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Abstract: Streptococcus pneumoniae serotype 1 (ST1) was an important cause of invasive pneumococcal
disease (IPD) globally before the introduction of pneumococcal conjugate vaccines (PCVs) containing
ST1 antigen. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE)
project gathered ST1 IPD surveillance data from sites globally and aimed to estimate PCV10/13
impact on ST1 IPD incidence. We estimated ST1 IPD incidence rate ratios (IRRs) comparing the
pre-PCV10/13 period to each post-PCV10/13 year by site using a Bayesian multi-level, mixed-effects
Poisson regression and all-site IRRs using a linear mixed-effects regression (N = 45 sites). Following
PCV10/13 introduction, the incidence rate (IR) of ST1 IPD declined among all ages. After six years of
PCV10/13 use, the all-site IRR was 0.05 (95% credibility interval 0.04–0.06) for all ages, 0.05 (0.04–0.05)
for <5 years of age, 0.08 (0.06–0.09) for 5–17 years, 0.06 (0.05–0.08) for 18–49 years, 0.06 (0.05–0.07)
for 50–64 years, and 0.05 (0.04–0.06) for ≥65 years. PCV10/13 use in infant immunization programs
was followed by a 95% reduction in ST1 IPD in all ages after approximately 6 years. Limited
data availability from the highest ST1 disease burden countries using a 3 + 0 schedule constrains
generalizability and data from these settings are needed.

Keywords: invasive pneumococcal disease; pneumococcal conjugate vaccines; serotypes; vaccine impact

1. Introduction

Streptococcus pneumoniae is a major cause of pneumonia, meningitis, and pleural effu-
sion in children and adults [1–4]. There are at least 100 known serotypes of pneumococci [5].
Before the introduction of pneumococcal conjugate vaccines (PCVs), serotype 1 (ST1) was
one the most common causes of invasive pneumococcal disease (IPD), especially in Asia
and Africa, and globally was responsible for approximately 9% of IPD among children
<5 years of age [6]. ST1 is distinct from other serotypes in that it has a high invasiveness
potential, is not commonly carried in the nasopharynx [7,8], and in some settings occurs in
a cyclical pattern, approximately every 3–9 years [9–11]. Additionally, ST1 can cause large
pneumococcal outbreaks among all ages, including older children and young adults, in the
African meningitis belt and other outbreak-prone settings with up to 10–30-fold increases
in ST1 cases compared to pre-outbreak baselines [12–15].

The first PCV licensed for use in infants, seven-valent PCV (Prevenar/Prevnar, Pfizer),
did not include ST1 antigen. Since then, the introduction of PCVs containing ST1 antigen
(PCV10 [Synflorix, GlaxoSmithKline], PCV13 [Prevenar13/Prevnar13, Pfizer]) into many
national infant immunization programs since 2009 has been shown to substantially reduce
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ST1 IPD and end pneumococcal outbreaks caused by ST1. These effects have been demon-
strated among directly immunized children and also unvaccinated older children and
adults, through indirect effects, in both high and low IPD burden settings [9,10,12,16–20].
However, in some PCV10/13 using settings ST1 outbreaks continued to occur or ST1 IPD
incidence rates did not substantially decline in the early years immediately following
PCV10/13 introduction [21–24].

Evaluating the impact of PCV10/13 vaccination on ST1 IPD is challenging in a single
surveillance site. In many settings, annual ST1 incidence rates are unstable because case
counts are small, particularly after vaccine introduction. Many sites are also limited by
short pre- and post-vaccine introduction surveillance periods, further limiting inferences
that can be drawn from a single site. Assessing vaccine impact is also confounded by the
cyclic nature of ST1 in which it is common to observe multiple years of zero ST1 cases prior
to vaccine use. Quantifying the impact of PCV10/13 on ST1, which has several unique
characteristics compared to other vaccine-type serotypes included in currently licensed
PCVs, is important for policymakers seeking to reduce the burden of ST1 IPD through
immunization. The Pneumococcal Serotype Replacement and Distribution Estimation
(PSERENADE) project evaluated all available published and unpublished serotype-specific
IPD data to estimate the impact of PCV10/PCV13 on ST1 IPD incidence at the global scale.

2. Materials and Methods
2.1. Data Collection and Eligibility Criteria

IPD surveillance sites with eligible data contributed annual serotype-specific IPD
case data and population denominators to the project. A systematic approach to identify
eligible sites and request data is described in detail elsewhere [25]. ST1 IPD was defined
as the isolation of Streptococcus pneumoniae from a normally sterile site or detection of
pneumococcus in cerebrospinal fluid (CSF) or pleural fluid using lytA-based polymerase
chain reaction (PCR), or antigen testing confirmed as ST1. Sites with ST1 IPD case counts
and population denominators that met eligibility criteria were included in the analysis
(Box 1, Table 1, Table S1).

Box 1. Inclusion criteria.

1. Site reports annual ST1 IPD incidence data:

- ST1 case counts by age group, and
- Population-based denominators by age group.

2. At least 50% of isolates serotyped for included years by age group.
3. At least one complete year of data post-PCV10/13 introduction, excluding the year of intro-

duction.
4. At least 50% uptake for primary PCV series at 12 months of age in at least one year post-

PCV10/13 introduction.
5. PCV10 or PCV13 is universally recommended for all infants in the national infant immuniza-

tion schedule.
6. No major changes or biases in surveillance that would affect estimates of ST1 incidence rates.

Two PSERENADE coordinators conducted a standard data quality review for each
site to evaluate if surveillance system changes or other factors besides PCV introductions
influenced incidence rates (IR) of IPD over available years of surveillance data [25]. Af-
ter review and discussion with site investigators, certain site-year-age group data were
excluded if determined to fall within periods of differential surveillance capture or if the
impact of changes in surveillance protocols on IPD IRs could not be accounted for in the
analysis. For all sites, we defined the year of PCV introduction as the year PCV10/13 was
universally introduced if PCV was introduced in the first three quarters of the year, or as
the following calendar year if otherwise. For data submitted in epidemiologic years rather
than calendar years, the introduction year was defined accordingly. For all sites, the year
of PCV10/13 introduction was defined as ‘year 0’ for the analyses.
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Table 1. Description of infant pneumococcal conjugate vaccine program and surveillance data for included sites. Ordered by vaccine product and schedule.

Mean PCV10/13
Uptake (%)

Included in ST1
Analysis Surveillance

Years Pre- and
Post-PCV10/13

(n)

Proportion
ST1 IPD

Cases from
CSF (%)Site PCV10

Period
PCV13
Period

PCV10/13
Schedule

PCV7
Use

PCV10/13
Catch-Up

Primary
Series *

WUENIC
PCV3 *** 0–17 Years ≥18 Years

ST1 Cases
Included in
Analysis (n)

Finland 2010– – 2 + 1 N N 95 90 Y Y 46 Pre: 6
Post: 8 4.3

Iceland 2011– – 2 + 1 N N 97 89 Y Y 22 Pre: 16
Post: 8 0.0

Latvia 2012– – 2 + 1 Y N 91 83 N b Y; ≥50y 5 Pre: 0
Post: 7 20.0

Slovenia 2015–2019 2019– 2 + 1 N N 55 55 Y Y 259 Pre: 6
Post: 4 0.0

Netherlands 2011– – 3 + 1/2 + 1 Y N 95 94 Y Y 642 Pre: 7
Post: 8 2.2

Asembo, Kenya 2011– – 3 + 0 N Y 86 78 Y Y; 18–49y 43 Pre: 1
Post: 8 NA

Kilifi, Kenya 2011– – 3 + 0 N Y 82 78 Y Y; 18–64y 204 Pre: 11
Post: 6 19.6

Japan – 2013– 3 + 1 Y N 94 ** 98 Y Y; ≥65y 11 Pre: 4
Post: 5 0.0

ABCs, USA – 2010– 3 + 1 Y Y 88 93 Y Y 664 Pre: 12
Post: 8 0.6

Alaska, USA – 2010– 3 + 1 Y Y 83 93 Y Y 92 Pre: 19
Post: 8 0.0

Massachusetts, USA – 2010– 3 + 1 Y Y 94 93 Y; <5y NA 1 Pre: 8
Post: 8 0.0

Southwest, USA
(Indigenous) – 2010– 3 + 1 Y Y 82 93 Y Y 180 Pre: 15

Post: 9 2.2

Alberta, Canada – 2010– 2 + 1 Y N 88 ** 77 Y; <5y Y 16 Pre: 10
Post: 8 0.0

Denmark – 2010– 2 + 1 Y N 91 ** 93 Y Y 2089 Pre: 10
Post: 9 2.2

France – 2010– 2 + 1 Y N 93 91 Y Y 1346 Pre: 9
Post: 9 5.9

Ireland – 2010– 2 + 1 Y N 91 91 Y Y 58 Pre: 3
Post: 8 0.0

Israel – 2010– 2 + 1 Y N 95 93 Y Y 677 Pre: 8
Post: 8 3.4

Italy – 2010– 2 + 1 Y N 86 ** 87 Y Y 193 Pre: 0
Post: 9 6.7
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Table 1. Cont.

Mean PCV10/13
Uptake (%)

Included in ST1
Analysis Surveillance

Years Pre- and
Post-PCV10/13

(n)

Proportion
ST1 IPD

Cases from
CSF (%)Site PCV10

Period
PCV13
Period

PCV10/13
Schedule

PCV7
Use

PCV10/13
Catch-Up

Primary
Series *

WUENIC
PCV3 *** 0–17 Years ≥18 Years

ST1 Cases
Included in
Analysis (n)

Norway – 2011– 2 + 1 Y N 93 93 Y Y 637 Pre: 7
Post: 7 1.4

Singapore – 2011– 2 + 1 Y Y 84 74 N d Y; ≥50y 8 Pre: 2
Post: 8 0.0

South Africa – 2011– 2 + 1 Y Y 77 ** 77 Y Y 3292 Pre: 6
Post: 8 38.2

Madrid, Spain – 2010– 2 + 1 Y N 98 93 Y Y 479 Pre: 3
Post: 9 0.8

Switzerland – 2010– 2 + 1 Y Y 79 ** 77 Y Y 436 Pre: 8
Post: 7 0.5

England, UK – 2010– 2 + 1 Y N 94 92 Y Y 4214 Pre: 10
Post: 10 1.5

Scotland, UK – 2010– 2 + 1 Y N 97 92 Y Y 578 Pre: 10
Post: 9 NA

Germany – 2009– 3 + 1/2 + 1 Y N 85 93 Y Y 760 Pre: 5
Post: 9 4.1

Catalonia, Spain – 2010–2015 a

2016– 3 + 1/2 + 1 Y a N 70 93 Y Y 1111 Pre: 4
Post: 8 1.5

Navarra, Spain – 2010–2015 a

2016– 3 + 1/2 + 1 Y a N 71 93 Y Y 93 Pre: 9
Post: 9 0.0

Australia (Non-Indigenous) – 2011– 3 + 0 Y Y 92 92 Y Y 371 Pre: 9
Post: 7 0.8

Basse, The Gambia – 2011– 3 + 0 Y N 77 95 Y N b 71 Pre: 2
Post: 7 1.4

Blantyre District, Malawi – 2011– 3 + 0 N Y 92 88 Y Y 229 Pre: 5
Post: 7 55.5

Northern Territory,
Australia 2009–2011 2011– 3 + 1 Y Y 88 92 Y Y 97 Pre: 16

Post: 8 1.0

Quebec-Nunavik, Canada 2009–2010 2011– 3 + 1 Y N 97 75 Y; <5y N c 1 Pre: 9
Post: 10 0.0

Hong Kong 2010–2011 2011- 3 + 1 Y N 98 – N d Y; 18–49y 1 Pre: 0
Post: 5 0.0

New Zealand 2011–2014
2017– 2014–2017 3 + 1 Y N 93 93 Y Y 334 Pre: 9

Post: 8 0.6

Belgium 2015–2019 2011–2015
2019– 2 + 1 Y N 95 ** 94 Y NA 872 Pre: 5

Post: 8 1.3
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Table 1. Cont.

Mean PCV10/13
Uptake (%)

Included in ST1
Analysis Surveillance

Years Pre- and
Post-PCV10/13

(n)

Proportion
ST1 IPD

Cases from
CSF (%)Site PCV10

Period
PCV13
Period

PCV10/13
Schedule

PCV7
Use

PCV10/13
Catch-Up

Primary
Series *

WUENIC
PCV3 *** 0–17 Years ≥18 Years

ST1 Cases
Included in
Analysis (n)

Poland 2017– 2017– e 2 + 1 N N 94 60 Y N b 69 Pre: 9
Post: 2 4.3

Quebec (excluding
Nunavik), Canada

2009–2010
2018– 2011–2018 2 + 1 Y N 97 75 Y Y 43 Pre: 8

Post: 10 0.0

Metropolitan Region, Chile 2011–2015 2016– 2 + 1 Y N 97 88 Y Y 437 Pre: 9
Post: 8 2.7

Non-Metropolitan
Regions, Chile 2011–2017 2017– 2 + 1 N N 97 89 Y Y 69 Pre: 0

Post: 7 0.0

Grand Casablanca, Morocco 2012– 2010–2012 2 + 1 N N 91 90 Y Y; 18–49y 29 Pre: 4
Post: 7 37.9

Slovakia 2011– 2011– 2 + 1 Y Y 97 97 Y Y 20 Pre: 0
Post: 7 5.0

Sweden 2010– 2010–2019 2 + 1 Y N 97 ** 97 Y Y 84 Pre: 1
Post: 5 NA

Ontario, Canada 2009–2010 2010– 3 + 1/2 + 1 Y Y 72 ** 79 N d Y 9 Pre: 3
Post: 9 0.00

Czech Republic 2010– 2010– 3 + 1/2 + 1 N N 74 ** – Y Y 227 Pre: 2
Post: 8 2.2

PCV: Pneumococcal conjugate vaccines. ST1: Serotype 1. CSF: Cerebrospinal fluid. – Not universally used. Y: Yes; N: No; NA: Not applicable. a Recommended for high-risk populations only but had substantial
(≥50% annually) private market uptake among the general population. b Biases in surveillance system over time that could not be accounted for. c Low proportion of cases serotyped. d Zero ST1 cases in all years.
e Private market uptake of approximately 30% annually. * Annual PCV uptake estimates provided by the surveillance site for the primary series of PCV by 12 months of age (if available, for some sites up to
15 months of age), excluding year of vaccine rollout. ** Annual PCV uptake estimates provided by the surveillance site for the primary series plus the booster dose by 23 months of age, excluding year of vaccine
rollout. *** WHO and UNICEF Estimates of National Immunization Coverage (WUENIC) PCV3 uptake, excluding the year of vaccine rollout (PCV3 represents the third dose whether given before 12 months or
at or after 12 months, but in some cases uptake estimates may reflect the percentage of surviving infants who received two doses of PCV prior to the first birthday).
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2.2. Data Analysis
2.2.1. Adjustments for Missing Data

Adjustments for missing serotype data assume that missing serotype data are missing
completely at random, that is the serotype distribution of serotyped cases is not biased
or different from the serotype distribution of cases that were not serotyped or not fully
serotyped. Site-year-age group strata that violated this assumption or reported serotypes
for less than 50% of cases were excluded from the ST1 analysis for that stratum. For cases
that were reported as not serotyped (serotyping was not attempted for any reason), the
population denominators were adjusted by the proportion of cases that were serotyped
(i.e., annual denominator * percent of cases that were serotyped in that year) for each
site by year and age group. Because the proportion of cases serotyped varies across sites,
population denominators were adjusted rather than reapportioning serotypes to unknown
serotype cases in order to give appropriate weight to sites in the model based on serotype
data reported. If ST1 and a second serotype was reported for a case, it was included as
an ST1 case. Cases reported as a serotype pool which includes ST1 (e.g., pool A) were
excluded. For cases with unknown age, the population denominators were adjusted by
the proportion of cases with known age (i.e., annual denominator * percent of cases with
known age in that year) for each year and age group. Minor changes were made to the
cut-offs for age groups when standard age categories used for analyses were not available
from the site.

2.2.2. Statistical Analysis

Annual ST1 IPD incidence rate ratios (IRRs) comparing the pre-PCV10/13 period to
each post-PCV10/13 year were estimated by age group and for all ages in a three-step
process. First, ST1 IR curves were estimated over years of available data for each site using
a Bayesian multi-level, mixed-effects Poisson regression using the MCMCglmm package
in R [26]. The model included data from all sites (using either PCV10 or PCV13) with an
offset for population denominator and random effects for all of the site-specific regression
coefficients, which allows for heterogeneity among sites in the shapes of their incidence
curves. Sites using PCV10 and PCV13 were modeled together to increase sample size and
as no difference in impact on ST1 IPD was observed by product (Figure S3). The regression
identified commonalities within and across sites in the direction of change over time and
smoothed out observed annual variability. Data points from the same site were treated as
repeated measures over time and sites with small case counts or few years of data had less
influence than sites with larger case counts and many years of data.

ST1 outbreaks tended to occur in a cyclical pattern prior to the introduction of
PCV10/13. The model did not account for outbreaks occurring in a cyclical pattern.
Therefore, in order to generate an expected baseline ST1 IPD IR in any given year, the
regression modeled pre-PCV10/13 IRs as a single mean rate with a slope of zero to capture
an ‘average’ pre-PCV10/13 ST1 IR. PCV7 years of use were included in the pre-PCV10/13
period as no consistent impact of PCV7 on ST1 IRs, either increases (i.e., serotype re-
placement) or decreases, were observed across sites, as expected given pre-PCV10/13 ST1
carriage patterns [7]. This increased the number of pre-PCV10/13 years included in the
analysis and better captured the baseline ST1 IR. For each site, a non-linear break (allowing
an abrupt hinge in the curve) was included in the model one year prior to PCV10/13
introduction to capture the change from the pre-PCV10/13 period to the year of PCV10/13
introduction and cubic splines knots (allowing a smooth change in the slope) were included
for each site at years +1 and +3 (the second and fourth year of PCV10/13 use) to allow
for flexibility in the IR of ST1 over time for each site following PCV10/13 introduction.
Site-specific modeled ST1 IR curves were visually inspected for model fit and approved by
site investigators with expertise in IPD surveillance at each site.

Second, the pre-PCV10/13 ST1 IR was used as a counterfactual ST1 IR (i.e., an expected
ST1 IR in any given post-PCV10/13 year in the absence of PCV10/13 introduction) for
sites with both pre- and post-PCV10/13 data. The site-specific modeled ST1 IR and
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counterfactual IR were used to estimate site-specific annual IRRs in each post-PCV10/13
year (reported as the mean of the posterior distribution of rate ratios) for each site. Site-
specific IRRs were not generated for sites without pre-PCV10/13 years of data. Credibility
intervals (CIs, Bayesian confidence interval analog) were estimated using the 2.5 and 97.5
percentiles of the posterior distribution of the IRs (Figure S1).

Finally, modeled site-specific IRRs were used to estimate all-site weighted average
IRRs in each post-PCV10/13 year using a linear mixed-effects regression where site-specific
IRRs were regressed on time since PCV10/13 introduction and weighted to give more
influence to sites whose IRR standard errors were smaller. In sensitivity analyses, the all-
site weighted average IRRs were estimated restricting to sites with data in all age groups
and after adjusting the counterfactual IR by all-serotype IPD pre-PCV trends. All analyses
were conducted in R (R Core Team, 2019).

3. Results
3.1. Description of Sites and Included Data

Of the 52 sites that met data collection eligibility criteria and contributed data to
the PSERENADE project, 45 were included in the serotype 1 analysis (41 for children
<5 years of age, 38 for 5–17 years of age, 37 for 18–49 years of age, 36 for 50–64 years of
age, and 36 for ≥65 years of age). Two sites were excluded due to their population-based
surveillance being restricted to pneumococcal meningitis, four sites were excluded due to a
combination of biases in the surveillance system over time, such as changed to surveillance
protocols, that could not be accounted for in the analysis and/or less than 50% of cases
being serotyped, and one site was excluded due to zero ST1 cases being reported in all
years of available data. Additionally, several age groups from included sites did not meet
eligibility criteria and were excluded (Table S1).

Seven sites (16%) included in the analysis used PCV10, 24 (53%) used PCV13, and 14
(31%) used a combination of PCV10 and PCV13 in the infant PCV program. Only 14 (31%)
sites introduced PCV10 or PCV13 into the routine immunization schedule with a catch-up
campaign. The majority of sites used a PCV schedule including a booster dose (40, 89%
used a 2 + 1 or 3 + 1 schedule and 5, 11% used a 3 + 0 schedule). Nearly half were from
Europe (22 (49%)), 8 (18%) were from North America, 5 (11%) from Sub-Saharan Africa, 3
(7%) from Oceania, 3 (7%) from Asia, 2 (4%) from Latin America and the Caribbean and 2
(4%) from Northern Africa and Western Asia. The median PCV10/13 uptake for all years
of available data after PCV10/13 introduction was 92% (range: 55–98%) (Table 1).

Of included sites with available data on specimen type, the median proportion of all
ST1 IPD cases from CSF was 1.4% (range: 0–55.5%). Annual site-specific ST1 IRRs were
estimated for 40 (89%) sites with both pre- and post-PCV10/13 ST1 surveillance data. The
median number of surveillance years included in the analysis was 7 (range: 0–19) prior
to the introduction of PCV10/13 and 8 (range: 2–10) after the introduction of PCV10/13
(including the year of PCV10/13 introduction). The median proportion of cases serotyped
annually was 94% (range: 50–100%). The median number of ST1 cases included in the
analysis per site was 29 (range: 1–499) for children <5 years of age, 46 (range: 2–768) for
5–17 years of age, 51 (range: 1–1776) for 18–49 years of age, 25 (range: 1–753) for 50–64 years
of age, and 26 (range: 1–748) for ≥65 years of age (Table 1, Figure 1).
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Figure 1. Number of serotype 1 cases per site included in the analysis by region and age group. NA & WA–Northern Africa and Western Asia; LA & C–Latin America and the Caribbean.
Not all age groups were included for all sites (Table S1). Analyses were done with minor changes to age groups for certain sites to align with availability of population denominators and
age groups provided by sites in aggregate: the <5 years age group includes 0–5 years from Morocco; the 5–17 years age group included 5–14 years from Japan and Kilifi, Kenya, 5–15 years
from Germany, 6–14 years from Morocco, and 5–19 years from Australia and Malawi; and the 18–49 years age group includes 15–49 years from Japan and Kilifi, Kenya, 15–59 years from
Morocco, 16–49 years from Germany, and 20–49 years from Australia and Malawi.
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3.2. Impact of PCV10/13 on ST1 Incidence

All-site weighted average ST1 IPD IRRs comparing the pre-PCV10/13 period to each
post-PCV10/13 year are shown in Table 2 and Figure 2. The all-site weighted average IRRs
in the year of PCV10/13 introduction by age group ranged from 0.82 to 1.09 and was 1.09
(95% CI: 0.92–1.29) for children <5 years of age, 1.06 (0.88–1.28) for 5–17 years of age, 0.94
(0.73–1.22) for 18–49 years of age, 0.85 (0.70–1.04) for 50–64 years of age, and 0.82 (0.68–0.99)
for ≥65 years of age. The ST1 IRR declined for every age group in each subsequent post-
PCV10/13 year. By the sixth year of PCV10/13 use (year +5 post-PCV10/13 introduction),
the all-site weighted average IRR compared to the pre-PCV10/13 period was 0.05 (0.04–
0.06) for all ages, or a 95% relative reduction in ST1 IPD compared to the pre-PCV10/13
period. The reduction in ST1 IPD for each age group ranged from 92% to 95% in the sixth
year of PCV10/13 use: IRR 0.05 (0.04–0.05) for children <5 years of age, 0.08 (0.06–0.09) for
5–17 years of age, 0.06 (0.05–0.08) for 18–49 years of age, 0.06 (0.05–0.07) for 50–64 years of
age, and 0.05 (0.04–0.06) for ≥65 years of age.

In the early years of PCV10/13 use, site-specific IRRs were heterogeneous. Some sites
reported outbreaks or had elevated levels of ST1 IPD around the time of PCV10/13 intro-
duction, including two sites with very small sample sizes and large proportion increases
in ST1 IRs. Other sites had little to no ST1 disease at the time of PCV10/13 introduction
compared to the pre-PCV10/13 ST1 IRs. After five years of PCV10/13 use (year +4 post-
PCV10/13), the impact of PCV10/13 on ST1 IPD was homogeneous across all included sites
and age groups. No ST1 outbreaks were observed after five or more years of PCV10/13
use in any site (Figure 3). Results were similar when analyses were restricted to sites with
data in all age groups (results not shown), when sites with very small sample size were
excluded (results not shown), and after adjusting the counterfactual IR by all-serotype
IPD pre-PCV trends (Figure S2). No differences in ST1 impact were observed by visual
inspection among the included sites by PCV product, region, infant PCV schedule, or adult
pneumococcal polysaccharide vaccine recommendation (Figures S3–S6). One site, which
was excluded from the analytic model because the dataset was limited to meningitis cases,
observed declines in ST1 pneumococcal meningitis IRs after PCV10 introduction that were
consistent with declines seen in ST1 IPD in the other sites (Figure S7).
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Table 2. Serotype 1 invasive pneumococcal disease all-site weighted average incidence rate ratios comparing the annual post-PCV10/13 incidence rate to the average pre-PCV10/13
incidence rate by age group.

Year Post-PCV10/13 Introduction

0 * 1 2 3 4 5 6 7 8 9

Children <5 Years
Nnumber of Sites a 37 37 36 36 35 34 33 27 10 3

IRR (95% CI) 1.09
(0.92–1.29)

0.57
(0.48–0.67)

0.29
(0.25–0.35)

0.15
(0.13–0.18)

0.08
(0.07–0.09)

0.05
(0.04–0.05)

0.03
(0.02–0.03)

0.02
(0.02–0.02)

0.01
(0.01–0.02)

0.01
(0.01–0.01)

Children 5–17 Years
Number of Sites a 34 34 33 33 32 31 30 24 9 2

IRR (95% CI) 1.06
(0.88–1.28)

0.67
(0.55–0.80)

0.41
(0.34–0.49)

0.24
(0.20–0.29)

0.14
(0.11–0.16)

0.08
(0.06–0.09)

0.04
(0.04–0.05)

0.03
(0.02–0.03)

0.01
(0.01–0.02)

0.01
(0.01–0.01)

Adults 18–49 Years
Numbers of Sites a 29 29 29 29 28 28 27 22 9 2

IRR (95% CI) 0.94
(0.73–1.22)

0.57
(0.44–0.74)

0.34
0.26–0.44)

0.20
(0.15–0.25)

0.11
(0.09–0.14)

0.06
(0.05–0.08)

0.03
(0.03–0.04)

0.02
(0.01–0.02)

0.01
(0.01–0.01)

0.01
(0.00–0.01)

Adults 50–64 Years
Number of Sites a 29 29 29 29 27 27 27 22 9 2

IRR (95% CI) 0.85
(0.70–1.04)

0.54
(0.44–0.65)

0.33
(0.27–0.40)

0.19
(0.15–0.23)

0.10
(0.08–0.12)

0.06
(0.05–0.07)

0.03
(0.03–0.04)

0.02
(0.02–0.02)

0.01
(0.01–0.01)

0.01
(0.01–0.01)

Adults ≥65 Years
Number of Sites a 28 28 28 28 27 27 27 22 9 2

IRR (95% CI) 0.82
(0.68–0.99)

0.56
(0.46–0.67)

0.36
(0.30–0.43)

0.20
(0.17–0.24)

0.10
(0.08–0.12)

0.05
(0.04–0.06)

0.03
(0.02–0.03)

0.02
(0.01–0.02)

0.01
(0.01–0.01)

0.01
(0.00–0.01)

All ages
Number of Sites a 39 39 38 38 37 36 35 29 11 3

IRR (95% CI) 0.98
(0.79–1.21)

0.57
(0.47–0.71)

0.33
(0.27–0.40)

0.18
(0.15–0.22)

0.10
(0.08–0.12)

0.05
(0.04–0.06)

0.03
(0.02–0.04)

0.02
(0.01–0.02)

0.01
(0.01–0.01)

0.01
(0.01–0.01)

PCV: Pneumococcal conjugate vaccine. * Year of PCV10/13 introduction. a Number of sites with both pre- and post-PCV10/13 data in each post-PCV10/13 year. All-site weighted average IRRs estimated by
post-PCV10/13 year and age group using linear mixed-effects regression.
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4. Discussion

Our analysis demonstrates that there have been large and sustained decreases in
ST1 IPD among both children targeted for immunization and among unvaccinated older
children and adults through indirect effects. We used a standardized approach to analyze
data from 45 surveillance sites and analytic methods that strengthened predictions from
sites with few years of data and small sample sizes by borrowing strength from the
overall trends observed across all sites. This allowed sites with few years of data and
small sample sizes to still contribute proportionately to the analysis where data were
available. As a result, this analysis is the most comprehensive assessment of changes in
ST1 IPD after PCV10/13 introduction and demonstrates homogeneity in long-term impact
of PCV10/13 on ST1 IPD across sites. These results were used to inform global vaccine
policy recommendations around the use of pneumococcal vaccines in community outbreak
settings [27].

The all-site weighted average IRRs are consistent with findings from individual
surveillance sites on the long-term impact of PCV10/13 on ST1 IPD [9,10,12,16–20]. In
the first several years of PCV10/13 use, the observed impact of PCV10/13 on ST1 IPD
was heterogeneous, in part, due to the cyclic and outbreak nature of ST1 IPD and likely
reflects heterogeneity in pre-PCV10/13 temporal trends with respect to the timing of
PCV10/13 introduction. In some sites, ST1 IPD rates in the early years were greater than
the pre-PCV10/13 average (because cyclical increases or outbreaks occurred at the time of
or immediately following PCV10/13 introduction or because of noise in small datasets)
and in other sites ST1 IPD rates were lower than the pre-PCV10/13 average immediately
following PCV10/13 introduction. However, further into the PCV10/13 period, every site
had sustained reductions in ST1 IPD below the pre-PCV10/13 rate. Prior to PCV10/13
introduction ST1 was known to cause severe disease to a greater degree in older children
and younger adults compared to other serotypes [3,13,28] and importantly, we observed
substantial reductions in ST1 IPD for all age groups. There was concern prior to the
widespread introduction of PCV10/13 regarding the immunogenicity of PCV10/13 when
used without a booster dose against ST1 [29]. Although only five sites using a 3 + 0 schedule
were included in the analysis, the direct and indirect effects for ST1 IPD after several years
of PCV10/13 use in these sites were consistent with patterns observed in sites using a
booster dose schedule.

Although not observed in all sites and CIs overlap, our results showed slightly smaller
declines in ST1 IPD for children <18 years compared to adults ≥18 years in the year of
PCV10/13 introduction, which is contradictory to expected patterns of indirect effects
among non-immunized adults following introduction of an infant vaccine [30]. This may
reflect secular trends unrelated to vaccine introduction or differences in the hospital and
surveillance systems between adults and pediatrics and an increased focus on pediatric
surveillance around the time of pediatric vaccine introduction leading to greater detection
of pediatric cases compared to adults. Ninety-two percent of sites with adult ST1 data
included in the analysis have an adult pneumococcal polysaccharide vaccine recommen-
dation. Although this may have reduced the burden of ST1 IPD among vaccinated adults
prior to infant PCV10/13 programs, this does not explain observed patterns in the year
of PCV10/13 introduction. The majority of adult polysaccharide vaccine programs began
many years prior to the introduction of PCV10/13, recommendations vary by site for adult
pneumococcal vaccine use, and data on vaccine uptake among adults was limited. We were
not able to detect differences by adult pneumococcal vaccine program recommendation.
Despite this, we see substantial and sustained declines in ST1 IPD for all age groups in the
following years of PCV10/13 use.

To understand the impact of PCV10/13 introduction, data were restricted to sites with
at least 50% uptake for the primary PCV series at 12 months of age in at least one-year post-
PCV10/13 introduction and majority of included sites had high PCV uptake. This resulted
in most data coming from high-income countries and limited inferences can be made to
other regions or areas with lower vaccine uptake. Further, the majority of the data are from



Microorganisms 2021, 9, 696 16 of 23

sites that used a booster dose. Among the five sites with a 3 + 0 schedule, four introduced
PCV10/13 with a catch-up program. Therefore, any added effects of a booster dose and
catch-up programs could not be assessed, and results may not be reflective of other settings.
In particular, data were limited from areas prone to pneumococcal meningitis outbreaks,
such as the African meningitis belt. Only one site from the African meningitis belt, The
Gambia, was included in the analysis where a 3 + 0 schedule of PCV13 was introduced
without a catch-up program. Although there were few ST1 cases (n = 71), ST1 trends for
children <18 years of age were consistent with other non-meningitis belt countries in Africa
and other regions. In the 4 other sites that used a 3 + 0 schedule (all of which introduced
PCV10/13 with a catch-up campaign), ST1 trends were also similar to those observed in
sites using a 2 + 1 or 3 + 1 schedule among both children and adults. Two meningitis
belt countries with documented pneumococcal outbreaks after PCV13 introduction with
a 3 + 0 schedule, Ghana and Burkina Faso, did not contribute data to the PSERENADE
project. As in The Gambia, the proportion of ST1 cases occurring among children <5 years
of age decreased compared to the pre-PCV13 period in Ghana and Burkina Faso [22–24].
However, pneumococcal meningitis outbreaks in persons >5 years of age were documented
four years after PCV13 introduction in the Brong-Ahafo region of Ghana (outside of the
traditional meningitis belt) [22] and five years after introduction in the Upper West and
Northern regions of Ghana (within the traditional meningitis belt) [23]. In both of these
outbreaks a large proportion of cases were due to ST1 (between 62–80%) [22,23]. PCV13
uptake in these specific communities was undocumented and national PCV13 uptake in
the first two years of use was low in Ghana (41–68%) [22]. In Burkina Faso after 3 years
of PCV13 use, ST1 meningitis rates declined by 59% for children <1 year of age, by 25%
for children 1–4 years of age, and by 8–17% for individuals ≥5 years of age. Slightly
larger declines were observed for all PCV13 serotype meningitis (76% decline for children
<1 year, 58% decline for children 1–4 years, and 14–20% decline for individuals ≥5 years
of age) [24]. The remaining PCV13 serotype meningitis among individuals ≥1 year of
age indicates that indirect effects have not been fully achieved for all vaccine serotypes,
including but not limited to ST1, and the 59% decline in ST1 disease among children
<1 year of age suggests that after 3 years of use the PCV program has not yet sufficiently
protected children targeted for immunization. Although the association between PCV
uptake and indirect effects are not well understood, this may indicate low vaccine uptake.
The persistence of ST1 IPD in unvaccinated persons in the first five years of PCV10/13 use
is consistent with our results, as ST1 outbreaks were still observed in some sites during
the first five years of PCV10/13 use and significant declines in ST1 IPD were not observed
for some sites until after 5 years of PCV10/13 use (Figure 3). As recommended by WHO,
continuation of comprehensive, high-quality serotype-specific IPD surveillance and vaccine
uptake monitoring in the African meningitis belt sites still experiencing ST1 outbreaks in
the post-PCV period and in countries with suboptimal PCV10/13 uptake could improve
understanding of ST1 in these settings with schedules lacking a booster dose or with low
PCV10/13 uptake [31].

This analysis was also limited in its ability to model the counterfactual ST1 IR in the
absence of PCV10/13. An ideal ST1 counterfactual IR would have modeled the cyclical
pattern of ST1 IPD in the absence of PCV10/13 introduction as a baseline comparison for
each post-PCV10/13 year, as has been done for single site analyses, but is challenging
without monthly data [11]. Due to the number of available years of pre-PCV data and small
ST1 sample size, this was not possible for the majority of sites and instead an average pre-
PCV10/13 ST1 IR was used as the counterfactual ST1 IR. Using the average pre-PCV10/13
ST1 IR would most likely lead to less valid effect estimates in the early years of PCV10/13
use and may contribute to unexplained differences in IRRs between age groups in the year
of PCV10/13 introduction. However, this would have limited impact on the estimates in
later post-PCV10/13 later years. Although a high proportion of the cases from included
sites were fully serotyped, another limitation of this analysis, which cannot be tested,
is the assumption that the prevalence of ST1 among cases that were serotyped is not
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biased from the prevalence of ST1 cases among cases that were not serotyped or not fully
serotyped. Finally, the number of sites with post-PCV10/13 data declined over time and
sites with longer follow-up periods tend to be from high-income countries that generally
introduced PCV10/13 earlier than low- and middle-income countries. Eleven sites had
data through the ninth year of PCV10/13 use and only three sites had data in the tenth
year of PCV10/13 use.

These results can provide important context for evaluating the impact of PCV10/13 on
other individual serotypes. ST1 is unique from other vaccine-serotypes in its invasiveness
potential, carriage patterns, ability to cause large outbreaks among all ages, and association
with meningitis [7,8,12–15]. Future analyses using the PSERENADE dataset will evaluate
the impact of PCV10/13 on other individual vaccine and non-vaccine serotypes.

5. Conclusions

The introduction of PCV10/13 into infant immunization programs has been associated
with the near elimination of ST1 IPD in all ages after approximately 6 years of use, including
in settings without a booster dose schedule but with high PCV10/13 uptake, where data
are available. Improved population-level serotype-specific IPD surveillance for all ages,
including for meningitis, is needed from settings using a 3 + 0 schedule with a history of
ongoing ST1 outbreaks in the post-PCV10/13 period, particularly the African meningitis
belt, and in countries with suboptimal PCV10/13 uptake. This would allow for a more
comprehensive evaluation of the indirect effects of PCV10/13 in older children and adults
living in high burden settings using a 3 + 0 schedule or with low PCV10/13 uptake.
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