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Until recently, the field of sex chromosome evolution has been dominated by
the canonical unidirectional scenario, first developed by Muller in 1918. This
model postulates that sex chromosomes emerge from autosomes by acquiring
a sex-determining locus. Recombination reduction then expands outwards
from this locus, to maintain its linkage with sexually antagonistic/
advantageous alleles, resulting in Y orW degeneration and potentially culmi-
nating in their disappearance. Based mostly on empirical vertebrate research,
we challenge and expand each conceptual step of this canonical model and
present observations by numerous experts in two parts of a theme issue of
Phil. Trans. R. Soc. B.We suggest that greater theoretical and empirical insights
into the events at the origins of sex-determining genes (rewiring of the gona-
dal differentiation networks), and a better understanding of the evolutionary
forces responsible for recombination suppression are required. Among others,
crucial questions are: Why do sex chromosome differentiation rates and the
evolution of gene dose regulatory mechanisms between male versus female
heterogametic systems not follow earlier theory? Why do several lineages
not have sex chromosomes? And: What are the consequences of the presence
of (differentiated) sex chromosomes for individual fitness, evolvability,
hybridization and diversification? We conclude that the classical scenario
appears too reductionistic. Instead of being unidirectional, we show that
sex chromosome evolution is more complex than previously anticipated
and principally forms networks, interconnected to potentially endless
outcomes with restarts, deletions and additions of new genomic material.

This article is part of the theme issue ‘Challenging the paradigm in sex
chromosome evolution: empirical and theoretical insights with a focus on
vertebrates (Part II)’.
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1. The ‘canonical’ scenario of sex chromosome
evolution

Sex chromosomes evolved many times independently in
eukaryotes and are one of the best examples of convergence
at the genomic level. Until recently, it was generally assumed
that sex chromosome evolution follows a canonical one-way
trajectory (figure 1). This model, which aims to explain the
evolution of differentiated sex chromosomes, has been
formed over roughly 100 years since the seminal paper by
Muller [1].1 According to this now widely accepted scenario,
sex chromosomes evolved from a pair of autosomes, which
acquire a sex-determining locus [2]. If this locus possesses a
dominant sex-determining allele, or an allele whose function
is dosage dependent, the genotype at this locus will now
determine the sex of its bearers, and one allele will become
restricted to a single sex. Furthermore, any loci that are
genetically linked to the now sex-limited allele have a lower
chance of being present in the opposite sex. Such a scenario
is advantageous in the case of sexually antagonistic loci,
which possess alleles that are beneficial (e.g. by shifting a
trait expressed in both sexes towards the phenotypic opti-
mum of the particular sex) or essential (e.g. controlling
proteins exclusively used in sperm development) for one
sex but detrimental for the other sex. Theoretically, selection
should favour the suppression of recombination between
the sex-determining locus and such sexually antagonistic
loci within a sex chromosome to ensure the alleles of each
occur in their appropriate combinations and resolve genomic
conflict. Under the canonical model, following Fisher’s early
work published in 1931, this process is considered to play a
major role in the progressive loss of recombination and sub-
sequent specialization of sex chromosomes in the control of
sex-specific phenotypes [3–5]. In the absence of recombina-
tion, the non-recombining regions of sex-specific
chromosomes (Y or W) start to accumulate various repetitive
elements and deleterious mutations owing to increased Hill–
Robertson interactions and Muller’s Ratchet [6,7]. This leads
canonically to the progressive loss of genes or gene function
(in turn resulting in unequal numbers of functional copies of
many genes between the sexes) and potentially to structural
changes such as deletions and heterochromatinization. The
sex-specific sex chromosome can thus progressively degener-
ate and ultimately might even disappear from the genome
entirely [8,9].

This canonical model is explicitly described or depicted in
many presentations, textbooks and papers in the field, and
strongly influences various contemporary ideas about sex
chromosome evolution (e.g. [8–15]). However, although this
model no doubt encompasses many important processes
and drivers of sex chromosome evolution, several of its
main components remain controversial, oversimplified or
still lack empirical evidence. With this in mind, in this
theme issue we have tried to stimulate discussion on each
major component of the canonical model and chose contribu-
tors and framed topics to think beyond. Given the wealth of
data that have been generated in the field over the past sev-
eral years across a large number of vertebrate taxa, we felt
that now is the perfect time for reevaluating old hypotheses
and, if the data demand, replacing them with new ones.
The studies comprise two parts of a theme issue of the Phil.
Trans. R. Soc. B., and were chosen to celebrate, challenge
and expand the existing paradigm of sex chromosome
evolution, largely from a vertebrate research perspective.
This focus reflects our opinion that crucial questions can be
best tackled in a well-studied monophyletic group with
high variability in sex determination (reviewed in [16]) and
good knowledge on gene functions in key developmental
pathways in several model species. We hope this collection
will inspire experts in other lineages and contribute to
research progress on sex determination and sex chromosome
evolution.

In this opening review, we highlight aspects of the cano-
nical model where we believe fine tuning, modification,
expansion or a complete reconsideration is warranted.
Specifically we focus on the following aspects of the classical
scenario (figure 1): (i) What was the situation prior to the
origin of sex chromosomes? Why do some lineages appar-
ently not have sex chromosomes? (ii) What is the first
evolutionary step to make a sex chromosome, i.e. what are
the origin and function of sex-determining loci? (iii) Is sexu-
ally antagonistic selection generally important for the
evolution of sex chromosomes? (iv) Which mechanisms are
responsible for the cessation of recombination in sex chromo-
somes? (v) Is the differentiation pathway indeed
unidirectional, i.e. from poorly to highly differentiated/
degenerated sex chromosomes or (vi) even loss of Y/W?
Moreover, we briefly tackle the question of what are the
general consequences of possessing (differentiated) sex
chromosomes. We also explore the variation in the differen-
tiation of sex chromosomes under male (XX/XY) and
female (ZZ/ZW) heterogamety, and whether, ultimately,
particular genomic parts (blocks, loci) are more frequently
co-opted for a role in sex chromosomes.
2. What was the situation prior to the origins of
sex chromosomes under the canonical model?
Why are sex chromosomes absent in some
lineages?

In gonochoristic organisms, sex determination (for terminol-
ogy see the Glossary at [16]) is a crucial process, affecting
individual and thereby population genetics, viability and
evolution. Similarly, deciding when, how and under which
conditions to switch sex in sequential hermaphrodites is
also central. There is a surprising diversity and variability
in sex determination mechanisms among vertebrates. Certain
gonochoristic lineages rely on environmental sex determi-
nation (ESD), lacking consistent genotypic differences
between males and females. On the other hand, in genotypic
sex determination (GSD), males and females differ in parts of
their genomes (sex chromosomes), from single nucleotide
differences to large hemizygous chromosomal regions (or
even germline specific chromosomes). Therefore, ESD may
be viewed as a special case of polyphenism, i.e. the process
where alternative morphs—here males and females—are set
by particular environmental cues, triggering epigenetic
mechanisms. GSD may be considered as genetic control of
alternative discrete phenotypes [12,17]. The dichotomy
between GSD and ESD remains controversial and several
authors, including some of us, view pure ESD and pure
GSD as the most extreme ends of a continuum of sex determi-
nation systems [18–21]. The debate concerns the question
how to classify environmental influence on sex ratios and
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Figure 1. Canonical scenario of sex chromosome evolution. (1)—ancestral autosomes; (2)—emergence of a sex-determining gene (yellow); (3)—accumulation of
sexually antagonistic/advantageous alleles (blue, pink) and/or deleterious recessive alleles (orange); (4)—cessation of recombination, depicted by a pericentromeric
inversion changing the chromosome shape from metacentric to acrocentric as one potential example; (5)—degeneration of sex-specific (Y or W) chromosomes, i.e.
accumulation of deleterious mutations, gene loss and accumulation of repeats and heterochromatin; (6)—loss of the entire sex-specific sex chromosome. For
simplification, only the heterogametic sex is depicted.
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even gonadal development, caused for example by sex-
specific mortality and fertilization, maternal effects (e.g.
maternal hormones in the ovum) and environmentally
induced sex reversals. Some authors interpret such mixed
systems as an evidence for an ESD–GSD-continuum, while
proponents of the dichotomy believe that it is useful to dis-
tinguish between true ESD and environmentally dependent
sex ratio under GSD [12,22]. This idea reflects the view that
‘the continuous phenotypic pattern of sex-determining sys-
tems is generated by a discrete, dichotomous underlying
process’ [21, p. 680]. Regardless of these differences in classi-
fication, even sporadic environmentally induced sex reversals
may have important consequences for the differentiation of
sex chromosomes ([23–25]; see the part about the ‘fountain
of youth’ model in §4).

In any case, a common GSD mechanism is by sex chromo-
somes (polygenic sex determination in vertebrates or haplo-
diploid sex determination of some mites, insects and rotifers
can be considered GSD without sex chromosomes; their
classification depends on a definition of sex chromosomes).
The classical paradigm starts with a pair of autosomes,
ready to become sex chromosomes in the next step (rarely,
sex chromosomes might evolve from B chromosomes, i.e.
genomic elements with a non-Mendelian inheritance present
in different numbers among members of a population; e.g.
[26,27]; case 17 in figure 2). But who was this enigmatic ances-
tor possessing such autosomes? Basically, it may already have
been a GSD species and hence possessed sex chromosomes,
but not necessarily. Sex chromosomes may also evolve de
novo in an ancestor without sex chromosomes, mainly with
hermaphroditism or ESD. In angiosperms, gonochorism
evolved mostly from the ancestral simultaneous hermaphro-
ditism [10], while in vertebrates, simultaneous
hermaphroditism is extremely rare and very likely a derived
condition. Likewise, sequential hermaphroditism, which
occurs in teleost fishes, is also likely a derived condition
[28,29] and tends to return to gonochorism [29]. Ohno [2] sus-
pected that GSD (and thus sex chromosomes) evolved in
amniotes multiple times independently from ancestral ESD.
This hypothesis received support from research on squamate
reptiles [12,22,30] and other sauropsids (i.e. the lineage
including reptiles and birds), such as turtles [12,31,32],
which points to non-homology of sex chromosomes across
amniote GSD lineages (but see e.g. [33], critically discussed
in [34]). Recently, Straková et al. [35] suggested that ESD in
amniotes evolved from ancestral sequential hermaphrodit-
ism, which turned into ESD via a heterochronic shift, that
is, by moving the timing of the ontogenetic period of sex
change from the adult to the embryo. Subsequently, the loss
of responsiveness to environmental stimuli led to GSD,
where sex is typically decided already at conception [21],
i.e. GSD comprised another heterochronic shift in the
timing of the decision about individual sex [35]. This scenario
is based on similarities of sequential hermaphroditism and
ESD, such as the absence of sex differences in genomes,
biased population sex ratios and potentially also molecular
epigenetic mechanisms related to general stress responses
[36–38]. If further supported, the evolution of GSD in some
vertebrates and angiosperms may share unexpected simi-
larities. Namely, sex chromosomes may then have evolved
primarily to suppress the function of one sex and enhance
that of the opposite sex, compared to the ancestral situation
without sex chromosomes.

It will be fascinating to further uncover the molecular
(epigenetic) mechanisms of sex change in vertebrate sequen-
tial hermaphrodites [39]. Despite recent progress, molecular
mechanisms of sex determination in ESD species [36,40–42]
remain underexplored and studied in only a few organisms,
as are the molecular changes connected with transitions
from hermaphroditism/ESD to GSD (and vice versa). Piferrer
[37] explores the importance of epigenetics in transitions
among sex determination systems and how epimutations
could facilitate genetic changes accompanying and stabilizing
a new sex determination mechanism. Up to now, we know
too little about the epigenetic changes required in gonadal
developmental pathways that allow such transitions.

There are several potential reasons why gonochorism or
sequential hermaphroditism appear to be advantageous com-
pared to simultaneous hermaphroditism. For example, they
allow for selfing-avoidance and efficient specialization of an
individual in a given time to a sex-specific function. Indeed,
this might explain why simultaneous hermaphroditism is so
rare among vertebrates [29]. However, it is less clear why
some lineages rely on sex chromosomes while others do
not. Sequential hermaphroditism and ESD can potentially
enhance individual fitness under given environmental/
social conditions [43,44]. In most cases, sex chromosomes
ensure or even enforce stable Darwinian–Fisherian sex
ratios, i.e. ratios leading to equal parental expenditure in off-
spring of both sexes [45,46], and may help solve the intralocus
sexual conflict over the expression of a trait [3–5]. On the other
hand, female-biased sex ratios in a population, as seen in
many protogynous sequential hermaphrodites and ESD
species [35], can be advantageous for population growth
(although opposed by individual selection), reducing the
two-fold costs of sex. This cost stems from the fact that
males cannot themselves produce offspring, and thus a
sexual population with a 50 : 50 sex ratio grows at half the
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Figure 2. Overview of the steps in sex chromosome evolution with empirical support in vertebrates. This hypothetical network of evolutionary trajectories may
branch off to potentially endless outcomes with a possibility to freeze for a long time and even reverse to certain states. Steps (1–6) are the same as in figure 1 but
sexually antagonistic genes are not necessarily involved and can be replaced here by general sex-linked genes; (7)—switch to hermaphroditism or ESD, where no
sex chromosomes are present; (8)—long-term evolution without emergence of sex chromosomes; (9)—long-term persistence of poorly differentiated sex chromo-
somes; (10)—reversal to stages with less differentiated sex chromosomes; (11)—expansion of repeats on sex-specific sex chromosome causing its change in size;
(12)—accumulation of repeats on both sex chromosomes; (13)—fusion of the sex chromosomes with an autosome leading to expansion of the pseudoautosomal
region; (14)—emergence of a new sex-determining locus on another chromosome; (15)—emergence of a new sex-determining locus within existing sex chromo-
somes; (16a,b)—two translocations of the same sex-determining locus to other chromosomes; (17)—origin of a new system of sex determination by involvement
of B chromosome; (18)—emergence of sex-determining systems with three homologous sex chromosomes; (19)—fusion of sex chromosomes with an autosome
leading to multiple neo-sex chromosomes; (20)—introgression of a sex-determining gene from a different population or species; (21)—allopolyploidization con-
nected with emergence of a new sex-determining system in a genome of hybrid-origin. For simplification, only the heterogametic sex is depicted.
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rate of an (all-female) parthenogenetic population [47]. Popu-
lations with female-biased sex ratios possess lower costs of
males for population growth. Beyond their roles in sex deter-
mination (see §3), sex ratios (see earlier in this section) and
sexually antagonistic selection (see §4), sex chromosomes
may profoundly affect individual fitness, population viability
and long-term evolution. Differentiated W and Y sex chromo-
somes may lower fitness by increasing mortality, decreasing
longevity and contributing to failures in gametogenesis or
gamete loss [48–50]. Decreased longevity in the heterogametic
sex in species with differentiated sex chromosomes was
explained by several mechanisms including the ‘unguarded
X/Z’, ‘toxic Y/W’ hypotheses and conflict between the pater-
nally transmitted Y chromosome and mostly maternally
transmitted mitochondria (mother’s curse) [51]. The
‘unguarded X/Z’ hypothesis states that the heterogametic
sex suffers higher mortality, as any effect of (mostly recessive)
negative mutations at hemizygous X- and Z-linked loci is, in
contrast to the homogametic sex, not masked by a second,
functional copy [1,52]. The ‘toxicity’ hypothesis suggests
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that accumulation of Y- and W-specific active transposable
elements could lead to sex-biased transposition and genome
instability, likely detrimental to genome and organism
[53,54], while in the long run potentially increasing evolution-
ary plasticity. Classically, transposable elements are assumed
to have accumulated in the non-recombining regions of sex
chromosomes after the cessation of recombination. However,
they may also contribute to the rise of sex-determining genes
during the birth of sex chromosomes and rewiring of gonadal
differentiation networks [55]. Moreover, they might also be
involved at the very beginning of the cessation of recombina-
tion of sex chromosomes, as their activity can dramatically
change local recombination rates. The density of transposable
elements is often negatively correlated with recombination,
although this pattern is not universal [56]. Therefore, without
further testing, it is difficult to disentangle what came first: the
suppression of recombination, or the accumulation of trans-
posable elements. The answer may not be the same in all
cases. Nonetheless, transposable elements affect processes
on sex chromosomes and in turn the entire genome. Sex link-
age also affects rates of molecular evolution, sometimes so
profoundly that their signatures may reflect past sex linkage
in a region that has again become autosomal. Such instances
may be applied to reconstruct the history of sex chromosome
systems [57]. The effect of the rates of molecular evolution of
sex-linked loci on clade evolvability deserves more attention.

Sex chromosomes can also profoundly affect lineage
diversification rates ([58]; but see [59]). Haldane’s rule [60],
which states that the heterogametic sex of a hybrid is more
often less fit (inviable, sterile, less fertile), has received
much support across animals and plants. It is thus well estab-
lished that differentiated sex chromosomes contribute
significantly to speciation and affect hybridization and intro-
gression [61–63]. However, these effects remain largely
unexplored in systems with poorly differentiated sex chromo-
somes [64]. Haldane’s effects may lead to less introgression of
loci linked to well-differentiated sex chromosomes across
hybrid zones in comparison to autosomes. By contrast, undif-
ferentiated sex chromosomes might be more susceptible to
introgression and may contribute to the emergence of
multi-locus systems [65] or other derived sex determination
systems [66] (case 20 in figure 2). Hybrids of parental species
with higher divergence may exhibit sex-specific distortions of
gametogenesis typified by potential male sterility and
frequently female clonality, often closely linked to polyploidi-
zation [67–69]. Most of these hemiclonal, clonal and
meroclonal (Glossary in [64]) vertebrates of hybrid-origin
evolved in parental GSD lineages with undifferentiated sex
chromosomes under male (XY) or—probably more fre-
quently—female heterogamety (ZW) [64]. The emergence of
a new sex-determining system might be linked to allopoly-
ploidization [64,70] (case 21 in figure 2). Improving our
understanding of the genomic preconditions that facilitate
the generation of such hybrid clonal or allopolyploid ver-
tebrates appears crucial for insights into the evolution of
vertebrate sex, hybrid-origin gametogenetic aberrations,
polyploidy and speciation. The advantages, disadvantages
and consequences of sex chromosomes, including both undif-
ferentiated and differentiated ones, present a promising area
for future discoveries.

New sex chromosomes may have evolved more often
within vertebrate lineages that already had established GSD
in their ancestry than de novo from species with ESD. Such
transitions from a pre-existing GSD to a derived GSD
system are referred to as sex chromosome turnovers, whereby
a new sex-determining locus emerges either on the same sex
chromosomes or on an autosome, or by a translocation of an
existing sex-determining locus (see below). Rapid rates of sex
chromosome turnover have been documented in several
lineages of anurans and teleosts [71–76], the groups where
GSD is dominant and likely even the ancestral state [28,77].
Regardless of whether sex chromosomes evolved from
an ESD/sequential hermaphroditic system without sex
chromosomes, or in a GSD ancestor, an important question is:
3. Where do sex-determining loci come from?
In gonochoristic vertebrates, gonads start their development
as bipotential primordial organs that later differentiate into
ovaries or testes. It seems that sex determination has not
only to activate one pathway, but at the same time to repress
the alternative one [78]. In the classical scenario, only a single
locus has to be changed to become the sex-determining locus
and thus establish sex chromosomes. The traditional model
starting from simultaneous hermaphroditism in angiosperms
assumed the involvement of two linked loci [79]. Recently,
the generality of this model was questioned for some
plants, claiming that only one locus may have been involved
[80,81]. In some cases, however, an existing single-locus
system evolved likely through a two-loci stage [81].

In vertebrates, the sex-determining locus usually consists
of a homologue of a gene from the gonadal differentiation
networks that acquires a novel function as the switch to
initiate ovarian or testicular differentiation [82]. A single
known exception was detected in salmonids, where the sex-
determining gene is a homologue of an immune-related
gene; however, even in this case it strongly interacts with
common players of the gonadal differentiation network
[83,84]. Still, we advocate to continue the ‘hunt’ for sex-deter-
mining genes with promising techniques such as RNAseq of
gonadal tissues in relevant embryonal stages and pool
sequencing of panels of phenotypically contrasted sexed
adults [16] to gain more robust knowledge on the identity
of sex-determining genes and their origin. Functional
approaches seem necessary too, but we have to keep in
mind that a ‘proof of function’ by knockout-experiments to
verify candidate sex-determining genes may be misleading
since many genes of the gonadal differentiation networks
may show the same effect as the ‘master’ sex-determining
gene itself, i.e. resulting in experimental sex reversal [85].
This situation can be even more complicated if the
knocked-out gene is also sex-linked and sex-specific.

A sex-determining locus mostly evolves as a new paralog
(via duplication), or by allele differentiation. Both pathways
are almost equally likely in vertebrates [86]. As alleles at a
sex-determining locus can differ minimally—in an extreme
case, only by a single nucleotide [87]—one can assume that
the evolution of a novel sex-determining locus can be very
easy and a minor genetic change appears sufficient for a
major turnover in sex determination [11]. Traditionally, it
was postulated that members of the sex differentiation path-
ways are very conserved across many vertebrate species or
even non-vertebrate deuterostomes and protostomes [78,82],
while sex-determining genes might be ephemeral and can
be easily replaced by other sex-determining genes [88].
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Nevertheless, the current state of knowledge suggests that
even among closely related groups of organisms with indis-
tinguishable gonadal development at the morphological,
histological and cellular levels, molecular control of sex deter-
mination and gonad differentiation can differ substantially
[78,82]. The detailed analysis of the relatively young sex-
determining gene in medaka, Oryzias latipes, representing a
radiation with evolutionarily unstable sex determination
[72,73], revealed that the function of a new master sex-deter-
mining gene required several changes and substantial
rewiring of interactions among members of the gonadal
differentiation networks [55]. Adolfi et al. [89] argue that co-
evolution between a new sex-determining locus and other
members of this network is required to restrict the function
of the sex-determining locus to sex determination without
negatively affecting other steps of sex differentiation and
reproductive roles. Such changes can be an important pre-
condition for the emergence of a new sex-determining trig-
ger. The detection of the sex-determining locus may thus be
only the tip of the iceberg of the underlying molecular
changes, required for the transitions among sex determi-
nation systems. More detailed analyses of rewiring will
help to understand how many changes are truly needed for
a transition in sex determination and whether lineages with
frequent transitions in sex chromosomes such as cichlids,
sticklebacks, medaka and its relatives, ranid and pipid frogs
[71–76] have specific preadaptations enabling such tran-
sitions in contrast to lineages with long stability of ESD
such as sea turtles or crocodiles ([32,35]; case 8 in figure 2)
or of sex chromosomes such as sturgeons [90] and several
lineages of amniotes [35,91]. In lineages with stable sex
chromosomes, their sex-determining locus might become an
integral part of sexual development and be more resistant
to replacements.

An intriguing way to gain insight into the changes
required for the transitions in sex-determining loci is to test
their function in related organisms with non-homologous
sex determination. Roco et al. [92] did this by interspecies
crossing experiments in the pipid frogs Xenopus laevis and
Xenopus tropicalis and documented a pattern consistent with
relatively simple and direct effects of sex-determining genes
on gonadal and somatic development. Nevertheless, we do
not know the interactions between the genes when the gen-
etic background would be non-hybrid, which would
require transgenic frogs. Would they show evidence for the
need of coevolution/preadaptations to transitions in sex
determination?

Further research into the role of sex-determining genes in
primordial germ cells would be particularly interesting. In
vertebrates and many other animals, the germline is estab-
lished as a separate cell lineage early in development, and
in many taxa primordial germ cells migrate to the developing
gonads only later. Current evidence suggests that in some
vertebrates, germ cells can influence whether the bipotential
gonad will develop towards a testis or an ovary. For example
in zebrafish, a complete absence or depletion of germ cells
leads to the development of testes, regardless of the genotype
of an embryo [93]. In medaka, it was demonstrated that XX
and XY germ cells behave differently with respect to their
mitotic activity and that the sex-determining gene on the Y
is expressed there much earlier than in the somatic gonadal
cells [94]. A specialized, typically maternally inherited
chromosome restricted to germ cells (germline-restricted
chromosome, GRC), eliminated during development from
all somatic cells and from most spermatocytes, is likely pre-
sent in all passerine birds [95]. There are no sexual
differences among the zygotes in the number of GRCs, but
male germline cells with two GRCs successively lose them,
while female germ cells stably reproduce zygotic GRC karyo-
type. Potentially, GRC is preferentially segregated to eggs
instead of polar bodies in female meiosis (meiotic drive),
and it is a functional element of songbird germline genomes
[96]. As far as is known, all birds have conserved ZZ/ZW sex
chromosomes [97], and genes linked to the avian sex
chromosomes contribute largely to cell-autonomous sexual
differences in somatic tissues, including gonadal somatic
cells in the medulla, as demonstrated in chicken, a non-
passerine bird [98–100]. Chicken gonads (both ovaries and
testes) can differentiate in the absence of germ cells [101].
Further research in passerines is needed to explore whether
their sex development is controlled by multi-locus inter-
actions between sex chromosomes and the specialized GRCs.

The degree of evolutionary plasticity of the gonadal
differentiation pathway should be explored in future studies
as it may explain why sex chromosomes are stable in some
lineages, while prone to turnovers in others, which was tra-
ditionally attributed, e.g. to the rate of differentiation of sex
chromosomes, which is the question we now address:
4. Which mechanisms are responsible for the
reduction of recombination in sex
chromosomes?

Sex chromosomes are sometimes easily detectable by cyto-
genetic methods, when they are heteromorphic (with Y and
W chromosomes can be either expanded or miniaturized in
size), heterochromatic or enriched (or in contrast depleted)
in repetitive sequences [102,103]. In other cases, X and Y,
and Z and W can be cytogenetically indistinguishable [87].
Traditionally, homomorphic sex chromosomes were under-
stood to be poorly differentiated, while heteromorphic and
highly differentiated. However, the terms homomorphy and
heteromorphy specifically concern chromosome morphology
(size and shape) as seen by conventional light microscopy,
which is not necessarily correlated with the degree of differ-
entiation at the sequence level. Heteromorphic sex
chromosomes can be poorly differentiated and recombining
across most of their length (e.g. neo-sex chromosomes),
while homomorphic sex chromosomes can exhibit high
sequence divergence [104]. The problem of the metrics of
the degree of differentiation of sex chromosomes is also com-
plicated by the difficulty in the distinction between neutral
and functionally important differences. Although the search
is ongoing for the best approach to measure the degree of
sex chromosome differentiation and degeneration (as dis-
cussed in detail by Charlesworth [105]), it is clear that
lineages can differ significantly in their rates of sex chromo-
some differentiation. Moreover, the evolution of sex
chromosomes over time is rarely a unidirectional progression
of accumulating divergence [106,107, this paper]. Neverthe-
less, the suppression of recombination is likely the most
crucial process that initiates, progresses and thereby triggers
structural changes, leading to differentiation of sex
chromosomes.
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For decades, the field was dominated by the classical
adaptive hypothesis going back to R.A. Fisher [3] that sex
chromosomes stop recombining due to sexually antagonistic
selection. However, there is surprisingly little evidence for
this hypothesis. Furthermore, despite the many unique
characteristics of sex-linked regions, only minor attention
has been given to neutral models for the cessation of recom-
bination (but see [108]), an important requisite if we are to
truly test adaptive hypotheses. Thus the question remains,
are sex chromosomes indeed hotspots for the resolution of
sexual conflict in the genome? Perrin [109] concludes that
there is little support for a significant role of sexual antagon-
ism in the evolutionary dynamics of sex chromosomes in
ranid and hylid frogs. Comparative genomic studies demon-
strate an extensive variability in the gene content of sex
chromosomes across independently evolved sex determi-
nation systems, which are not particularly enriched with
genes controlling sexual dimorphism. In fact, the genes that
survived in the non-recombining regions of highly differen-
tiated Y in mammals and sticklebacks and W chromosomes
in birds and snakes are mainly dosage-sensitive, and their
loss would be lethal [110–114]. On the other hand, Song
et al. [74] demonstrate that the sex-biased expression of sex-
linked genes occurred in parallel with the origin of indepen-
dently evolved sex chromosomes in pipid frogs. Functional
analyses seem necessary to uncover the contribution of this
sex-biased expression to the resolution of sexual conflict, as
it could also reflect mutations on the sex chromosome leading
to loss of expression in one sex. In conclusion, it seems that
sexual antagonism is either rare or hard to detect (present
only under some environmental conditions, or detectable
only under certain genetic backgrounds, i.e. subject to epista-
sis). Thus, sexual antagonism may not be a general and
widespread driver of the cessation of recombination, and
we should consider other models as well.

The probability of recombination is not equally distribu-
ted across genomes: there are hotspots and coldspots [115],
and smaller chromosomes generally recombine more than
larger ones [116]. The placement of a newly emerged sex-
determining locus can affect the recombination rate around
it. Moreover, heterozygosity and epigenetic changes can
locally alter the recombination rate. And just a mutation lead-
ing to the emergence of a new sex-determining locus—and
thus necessarily to heterozygosity [108]—can change the
recombination rate in the linked region, particularly if this
involves gene duplications and/or transposon activity. In
addition, intrachromosomal rearrangements such as inver-
sions, preventing recombination in a heterozygous state
(always true if linked to the sex-specific allele of the sex-
determining locus), seem much more frequent in some taxa
than in others [117–119], which may contribute to different
rates of sex chromosome differentiation in independently
evolved systems.

Female and male meiosis also differ in several important
aspects, very often in frequency and position of recombina-
tion, a phenomenon known as heterochiasmy. In
vertebrates, females often recombine more evenly across the
chromosome, but males more frequently near the chromo-
some tips [120]. Some regions recombine a priori less in a
given sex and the position of the newly emerged male- or
female-linked sex-determining gene might be crucial for the
cessation of recombination. Phylogenetic reconstructions of
recombination landscapes of ancestral autosomes and
derived sex chromosomes, as well as detailed analyses of
the mechanisms leading to recombination cessation (inver-
sions, transposon activity, etc.), can be important for testing
these hypotheses. Nevertheless, such analyses can be compli-
cated by even rare incidence of sex reversals (driven by the
environment or otherwise). The rate and position of recombi-
nation are often determined by the phenotypic rather than
the genotypic sex. Therefore, sex chromosomes present in a
sex-reversed individual may be subjected to the recombina-
tion pattern typical of the opposite phenotypic sex.
According to the ‘fountain of youth’ hypothesis, this situation
might produce newly recombined variants of sex chromo-
somes, potentially allowing purging of deleterious
mutations from otherwise degenerating sex chromosomes
and thus keeping sex chromosomes poorly differentiated
[23–25].
5. Is the sex chromosome differentiation
pathway truly unidirectional, i.e. leading from
poorly to highly differentiated sex
chromosomes, or even to the loss of Y
and W?

The classical paradigm suggests that sex chromosomes will
differentiate over time, leading to largely degraded Y and
W chromosomes that eventually may even fully disappear.
Although such a unidirectional pathway is described or
depicted in nearly every paper on sex chromosome evolution
(e.g. [8–15]), it is now becoming clear that it does not accom-
modate the enormous diversity of evolutionary pathways in
the majority of lineages. Moreover, the unidirectional path-
way may proceed at very different rates. In some lineages,
sex chromosomes may remain at low levels of differentiation
for long evolutionary periods (case 9 in figure 2), as is the
case in the X and Y chromosomes of the pufferfish Takifugu
rubripes, which differ at a single nucleotide, despite the sex
determination gene being several millions of years old
[87,121]. In birds, we find another example of sex chromo-
somes locked at a more advanced differentiation stage.
Although ZZ/ZW sex chromosomes are homologous across
birds [97] and thus of the same age, ostriches and most
other paleognath birds have a much smaller non-recombin-
ing region, while neognath birds and palaeognath tinamas
proceeded further in the process of sex chromosome
differentiation [122–124].

Further contradicting the unidirectional scenario are evol-
utionary pathways of sex chromosomes that depart sideways
into potentially interconnected trajectories or even evolve in a
virtually reversed manner. Turnovers of sex chromosomes
were described in many lineages of fish and amphibians
with poorly differentiated sex chromosomes [71–76], result-
ing in two distinct pathways. The ancestral sex
chromosomes can be replaced by a new sex determination
system based on a new sex-determining locus on the same
[125] or another chromosome pair [72–74], or the existing
sex-determining gene can be translocated to another chromo-
some [126,127] (cases 14–16 in figure 2). Importantly,
inferences about the homology of GSD systems should be
based on knowledge on the sex-determining locus, not just
on the identification of linkage groups representing sex
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chromosomes. A translocation of a sex-determining locus to
other chromosome pair as documented for instance in salmo-
nid fishes [83,84,126] even leads to a situation in which a
homologous sex determination system is harboured by non-
homologous sex chromosomes. And vice versa, that two
taxa exhibit the same chromosome pair as sex chromosomes
does not necessarily mean their sex determination systems
are homologous: the same pair of autosomes can be indepen-
dently co-opted for the function of sex chromosomes (e.g.
[71,75,128]; for overview in amniotes see [34]), or there
might be turnovers of sex determination systems by the emer-
gence of a new sex-determining locus within the same sex
chromosome pair [66,129] (cases 15, 18 and 20 in figure 2).

Even highly differentiated, cytogenetically detectable sex
chromosomes can be replaced by poorly differentiated ones,
as supported by results in basilisks and Paroedura geckos
[130–132] (case 10 in figure 2). Ogata et al. [66] revealed
that the heteromorphic sex chromosome systems probably
returned to homomorphy through hybridization in the Japa-
nese wrinkled frog Glandirana rugosa. In some cases, a simple
system of two sex chromosomes changed into derived sys-
tems of three homologous sex chromosomes present in a
population, e.g. in the African pygmy mouse Mus minutoides,
where sex is determined by typical ancestral X, Y and derived
X* causing feminization of X*Y individuals [133], or in the
pipid frog X. tropicalis, in which sex is determined by the
combination of Z, W and Y chromosomes [134], where the
masculinizing Y chromosome evolved from the ancestral Z
[129] (case 18 in figure 2). A more controversial question is
whether sex chromosomes can be totally lost through the
transition from GSD to ESD, where there are no consistent
sexual differences in genotypes [12] (case 7 in figure 2). The
only well-supported example comes from laboratory data
on the bearded dragon Pogona vitticeps, in which the cytogen-
etically distinguishable ancestral W chromosome was lost in a
single generation through the production of thermally
induced, sex-reversed ZZ females, which mated with
normal ZZ males and produced progeny with sex
determination depending on the incubation temperature [135].

The classical paradigm predicts that, after the loss of
recombination in a sex-linked region, the sequence will be
lost, leading to heteromorphy. By contrast we now have
numerous examples of genetic material being added onto
the sex chromosomes [102]. For example, some sex-linked
gene families have undergone massive copy number amplifi-
cation of up to tens or hundreds of copies, likely driven by
meiotic drive, as documented in mice and bovid sex chromo-
somes [136,137]. New material can also be added to sex
chromosomes via translocations from autosomes. Such
additions of previously autosomal material to both Z and
W occurred in songbirds of the Sylvoidea superfamily
[138,139] (case 13 in figure 2), and in a lineage of cichlid
fish, the very large chromosome likely evolved through an
addition of a B chromosome onto sex chromosomes [140].
A complex history was also reconstructed for human sex
chromosomes, which contain the X-added region (added to
the sex chromosomes in eutherian mammals but autosomal
in marsupials), and the X-transposed region (transposed
from the human X to the human Y after human–chimpanzee
divergence) [141,142].

Another way for material to be added to the system of sex
chromosomes is a fusion of the W or more often of the Y (as
happened e.g. many times in placental mammals, iguanas
and teleosts [143–145]) with an autosome, producing mul-
tiple neo-sex chromosomes (case 19 in figure 2), where the
newly added parts behave as pseudoautosomal regions and
can go through subsequent differentiation [133]. Notably,
the size of Y and W can be expanded by the accumulation
of repetitive sequences [102] (case 11 in figure 2), and repeats
from these degenerated chromosomes can ‘contaminate’ and
be amplified on X/Z as well [146,147] (case 12 in figure 2).
Genes can also subsequently re-emerge in the degenerated
parts of W and Y. In the latter case, a gene initially lost in
the non-recombining region of Y and W can re-appear there
owing to a recombination or translocation between sex
chromosomes in otherwise non-recombining regions or by
gene conversion [107,147,148].

The ultimate loss of degenerated Y or W owing to their
total degradation is also controversial. The terminal stage of
sex chromosome differentiation, when Y and W chromo-
somes disappear completely from the genome [8,9], leading
to XX/X0 or ZZ/Z0 sex chromosome constitutions, can spor-
adically occur in some species. Specifically, few rodents have
a derived system with XX/X0 sex chromosomes or the loss of
Y chromosomes creating an X0/X0 situation in both sexes [9];
nevertheless, most of the genomic material was in these cases
translocated to X chromosomes or autosomes [149]. In other
cases, it is not clear whether the Y chromosome or a part of
it fused with an autosome, creating a X1X2/X1X2Y system,
though this could be tested by an analysis of male meiosis.
XX/X0 and ZZ/Z0 systems were also reported in fish, but
the current understanding of these systems is still limited
[145]. However, the loss of Y/W chromosomes does not
seem to be inevitable for all highly differentiated sex
chromosomes. In lineages such as birds (age of sex chromo-
somes ca 110 Myr), trionychid turtles (120 Myr) and iguanas
(120 Myr), the old and degraded Y/W chromosomes have
persisted for tens of millions of years and have yet to be
lost [150–152]. Analyses in primates demonstrated that
there is a rapid loss of genes from Y chromosomes shortly
after the formation of each evolutionary stratum, but that
gene loss slows over time until it reaches a level at which
conservation is maintained, likely through purifying selec-
tion [153]. Bellott et al. [110] modelled that the loss of Y
chromosomes is far from being inevitable more generally
in mammals. Thus, losses of degenerated Y and W seem
rare, they are difficult to predict and it seems that they rep-
resent a less likely pathway of sex chromosome evolution.
Indeed, what many call ‘degenerated’ sex chromosomes,
might instead be seen as specialized as they almost always
contain genes important or essential for the heterogametic
sex or dosage-sensitive genes requiring two functional
copies in diploid genomes. Such genes make it less likely
that old sex chromosomes can or will be lost. Moreover,
even degenerated, gene-depleted Y and W chromosomes
can be conserved to ensure proper chromosome pairing
and segregation during meiosis. In some invertebrate
lineages, such as caddisflies, moths and butterflies or spi-
ders, ZZ/Z0 and XX/X0 sex chromosomes might be
ancestral, while W and Y sex chromosomes evolved later
in certain sublineages [154,155]. If ZZ/Z0 and XX/X0
sex chromosome systems evolved via aneuploidy, i.e.
instantaneous loss of one copy of ancestral autosome from
the genome, this situation might not be terminal, but
might instead be just the initial step in sex chromosome
evolution.
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6. Is there variation in sex chromosome
differentiation between male (XX/XY) and
female (ZZ/ZW) heterogamety?

The classical paradigm is principally identical for sex chromo-
some differentiation undermale and female heterogamety and
assumes that the processes are comparable. But is that really
the case, or dowe need different scenarios for each type of het-
erogamety? Theory predicts that a Y chromosome should
differentiate faster than a W chromosome, i.e. the classical
sex chromosome differentiation pathway (figure 1) should
be shorter in time under male than under female heterogam-
ety. It could be caused by higher mutation bias and stronger
selection in males, or a smaller effective population size of
the Y chromosome with decreasing ratio of reproducing
males to females in a population [156–158]. However, phylo-
genetic comparisons do not strongly support these
predictions. Namely, thanks to the application of genomic
techniques such as RADseq in recent years, several counterex-
amples from poorly differentiated sex chromosomes have
emerged. For instance, in squamate reptiles, it was found
that both snake lineages with female heterogamety possess
heteromorphic sex chromosomes, while the two snake
lineages with male heterogamety have homomorphic, cyto-
genetically indistinguishable sex chromosomes [159,160],
although there is no evidence that the female heterogametic
systems should be considerably older. A similar pattern can
be found in lacertoidean lizards, where tegus, whiptails and
spectacles lizards (families Teiidae and Gymnophthalmidae),
presumably with male heterogamety, have only poorly differ-
entiated sex chromosomes, while closely related true lizards
(Lacertidae) from their sister clade exhibit female heterogam-
ety with highly differentiated sex chromosomes. The same
trend was observed within chameleons (reviewed in
[91,160]). Likewise, sex chromosomes seem to differentiate at
a faster rate under female than male heterogamety in teleost
fishes [145]. Ancient, but still quite poorly differentiated XX/
XY sex chromosomes were also demonstrated in skinks
[91,161] and ZZ/ZW in sturgeons [90]. Thus, counter to theor-
etical predictions, sex chromosomes do not seem to
differentiate faster and/or are subjected to more turnovers
under male than female heterogamety. Therefore, we should
re-examine why differentiation may proceed faster in some
lineages regardless of the type of heterogamety.

A dichotomy in the gene dose regulatory mechanisms
between XX/XY and ZZ/ZW systems was also postulated.
The differentiation of sex chromosomes leads to unequal
numbers of functional copies of many genes between the
sexes. This imbalance has to be dealt with at the cellular
level as the protein production in a cell is generally affected
by the number of transcribed gene copies, and cell physi-
ology and differentiation require proper stoichiometric
ratios of interacting proteins [162,163]. Some lineages have
evolved dosage compensation, the epigenetic mechanism
that restores the expression of the X- or Z-specific genes in
the heterogametic sex to the expression levels prior to sex
chromosome differentiation [2,164]. Other lineages equalize
the expression levels of the X- or Z-specific genes between
the sexes, but not to the ancestral levels, i.e. possess incom-
plete compensation with dosage balance. The third
documented type of a gene dose regulatory mechanism is
an incomplete compensation without balance, also referred
to as incomplete or partial dosage compensation, where
expression of sex-specific loci remains lower in the heteroga-
metic sex relative to the homogametic sex [164]. Nevertheless,
we should also keep in mind that the gene dose regulatory
mechanisms can be tissue- and age-specific [165]. A complete
(global) or nearly complete dosage compensation or at least
dosage balance between sexes was often found in lineages
with XX/XY sex determination. On the other hand, an
incomplete compensation without balance seems to be
common in lineages with female heterogamety [164,166–
168]; however, the reasons for these differences were not
clear. The suggested explanations include mostly adaptive
processes such as a stronger selection for dosage balance in
lineages with male heterogamety owing to faster degeneration
of the Y than the W (as a result of higher mutation rates in
males) or differences in effective population size between
sexes (owing to differences in the strength of sexual selection
and different strength of sexually antagonistic selection in
males and females). However, notable exceptions to the rule
were recently found, and an overview of gene dose regulatory
mechanisms does not support any clear differences between
animal lineages with male versus female heterogamety [169].

Recent studies demonstrated that XX/XY and ZZ/ZW
sex chromosomes in vertebrates notably differ in the fre-
quency of neo-sex chromosome systems by fission of sex
chromosomes or predominantly fusion with an autosome
[143–145]. For example, multiple neo-sex chromosomes
evolved independently more than 20 times in mammals
and around 15 times in iguanas with male heterogamety,
whereas only six times in caenophidian snakes and maybe
just once in birds with female heterogamety [143,170]. An
explanation of this pattern is unclear (for recent overview
see [145]), but it was suggested that it can reflect a faster
differentiation rate of the Y in comparison to the W owing
to higher mutation bias or stronger selection in males (e.g.
[144]). Alternatively, it was proposed that the differing ten-
dencies for the formation of multiple neo-sex chromosomes
between male and female heterogamety might be explained
by differential involvement of sex chromosomes in female
meiosis, particularly in female meiotic drive, i.e. the bias in
the segregation of chromosomes into the egg nucleus
versus polar bodies. According to this hypothesis, the struc-
tural changes like fissions/fusions are subjected to meiotic
drive during female meiosis on chromosomes X, Z and W,
but not on the Y chromosome, which occurs only in males
[143,171]. The female meiotic drive may operate on centro-
meres [172,173] and fusions and fissions of chromosomes
can alter just the centromere structure. Interestingly, multiple
neo-sex chromosomes of the types Z1Z1Z2Z2/Z1Z2W, ZZ/
ZW1W2 and other types and even ZZ/Z0 sex chromosomes
are common in butterflies and moths (Lepidoptera) and
their sister group, the caddisflies (Trichoptera) [174]. It is
possible that this pattern corresponds to their holocentric
chromosomes, which might obey the female meiotic drive
of centromeres [175]. The hypothesis on the driving centro-
meres in organisms with monocentric chromosomes and
asymmetric female meiosis predicts that female meiotic
drive will more strongly select for homogenization of the cen-
tromere structure of sex chromosomes under female
heterogamety. Unfortunately, to our knowledge, there is no
systematic comparison of centromeres of sex chromosomes
between female and male heterogamety, which is a clear
avenue for further research.
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7. Were particular genomic regions more
frequently co-opted for the role of sex
chromosomes?

In their insightful paper, Marshall Graves & Peichel [128]
debated whether the evolution of sex chromosomes is
random, or whether certain syntenic blocks have a higher
chance to become a part of sex chromosomes. The non-
random co-option of certain genomic regions could reflect a
limited pool of genes involved in gonadal development
(‘usual suspects’ such as amh, ar, dmrt1 or sox3) that can
evolve as a master sex-determining gene by turning their syn-
tenic blocks into sex chromosomes. Indeed, certain syntenic
blocks seem to emerge more often as sex chromosomes in
ranid frogs [71] and amniotes, but at least in amniotes, this
non-random pattern is not particularly strong [34]. The
numerous exceptions can be caused by the emergence of a
sex-determining locus via duplication within a different syn-
tenic block from the original one with the ‘usual suspect’
gene, or by the existence of more genes with a potential to
become sex-determining genes than we assume.

In addition, selection can favour the location of a sex-deter-
mining gene in a region enriched by genes with sexually
antagonistic effects [176]. However, as argued by Perrin [109],
there is little role for sexual antagonism in the evolution of sex
chromosomes in ranids and it is thus unlikely that the non-
random co-option observed in this group would reflect the sexu-
ally antagonistic selection. Likewise, Lichilín et al. [75] did not find
evidence that sex-linked genes contribute exceptionally to sexual
dimorphism in a clade of cichlid fish. In this group, chromosomes
that became sex-linked were not enriched in genes with sex-
biased expression before their recruitment as sex chromosomes
[75], whichmight imply only aminor or no role of sexual antag-
onism for the co-option of chromosomes as sex chromosomes. It
could also mean that there is no further benefit for a chromo-
some on which conflict was resolved by other mechanisms
(e.g. sex-specific expression) to transition to a sex chromosome.
On the other hand, the hypothesis that sexual antagonism can
favour the location of a sex-determining gene in a region
enriched by genes with sexually antagonistic effects received
support by non-random fusions of certain autosomes with sex
chromosomes in iguanas [177] and songbirds [139]. Particularly
in songbirds, one region fused to the ancestral ZZ/ZW was
found to be enriched in genes with predicted sex-related func-
tions [139]. Non-random fusions can, however, be explained
by the close physical proximity of particular chromosomes in
the nucleus, as recently supported by the analyses of the mul-
tiple neo-sex chromosomes formation in platypus [178]. In
fact, new data in iguanas [177] confirm more frequent involve-
ment of certain chromosomes in sex chromosome formation,
but at the same time do not reveal a connection between the
sex chromosome–autosome fusions and the evolution of recom-
bination rate, which would be important for a role of sex
chromosomes in the resolution of intralocus sexual conflict.
The reasons for the non-random fusion of certain genomic
parts to sex chromosomes should be explored in the future,
using comparative data.
8. Conclusion
Exactly 130 years after Henking’s observation of the enig-
matic ‘X element’ [179], over 115 years after McClung and
Stevens hypothesized that these ‘accessory chromosomes’
determine sex [180,181] and more than 100 years after the
early version of the classical paradigm on sex chromosome
evolution [1], this review alongside the two adjoined theme
issues of the Phil. Trans. R. Soc. B. celebrates the contribution
of vertebrate research to the great progress made in our
understanding of sex chromosome evolution. However,
despite this substantial progress, we still lack an understand-
ing of why sex chromosomes emerge and differentiate at
highly unequal rates in different lineages, and why they are
even absent in several animal lineages. Thus we highlight
the need for additional data on the germline and the whole
gonadal differentiation networks to further explore the evol-
ution of sex-determining genes. Likewise, research should
focus on structural changes accompanied by sex chromosome
formation, including the mechanisms responsible for the sup-
pression of recombination. Most likely, we will also have to
revise why the empirical results on sex chromosome differen-
tiation rate and the evolution of gene dose regulatory
mechanisms between male versus female heterogamety do
not extensively follow theoretical expectations. The conse-
quences of differentiated/degenerated sex chromosomes for
individual fitness, lineage evolvability and diversification
will also be important research topics.

Although the classical paradigm is ingenious and insight-
ful, driving decades of research, its unidirectional scenario,
aimed primarily to explain the evolution of highly differen-
tiated sex chromosomes, has turned out to be too simplistic.
We admire this model for its intellectual beauty, historical
importance and power to stimulate research, but we consider
it now as an overidealized model requiring expansion. Sex
chromosome evolution is truly complex, and far from uni-
directional. Instead, it is a multi-faceted process with many
side roads, stability of particular ‘stages’ in certain lineages,
alterations and even apparent reversals, virtually breaking
Dollo’s law of irreversibility. We thus conclude that the realis-
tic picture is not simply linear. However, we also doubt that
sex chromosome differentiation is linear with simple loops as
depicted by Abbot et al. [106] or cyclic as depicted, e.g. in
Furman et al. [107]. Instead, we think that the process
principally represents a network of evolutionary trajectories
branched off to potentially endless outcomes with a
possibility to freeze for a long time and even reverse to
certain states locally (figure 2).
Authors’ contributions. L.K. drafted the first version of the manuscript,
which was discussed, expanded, commented and edited by all co-
authors.

Competing interests. We declare we have no competing interests.
Funding. L.K. and M.R. were supported by Czech Science Foundation
(project no. 17-22604S); M.S. was in part supported by the project
‘Breaking down the wall between human health and environmental
testing of endocrine disruptors’: EndocRine Guideline Optimization
(ERGO), grant agreement number: 825753. A.H. was funded by the
TUNESAL (Research Project HAVBRUK2, PN: 294971), 111 Project
(China, grant no. D20007) and AquaExcel3.0 (grant agreement no.
871108) projects. N.V. was supported in part by the National Science
Foundation grant IOS 1555999.

Acknowledgements. The discussion about the challenges to the classical
model of sex chromosomes from the perspective of research on ver-
tebrates started at a meeting in Prague in 2018, where the authors
of this review participated. We thank Manfred Schartl for vivid dis-
cussions and sharing his knowledge in Prague, 2018. Ema
Kratochvílová helped with figures.



royalsocietypublishin

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 O

ct
ob

er
 2

02
1 
Endnote
1For example, Muller [1, p. 483]: ‘Moreover, the ‘degenerative’
changes in these cases could be much more extensive than in cases
of balanced lethals, because the Y and W chromosomes were more
completely protected by their homologues from the action of selec-
tion. This is because their homologues (X and Z, respectively)
themselves remained quite normal, owing to the fact that they were
subjected to selection when in the homozygous sex (XX or ZZ).
Recessive changes could consequently be established in any locus
of Y and W, whereas in cases of balanced lethals, where both homol-
ogues might become involved, only half of either chromosome might,
on the average, degenerate. (…)’; p. 485: ‘after an extensive degener-
ation has taken place in either member of a pair of balanced
chromosomes, many recessive changes in the other member will be
able to ‘show’, just as recessive mutants in the X chromosome can
now manifest themselves in the XY male, owing to the ‘degenerate’
condition of the Y’.
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