is equally distributed
across all the bits, which are consequently all of equal importance.
The HD vector as a whole and any of its parts represent
the same item, though the individual parts in a less reliable
manner. As a corollary, there are no most or least significant
bits as in classical computing, where bits represent different
values depending on their positions within the bit strings. The
characteristic that the information is spread across the whole
HD vector is often referred to as a holographic or holistic
representation (22). The reason why holographic information
representation is of fundamental importance is that it yields a
very high tolerance to noise. Akin to the situation in biological
brains, where very large numbers of neurons may be impaired
before there are clinical manifestations (25), many bits—often
in the range of 30%—of a HD vector may be randomly flipped
before computing with HD vectors fails. To better understand the
root causes for this surprising robustness, it is essential to study
the hyperdimensional space, which the hypervectors inhabit.
Given that the world we live and have evolved in can adequately
be described by three spatial dimensions, at least on the scale we
have direct sensory access to, it is not surprising that most of
us humans do not have an intuitive grasp for hyperdimensional
spaces. One such crucial but non-intuitive characteristic of
hyperdimensional spaces is called “concentration of measure”
(15, 26) and is illustrated in Figure 1 by the stacked blue median-
and-whiskers plot. It describes the distribution of distances
between dense binary HD vectors of increasing dimensionality
D. The distance between two HD vectors is assessed by the
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FIGURE 1 | The distributions of normalized Hamming distances (NHD)

illustrate both the non-intuitive structure of hyperdimensional space and the

similarity between a bundled hyperdimensional (HD) vector and its inputs. We

have selected three random dense binary HD vectors R1,R2 and R3 and

bundled them together to yield the HD vector B, i.e., B = [R1 + R2 + R3].

Bundling here denotes the componentwise application of addition followed by

the majority rule. Then the pairwise NHD—the number of components where

two vectors are different, divided by the dimension D—is computed among

the input vectors NHD(Ri ,Rj 6=i ) shown in blue, and between B and each of its

input vectors NHD(B,Ri ), displayed in gray. This procedure is repeated 50,000

times, yielding 150,000 distances for each distribution and for each dimension

D, which increases from D = 100 to D = 10, 000 in steps of 300. The dots

represent the medians, and the whiskers indicate the 1–99 percentile ranges.

One can clearly observe that, with increasing dimension D, the normalized

Hamming distances between the random vectors concentrate around 0.5. In

other words, the random vectors are almost orthogonal to each other. The

distances between the bundled HD vector B and its input vectors is much

smaller and concentrates around 0.25. Both of these characteristics become

progressively and smoothly—i.e., there is no sensitive dependency—more

pronounced with an increasing dimension D.

number of components at which they differ, divided by D, i.e.,
their normalized Hamming distance. The fundamental, albeit
counter-intuitive, observation is that the larger the dimension,
the more the distances are concentrated around a normalized
Hamming distance of 0.5. Thus, the higher the dimension,
the more likely it becomes that two dense binary HD vectors
differ in half of their components and are quasi-orthogonal to
each other. Put differently, points in hyperdimensional space
are surprisingly isolated. If one starts moving away from a
point one has to traverse almost half the diameter of the
hyperdimensional space until one arrives at other points, but
then the number of “neighbors” starts to increase enormously.
Compare this to our everyday experience of moving on a 2D
plane. Kanerva points out (15), if we double the distance,
the “territory” quadruples, but it will never increase billion-
fold as it is possible in hyperdimensional space. Hence, in the
binary hyperdimensional space, with a common but arbitrarily
chosen dimension of D = 10, 000, there exists an inconceivably
large number of different binary i.i.d. HD vectors, which are
quasi-orthogonal to each other. Projecting information into a
hyperdimensional space therefore not only provides a massive
capacity for distinct representations, but these representations
are also extremely robust, becausemost of their neighbors are half

the diameter of the whole space away. This inherent robustness
is one of the main reasons that lends computing with HD vectors
naturally as a computational paradigm for emerging nanoscalable
hardware, where noise due to variability of the materials is a
central challenge (27–31).

Moreover, it is worthwhile to mention here an interesting
recent observation by Singer et al. (32) and Singer and Lazar (33)
that corroborates a potential role for computing with HD vectors,
or HD computing-like information processing, in biological
systems as well. These authors propose that the mammalian
cortex in particular might make use of HD projections of
sensory information. They point out the similarities between
cortical dynamics and reservoir computing (34). Here, the high-
dimensional continuous activity, generated and sustained by
recurrent artificial neural networks, is perturbed by localized
input signals (35, 36). However, only providing a very large
number of different and noise-resistant representations does
not suffice to furnish an efficient computational substrate. In
addition, operations are needed that allow to manipulate these
representations. The two main operations for combining HD
vectors are called binding and bundling. For the binary dense HD
vectors, binding corresponds to the componentwise Exclusive
OR function (XOR). Exclusive OR, also referred to as “exclusive
disjunction,” is a logical operation that outputs “true” only,
when the inputs differ. Here, we denote XOR by the circled
plus sign (⊕). Importantly, the HD vector C that results from
binding the two binary random vectors A ⊕ B is again a
binary random HD vector that is quasi-orthogonal to both A
and B, and hence corresponds to a new, unique, and robust
combined representation. The operation XOR has four relevant
characteristics. It is both commutative, A ⊕ B = B ⊕ A and
associative, i.e., (A⊕ B)⊕C = A⊕ (B⊕C). The neutral element
is 0, that is A⊕0 = A and finally, XOR is self-inverse, A⊕A = 0.
The second main operation is referred to as bundling and is
basically a bitwise thresholded sum of HD vectors, yielding 1 if
more than half of the components equal 1, otherwise the result
is 0. In other words, bundling corresponds to a componentwise
majority function. The thresholding or normalization process is
essential, because it forces the resulting HD vector to remain in
the binary hyperspace. Bundling of three HD vectors is denoted
by [A+B+C], where the squared brackets represent thresholding.
Note that in the case of an even number of HD vectors to be
bundled, the potentially occurring draws are randomly broken. A
central distinction between the binding and bundling operations
is that while the HD vector resulting from binding is quasi-
orthogonal to all of the HD vectors that are bound together, the
HD vector yielded by bundling is similar to each of its input
HD vectors, i.e., the HD vectors that are bundled together. This
characteristic is demonstrated in Figure 1 by the stacked gray
median-and-whiskers plot, representing the distances between
the HD vectors R1,R2,R3 and their resulting bundled HD vector
B. Therefore, bundling is well suited to represent sets of HD
vectors and may function as a memory or in the case of iEEG
analysis to construct “prototype” HD vectors that represent brain
states of interest.

At this point, it is interesting to re-consider HD computing
as being brain inspired and allowing to design cognitive
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architectures (37) with mechanisms and characteristics
reminiscent of phenomena found in the human brain and
mind. For example, the human central nervous system’s essential
ability to associate novel patterns (17) with already known ones
might be part of the neuronal basis of metaphoric thinking,
where we try to understand one abstract or not-yet-seen aspect of
our world by using a different already familiar or more concrete
concept (38, 39). And, on a more philosophical note, as Joseph
Campbell so eloquently described in his comprehensive work
(40), since the dawn of human consciousness, metaphors have
been one of our most powerful tools to create coherent and
meaningful stories and myths that help us navigate through
our lives (41). Furthermore, one of the most promising modern
concepts about consciousness is the theory of integrated
information developed by Giulio Tononi et al. (42). This theory
starts from the essential properties of phenomenal experience,
such as the myriad of unique and different sensory impressions,
which are then combined into a coherent (“integrated”) whole.
These characteristics might be, at least partially, replicated within
the framework of computing with HD vectors.

Before we present one way that has already been successfully
used to detect epileptic seizures from EEG recorded with
intracranial electrodes (iEEG), let us for the sake of completeness
mention that instead of binary components (0 and 1) (21),
bipolar (23), real (22), or complex (43) ones may be used to
design the HD vectors. One frequent alternative choice is+1 and
−1, in which case the HD vectors are termed bipolar. While these
alternatives influence the type of mathematical operations used
for binding and bundling and also some aspects of the hardware
implementation, the overall principles and characteristics of
computing with HD vectors still hold. In other words, for
computing with HD vectors the high dimensionality is more
important than the type of components and operations used to
construct and combine the HD vectors. Furthermore, in addition
to the operations of binding and bundling, HD vectors may
also be permuted. Permutation is typically implemented as a
circular shift of the HD vector’s components and geometrically
corresponds to a rotation (15). Permutation is most often
used to encode sequences, for example the order of letters to
classify different languages (44), or the spatiotemporal patterns
of electrical muscular activity for hand gesture detection (45).
Permutationmight turn out to be useful in future studies to better
assess the shape of iEEG signals, which has been shown to contain
physiologically relevant information (46, 47).

3. SEIZURE DETECTION

After having explained several of the key concepts of computing
with HD vectors, we now detail one way this method has been
successfully used to detect epileptic seizures from iEEG. The
approach starts by first assessing whether an iEEG sampling
point is ≥ than its preceding one or not. Although this form of
symbolization considers only order relations—or, put differently,
discards all amplitude information—it has been demonstrated
to be helpful for assessing smaller and larger scale iEEG
dynamics (48–51). Moreover, it allows for easily building larger

FIGURE 2 | Encoding local intracranial electroencephalogram (iEEG) order

relations into hyperdimensional (HD) vectors. We consider whether an iEEG

sampling point is ≥ or � than its preceding one. The simple situation of only

three sequential iEEG sampling points, used here to demonstrate the method,

yields four different possible pairs of order relations (plotted in blue), each of

which is associated with a unique quasi-orthogonal binary HD vector of

dimension D = 10, 000. For ease of graphical display, the HD vectors of size 1

x 10,000 are reshaped into squares of size 100 × 100. Each quasi-orthogonal

HD vector represents a unique relation, e.g., C1 represents the relation (≥,≥),

C2 (≥,�),C3 (�,�), and C4 (�,≥). These HD vectors are stored in the item

memory and stay unchanged during both learning and classification.

symbols by simply considering longer sequences of differences
between sampling points. Once the iEEG has been symbolized,
the next step is to create an item memory, which we choose
to build dense random binary HD vectors of a dimension
D = 10, 000. As is illustrated in Figure 2, for the didactic
case of very short symbols that take only three consecutive
iEEG sampling points into account, each of the four possible
symbols is represented by one of the HD vectors Ci=1 : 4. The
symbols represented by quasi-orthogonal HD vectors behave
like classical symbols, they are either identical or completely
different. Importantly, these HD vectors, as all the elements of the
item memory, will remain unchanged during both learning and
classification, they represent the projections of the symbolized
iEEG signals into hyperspace.

Next, the spatial information contained in the iEEG signals
has to be encoded, i.e., where a specific-order relation pattern
occurs. The corresponding procedure is displayed in Figure 3.
A second set of HD vectors consisting of HD vectors Ei=1 : 3,
i.e., one per EEG electrode, is generated and added to the item
memory. To compute a spatially composite representation S of
the type and location of the occurring symbols, the HD vectors
Ci are first bound with the HD vectors Ei and then bundled
together, that is, superposed and thresholded. The result is a
single binary HD vector of the same dimensionality as its input
vectors. Thus, several HD vectors have been combined into one,
which correctly implies that some information must have been
lost during this process. Therefore, one refers to the resulting HD
vector S as a reduced representation (43). However, despite the
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FIGURE 3 | Binding and bundling of hyperdimensional (HD) vectors yield a composite representation S of the spatial intracranial electroencephalogram (iEEG)

characteristics. The item memory consists of two groups of HD vectors. One group, C1 :4, represents the four possible order relation patterns, the second group,

E1 : 3, indicates the three different electrodes. By binding the corresponding pairs of Ci∈1 : 4 and Ej∈1 : 3, one arrives at three HD vectors that denote the type and

location of the occurring order relation patterns. Bundling, that is superposing and thresholding, these three vectors produces the single composite spatial

representation S, which is then further processed as a unit.

loss of information, computing with these approximate patterns
still performs well inmany practical classification tasks. Themain
reason for this robustness can be traced back to the counter-
intuitive structure of hyperdimensional space as described in the
previous section, in which HD vectors are extremely resistant
toward degradation. Once again, this feature is shared with
biological nervous systems, which domost often not create highly
precise, but just “good enough” responses when faced with a
novel challenge in our ever changing world. Interestingly, and
directly related, there exist elegant ways to assess composite HD
vectors such as S. Given a spatial composite representation S,
one might for example wonder, which order relation pattern was
recorded with electrode 1. This information may be obtained by
unbinding HD vector E1 with S. As demonstrated in Figure 4,
the result of this operation is a noisy or approximate version of
C3. This noisy HD vector can be cleaned up by comparing it with
the original HD vectors contained in the itemmemory, and using
the one that has the lowest Hamming distance.

To get from a spatial to a spatiotemporal representation, the
procedure shown in Figure 3 is repeated after shifting to the
next sampling point in time, i.e., by using maximal overlap.
The resulting set of spatial composite representations computed
at timesteps t, St∈1 : 15 are then bundled to yield a composite
representation ST across space and time as displayed in Figure 5.
The ST vectors generated from the same state are further bundled
to produce a prototype HD vector representing a certain brain
state. Finally, as illustrated in Figure 6, we demonstrate how this
method can be applied to seizure detection. We use two iEEG
recordings from a patient who suffered from pharmacoresistant

temporal lobe epilepsy and underwent pre-surgical examinations
at the Sleep-Wake-Epilepsy Center at the University of Bern
with intracranial electrodes in order to precisely delineate the
seizure onset zone. A total of 60 electrodes was used and the
signals were sampled at 512Hz and band-pass filtered between
0.5 and 120Hz before analysis. We compared the order relations
between 9 consecutive iEEG sampling points, yielding 28 =

256 possible different outcomes. Therefore, in this case the item
memory contained 316 random HD vectors, 60 vectors that
represented the electrodes, and 256 vectors for the different
order relation sequences of length 8. The recording of the first
seizure is used to learn two prototype vectors Pint and Pict that
represent the interictal and the ictal brain states. Learning hereby
refers to computing spatiotemporal composite representations,
i.e., ST vectors, from two reference time periods of 30 s duration.
The vectors from a reference time are bundled to produce
the prototype HD vector representing the state of interest. For
instance, Pict = [ST1 + ST2 + . . . STk], where all k HD vectors
are extracted from the 30 s of the ictal state. Similarly, Pint is
computed from the interictal reference time. It is noteworthy
how simple this type of learning is. There is neither a need for
a large number of seizure recordings as training examples nor
for any iteration-intensive method, such as back-propagation
or gradient descent. In addition, in the following classification
step, a query HD vector Q is computed in exactly the same
way as the two prototypes Pint and Pict from the yet unseen
second seizure recording. This implies that the same hardware
implementation may be used for both learning and classification,
another factor helpful for minimizing the energy consumption
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FIGURE 4 | Given a spatial composite representation S, which order relation

pattern was recorded by electrode 1? This type of question may be elegantly

answered within the framework of hyperdimensional (HD) computing, by

binding the HD vector representing electrode 1, i.e., E1, with the spatial

composite representation S. Using the characteristic that XOR is its

self-inverse and that binding produces new vectors that are quasi-orthogonal

to their input vectors, one can interpret the result of E1 ⊕ S as a noisy version

of C3. This noisy version is then “cleaned up” by measuring its distance to all

the HD vectors of the item memory that represent order relation patterns and

selecting the most similar one, i.e., C3 in the present case (displayed in blue).

Comparing this result with Figure 3 shows that the correct pattern has been

identified. The ability to compute robustly with approximate patterns is a

hallmark of computing with HD vectors and lends it naturally as a

computational paradigm for novel nano-scale memory-centric hardware with

its intrinsic variability.

and size of an implantable device. This ability to learn from a
single pass is also attractive for situations, where intermittent
or continuous online learning may be needed. One might, for
example, imagine situations, where the iEEG seizure patterns of a
patient slightly change over time due to therapeutic interventions
or a progression of the epilepsy. In that case, an update and
adjustment of the ictal and interictal prototype vectors might be
necessary to maintain accurate seizure detection. Coming back to
the seizure detection example shown in Figure 6, the normalized
Hamming distances between Q and both Pint and Pict may be
used to define thresholds enabling iEEG seizure detection with
high sensitivity and specificity.

As indicated at the beginning of this section, symbolization
based on order relation patterns combined with HD computing
has recently been successfully applied to detecting epileptic
seizures from short-term iEEG recordings with high sensitivity,
high specificity, and high energy efficiency compared to other
state-of-the-art methods (50, 52). These results have been further
improved, especially in the latency of seizure detection, by
including additional iEEG signal characteristics such as line
length and mean amplitude (53) and, notably, could also be
replicated for continuous long-term iEEG recordings (51). More
specifically, these results surpass those yielded by state-of-the-art
methods, including variants of deep learning (54, 55) and support

vector machines (56), on the long-term dataset containing 116
seizures of 18 drug-resistant epilepsy patients in 2,656 h of
recordings. HD computing trains 18 patient-specific models by
using only 24 seizures: 12 models are trained with one seizure per
patient, the others with two seizures. The trained models detect
79 out of 92 unseen seizures without false alarms. Importantly, a
simple implementation of HD computing on the contemporary
Nvidia Tegra X2 embedded device achieves 1.7×–3.9× faster
execution and 1.4×–2.9× lower energy consumption compared
to the best result from the state-of-the-art methods [see (51) for
more details].

We conclude this section by mentioning that, while we have
described the use of intra-cranially recorded electric brain signals
for HD computing based seizure detection here, it has recently
been shown that the method can also be successfully applied
to extra-cranially recorded surface EEG signals, which typically
contain more movement and muscular artifacts than iEEG (57).
In the next section, we focus on viable hardware implementations
of HD computing. Particularly, we go beyond the contemporary
hardware fabric where HD computing has already shown energy
efficiency benefits compared to the other approaches.We provide
an overview on how HD computing can benefit from such
emerging fabrics.

4. ANALOG IN-MEMORY COMPUTING
HARDWARE

We have seen that computing with HD vectors allows to
construct highly efficient algorithms, mainly because training
is very fast and only uses relatively few steps compared
to other approaches such as deep learning, which depends
on many iterations to adjust the parameters of its artificial
neurons. This single pass, non-iterative type of training is
akin to our own neuro-cognitive ability to learn, to keep
continuously learning, and to not forget certain events, the
latter typically associated with the experience of intense
emotions. However, for practical purposes, it is central that
not only the algorithms but also the physical substrates into
which the algorithms are implemented are efficient, i.e., allow
for minimizing energy consumption. Only combining energy
efficient algorithms with energy efficient hardware will ultimately
enable the design of extremely small devices that can be
implanted into the human brain in a minimally invasive way
(58, 59), and—once again—biological brains provide inspiration
for potential solutions.

John von Neumann, the ingenious Hungarian-American
mathematician, physicist and polymath, who among many other
achievements also designed the architecture that is still prevalent
in most of today’s computers (and which are accordingly called
von Neumann architectures in his honor), already pointed out
some of the major distinctions between biological brains and
engineered information processing devices. In his last published
and impressively visionary book titled “The Computer and
the Brain” (60), he underlines that, although the building
elements of biological brains, or “natural automata” as he
calls them, are much slower and much less precise than
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FIGURE 5 | Bundling spatial representations over time produces a spatiotemporal composite representation. The three intracranial electroencephalogram (iEEG)

signals are the same as shown in Figure 3, but stretched horizontally to enable the display of all the composite spatial representations St∈1 : 15. S15 plotted in blue is

identical to S of Figure 3. Each of the HD vectors St is aligned with the first of the three sampling points that are compared to yield the order relation patterns.

Bundling the 15 composite representation St∈1 : 15 produces the spatiotemporal composite representation ST.

their artificial counterparts, they are significantly more energy
efficient, work in parallel, and are much more tightly arranged.
The latter observation has inspired modern strategies to design
non-von Neumann architectures by co-locating memory and
computation. As a result, in the non-von Neuman architectures,
computations are local and the global interconnects are accessed
at a relatively low frequency, as is a hallmark of biological brains
molded through evolution, where efficient structures with short
communication distances had a selective advantage (61, 62).

In classical von Neumann architectures, data have to be
shuffled from memory to the central arithmetic logic unit
and back, whereas in brains, information processing and at
least some forms of memory formation take place within the
same structures, such as the synapses that connect neocortical
neurons. Synapses change their electrical resistance depending
on their electrical activity, a characteristic that has been
replicated in analog memristive devices, such as resistive random
access memory (RRAM) and phase-change material (PCM)
devices, leading to in-memory computing hardware [see (63)
for an overview]. All these emerging nanotechnologies are

characterized by a high variability of their components, and they
thus rely on computational paradigms that not only compensate
but may even embrace randomness. Importantly, it has recently
been demonstrated that HD computing can be implemented
on large-scale PCM devices arranged into crossbar arrays. It
maintained a very high accuracy for various classification tasks
with excellent energy efficiency (30). The used HD computing
architecture is similar to the one described here for the iEEG
seizure detection. Figure 7 illustrates how the interictal and ictal
prototypes can be mapped onto a PCM crossbar array where
the Q HD vector is applied for classification. Interestingly, HD
computing was used to compensate the intrinsic variabilities
of the nanoscale devices on the one hand, but on the other
hand these very variabilities were exploited to optimize HD
projections (29, 31). This is akin to an intriguing idea put
forward in the context of interpreting cortical dynamics as
a biological realization of reservoir computing, namely that
the variability, diversity, and randomness of neurons may also
promote HD projections (36). Furthermore, the aforementioned
prototypes (29, 31) achieve shorter communication pathways
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FIGURE 6 | HD computing for intracranial electroencephalogram (iEEG) seizure detection. Two iEEG seizure recordings from a patient with temporal lobe epilepsy are

used. The patient was implanted with intracranial electrodes with a total of 60 contacts. From seizure #1, two prototype hyperdimensional (HD) vectors are learnt, Pint
from an interictal time period and Pict from seizure onset. Both time periods have a length of 30 s and are displayed in gray. Learning consists of splitting the time

periods into 30 non-overlapping moving windows of 1 s duration, computing a spatiotemporal composite representation and bundling these 30 representations into

the corresponding prototypes. Seizure #2 is then used for classification. From a short moving window, again of a duration of 1 s and displayed in blue, a query HD

vector Q is computed and its normalized Hamming distances to the interictal and ictal prototype vectors are measured. The difference 1 = NHD(Q,Pint )−NHD(Q,Pict )

indicates if the current brain state is closer to the ictal (1 > 0) or the interictal (1 < 0) prototype. The amplitude of 1 and its time continuously spent > 0 allow defining

thresholds and time periods for iEEG seizure detection with high sensitivity and specificity (50–52).

by using 3D monolithic integration, instead of only 2D, to
construct a layered design, similar for example to the neocortex
of human brains. To summarize and conclude this section,

many of these emerging nano-materials are inherently stochastic
and need a computational paradigm that is robust and therein
lies the great appeal to invoke computing with HD vectors for
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FIGURE 7 | Analog in-memory computing hardware based on phase change material (PCM) devices that are arranged into a crossbar array. In a programming phase,

each binary prototype hyperdimensional (HD) vector (Pint or Pict ) is written into 10,000 PCM cells. This programming is done by applying a write voltage that changes

the conductance state of the PCM cells according to the corresponding binary HD vector component. For classification, the query binary HD vector (Q) is applied to

the crossbar array, and its similarity is measured with the programmed prototypes.

future miniaturized and thus much better implantable iEEG
monitoring systems.

5. CONCLUSIONS AND OUTLOOK

We have presented the key concepts of HD computing and
how the method has been successfully used for detecting
epileptic seizures from iEEG with high energy efficiency,
high specificity, and high sensitivity. We have described
how HD computing relies on bit-wise operations, is highly
parallel, memory-centric, scalable, and robust thanks to the
counterintuitive structure of hyperdimensional space, where
points are relatively isolated. Furthermore, computing with HD
vectors is transparent and explainable, in the sense that each
step during learning or classification is easily understandable.
This contrasts to other methods used in artificial intelligence,
which are often likened to “black boxes,” where even the
designers are not able to comprehend the details of why
a system arrived at a particular solution. Considering all
these characteristics, we regard HD computing as a flexible
paradigm ideally suited for a new generation of implantable
devices for monitoring electrical brain activity, which will

be significantly more energy efficient and will consequently
hopefully usher in personalized epileptology on a previously
unknown scale.

There are many potential future clinical applications for HD
computing based (i)EEG analysis. One compelling recent insight,
for example, is how tightly and probably causally connected
neurodegeneration is with both the impairment of slow wave
sleep (64, 65) and epileptic activity (66–68). Both—slow wave
sleep and epileptic activity—might in the future be monitored
for ultra long-term time periods, i.e., for months to years,
at the patient’s home with robust and easy to use (i)EEG
devices that make use of computing with HD vectors for a
smaller and therefore less obtrusive design. From a neurologic
point of view, tracking both sleep and epileptic activity might
turn out to be crucial, for the latter might be exacerbated by
improving slow wave sleep. This might potentially necessitate
the use of drugs or a combination of drugs that simultaneously
stabilize sleep and suppress or minimize epileptic activity, such
as trazodone (69) together with levetiracetam (70, 71). Ultra long-
term monitoring might also provide essential information about
whether interictal epileptic activity has a similarly aggravating
effect on neurodegeneration as does seizure activity. Such insights
are essential for optimizing treatments with drugs like gabapentin
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that have been reported to improve slow wave sleep (72) and
suppress seizures (73), but increase interictal activity (74).

Another very interesting recent development in epileptology
is the growing understanding of how brain–body interactions
(75) might give rise to epileptic seizures and epilepsy. In
particular, widespread cardiovascular disorders such as arterial
hypertension may be associated with or even cause epileptogenic
effects (76, 77). Therefore, the multi-modal integration of EEG
and non-EEG digital biomarkers (58) is a highly promising
approach to monitoring the mutual interactions between the
visceral organs and the nervous system. For such multi-modal
monitoring, HD computing lends itself naturally as a highly
efficient computational paradigm for sensory fusion (78). This
type of multi-sensor monitoring may be considered a specific
example of “digital phenotyping,” a concept recently introduced
by Onnela et al. (79) as the moment-by-moment quantification
of the individual-level human phenotype in situ using data from
smartphones and other personal digital devices. Though themain
field of investigation for Onnela is psychiatry, digital phenotyping
of patients suffering from neurological disorders might inform
personalized care as well.

On a more technical side, a very active area of research
are memory-augmented neural networks (MANNs), in which
a deep neural network is connected to an associative memory
for fast and lifelong learning. Computing with HD vectors
can reduce the complexity of MANNs by computing with
binary vectors (80). This recently proposed method reduced the
number of parameters by replacing the fully connected layer of a
convolutional neural network with a binary associative memory
for EEG-based motor imagery brain–machine interfaces (81).
Other interesting developments are the combination of concepts
from HD and reservoir computing, which uses recurrent
connections in a neural network to create a complex dynamical
system (35, 82). Kleyko et al. (83) demonstrated the similarities
between the design and manipulation of HD binary vectors and
the random projections of input values onto a binary reservoir,
its updating, and its nonlinearity. Another recent innovative
approach is to combine HD computing with event-driven inputs
such as dynamic vision sensors (84). Hersche et al. (85) showed

how to embed features extracted from such spiking sensors
into binary sparse representations to reduce the complexity of
downstream tasks such as regression.

We conclude by providing some recommendations for further
reading, in particular intended for clinical neurophysiologists
and epileptologists who want to learn more about the
mathematical and engineering aspects of computing with HD
vectors. In our opinion, the best way to delve deeper into
this captivating field is by reading the seminal paper by
Pentti Kanerva (15), followed by Tony Plate’s book (43). An
introduction to computing with HD vectors for robotics, which
also includes instructive visualizations to further a more intuitive
understanding of hyperdimensional spaces, has been written
by Neubert et al. (86). Furthermore, there are two important
books that are highly relevant for the use of HD computing
to better understand and model biological brains (37) on the
one hand, and describe in detail recent and potential future
implementations in new types of hardware (87) on the other
hand. We hope that this literature will provide a helpful entry
point into the fascinating world of HD computing and will
thereby promote its medical applications to ultimately improve
the care for epilepsy patients.
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