General Climatic Conditions and Adaptive Strategies for the Alpine Economies (8th-19th centuries)

Christian Rohr

University of Bern / Oeschger Centre for Climate Change Research

“Oeconomia Alpium III”

Trento
7-9 October 2021
Content

- General information
 - Long-time climatic developments
 - Short-time climatic extremes
 - Weather- and climate-induced natural hazards
 - Specific Alpine peculiarities
 - Micro-climatic conditions
 - Seasonal variability
- Adaptive strategies for economic/daily life
 - Settlement, housing and mobility
 - Yearly working cycle (see my contribution to the Hall conference)
 - (Natural) disaster management
- Structure of the upcoming chapter for the handbook
Reconstructed long-time climatic development

- Medieval Warm Period / Medieval Climate Anomaly (750/900-1300)
- Little Ice Age (LIA) (1300-1850)
 - 1310s Dantean anomaly
 - 1420-1570 Spoerer minimum
 - 1540 Driest and presumably warmest summer of the last 500 years
 - 1587 Year without summer
 - 1628 Year without summer
 - 1645-1715 Maunder minimum
 - 1708/09 Coldest winter of the last 500 years
 - 1757 One of the warmest summers of 1500-2000
 - 1783 Laki eruption
 - 1790-1830 Dalton minimum
 - 1815 Tambora eruption followed by a year without summer 1816
Reconstructed long-time climatic development

Source: Wanner 2016: 146, based on different time series from various proxies
Large volcanic eruptions

- 1257: Samalas, Indonesia (Volcanic Explosivity Index: 7)
- Around 1452/53: Kuwae, Vanuatu (6+)
- 1600: Huaynaputina, Peru (6)
- 1640: Komaga-Take, Japan (5)
- 1641: Parker, Philippines (5)
- Further volcanic eruptions in 1660, 1663, 1667, 1673, 1680, 1707
- 1783: Laki, Iceland (4) and Asama, Japan (4)
- 1815: Tambora, Lesser Sunda Islands/Indonesia (7)
- 1883: Krakatau, Westjava (6)

- New SNF Ambizione Research Project on volcanic impact on societies in the Swiss Alps and in Scandinavia (2022-2026)
Large volcanic eruptions

Source: Wanner 2016: 141, based on Sigl 2015
The Tambora eruption of 1815 and its impact on society

- Explosion of Mount Tambora (Sumbawa, Lesser Sunda Islands, Indonesia) on 10 April 1815
 - Hardly anything known on the explosion itself (modern models only)
 - No eye-witnesses survived
 - Colonial officers on neighbour islands report about a huge dust bowl
- Global atmospheric circulation brings ash particles to most regions in the world
 - Evidence from ship’s logbooks
- Most affected areas
 - Northeast USA (New England States)
 - British Isles
 - Switzerland, Southern Germany
 - India
 - China
The Tambora eruption of 1815 and its impact on society

Daniel Krämer

«Menschen grasten nun mit dem Vieh»
Die letzte grosse Hungerkrise der Schweiz 1816/17

Tambora and the “Year Without a Summer” of 1816
A Perspective on Earth and Human Systems Science

11-18 November 2020
The Tambora eruption of 1815 and its impact on society

- **Situation in Switzerland**
 - Very wet and cool summer 1816
 - Grain harvest failure
 - Much snow remaining in the higher Alpine pasture areas
 - Series of disastrous avalanches in the following winter of 1816/17
 - Floods after snow melt in 1817

- **Malnutrition in 1817**
 - Switzerland dependent from grain import
 - Grain export embargoes in Southern Germany
 - Early industrialized areas (North-eastern Switzerland, Jura) suffer most

- **Long-time effects of malnutrition**
 - Higher mortality, lower birth rate
 - Impoverishment, emigration
The Tambora eruption of 1815 and its impact on society

Malnutrition map for 1817. Source: Krämer 2015
The Tambora eruption of 1815 and its impact on society

Malnutrition map for 1818. Source: Krämer 2015
Weather- and climate-induced natural hazards
Supra-regional and local events

- **Floods** (see my contribution to the Brig conference)
 - Large-scale floods
 - Thunderstorms and flash-floods
 - Marshland deriving from frequent flooding
- **Droughts**
- **Hailstorms**
- **Storminess**
 - Continental storm events (mostly westerlies)
 - Inner-Alpine storm phenomena (Foehn storms etc.)
- **Forest and urban fires**
- **Avalanches**
- **Landslides and mudslides related to extreme weather conditions**
Adaptation strategies to environmental and climatic challenges

- Risk cultures in pre-industrial times
 - Cities along rivers integrate the frequent floods into their economic life
 - Protection of protected forests (e.g. Andermatt)
 - Inhabitants of avalanche-prone pass routes develop cooperative structures and special skills in rescuing buried victims

- Structural adaptation to dominant weather patterns and natural hazards
 - Settlements optimized to be as flood-/avalanche-proof as possible
 - Houses along rivers adapted to flood risk
 - Development of new types of houses in alpine areas (Ebenhöch houses)
 - Orientation of houses and roofs according to dominant wind direction

- Trial and error principle
 - Late medieval Walser settlements in high alpine terrain
Avalanches
Basic types

Slab avalanche
Powder snow avalanche

Photos: SLF
Local knowledge of endangered zones
Vallée des Ormonts (Vaud, Switzerland)
Local knowledge of endangered zones
Vallée des Ormonts (Vaud, Switzerland)

Source:

Google Maps, 07.04.2014
Ebenhöch houses in the Cantons Grisons and Valais

Avalanches in the Alps

Ebenhöch houses in St. Antönien im Prättigau (Grisons, Switzerland). Photo: SLF
Avalanches in the Alps
Splitting chocks, protective walls

Davos (Grisons), splitting chock of the Frauenkirche (after 1602). Photo: Christian Rohr

St. Antönien (Grisons), protective wall against avalanches. Photo: SLF
The protective forest of Andermatt
Documented and protected since 1397

Andermatt
around 1900,
coloured photo

New development area for luxury tourism
Structure of the chapter for the handbook (1)

- Climatic and weather preconditions
 - Long-time climatic developments and short-time climatic extremes
 - Weather- and climate-induced natural hazards
 - Specific Alpine peculiarities
 - Micro-climatic conditions
 - Seasonal variability

- Environmental preconditions
 - Water regimes
 - Vegetation
 - Forests
 - Pastures
 - Agricultural farmland
 - Mountains between resource use and “uselessness”
 - Mineral resources (in coordination with the chapter on mining)
 - Environmental factors influencing travel, trade and tourism
Structure of the chapter for the handbook (2)

- State of the art (in interdisciplinary perspective)
 - Historical studies
 - Natural sciences (climatology, hydrology, plant sciences, etc.)
 - Alpine archaeology and anthropology

- Sources and their origins
 - Archives from nature
 - Human-made sources (written, pictorial, material evidence, anthropogenic adaptation of the environment)

- Adaptive strategies for economic/daily life
 - Settlement, housing and mobility
 - Yearly working cycle (agriculture, pasture and transhumance, trade and travel, early tourism)
 - (Natural) disaster management
 - Resource management (water, forests, pastures, mining; in coordination with the neighbour chapters)
Thank you for your attention!

Prof. Dr. Christian Rohr
Institute of History
University of Bern
christian.rohr@hist.unibe.ch