
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
9
3
5
1

|

d
o
w
n
l
o
a
d
e
d
:

1
0
.
4
.
2
0
2
4

Bayesian workflow for disease transmission modeling in Stan

Léo Grinsztajn∗, Elizaveta Semenova†, Charles C. Margossian‡, and Julien Riou§

Abstract

This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be
useful to researchers interested in modeling the SARS-CoV-2 pandemic and other infectious diseases in a
Bayesian framework. Bayesian modeling provides a principled way to quantify uncertainty and incorporate
both data and prior knowledge into the model estimates. Stan is an expressive probabilistic programming
language that abstracts the inference and allows users to focus on the modeling. As a result, Stan code is
readable and easily extensible, which makes the modeler’s work more transparent. Furthermore, Stan’s main
inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means the user can
verify whether the obtained inference is reliable. In this tutorial, we demonstrate how to formulate, fit, and
diagnose a compartmental transmission model in Stan, first with a simple Susceptible-Infected-Recovered
(SIR) model, then with a more elaborate transmission model used during the SARS-CoV-2 pandemic. We
also cover advanced topics which can further help practitioners fit sophisticated models; notably, how to
use simulations to probe the model and priors, and computational techniques to scale-up models based on
ordinary differential equations.

Keywords: infectious diseases, compartmental models, epidemiology, Bayesian workflow

1 Introduction

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a renewed interest
in infectious disease modeling and, amongst other approaches, Bayesian modeling. Well-constructed models
allow researchers to infer the value of key epidemiological parameters required to inform public health policies.
Over the early part of the pandemic, modelers have assessed the effect of control interventions on transmission
[1], quantified the burden of the epidemic [2], and estimated the mortality rate after adjusting for reporting
biases[3], to only name a few examples.

Mechanistic disease transmission models mirror natural phenomena such as contagion, incubation and
immunity [4]. These models can operate at different scales, the most important being the individual scale
(individual- or agent-based models) and the population scale (population-based or compartmental models).
Agent-based models are used to simulate the occurrence of stochastic events, such as transmission or symptom
onset, in time for every individual of the population. These models can reach a high level of sophistication but
are computationally expensive. Agent-based models are also notoriously difficult to parametrize.

Population-based or compartmental models subdivide the total population into homogeneous groups, called
compartments. Individuals within a compartment are considered to be in the same state with regards to the
natural history of the disease. These states may for example be “susceptible”, “infectious”, and “recovered”.
We can model transitions between compartments as deterministic or stochastic. In the deterministic frame-
work, the flows between compartments can be described by a system of ordinary differential equations (ODEs).
This implies that the size of each compartment at every time point can be obtained by numerically solving
the system of ODEs, with the same parametrization always leading to the same outcome. The flows between
compartments can also be simulated stochastically, leading to the same results on average over multiple simu-
lations (ignoring disease extinctions) but with a better handling of uncertainty that comes at a generally higher
computational price. This makes stochastic compartmental models more adapted to low-level transmission
and small populations. In other situations, deterministic compartmental models are easier to formulate and
computationally tractable, which makes them more adapted to tasks that require simulating the system a large
number of times, such as model fitting. This article focuses on deterministic compartmental models.

Stan is a probabilistic programming framework primarily used for Bayesian inference and designed to let
the user focus on modeling, while inference occurs under the hood [5]. One goal of the Stan project is not
merely to improve model fitting but to make model development more efficient. This development process
includes building, debugging, improving, and expanding models as more data and knowledge become available,
and motivates the concept of the Bayesian modeling workflow [6, 7, 8], a central topic in this article. Stan

is an expressive language that supports many probability densities, matrix operations, and numerical ODE
solvers. We can combine these elements to specify a broad range of data generating processes. Generative
models formulated in Stan can be used both for simulation-based prediction and for parameter inference. In
the context of epidemiological modeling, the powerful framework can help us estimate such crucial parameters
as the basic reproduction number R0 or the infection-fatality ratio from observed data. Stan bolsters several
inference methods: full Bayesian inference using Markov Chain Monte Carlo (MCMC), approximate Bayesian
inference with variational inference, and penalized maximum likelihood estimation. We focus here on Bayesian

∗École polytechnique, Palaiseau, France, leo.grinsztajn@polytechnique.edu
†Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
‡Department of Statistics, Columbia University, New York, NY, USA
§Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland

1

Accepted author’s manuscript. Published in final edited form as: Statistics in Medicine 2021 (in press).
Publisher DOI: 10.1002/sim.9164

leo.grinsztajn@polytechnique.edu
https://onlinelibrary.wiley.com/doi/10.1002/sim.9164

inference with MCMC, specifically with the dynamic Hamiltonian Monte Carlo (HMC) sampler [9, 10]. Bayesian
inference gives us a principled quantification of uncertainty and the ability to incorporate domain knowledge in
the form of priors, while HMC is a reliable and flexible algorithm. In addition, Stan provides diagnostic tools
to evaluate both the reliability of the inference and the adequacy of the model.

This tutorial examines how to formulate, fit, and diagnose compartmental models for disease transmission
in Stan. We first focus on a simple Susceptible-Infected-Recovered (SIR) model, before tackling a more so-
phisticated model of SARS-CoV-2 transmission. Rather than only show the results from a polished model,
we devote much attention to dealing with flawed models and flawed inference; and we explore how different
modes of failure can help us develop improved models and better tune our inference algorithms. Naturally,
Stan is not the only tool available to practitioners and many of the concepts we discuss can be deployed using
other probabilistic programming languages. At times, we dig into the specific mechanics of Stan in order to
provide a more practical discussion on modeling and computational efficiency. A complementary notebook[11]
with the full code, and a Github repository∗containing the relevant scripts are available online. Throughout
the tutorial, we use R as a scripting language (Stan can also be used with other languages such as Python,
Julia or Matlab). While we review some elementary concepts, we assume that the reader has basic familiarity
with Bayesian inference and Stan. Other tutorials on the subject include the work by Chatzilena et al.[12] and
Mihaljevic [13] on transmission models, and the case studies by Carpenter [14], Weber [15], and Margossian
and Gillespie [16] on ODE-based models, all of which can serve as complementary reading.

2 Bayesian modeling in Stan

Stan is a tool which provides both a language to formulate probabilistic models and methods to do inference on
these models. Before using Stan to model disease transmission, we quickly review how to specify a probabilistic
model. A more thorough introduction to the topic can be found here [17].

2.1 Specifying a model

We can specify a Bayesian model by defining a joint distribution over observed variables, Y, and unobserved
variables, θ,

p(Y, θ).

In this tutorial, θ is simply the set of unknown model parameters. A Stan file defines a procedure to evaluate
the log density, log p(Y, θ). This joint distribution conveniently decomposes into two terms - the prior density
p(θ) and the sampling density (or likelihood) p(Y | θ), defining a generating process for Y given parameters θ :

p(Y, θ) = p(θ)p(Y | θ).

2.2 Bayesian inference

Inference reverse-engineers the data generating process and aims to estimate parameter values given the observa-
tions. In a Bayesian framework, the set of plausible parameter values conditional on the data is characterized by
the posterior distribution. The posterior distribution combines information from the data and prior knowledge
and is obtained via Bayes’ rule

p(θ | Y) ∝ p(θ)p(Y | θ).

An analytical expression for p(θ | Y) is rarely available and we must rely on inference algorithms to learn about
the posterior distribution. One general strategy is to draw approximate samples from the posterior distribution
and use these to construct sample estimates of the posterior mean, variance, median, quantiles, and other
quantities of interest. This leads to a general class of algorithms called Markov chain Monte Carlo (MCMC)
samplers.

Hamiltonian Monte Carlo. Stan supports dynamic Hamiltonian Monte Carlo [10, 18] (HMC), a widely
popular MCMC method. HMC exploits the gradient of log p(θ,Y) to simulate trajectories, with acceleration
informed by the local geometry of the posterior density. This leads to a rapid exploration of the parameter
space and reduces correlation between successive samples. HMC has been shown to scale better than random
walk samplers, e.g. Metropolis and Gibbs, when exploring high-dimensional spaces or when parameters exhibit
a strong posterior correlation[9]. The method has been successfully applied across a broad range of problems.
When HMC fails, it typically does so “loudly”, meaning diagnostics can reliably determine whether or not the
inference should be trusted. While the method was first proposed in 1987[19], its challenging implementation
prevented its wide adoption by the statistics and scientific community. Indeed, calculating the gradient of
log p(θ,Y) is a cumbersome task and the original HMC algorithm entails many tuning parameters which,
without proper tuning, result in suboptimal performance. The advent of automatic differentiation[20, 21] and
of the No-U-Turn sampler, an adaptive HMC algorithm[9], in large parts resolved these problems, making it
straightforward to apply the algorithm across a broad range of models. With a software such as Stan, it is
indeed possible to revise a model without needing to rewrite the HMC sampler. In summary, HMC works well
in high-dimensional spaces, can handle the intricate posterior geometry that arises in sophisticated models,
can be readily applied to several models, and is amiable to diagnostics. For these reasons, we find HMC to
be very well suited for a Bayesian workflow (Section 3). Naturally, the algorithm is not without limitation:

∗https://github.com/charlesm93/disease_transmission_workflow

2

https://github.com/charlesm93/disease_transmission_workflow

for example, HMC cannot be applied to discrete problems without marginalization or continuous relaxation.
Furthermore, densities with difficult geometries (e.g. multiple modes, heavy tails, varying scales) can frustrate
the algorithm[22][23] and, while being broadly applicable, HMC can be slower than specialized algorithms used
for certain statistical models.

2.3 Getting started with Stan

Installation At its core, Stan is written in C++ but for convenience it can be interfaced with a scripting
language, such as R and Python; see the Stan interface page[24] for instructions on how to install these interfaces.
This tutorial uses RStan and R.

Learning Stan While we do not assume the reader is already familiar with Stan, we encourage them to
consult one of the many resources available to learn the language. As a starting point, we recommend the
introduction by Betancourt[25]. The reference manual[26] documents the language’s syntax; the Stan user
guide[27] provides the code for numerous models. Guidelines on how to run Stan and various diagnostics are
available on the Stan interface page[24]. A complementary notebook[11] offers a detailed walk-through of the
example Section 4 and can be used as a hands-on way to learn the language.

Going forward To learn more, the reader may find it helpful to read some of the cases studies[28] and
tutorials[29] on specific applications of Stan. We also recommend the Stan forum as a place where modelers
can discuss their models with other researchers.

2.4 Coding a model in Stan

Using a Stan file, we can specify a model in a way that is suitable to Bayesian inference. This entails (i) defining
a procedure to compute the log joint density, log p(Y, θ), and (ii) identifying which variables are fixed data, Y,
and which ones are latent variables, θ. For pedagogical and computational reasons, a Stan file is divided into
coding blocks, which help us distinguish the different components of our model. Figure 1 provides a description
of each block and indicates the order in which the blocks are executed. The three main blocks are data,
parameters, and model. In the data block, we declare the fixed variables, Y, and in the parameters block
the model parameters, θ. In the model block, the user specifies a set of operations on the declared variables
to compute the log joint density, log p(Y, θ). It is possible to do further operations on the fixed data and on
the model parameters by using the transformed data and the transformed parameters blocks, respectively.
Additional quantities which depend on the parameters, but are not required to compute the log joint density –
for example, predictions – can be computed in the generated quantities block. Finally, the function block
can be used to declare functions which we can call in all the operative blocks, i.e. all blocks but data and
parameters.

Section 5 offers more details on Stan’s inference engine and discusses how each block interacts with the
inference algorithm. For now, we simply note that the computational cost of fitting a model is dominated by
operations in the transformed parameters and model blocks.

3 Bayesian modeling workflow

The notion of a modeling workflow has likely existed in one form or the other for quite some time. One
useful illustration of this concept is Box’s loop [30, 31]. The loop prescribes the following workflow: build a
model, fit the model, criticize, and repeat. We find it useful to distinguish three parts in the criticism step:
(i) troubleshoot the model before fitting it, (ii) criticize the inference after attempting a fit, and (iii) once
the inference is deemed reliable, criticize the fitted model (Figure 2). The goal of the criticism is to identify
shortcomings in our methods and motivate adjustments, which is why the process loops back to the first and
second steps.

The first takeaway from this concept is that model development is an iterative process: we do not expect
the first model we devise to be perfect and are prepared to make adjustments. Potential limitations in our
model can include implementation errors, inappropriate priors or failure to account for a crucial step in the
data generating process. It is essential to detect and correct these problems before we apply the model. Several
points can make this potentially tedious process easier. First, our probabilistic programming language must be
expressive enough to accommodate our initial model and subsequent revisions. Second, we prefer efficient and
flexible inference algorithms that can operate quickly and do not require tuning each time we revise the model.
Third, we require the inference to be reliable, meaning we can diagnose many different types of failures, and
hopefully adjust our algorithms or even our model to overcome issues we identify. This is especially important
when we care about the posterior distribution of our parameters, as we might in epidemiological models where
the parameters have a scientific interpretation. We must realise, however, that even when the inference is
reliable, the model may fail to solve the scientific problem at hand.

Stan and its HMC sampler typically meet these criteria, and provide solutions and features adapted to each
of the goals outlined in our modeling workflow. Predictions computed across prior distributions (prior predictive
checks) are useful to detect implementation errors and assess the adequacy of the chosen priors for the problem
at hand [6]. Stan’s HMC sampler provides multiple inference diagnostics, including the detection of bias in
sampling by running multiple MCMC chains and monitoring mixing, energy and divergent transitions. Finally,

3

https://mc-stan.org/users/interfaces/
https://mc-stan.org/docs/2_26/reference-manual/index.html
https://mc-stan.org/docs/2_26/stan-users-guide/index.html
https://mc-stan.org/docs/2_26/stan-users-guide/index.html
https://mc-stan.org/users/interfaces/
https://mc-stan.org/users/documentation/case-studies.html
https://mc-stan.org/users/documentation/tutorials.html
https://discourse.mc-stan.org/

data

Declare known variables, which remain fixed while running
MCMC. This includes covariates, observed responses, and
other constants.

No operations to perform.

transformed data

Declare additional fixed variables and do operations on
variables declared in data and in this block. This is useful
when we want to work with transformations of our original
data or create constants for bookkeeping purposes.

Operations are performed once per model fit.

parameters

Declare unknown variables, typically model parameters.
When running MCMC this also defines the space over
which we run the Markov chain.

No operations to perform.

transformed parameters

Run operations on the parameters. This is, for instance,
where we will solve differential equations which depend on
model parameters.

Operations are performed and differentiated once per
integration step, i.e. multiple times per iteration.

model

Compute log p(Y, θ), using operations on variables de-
clared in the previous blocks.

Operations are performed and differentiated once per
integration step, i.e. multiple times per iteration.

generated quantities

Run operations on all previously declared variables to
compute quantities of interest, such as derived variables
and predictions. The variables we compute here depend on
the parameters, but crucially none of the operations in this
block contribute to computing log p(Y, θ).

Operations are performed once per iteration.

Figure 1: Coding blocks in a Stan file. The operations in certain blocks are performed multiple times and
in some cases differentiated; as a result, the computational cost of fitting the model is dominated by the
transformed parameters and model blocks. Not shown is the functions block, which defines functions that
can be called in any of the operative blocks.

Data

Build model
Criticize
model

Fit model
Criticize
inference

Criticize
fitted
model

Apply
fitted model

Figure 2: Model development as an iterative process.

4

Figure 3: Number of students in bed each day during an influenza A (H1N1) outbreak at a British boarding
school between January 22 and February 4, 1978.

Figure 4: Diagram of the classic Susceptible-Infectious-Recovered (SIR) compartmental model.

we can study the implications of the fitted model by computing predictions across the posterior distribution
(posterior predictive checks).

4 Simple SIR model

In this section, we demonstrate how to use Stan and the Bayesian workflow on a simple example of disease
transmission: an outbreak of influenza A (H1N1) in 1978 at a British boarding school. The data consists of
the daily number of students in bed, spanning over a time interval of 14 days, and is displayed in Figure 3.
There were 763 male students who were mostly full boarders and 512 of them became ill. The outbreak lasted
from the 22nd of January to the 4th of February. One infected boy started the epidemic, which spread rapidly
in the relatively closed community of the boarding school. The data are freely available in the R package
outbreaks[32], maintained as part of the R Epidemics Consortium. The code from this analysis, including the
Stan model, is available in the notebook online†, which can serve as a hands-on tutorial to fit your own disease
transmission model in Stan.

4.1 Mathematical transmission model

As discussed in section 1, epidemiological transmission models come in various forms, the two main categories
being agent-based models, which model each individual but are computationally expensive, and population-based
models, which stratify the population into several homogeneous compartments. This section focuses on one
of the simplest population-based models, which is popular for its conceptual simplicity and its computational
tractability: the Susceptible-Infected-Recovered (SIR) model. The SIR model splits the population into three
time-dependent compartments: the susceptible, the infected (and infectious), and the recovered (and not in-
fectious) compartments. When a susceptible individual comes into contact with an infectious individual, the
former can become infected for some time, and then recovers and becomes immune. The dynamic is summarized
graphically in Figure 4. The temporal dynamics of the sizes of each of the compartments are governed by the
following system of ODEs:

dS

dt
= −βS I

N
dI

dt
= βS

I

N
− γI

dR

dt
= γI

where S(t) is the number of people susceptible to becoming infected (no immunity), I(t) is the number of people
currently infected (and infectious), R(t) is the number of recovered people (we assume they remain immune
indefinitely), β is the constant rate of infectious contact between people (often called transmission rate) and γ
is the rate of recovery of infected individuals (often called recovery rate, but formally relates to the duration of
infectiousness rather than to the duration of symptoms).

The proportion of infected people among the population is I/N . At each time step, given uniform contacts,
the probability for a susceptible person to become infected is thus βI/N , with β the average number of contacts
per person per time step multiplied by the probability of disease transmission when a susceptible and an infected
subject come in contact. Hence, at each time step, βSI/N susceptible individuals become infected, meaning

†https://github.com/charlesm93/disease_transmission_workflow

5

https://github.com/charlesm93/disease_transmission_workflow

βSI/N people leave the S compartment and enter the I compartment. Similarly, the recovery of an infected
individual is taking place at rate γ, and thus the number of infected individuals decreases with speed γI while
the number of recovered grows at the same speed.

The above model holds under several assumptions, making it most adapted to large epidemics occurring
over relatively short periods of time:

• births and deaths are not contributing to the dynamics and the total population N = S + I +R remains
constant,

• recovered individuals do not become susceptible again over time,
• there is no incubation period before becoming infectious,
• the time spent in the infectious compartment follows an exponential distribution with mean 1/γ,
• the transmission rate β and recovery rate γ are constant in time (no behavioural changes nor control

measures),
• individuals may meet any other individual uniformly at random (homogeneous mixing),
• replacing the integer number of people in each compartment by a continuous approximation is legitimate

since the population is big enough.

4.2 Probabilistic transmission model

We have described a deterministic transmission model, but we want to incorporate randomness into it to model
our imperfect knowledge of the model parameters, natural variation and the imperfect fit of the model to
reality. As discussed in section 2, we need to specify a sampling distribution p(Y | θ), and a prior distribution
p(θ), with θ = {β, γ, 1/φ} denoting all the parameters of the SIR model plus an additional over-dispersion
parameter φ that is reparametrized as its inverse (see below). Given specific values for the parameters and
initial conditions, a compartmental model defines a unique solution for each of the compartments, including
the number of infected students at time t, I(t). We want to link this solution to the observed data, i.e the
number of students in bed Y. We choose to model the number of students in bed with a count distribution
that provides some flexibility regarding dispersion, the negative binomial distribution. This distribution allows
us to use I(t) as the expected value and account for over-dispersion through parameter φ:

p(Y | θ) = Negative-binomial(Y | I(t), φ).

We still need to specify a prior distribution for each of the three parameters using basic domain knowledge.
For the transmission rate we select p(β) = Normal+(2, 1) a weakly-informative prior that only restricts β to be
positive (the half-normal distribution is truncated at 0) and puts a soft higher limit around 4 – p(β < 4) = 0.975.
For the recovery rate, we specify p(γ) = Normal+(0.4, 0.5), which expresses our belief that γ has to be positive
and that p(γ ≤ 1) = 0.9 (i.e the probability that the average time spent in bed is less than 1 day is 0.9 a
priori). For the dispersion parameter, we use p(1/φ) = exponential(5) , as it is recommended in this situation
to reparametrize the dispersion parameter as its inverse to avoid putting too much of the prior mass on models
with a large amount of over-dispersion [33]. We can change these priors if more information becomes available,
constraining our parameter estimation more tightly or, on the contrary, increasing its variance. See [33] for
more recommendations on prior choice.

4.3 Building an ODE-based model in Stan

Writing this model in Stan is very similar to writing it mathematically. As for any Stan model, we follow the
block structure described in figure 1. We pay particular attention to the parameters block, where we declare
the model parameters beta, gamma and phi inv (using an inverse reparametrization for φ as discussed above)
and their range of support (strictly positive in these cases). We create an array theta to hold the parameters
together. In the model block, we encode the sampling and prior distributions discussed in the previous section.
The full code can be found in the complementary notebook. Here, we focus on solving the ODEs, which is the
more intricate component of this model. Stan supports numerical solvers for ODEs of the form y′ = f(t, y, ϑ, x),
where t is a specific time, y a set of ODEs, y′ is the solution to the ODE at this time (i.e. the size of each
compartment {S(t), I(t), R(t)} in our example) and ϑ and x are ODE inputs.

We specify f inside the functions block, as follows:

real[] f(real t, real[] y, real[] vartheta , real[] x_r , int[] x_i) {

real S = y[1];

real I = y[2];

real R = y[3];

real beta = vartheta [1];

real gamma = vartheta [2];

real N = x_i [1];

real dS_dt = -beta * I * S / N;

real dI_dt = beta * I * S / N - gamma * I;

real dR_dt = gamma * I;

return {dS_dt , dI_dt , dR_dt};

}

The function f returns y′ as an array of real numbers, as noted by real[]. It has five arguments with a specific
signature that must be exactly respected. The first two arguments are, as expected, t and y. The next three

6

arguments relate to ODE inputs. These are concatenated inside arrays of real or integer numbers. It is crucial
to distinguish variables which are model parameters from variables which stay fixed as the sampler explores
the parameter space. Here, vartheta contains ODE inputs that depend on model parameters θ, that is β
and γ, as φ is used for the sampling distribution outside of the ODE. Quantities that influence the ODE but
remain fixed during the whole procedure (e.g. the population size) are passed using x r and x i, depending on
whether they are real or integers,. Distinguishing parameters and fixed variables is a matter of computational
efficiency. Section 5 discusses in details the computational cost of solving ODEs in Stan. Inside the function,
we must declare and define each of the ODEs, but first it is clearer to rename compartments (S, I and R), model
parameters (beta and gamma) and constants (N) from the less expressive function arguments.

Having defined the ODE system, we can obtain its approximate solution at any time point of interest by
using a numerical solver. In addition to parameters theta and constants x r and x i, the solver requires the
initial time t 0, the initial conditions y 0 and the different time points ts at which a solution is needed. For
this example, we use a Runge-Kutta integrator. The call to the numerical solver is:

real[,] y = integrate_ode_rk45 (function f, real[] y0 , real t0 , real[] ts ,

real[] theta , real[] x_r , int[] x_i);

The integrator returns a two-dimensional array with the solution of each compartment at each time point in
ts. Note that we pass to the integrator the arguments theta, x r, and x i, which are in turn passed to the
function f each time the integrator is being called. Note that as of Stan version 2.25, we can relax the signature
of f and replace theta, x r, and x i with any convenient combination of arguments [34].

4.4 Criticizing the model before looking at the data

Before fitting the model to the data, it is useful to check that what we have encoded into the model is indeed
coherent with our expectations. This is especially useful for complex models with many transformations. We
can check if our priors are sound and correspond to domain knowledge by computing the a priori probability
of various epidemiological parameters of interest. For instance for influenza, it is generally accepted that the
basic reproduction number R0 is typically between 1 and 2, and that the recovery time is approximately 1
week. We want priors that allow for every reasonable configuration of the data but exclude patently absurd
scenarios, per our domain expertise. To check if our priors fulfill this role, we can do a prior predictive check
[6]. More precisely, for any quantity of interest Y, we can sample Yprior from the a priori distribution of θ,
using the following sequential procedure:

θprior ∼ p(θ),

Yprior ∼ p(Y | θprior).

As demonstrated in the notebook[11], doing so in Stan is very simple, as one can use almost the same model
implementation that is used for inference. Figure 5A shows the distribution of the log of the recovery time,
with the red lines showing loose bounds on the recovery time (0.5 and 30 days). We observe that most of the
probability mass is between the red bars but we still allow more extreme values, meaning our posterior can
concentrate outside the bars, if the data warrants it. Figure 5B shows the same thing for R0, the loose bounds
being 1 and 10 (note that for the SIR model, R0 = β/γ), and figure 5C for the dispersion parameter φ.

Another aspect of prior predictive checking is to simulate fake data. Using a similar procedure, we can
simulate a set of ODE outputs compatible with the chosen prior distributions of parameters (Figure 5D), or, by
adding the variability from the negative binomial distribution, the predicted range of the number of students in
bed each day (Figure 5E). It appears that the simulated trajectories are on the same magnitude as the data but
still quite diverse, with some epidemics spreading quickly to almost every student and keeping most in bed for
two weeks, and on the opposite several delayed or short-lived epidemics. Looking at predicted range of students
in bed, we observe that in some extreme situations this number can exceed the total number of students at
the boarding school of 763. This is caused by the fact that, if the SIR takes into account the population size,
the negative binomial distribution that we put on top of it does not. The prior predictive check often allows
to detect this type of non-immediately obvious behaviors from the model. In this case it should not have any
consequence.

Put together, the prior predictive checks show that the model is not excessively constrained by the priors,
and is still able to fit a wide variety of situations and data. In fact, these priors are likely too wide and
encompass scenarios that are impossible or extremely unlikely. Typically, we can get away with priors that
do not capture all our a priori knowledge, provided the data is informative enough. However when dealing
with complicated models and relatively sparse data, we usually need well-constructed priors to regularize our
estimates and avoid non-identifiability. We conclude from the prior predictive checks that our choice of prior
distributions is adequate.

4.5 Fitting the model

Once the model is written in Stan code, the fitting procedure is straightforward from R using package rstan,
or from one of the other available interfaces. Using the default settings, we run 4 independent Markov chains,
initialized at different random points, with a warm-up phase that lasts 1,000 iterations and a sampling phase
that runs for another 1,000 iterations. There is no definitive rule about the number of chains and iterations.
The rule of thumb is to use the default settings as a starting point, and adapt these if needed after criticizing
the inference. An important point with regards to computing time is that the chains can be run in parallel, so it

7

Figure 5: Prior predictive checks for (A) the recovery time (1/γ), (B) the basic reproduction number R0 (β/γ),
(C) the dispersion parameter (φ), (D) a set of 1,000 epidemic trajectories (each line is a unique simulated
trajectory) and (E) the range in the numbers of students in bed each day (the line is the median and the
light teal area is the 95% central range). All these quantities are sampled from the prior distributions of the
parameters. The dashed red lines correspond to weak bounds from our domain knowledge where available:
the recovery time is expected to last between 0.5 and 30 days, R0 cannot be lower than 1 or higher than 10.
The plain horizontal red line shows the population size (763). White circles show the corresponding data from
the influenza A (H1N1) outbreak at a British boarding school (these data are just illustrative here and do not
influence the other quantities).

can make sense to run as many chains as there are processor cores and reduce the number of iterations per chain
accordingly (down to a certain point). For complex models it can be necessary to resort to high-performance
computing clusters.

4.6 Criticizing the inference

After fitting the model, we check whether the inference is reliable. In this setting, this means validating that
the samples are unbiased and that our posterior estimates, based on these samples, are accurate.

4.6.1 Stan’s diagnostics

Stan provides a host of information to evaluate whether the inference is reliable. During sampling, Stan issues
warnings when it encounters a numerical error: for example, failure to solve the ODEs or to evaluate the log
joint distribution, log p(Y, θ). A large number of such failures is indicative of numerical instability, which can
lead to various kinds of problems: slow computation or inability to generate samples in certain regions of the
parameter space. These are often caused by coding mistakes, and the first step towards a solution is debugging
the Stan code. Fortunately, with the example at hand, we observe no such warning messages.

After the sampling is finished, Stan will run a set of basic diagnostics and issue a warning if it finds
divergent transitions, saturated maximum tree depth or low energy‡. Of these, the most serious is the presence
of divergent transitions as it really challenges the validity of the inference, and requires revisiting the model or
tweaking the inference settings. Exceeding maximum tree depth is a concern about sampling efficiency rather
than validity. A low energy warning can be more problematic, as it suggests that the Markov chains did not
explore the posterior distribution efficiently. Running the inference again with more iterations is often sufficient
to solve this issue. More details about Stan’s warnings and solutions are available in [35].

The summary table provides several quantities to troubleshoot the inference:

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta 1.73 0 0.05 1.63 1.70 1.73 1.77 1.84 2544 1

gamma 0.54 0 0.05 0.45 0.51 0.54 0.57 0.63 2275 1

phi_inv 0.14 0 0.07 0.04 0.08 0.12 0.17 0.33 2271 1

The R̂ statistics estimates the ratio between the overall variance and the within chain variance: if R̂1, then
the Markov chains are not mixing and at least one of the chains is producing biased samples. To measure how

‡These diagnostics can also be accessed in rstan with the check hmc diagnostics() function.

8

Figure 6: (A) Trace plot showing the value of each chain at each iteration (excluding warm-up) and (B)
marginal posterior densities for the transmission rate (beta or β), the recovery rate (gamma or γ) and the
inverse dispersion parameter (phi inv or 1/φ), separately for each of the four Markov chains.

“informative” the samples are, we may use the effective sample size, neff , which is typically smaller than the
total number of sampling iterations. Samples from an MCMC procedure tend to be correlated, meaning there
is redundant information in the samples which makes the posterior estimates less precise. Conceptually, the
variance of our Monte Carlo estimates corresponds to the variance we would expect if we used neff independent
samples. Stan’s procedure for computing R̂ and neff is based on recent improvements made to both estimates[36].

Here we note that R̂ is close to 1 (¡ 1.01) and that n eff is large, which makes us confident we can rely on the
inference. Conversely, large R̂ and low n eff would indicate that the Markov chains are not cohesively exploring
the parameter space and, in turn, that our estimates of the posterior mean and quantiles are unreliable. Having
no Stan warning is a good, if imperfect, indication that the inference is reliable. We can furthermore plot the
“trace” (Figure 6A) and the marginal posterior densities (Figure 6B) of each chain to confirm that the Markov
chains mix well and are in agreement with one another.

When the diagnostics reveal a problem with our inference, we must consider several sources of error. A
common, if trivial, problem is coding errors. If we are confident in our implementation, we may inspect our
model specification. Often times, reparameterizing the model[23] or using stronger priors, when the requisite
information is available, improves the interaction between HMC and the model, leading to better mixing of
the chains and moreover better inference. Sometimes the model at hand, i.e. the likelihood and the prior, is
the model we need to fit and we must entertain the possibility that our inference engine is not suited for the
problem at hand. In this case, we may consider changing the tuning parameters of HMC or all together adopt
a new inference scheme, e.g. marginalization[37, 38, 39], variational inference[40], or adaptive Metropolis and
Gibbs[41], to only name a few popular approaches. Indeed HMC is not a one-size-fits-all solution and, depending
on the context, other techniques can offer better performance. The principles of the Bayesian workflow apply
to other inference strategies, although we should be mindful that not all algorithms are amiable to diagnostics
and that some techniques can require extensive revision whenever we change model (or even be restricted to a
narrow menu of models).

4.6.2 Criticize the inference with simulated data

While there exist many theoretical guarantees for MCMC algorithms, modelers should realize that these rely
on a set of assumptions which are not always easy to verify and that many of these guarantees are asymptotic.
This means they are proven in the limit where we have an infinite number of samples from the posterior
distribution. A very nice, if advanced, review on the subject can be found in [42]. As practitioners, we must
contend with finite computational resources and assumptions which may or may not hold. The diagnostics we
reviewed earlier – e.g. R̂ or effective sample sizes – provide necessary conditions for the MCMC sampler to
work but not sufficient ones. Nevertheless, they are potent tools for diagnosing shortcomings in our inference.
This subsection provides further such tools, from both a rigorous and a pragmatic perspective.

Fitting the model to simulated data is, if done properly, an effective way to test whether our inference
algorithm is reliable. If we cannot successfully fit the model in a controlled setting, it is unlikely we can do
so with real data. This of course raises the question of what is meant by “successfully fitting” the model.
In a Bayesian setting, this means our inference procedure accurately estimates various characteristics of the
posterior distribution, such as the posterior mean, variance, covariance, and quantiles.

A powerful method to check the accuracy of our Bayesian inference is simulation-based calibration (SBC)

9

Figure 7: Marginal posterior densities for the transmission rate (beta or β), the recovery rate (gamma or γ) and
the inverse dispersion parameter (phi inv or 1/φ) obtained when fitting the model to simulated data. The red
dashed lines show the fixed parameter values used for simulating the data.

[43]. SBC exploits a very nice consistency result. The intuition is the following: if we draw several sets of
parameters from our prior distribution

θ1, ..., θ2 ∼ p(θ)

and for each set of parameters θi simulate a data set Y i, we can by fitting the model multiple times recover
the prior distribution from the estimated posteriors. This technique is a bit beyond the scope of this tutorial,
though we vividly encourage the reader to consult the original paper.

For the time being, we focus on a simpler heuristic: fit the model to one simulated data set and check if we
recover the correct parameter values. There are serious limitations with this approach: when do we consider
that the estimated posterior distribution covers the correct value or how do we know if the variance of the
posterior is properly estimated? But the test is useful: in this controlled setting, do the chains converge? Is
the computation of the log density numerically stable (e.g. are we using the right ODE integrator)? Do our
priors prevent the chains from wandering into absurd regions of the parameter space? These are all questions
this simple test can help us tackle.

We take one arbitrary draw from the prior distribution and use it as data to which we fit the model. In
this specific case, we used the following randomly-selected values: β = 1.6, γ = 0.033 and 1/φ = 0.0007. We
then plot the estimated posterior distribution (Figure 7) along with the “true” parameter values. The density
function covers the true parameters, although it is not always centered on it. The latter is not alarming,
especially if the parameter values that were selected lie on the tail of the prior distribution. We could repeat
this process a few times to get a better sense of the performance of the model together with the inference
algorithm.

4.7 Criticize the fitted model

Now that we trust our inference, we can check the utility of our model. Utility is problem-specific and can
include the precise estimation of a parameter or predicting future behaviors. In general, it is good to check
if our model, once fitted, produces simulations that are consistent with the observed data. This is the idea
behind posterior predictive checks.

We sample predictions, Ypred, using the following sequential procedure:

θpost ∼ p(θ | Y),

Ypred ∼ p(Y | θpost).

This is identical to prior predictive checks, except that we are now sampling parameters from the posterior
distribution, rather than from the prior. We use these samples to construct a fitted curve for students in bed,
together with a measure of uncertainty (e.g. the 95% prediction interval, meaning that observed data points are
expected to fall outside of the interval once every twenty times). The posterior predictive check represented in
Figure 8A allows us to confirm that the model fits the data reasonably well. We can also do separate posterior
predictive checks for each Markov chain.

At this point, we can confidently move forward with the utility of the model, for instance conclude that the
basic reproduction number of this outbreak can be estimated to 3.2 with a 95% credible interval of 2.7 - 3.9
(respectively from the median, 2.5% quantile and 97.5% quantile of the posterior samples), or that the average
recovery time can be estimated to 1.8 days with a 95% credible interval of 1.6 - 2.2 (Figure 8B).

5 Scaling-up ODE-based models

Doing MCMC on ODE-based models can be computationally intensive, especially as we scale up the number
of observations, parameters, and start using more sophisticated ODEs. If we want to reap the benefits of a full
Bayesian inference, we have to pay the computational cost. But while we cannot get away with a free lunch,
we can avoid an overpriced one. Stan is a flexible language, which means there are worse and better ways of
coding things.

This section develops a few principles to make ODE models in Stan more scalable, drawing on our experience
with an SEIR model of SARS-CoV-2 transmission[3]. The key is to understand the computational cost of each

10

Figure 8: (A) Posterior predictive check of the number of students in bed each day during an influenza A
(H1N1) outbreak at a British boarding school. The line shows the median and the orange area the 90%
prediction interval. (B) Prior and posterior predictive checks of the basic reproduction number R0 and of the
recovery time (both truncated at 8). The dot shows the median posterior and the line shows the 95% credible
interval.

coding block (Section 2.4) and recognize that operations in the transformed parameters and model blocks
dominate the computation. A brief primer on the mechanism of HMC will make this clear. Our goal is then
to write our model in such a way that we limit the number of operations in the expensive blocks. Another
important consideration is the need to solve and differentiate the ODEs for our transmission model many times.
We present ways to make numerical integration cheaper. Anecdotally, implementing the strategies we outline
here reduced the runtime of our model from three days to two hours! These techniques will also be much help
in our next example in section 6.

5.1 The Computational cost of Stan’s coding blocks

Stan abstracts the inference away from the modeling but it’s worth taking a peek inside the black box. HMC
simulates physical trajectories in the parameter space by solving Hamilton’s equations of motion – in this
instance, we may think of these equations as a convenient reformulation of Newton’s law of motion. Unlike
random walk algorithms (e.g. Metropolis-Hastings, Gibbs), HMC does not start each iteration with a random
step, but rather with a random momentum, given to a fictitious particle. The acceleration of the particle is
then driven by the gradient of the log posterior. We solve the equations of motion numerically, using a leapfrog
integrator. More details can be found in references[9, 10].

Recall the model block specifies the joint distribution log p(Y, θ). We further require the gradient

∇θ log p(Y, θ) = ∇θ log p(θ | Y).

Fortunately, the user does not need to specify the gradient. Instead, automatic differentiation generates the
requisite derivatives under the hood using a numerical integrator [21, 44]. At each step the leapfrog integrator
takes – that is, multiple times per iteration – we need to evaluate and differentiate log p(Y, θ).

This perspective informs how each model block scales (Figure 1). The data and parameters blocks are
used to declare variables. The transformed data block is evaluated once per iteration. The transformed

parameters and model blocks are evaluated and differentiated at each integration step, which is multiple times
per iteration. The generated quantities block is evaluated once per iteration. Hence operations in the
parameters and transformed parameters blocks dominate the computational cost and should only entail
operations that depend on θ and are required to compute log p(Y, θ).

In the previous example, solving the ODEs at the observed times is required to compute the likelihood
and occurs in the transformed parameters block. On the other hand, the computation of R0 is relegated
to generated quantities. Even though we want samples from p(R0 | Y) and R0 depends on the model
parameters, R0 does not contribute to log p(Y, θ).

5.2 Reducing the cost of propagating derivatives through the ODE solution

To obtain the requisite gradient, we must propagate derivatives through the ODE solution. This differentiation
process can become very expensive: understanding its mechanism can help us avoid certain computational
pitfalls.

Our ODE is defined by
dy

dt
= f(y, t, ϑ, x).

Here, ϑ contains inputs to f that depend on the model parameters, θ, while x contains inputs which do not
depend on θ and therefore remain fixed as the Markov chain moves through the parameter space. Note that
in general, ϑ 6= θ. In the SIR model for example, ϑ = {β, γ}, while θ = {β, γ, 1/φ}. To define the integral, we
additionally specify an initial time t0, times of integration ts, and an initial condition y0, all of which can vary
with θ. Hence when propagating derivatives to compute the gradient of the log joint density, we need to worry

11

about how the solution varies with respect to ϑ and potentially y0
§. We call these elements varying parameters

and denote K the number of such elements. Furthermore, let N be the number of states, that is the length of
y or the number of compartments in a SIR-type model.

In Stan, we propagate derivatives by solving a coupled system of ODEs. The intuition is the following.
Suppose we want to compute

dy

dϑ
.

We do not have an analytical expression for y, so a direct application of automatic differentiation is not feasible.
But we can, assuming the requisite derivatives exist, compute

df

dϑ
=

d

dt

dy

dϑ

and then integrate this quantity numerically. The end result is that, instead of only solving for the N original
states, we solve an N +NK system to both evaluate and differentiate y.¶ Evidently, solving and differentiating
the ODE is much more expensive than only solving it! We this in mind, our goal should be clear: limit both
N and K as much as possible.

The number of states N in SIR-type models is simply the number of compartments and not much can be
done to reduce this number. Limiting K is first and foremost a matter of book-keeping. Recall the function
signature of Stan’s numerical integrator:

real[,] y = integrate_ode_rk45 (function f, real[] y0 , real t0 , real[] ts ,

real[] theta , real[] x_r , int[] x_i);

For every element in ϑ, we add an additional N states to solve for. Hence, components which do not depend
on θ should be passed through x r and x i‖.

Suppose our initial condition, y0, are varying parameters, i.e. depend on the model parameters. It is not
uncommon for some of the elements in y0 to not depend on θ. For example, in a compartment model, the initial
condition for the I compartment may depend on model parameters, while it is set to 0 for the R compartment.
More generally, y0 may only depend on k < N parameters. The straightforward approach is to pass y0 as a
vector of parameters. Stan interprets this as N additional varying parameters, which means the number of
ODE we solve increases by N2. This is overpriced lunch!

A better, if more intricate, approach is to solve the ODEs for deviations from the baseline and split y0

between ϑ and x r. Concretely, let
z = y − y0.

The initial condition for z is then 0, an N -vector of 0’s and a fixed quantity. Now,

dz

dt
=

dy

dt
= f(z + y0, t, ϑ, x) = f̃(z, t, ϑ̃, x̃)

where f̃ is the same map as f , but applied to z + y0 instead of z; ϑ̃ contains ϑ and the elements of y0 that
depend on θ; and x̃ contains x and the elements of y0 that are fixed. With this implementation, K is kept
to a minimum. We recover the original y simply by adding y0 to z. In the SEIR model by [?, Hauser et al,
2020]]riou2020covid, we have 58 initial conditions but together these depend on a single parameter. ϑ itself
contains 4 elements. Reparameterizing the ODE means we go from K = 62 to K = 5, that is from solving 3596
coupled ODEs to only solving 290.

5.3 Picking the right ODE integrator

The task of solving and differentiating an ODE boils down to integrating an augmented ODE system. The
majority of the time, we deal with nonlinear ODEs with no analytical solution and must resort to numerical
integrators. Hence to ensure reasonable performance, it is crucial to pick the right integrator and tune it
properly.

Conceptually, numerical integrators perform a linear approximation of the solution between time points t
and t+ δt, using the tangent, f . The step size δt controls the usual trade-off between accuracy and speed, with
a smaller δt leading to more accurate results but slower computation. The step size is adaptively computed by
the integrator in order to control the target approximation error. When calling an integrator in Stan, the user
may specify the target error via

1. the absolute tolerance, which sets the upper bound for the absolute error in a solution,

2. the relative tolerance, which sets the upper bound for the error relative to the solution.

§While t0 and ts may depend on model parameters, we here assume they do not to avoid some minute technicalities and simplify
our discussion.

¶Strictly speaking, we do not need to explicitly compute dy/dϑ to propagate derivatives; this is an important, if somewhat
counter-intuitive, result of automatic differentiation, and motivates a so-called adjoint method, which only requires solving 2N +K
ODE states, albeit incurring additional overhead cost. For a deeper discussion on the topic, we recommend [?, Hindmarsh and
Serban, 2020]]hindmarsh2020ode.

‖Stan now offers a variadic signature, which is more flexible and automatically recognizes if an argument is parameter dependent
or not[45].

12

Iteration Model Data Stan diagnostics Other issues Interpretation / Comments Proposed improvement

#1 Basic SIR model Reported cases
R̂ >> 1,
max treedepth
exceeded

Far-off predictions Misspecified model
Add a reporting rate
parameter pr

#2
SIR +
underreporting

Reported cases None Skewed prediction Misspecified model Add incubation rate

#3
SEIR +
underreporting +
incubation rate

Reported cases R̂ > 1.01
1 out of 4 chains
with skewed predictions
and unrealistic incubation time

Degeneracy due to weak priors
More informative prior
on incubation time

#4

SEIR +
underreporting +
varying initial infections +
informative prior on incubation time

Reported cases R̂ > 1.01
Unrealistic values of pr
for some chains

The model can only make
infections decrease
if pr is very low

Model control measures

#5

SEIR +
underreporting +
varying initial infections +
model control measures

Reported cases A few divergences
pr is unrealistic,
degenerate values for
logistic parameters

Degeneracy between the two ways
to make infections decrease:
immunity and control measures

Inform pr by including
serological data

#6

SEIR +
underreporting +
varying initial infections +
model control measures

Reported cases
+ serology

max treedepth
exceeded for most
iterations,
a few divergences

None Unclear
Increase the maximum
tree depth

#7

SEIR +
underreporting +
varying initial infections +
model control measures +
increased max tree depth

Reported cases
+ serology

None None The model seems decent! None

Table 1: Summary of the Bayesian workflow used for iteratively building a model of SARS-CoV-2 transmission
in Switzerland.

Lower tolerance typically induces smaller step sizes. Unless the user has a strong grasp on how these tuning
parameters may affect the inference, we recommend using Stan’s default. Another important tuning parameter
is the maximum number of steps, after which the integrator gives up on solving the ODE. In a Bayesian context,
it can be useful to end the integrator early, especially when the Markov chain wanders into odd regions of the
parameter space, that make the ODE difficult to solve. Such a wandering can occur during the warmup phase
of HMC, before the chains converge to the relevant region of the parameter space.

Stan supports two ODE integrators[45]: a Runge-Kutta (RK45) method for non-stiff systems with integrate ode rk45,
and a backward differentiation (BDF) algorithm for stiff systems with integrate ode bdf. There is no formal
definition of stiffness but the general idea is that the phenomenon occurs when the step size, δt, of the integrator
needs to be extremely small – smaller than what is needed to achieve the required accuracy – in order to make
the integrator stable. Stiffness can arise when the scale of the solution changes varies largely as a function of t.
The RK45 integrator is typically faster, so we recommend it as a starting point. If however the system is stiff,
the RK45 integrator will be slow and numerically unstable and in this case, the BDF integrator is preferable.

Users should therefore be prepared to adjust their solver. This can mean switching from RK45 to BDF, or
adjusting the tuning parameters of the integrator. When an integrator fails to solve an ODE, Stan issues a
warning message and rejects the iteration being computed. An excessive number of such failures can indicate
the integrator needs to be adjusted.

For certain problems, knowing ahead of time if a system is stiff may not be obvious. What is even less
obvious is whether a coupled system is stiff. And what is yet again less obvious is whether a system is stiff or
nonstiff across the range of parameters the Markov chain explores, both during the warm-up and the sampling
phases. As said, the chain can, during the warmup phase, land in extreme regions of the parameter space and
the ODE can become tremendously difficult to solve, leading to slow computation and numerical instability.
In our experience, this unfortunate behavior is often difficult to avoid. Using more informative priors, when
such information is available, can help the chains converge faster to “sensible” regions of the parameter space.
Carefully picking initial values for the Markov chain can also be helpful.

6 Application to SARS-CoV-2 transmission in Switzerland

In section 4, we demonstrated how to use Stan to build a basic disease transmission model on the example of
influenza data. We now show how to build a more complex model of SARS-CoV-2 transmission in Switzerland.
We start with the SIR model from section 4, and then gradually build on it by iteratively increasing the
complexity of the model and keeping in mind the principles of the Bayesian workflow described in section 3.
At each step, we aim to identify and eliminate a specific shortcoming. All obstacles can be roughly classified
as inference issues or modeling issues. Inference issues can be, in most cases, diagnosed by Stan. They include
errors in code, biases in MCMC, or unidentifiable parameters. Modeling issues include misspecified or unrealistic
models that pass the inference diagnostics but do not describe the data well or lead to impossible parameter
values. These can be detected by prior and posterior predictive checks. All through, we keep the folk’s theorem
[8] in mind, according to which an inference problem is often due to a modeling problem. For example, poorly
specified priors can put probability mass in numerically unstable regions of the parameter space and frustrate
our inference algorithms. Table 1 presents every iteration of our model. The complete analysis, including the
Stan code for the listed models, is available in a complementary notebook[11]. Below we only present a broad
outline of the iterative modeling process.

6.1 Data

The main dataset used in this section is the daily number of reported cases of SARS-CoV-2 infection in
Switzerland at the national level during the first epidemic wave, from February to June 2020 (Figure 9). At

13

a later modeling stage, we include serological antibody survey data from Geneva, available for dates between
April 6th and May 9th 2020[46].

Figure 9: Daily number of reported cases of SARS-CoV-2 infection in Switzerland between February and June,
2020.

6.2 First attempt

As a first step, we directly try to fit the SIR model from section 4 to this new data (model iteration #1 in Table
1). We do not expect this simple model to perform well, but rather aim to create a baseline. We first need
to account for one significant difference between influenza and SARS-CoV-2 datasets: the former represents
prevalence (the number of students in bed being interpreted as a proxy for currently infected individuals), and
the latter represents incidence (the number of new cases on a given day). To adjust for this discrepancy, we
compute the incidence ∆I(t) from the compartments of the SIR model as the number of individuals entering
the I compartment during day t. The new sampling distribution is:

p(Y | θ) = Negative-binomial(Y | ∆I(t), φ)

where Y now denotes data on reported cases.
Several diagnostics indicate that the inference from this first model fit should not be trusted: Stan issues a

warning about divergent transitions, R̂ is far larger than 1, and the effective sample size is very small. We can
also see that the Markov chains do not mix (Figure 10A), and a posterior predictive check further shows that
the model is, across all chains, unable to fit the data (Figure 10B). It is not uncommon for problems to come
in bulk. This is actually a feature of Stan: when it fails, it fails loudly.

Figure 10: (A) Posterior distributions of the model parameters (the transmission rate β, the recovery rate γ
and the inverse dispersion parameter 1/φ) and (B) chain-by-chain posterior predictive check of the number of
reported cases for the simple SIR model (model iteration #1) applied to data on the SARS-CoV-2 epidemic in
Switzerland (white circles).

6.3 Model improvement

Drawing from domain knowledge, we take several steps to improve the model.

14

Figure 11: Diagram of a SEIR model.

6.3.1 From SIR to SEIR with underreporting

First, we add a reporting rate parameter, pr ∈ (0, 1), to account for the underreporting of cases (model
iteration #2). Indeed, contrary to the controlled environment of the boarding school where every student can
be monitored, reported cases are an incomplete measurement of the true incidence of SARS-CoV-2. In order
to be reported as cases, individuals infected with SARS-CoV-2 have to get tested, which is not proposed to
everyone and much more likely to be proposed to individuals with severe symptoms or a perceived risk of severe
outcome[47]. Also, the test has to be positive given that the individual tested is infected, which depend on
the test sensitivity. We combine these elements in a single parameter, and select a weakly-informative prior,
p(pr) = Beta(1, 2). We still ignore the fact that reporting may take a few days, and assume that infected
individuals appear as reported when they become infectious (as then enter compartment I).

Second, we add an Exposed compartment E to account for individuals who have been exposed to the virus
but are not yet infectious. This leads to an SEIR model (model iteration #3) that features another additional
parameter: the incubation rate a, defined as the inverse of the average incubation time. We select a weakly-
informative prior for this new parameter, p(a) = Normal+(0.4, 0.5), which encodes the belief that exposed
individuals become infectious after a period that lies between 0.5 and 30 days.

6.3.2 Limitations to the SEIR model with underreporting

Unfortunately, new obstacles appear when we try to fit this more complex model. Stan informs us that the
chains are not mixing. To understand the issue, we try several diagnostics. Trace plots (Figure 12A) show that
chains converge to two different modes when exploring the posterior distributions of the incubation rate a and
the reporting rate pr. A chain-by-chain posterior predictive check (Figure 12B) shows that all four chains give
better predictions than the previous models, but only chains 2 and 4 produce satisfying results. At this point,
it is useful to look at the parameter spaces explored by different chains. In this case, we observe that chains 1
and 3 explore regions where the incubation rate a is close to 2, so that the incubation time 1/a is very short,
about 0.5 days. However, we know from the literature that the average incubation time has been estimated
around 5-6 days[48]. This inconsistency suggests the incubation time cannot be inferred from the data alone
and motivates incorporating more expert knowledge in the model in the form of an informative prior. We
reparametrize the incubation rate as its inverse, and set an informative prior on the incubation period centered
around 6 days: p(1/a) = Normal+(6, 1) (model iteration #4). Unfortunately, even after this correction, the
chains still do not mix (not shown).

We also notice that another parameter does not agree with domain knowledge: the probability that an
individual infected with SARS-CoV-2 is reported as a case is very low for most chains, around 0.3-0.8%. Such
low values would imply that the entire population of Switzerland had been infected by July (30,994 reported
cases over the period divided by 0.5% gives more than 10 millions infected). However, local serological studies
[46] have shown that the cumulative number of infections in Geneva was not far from 10% of the population
by May 2020. This behavior of the current model can be explained. In this configuration of the model,
transmission can only decrease due to acquired immunity (i.e. by lack of susceptible individuals). As the data
show a decrease in reported cases, the model has to conclude that a large part of the population is immune at
this point, and thus that the number of cases reported until then represents a very small proportion of the true
number of infections. Given the data from the serological studies, the decrease in transmission must be due to
something other than immunity. Indeed on March 17, the Swiss government implemented lockdown measures
to stop the spread of the disease. Our model should therefore account for this effect.

6.4 Modeling control measures

We model the decrease in transmission after March 17 and the implementation of lockdown measures ∗∗ using
a forcing function with a logistic shape:

β∗(t) = f(t)β,

with

f(t) = η + (1− η)
1

1 + exp (ξ(t− t1 − ν))
,

where η is the decrease of transmission when control measures are fully in place, ξ is the slope of the decrease,
and ν is the delay (after the date of introduction of control measures, t1) until the measures are 50% effective
(Figure 14C). We add weakly-informative priors on the three parameters: p(η) = Beta(2.5, 4) which means that
we expect lockdown measures to reduce transmission, but not all the way to zero; p(ξ) = Uniform(0.5, 1.5),

∗∗Note that we don’t model explicitely the behavior changes from the population independent of the lockdown, so f(t) could be
interpreted as the combined effect of lockdown and independent behavior changes.

15

Figure 12: (A) Trace plot for two of the model parameters (the incubation rate a and the reporting rate pr
– the other parameters are not shown) and (B) posterior predictive check of the number of reported cases for
the SEIR model with underreporting (model iteration #3) applied to data on the SARS-CoV-2 epidemic in
Switzerland (white circles).

which implies that the slope has to be positive but not too steep; and p(ν) = Exponential(0.2) which means
that the delay before lockdown reaches half of its total efficiency should be between 0 and 20 days.

With this new formulation (model iteration #5), the model should be able to describe the dynamics of
SARS-CoV-2 transmission during the first wave of the pandemic. However, our work is not finished yet, as the
sampler appears to have trouble exploring the posterior distributions: Stan issues a warning about divergent
transitions, which indicate the chains may not be exhaustively exploring the parameter space and are thus
producing biased samples. The other diagnostics are concerning: R̂ values go up to 1.19 and are above 1.01
for 6 of 8 model parameters, effective sample sizes are low, below 50 for 3 parameters. Another concern is that
the probability of a case being reported, pr remains very low, between 0.3 and 0.4%. To understand what may
be happening, we resort to another, more advanced diagnostic tool: the pairs plot (Figure 13). The pairs plot
shows samples across pairs of parameters and is useful to examine the geometry of the posterior density. In
this pair plot, divergent transitions, shown in red, do not concentrate in a particular zone of parameter space
that could point towards a specific issue[49]. We observe that the posteriors are not well-defined bivariate
bell curves but show some strong correlation (e.g., between β and gamma) and some irregular shapes (e.g.
the spike between a and ν). These points can be indicative of identifiability issues: several combinations
of parameter values may result in the same observation. Furthermore, we note that the marginal posterior
distributions of η, ν and ξ, the three parameters controlling the effect of lockdown measures, are very similar
to their prior distributions. This posterior behavior’s is not surprising: when pr is that low, transmission can
decrease substantially through immunity only, rendering the effect of lockdown measures non-identifiable, or at
least degenerate[50]. We however believe that it is highly unlikely for pr to be very low and we could account
for this using a more informative prior for pr. In this case, we directly include serological survey results into
the model, taking advantage of complementary data.

6.5 Fitting data from a serological survey

For simplicity, we only use data from week 5 of the survey. We ignore considerations about test sensitivity and
specificity[51], and consider that all recovered individuals will test positive to the serological test. We also make
the strong assumption that the results from this survey in Geneva are representative of the whole population
of Switzerland. Tests from week 5 have taken place in Geneva from May 4 to May 7, and 83 out of 775 tested
individuals were found to have antibodies against SARS-CoV-2. Given these assumptions, the probability of
being detected by the survey is the proportion of individuals in the R compartment at the time when the survey
was conducted. We expand the sampling distribution defined in section 6.2, multiplying the likelihood of data
on reported cases by the likelihood of serological data:

p(Y ′ | θ) = Binomial

(
Y ′ | R(tY)

N
,nY

)
where Y ′ is the number of positive tests in the survey sample, tY is the time of the survey and nY is the sample
size. The implementation in code is straightforward (model iteration #6).

Running this new iteration of the model, Stan issues a warning that the tree depth is often exceeded. This
means that the sampler had to choose a step size small enough to explore some part of the posterior, but
that this step size is too small for exploring another part of the posterior efficiently, slowing down the sampling
process. This is not too worrying, given that the other diagnostics are good. We can increase the maximum tree
depth and try again (model iteration #7). Finally this time, no warning is issued, all diagnostics are good, and
the prior and posterior predictive checks confirm the reliability of the inference and the relative adequacy of the
model (Figure 14A-B). We can go forward with the application of the model and discuss the results – always in

16

Figure 13: Pairs plot of all model parameters for the model incorporating control measures (model iteration
#5).

the context of the model assumptions and priors. For instance, we might want to report that we estimate the
basic reproduction number R0 to 2.7 (95% credible interval 1.9-5.2) and the reporting rate to 3.3% (2.7-4.1).
We can also focus on the effects of lockdown measures, interpreting 1− η as a relative reduction of 73% (53-92)
in transmissibility after lockdown measures are fully efficient, or interpreting ν as an implementation delay of
7.5 days (6.2-8.9) before lockdown measures are half-efficient.

We finally obtained a decent model, but note that its aim is only didactic and should not be directly used to
inform policy. The first functioning model is not the end of the road, and a lot of features should be considered
before claiming to have obtained a good depiction of the Swiss epidemic. For instance, one could account for
the sensitivity and specificity of tests when fitting seroprevalence data, improve the inference by including data
on testing, hospitalisations and deaths, relax some of the strong assumptions that were made, and stratify
by age, location or some other characteristic. This would result in a large number of competing models that
can be organised in a network depending on what features are included[8]. Model comparison tools become
invaluable in this context. Although it is out of the scope of this tutorial, we recommend using leave-one-out
cross-validation[52], or, even more adapted for time series, leave-future-out cross-validation [53].

7 Conclusions

Modeling is an iterative process. We rarely start with a good model. Rather we must build our way to a good
model, starting from a baseline, and revising our models as we uncover shortcomings. The Bayesian modeling
workflow offers a perspective, which goes beyond fitting a polished model or using inference algorithms in an
idealized context; it encompasses failing cases, and techniques to diagnose and learn from these failures. In
order to navigate the workflow, we must reason about the modeled phenomenon, our inference algorithms, our
computational implementation, and how all these elements interact with one another. This means leveraging
domain, statistical, and computational expertise.

We show the advantages that can be obtained from this Bayesian workflow in epidemiology. Stan is an
adequate tool for building, fitting, and criticizing ODE-based models, as we demonstrate on an influenza model
and a more sophisticated SARS-CoV-2 model. For the latter, several ingredients are required to build an
adequate model. First and foremost, using an appropriate epidemiological model for a given disease is key.
Secondly, in order to improve our estimates of the parameters and overcome issues of identifiability, we need
to incorporate information by using well-motivated priors and combining data from multiple sources. Finally,
we must tune our inference algorithms in order to accurately probe the posterior distribution. We discover
these ingredients by gradually building our model and deploying a broad range of diagnostics. One important
practical point is that we need computationally efficient implementations of our code to, in order to not only
get reasonably fast inference for the final model, but also to quickly troubleshoot failing models.

As a final thought, we note that the modes of failures for models we develop along the way improve our
understanding of the final model. Sharing these early models can therefore make our work more transparent
and improve scientific communication.

17

Figure 14: (A) Posterior predictive check of the number of reported cases and (B) of the cumulative incidence for
the SEIR model including the effect of control measures and fitted to both reported cases and seroprevalence
data (model iteration #7; white circles show data on reported cases in panel A and seroprevalence data in
panel B). (C) Posterior distribution of the forcing function f that models the reduction in transmission after
the introduction of lockdown measures. (D) Prior and posterior distributions of the parameters of model
iteration #7.

Code

The code to run the examples in this article can be found at https://github.com/charlesm93/disease_

transmission_workflow.

Acknowledgments

We thank Ben Bales and Andrew Gelman for their helpful comments.

Author contributions

LG, ES, CCM and JR conceived this tutorial and wrote the manuscript. LG and ES performed the computa-
tions.

Financial disclosure

ES was supported by AstraZeneca postdoc programme. JR is funded by the Swiss National Science Foundation
(grant 174281).

Conflict of interest

The authors declare no conflict of interests.

18

https://github.com/charlesm93/disease_transmission_workflow
https://github.com/charlesm93/disease_transmission_workflow

References

[1] Seth Flaxman, Swapnil Mishra, Axel Gandy, H Juliette T Unwin, Thomas A Mellan, Helen Coupland,
Charles Whittaker, Harrison Zhu, Tresnia Berah, Jeffrey W Eaton, et al. Estimating the effects of non-
pharmaceutical interventions on covid-19 in europe. Nature, pages 1–5, 2020.

[2] Henrik Salje, Cécile Tran Kiem, Noémie Lefrancq, Noémie Courtejoie, Paolo Bosetti, Juliette Paireau,
Alessio Andronico, Nathanaël Hozé, Jehanne Richet, Claire-Lise Dubost, Yann Le Strat, Justin Lessler,
Daniel Levy-Bruhl, Arnaud Fontanet, Lulla Opatowski, Pierre-Yves Boelle, and Simon Cauchemez. Esti-
mating the burden of sars-cov-2 in france. Science, 369(6500):208–211, 2020.

[3] Anthony Hauser, Michel J Counotte, Charles C Margossian, Garyfallos Konstantinoudis, Nicola Low,
Christian L Althaus, and Julien Riou. Estimation of sars-cov-2 mortality during the early stages of an
epidemic: a modeling study in hubei, china, and six regions in europe. PLoS medicine, 17(7):e1003189,
2020.

[4] MJ Keeling and L Danon. Mathematical modelling of infectious diseases. British Medical Bulletin, 92(1),
2009.

[5] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming language.
Journal of statistical software, 76(1), 2017.

[6] Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. Visualization in
bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2):389–402,
2019.

[7] Michael Betancourt. Towards a principled bayesian workflow. https://betanalpha.github.io/assets/
case_studies/principled_bayesian_workflow.html.

[8] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling Yao, Lauren
Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. Bayesian workflow. arXiv preprint
arXiv:2011.01808, 2020.

[9] Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths in
hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

[10] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. 2018.

[11] Leo Grinsztajn, Elizaveta Semenova, Charles C. Margossian, and Julien Riou. Stan case studies, volume
7 (2020). bayesian workflow for disease transmission modeling in stan. https://mc-stan.org/users/

documentation/case-studies/boarding_school_case_study.html.

[12] Anastasia Chatzilena, Edwin van Leeuwen, Oliver Ratmann, Marc Baguelin, and Nikolaos Demiris. Con-
temporary statistical inference for infectious disease models using stan. Epidemics, 29:100367, 2019.

[13] Joseph Mihaljevic. Estimating transmission by fitting mechanistic models in stan. 2016.

[14] Bob Carpenter. Stan case studies, volume 5 (2018). predator-Prey Population Dynamics: the Lotka-
Volterra model in Stan. https://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-
prey.html.

[15] Sebastian Weber. Solving odes in the wild: Scalable pharmacometrics with stan. StanCon Helsinki 2018,
2018.

[16] Charles C Margossian and William R Gillespie. Differential equation based models in stan. In StanCon
2017, January 2017.

[17] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, 3rd ed. edition, 2013.

[18] Radford M. Neal. Mcmc using hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo.
Chapman & Hall / CRC Press, 2010.

[19] S. Duane, A. D. Kennedy, B. J. Pendleton, , and D. Roweth. Hybrid monte carlo. Physics Letters B,
195:216 – 222, 1987.

[20] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Au-
tomatic differentiation in machine learning: a survey. Journal of Machine Learning Research, 18:1 – 43,
2018.

[21] Charles C. Margossian. A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9, 3 2019.

[22] Stan Development Team. Problematic posterior. https://mc-stan.org/docs/2_26/stan-users-guide/
problematic-posteriors-chapter.html, 2020.

19

https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
https://mc-stan.org/users/documentation/case-studies/boarding_school_case_study.html
https://mc-stan.org/users/documentation/case-studies/boarding_school_case_study.html
https://mc-stan.org/docs/2_26/stan-users-guide/problematic-posteriors-chapter.html
https://mc-stan.org/docs/2_26/stan-users-guide/problematic-posteriors-chapter.html

[23] Stan Development Team. Reparameterization. 2020.

[24] Stan Development Team. Stan interfaces. https://mc-stan.org/users/interfaces/, 2020.

[25] Michael Betancourt. An introduction to stan. https://betanalpha.github.io/assets/case_studies/
stan_intro.html.

[26] Stan Development Team. Stan reference manual. https://mc-stan.org/docs/2_26/reference-manual/
index.html, 2020.

[27] Stan Development Team. Stan user guide. https://mc-stan.org/docs/2_26/stan-users-guide/

index.html, 2020.

[28] Stan Development Team. Stan case studies. https://mc-stan.org/users/documentation/

case-studies.html, 2020.

[29] Stan Development Team. Stan tutorials. https://mc-stan.org/users/documentation/tutorials.

html, 2020.

[30] George EP Box. Science and statistics. Journal of the American Statistical Association, 71(356):791–799,
1976.

[31] David M Blei. Build, compute, critique, repeat: Data analysis with latent variable models. Annual Review
of Statistics and Its Application, 1, 2014.

[32] Repidemics consortium. outbreaks: a compilation of disease outbreak data.
https://www.repidemicsconsortium.org/outbreaks/, 2020.

[33] Stan Development Team. Prior choice recommendations. https://github.com/stan-dev/stan/wiki/Prior-
Choice-Recommendations, 2020.

[34] Ben Bales and Sebastian Weber. Stan case studies, volume 7 (2020). upgrading to the new ode interface.
https://mc-stan.org/users/documentation/case-studies/convert_odes.html.

[35] Stan Development Team. Brief guide to stan’s warnings. https://mc-stan.org/misc/warnings.html,
2020.

[36] Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. Rank-
Normalization, Folding, and Localization: An Improved R̂ for Assessing Convergence of MCMC. Bayesian
Analysis, pages 1 – 28, 2021.

[37] Havard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian
models by using integrated nested Laplace approximations. Journal of Royal Statistics B, 71:319 – 392,
2009.

[38] Havard Rue, Andrea Riebler, Sigrunn Sorbye, Janine Illian, Daniel Simson, and Finn Lindgren. Bayesian
computing with INLA: A review. Annual Review of Statistics and its Application, 4:395 – 421, 2017.

[39] Charles Margossian, Aki Vehtari, Daniel Simpson, and Raj Agrawal. Hamiltonian monte carlo using an
adjoint-differentiated laplace approximation: Bayesian inference for latent gaussian models and beyond.
Advances in Neural Information Processing Systems (NeurIPS), 33, 2020.

[40] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, Apr 2017.

[41] Gareth O Roberts and Jeffrey S Rosenthal. Examples of adaptive mcmc. Bayesian Computation, 18, 2009.

[42] Gareth O Roberts and Jeffrey S Rosenthal. General state space markov chains and mcmc algorithms.
Probability survey, 1:20 – 71, 2004.

[43] Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating bayesian
inference algorithms with simulation-based calibration. arXiv:1804.06788v1, 2020.

[44] Andreas Griewank and Andrea Walther. Evaluating derivatives. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, second edition, 2008.

[45] Stan Development Team. Stan user’s guide v2.26, section 13 “ordinary differential equations”. https:

//mc-stan.org/docs/2_26/stan-users-guide/ode-solver-chapter.html, 2021.

[46] Silvia Stringhini, Ania Wisniak, Giovanni Piumatti, Andrew S. Azman, Stephen A. Lauer, Hélène Baysson,
David De Ridder, Dusan Petrovic, Stephanie Schrempft, Kailing Marcus, Sabine Yerly, Isabelle Arm
Vernez, Olivia Keiser, Samia Hurst, Klara M. Posfay-Barbe, Didier Trono, Didier Pittet, Laurent GÃ©taz,
FranÃ§ois Chappuis, Isabella Eckerle, Nicolas Vuilleumier, Benjamin Meyer, Antoine Flahault, Laurent
Kaiser, and Idris Guessous. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland
(SEROCoV-POP): a population-based study. The Lancet, 396(10247):313–319, 2020. Publisher: Elsevier.

20

https://mc-stan.org/users/interfaces/
https://betanalpha.github.io/assets/case_studies/stan_intro.html
https://betanalpha.github.io/assets/case_studies/stan_intro.html
https://mc-stan.org/docs/2_26/reference-manual/index.html
https://mc-stan.org/docs/2_26/reference-manual/index.html
https://mc-stan.org/docs/2_26/stan-users-guide/index.html
https://mc-stan.org/docs/2_26/stan-users-guide/index.html
https://mc-stan.org/users/documentation/case-studies.html
https://mc-stan.org/users/documentation/case-studies.html
https://mc-stan.org/users/documentation/tutorials.html
https://mc-stan.org/users/documentation/tutorials.html
https://mc-stan.org/users/documentation/case-studies/convert_odes.html
https://mc-stan.org/misc/warnings.html
https://mc-stan.org/docs/2_26/stan-users-guide/ode-solver-chapter.html
https://mc-stan.org/docs/2_26/stan-users-guide/ode-solver-chapter.html

[47] Marc Lipsitch, Christl A Donnelly, Christophe Fraser, Isobel M Blake, Anne Cori, Ilaria Dorigatti, Neil M
Ferguson, Tini Garske, Harriet L Mills, Steven Riley, et al. Potential biases in estimating absolute and
relative case-fatality risks during outbreaks. PLoS neglected tropical diseases, 9(7):e0003846, 2015.

[48] Stephen A Lauer, Kyra H Grantz, Qifang Bi, Forrest K Jones, Qulu Zheng, Hannah R Meredith, Andrew S
Azman, Nicholas G Reich, and Justin Lessler. The incubation period of coronavirus disease 2019 (covid-
19) from publicly reported confirmed cases: estimation and application. Annals of internal medicine,
172(9):577–582, 2020.

[49] Michael Betancourt and Mark Girolami. Hamiltonian Monte Carlo for hierarchical models.
arXiv:1312.0906v1, 2013.

[50] Michael Betancourt. Identity Crisis. https://betanalpha.github.io/assets/case_studies/

identifiability.html, 2020.

[51] Andrew Gelman and Bob Carpenter. Bayesian analysis of tests with unknown specificity and sensitivity.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 69(5):1269–1283, 2020.

[52] Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical bayesian model evaluation using leave-one-out
cross-validation and waic. Statistics and Computing, 27:1413–1432, 2017.

[53] Paul-Christian Bürkner, Jonah Gabry, and Aki Vehtari. Approximate leave-future-out cross-validation for
bayesian time series models. Journal of Statistical Computation and Simulation, 90(14):2499–2523, Jun
2020.

21

https://betanalpha.github.io/assets/case_studies/identifiability.html
https://betanalpha.github.io/assets/case_studies/identifiability.html

	1
	Bayesian modeling in Stan
	Specifying a model
	Bayesian inference
	Getting started with Stan
	Coding a model in Stan

	Bayesian modeling workflow
	Simple SIR model
	Mathematical transmission model
	Probabilistic transmission model
	Building an ODE-based model in Stan
	Criticizing the model before looking at the data
	Fitting the model
	Criticizing the inference
	Stan's diagnostics
	Criticize the inference with simulated data

	Criticize the fitted model

	Scaling-up ODE-based models
	The Computational cost of Stan's coding blocks
	Reducing the cost of propagating derivatives through the ODE solution
	Picking the right ODE integrator

	Application to SARS-CoV-2 transmission in Switzerland
	Data
	First attempt
	Model improvement
	From SIR to SEIR with underreporting
	Limitations to the SEIR model with underreporting

	Modeling control measures
	Fitting data from a serological survey

	Conclusions

