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Sterile Injury Repair and Adhesion
Formation at Serosal Surfaces
Simone N. Zwicky, Deborah Stroka and Joel Zindel*

Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern,
Bern, Switzerland

Most multicellular organisms have a major body cavity containing vital organs. This cavity
is lined by a mucosa-like serosal surface and filled with serous fluid which suspends many
immune cells. Injuries affecting the major body cavity are potentially life-threatening. Here
we summarize evidence that unique damage detection and repair mechanisms have
evolved to ensure immediate and swift repair of injuries at serosal surfaces. Furthermore,
thousands of patients undergo surgery within the abdominal and thoracic cavities each
day. While these surgeries are potentially lifesaving, some patients will suffer complications
due to inappropriate scar formation when wound healing at serosal surfaces defects.
These scars called adhesions cause profound challenges for health care systems and
patients. Therefore, reviewing the mechanisms of wound repair at serosal surfaces is of
clinical importance. Serosal surfaces will be introduced with a short embryological and
microanatomical perspective followed by a discussion of the mechanisms of damage
recognition and initiation of sterile inflammation at serosal surfaces. Distinct immune cells
populations are free floating within the coelomic (peritoneal) cavity and contribute towards
damage recognition and initiation of wound repair. We will highlight the emerging role of
resident cavity GATA6+ macrophages in repairing serosal injuries and compare serosal
(mesothelial) injuries with injuries to the blood vessel walls. This allows to draw some
parallels such as the critical role of the mesothelium in regulating fibrin deposition and how
peritoneal macrophages can aggregate in a platelet-like fashion in response to sterile
injury. Then, we discuss how serosal wound healing can go wrong, causing adhesions.
The current pathogenetic understanding of and potential future therapeutic avenues
against adhesions are discussed.

Keywords: peritoneal adhesions, peritoneum, sterile injury, mesothelium, post-surgical adhesions
DEVELOPMENT AND MICROANATOMY OF THE COELOM
AND MESOTHELIUM

During embryology, at the endof the thirdweek, the lateralplatemesoderm isdivided into two layers: the
somatic and splanchnic mesoderm layer (1). These two layers form a cleft that becomes a cavity as the
embryo undergoes a cranio-caudal and latero-lateral folding event in week four (1). This cavity is called
the intraembryonic coelom and contains vital organs such as the heart, the lungs, the liver, and the
intestines. Inmammals, themesodermal lining of the coelomdifferentiates into a serous epithelium-like
org May 2021 | Volume 12 | Article 6849671
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membrane called mesothelium (2). The somatic mesoderm gives
rise to the parietal layer of the mesothelium which lines the body
wall, and the splanchnicmesoderm gives rise to the visceral layer of
the mesothelium which lines the surfaces of organs. The intra-
coelomic organs stay connected to the body wall by elongations
referred to as mesenteries which contain blood vessels, lymphatics,
and nerves (1) (Figure 1).

Later, the coelomic cavity is further subdivided resulting in
three embryologically related but anatomically distinct anatomical
compartments: the pericardial cavity, the pleural cavities, and the
peritoneal (abdominal) cavity. All of these contain vital organs
such as heart, lung, and abdominal organs (1).

The serous membrane that covers the walls of all coelomic
cavities as well as the borders of all organs contained within them is
also called the serosa and is comprised of a flat monolayer of
mesothelial cells. The serosal linings ensure friction-less movement
of organs and establish a water-tight barrier separating the fluid-
Frontiers in Immunology | www.frontiersin.org 2
filled cavities from surrounding tissues (Figure 2). Together with
the associated sub-mesothelial connective tissue the serosa is also
called peritoneum, pleura, and pericardium in the peritoneal
(abdominal), pleural and pericardial cavities, respectively. In
practice, the terms mesothelium, serosa, and peritoneum (or
pleura or pericardium) are often used interchangeably.

The peritoneum is less than 25 µm thick in the mouse (3) and
about 50-100 µm thick in humans (4, 5). Therefore, as we discuss
injury at serosal surfaces, it is important to note that the
mesothelium will rarely be injured in an isolated fashion. In
fact, serosal injuries will often compromise the tissues that are
covered by the mesothelium as well. These underlying tissues can
be vastly different such as:

- smooth-muscular wall of the intestines, urinary bladder, uterus,

- parenchymal tissue of heart, lung, liver, gallbladder, spleen
(only mouse), ovaries,
A B C

FIGURE 1 | Development of the intra-embryonic coelomic cavity. (A) Schematic cross section human embryo of 3 weeks age. The mesoderm shows a somatic
(dorsal) and splanchnic (ventral) aspect. (B) Cranio-caudal and latero-lateral folding in week 4. (C) After closure of the anterior abdominal wall the intra-embryonic
coelomic cavity is formed. Organs (e.g. gut) are suspended by dorsal and sometimes ventral (not shown) mesenteries carrying blood vessels and nerves.
FIGURE 2 | Microanatomy of mesothelial surfaces. (A, B) Cross sections of mouse abdominal wall stained with Hematoxylin & Eosin (A) and Masson’s trichrome
staining (B). Scale bars: 50 µm. (C) Illustration of the structures shown in (A, B). (D) Top view on mesothelial surface stained with anti-podoplanin antibody.
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- fat tissue of the omentum,

- striated muscle, fascia, and bone of the thoracoabdominal wall
and diaphragm,

- and connective tissues such as that of the pericardium.

Any experimental model system that studies serosal wound
repair, may invoke some underlying tissue-specific wound repair
mechanisms. This review is targeted at serosa specific mechanisms,
but we ask the reader to bear in mind that we use the generalization
“at serosal surfaces” inductively; some of the mechanisms discussed
here may apply only to specific locations within the coelomic cavity.
CELLS SUSPENDED IN
COELOMIC CAVITIES

The coelomic cavities are filled with fluid that suspend millions
of cells also referred to as coelomocytes. The coelomocyte
composition of mice and humans has been reviewed elsewhere
(6). Briefly, the human peritoneal cavity suspends a total of 107

leukocytes in 5-100ml of peritoneal fluid (6, 7). In mice, the
number of peritoneal leukocytes varies between strains from 3 to
5x106 cells (8). The pleuropericardial cavities contain 0.3-1x106

leukocytes per mouse (6, 9, 10). Most leukocytes in the peritoneal
cavity are lymphocytes (10-60%) and macrophages (40-60%) (8,
11–16). In addition, the peritoneal cavity contains dendritic cells
(2 – 6%) (12, 17), mast cells, eosinophils, neutrophils (0-31%),
innate lymphoid cells (ILCs) including natural killer cells and
mesothelial cells (14, 16) (Figure 3).

In terms of wound healing, the role of peritoneal macrophages is
best established. Macrophages make up 40-60% of all coelomocytes
in both mice and humans. Two major subpopulations of peritoneal
macrophages have been described (14). The small peritoneal
Frontiers in Immunology | www.frontiersin.org 3
macrophages (SPM) are monocyte-derived, constantly replenished
and can be recruited within hours in significant amounts (14). At
baseline, they account for about 5% of all immune cells or about
10% of all macrophages (14, 18). The majority (90%) of peritoneal
macrophages belong to a distinct tissue-residential macrophage
population. Since these resident cells are slightly larger than their
monocyte-derived sisters, they are also referred to as large peritoneal
macrophages (14). The large peritoneal macrophages (LPM) are a
self-renewing population characterized by the expression of CD102
(Icam2), high levels of F4/80 and the transcription factor GATA6
(19–22). GATA6+ LPM seem to be well conserved when comparing
the different coelomic cavities of mice and human (23–25).
Canonically, these GATA6+ cavity macrophages are thought to
clear bacteria by phagocytosis (14, 26) and also by inducing intra-
abdominal formation offibrin clots that immobilize bacteria (21). In
primordial species such as the purple sea urchin (Strongylocentrotus
purpuratus), coelomocytes are also crucial for tissue repair, in
addition to clearing toxins and pathogens (27–30). The
importance of GATA6+ cavity macrophages in damage
recognition and tissue repair will be discussed in detail.
DAMAGE RECOGNITION
AND INFLAMMATION

Wound repair at large starts with inflammation. Inflammation is
induced when a significant deviation from homeostasis is detected.
According to the current paradigm, such a deviation could be the
presence of microbes (infection) or damaged tissue (injury). The
innate immune system has developed an effective arsenal of
surveillance cells that constantly probe their microenvironment
for deviations from homeostasis. On a molecular level, deviation
from homeostasis is defined by the occurrence of pre-specified
A B

FIGURE 3 | Cells in a mouse coelomic cavity. (A, B) Peritoneal cavity lavage of healthy C57Bl/6 mice. Dimensionality reduction dimension 1 (umap1) and 2 (umap2)
of myeloid lineage markers (mass cytometry) are plotted on x- and y-axis, respectively. Dots (cells) are colored by cluster (A) or marker (B). Data with kindly
permission from M. Dosch and G. Beldi.
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molecular patterns. Immunostimulatory molecular patterns that
induce inflammation in case of sterile injury, i.e., in the absence of
pathogens and their products, have been termed damage associated
molecular patterns (DAMPs). DAMPs have been extensively
reviewed elsewhere (31). In brief, DAMPs comprise different
molecules that are not normally present outside of cells such as
double stranded DNA, nuclear proteins, mitochondrial DNA,
mitochondrial proteins, and molecules with high cytosolic
concentrations such as ATP or K+ Ions. In addition, damaged
cells may induce the production and release of additional DAMPs
(iDAMPs) such as heat shock proteins, defensins, galactins and
interleukin 1 (IL-1). Furthermore, if proteins that are constitutively
present in the extracellular space such as hyaluronan, biglycan,
heperansulfate and other extracellular matrix (ECM) components
are modified by injuries, they can also become DAMPs. Under
homeostatic conditions, the serosal surfaces are covered with
glycoconjugates such as sialomucins, hyaluronic acid, and
glycoproteins like fibronectin (32–35). These molecules contain
large anionic sites that cover the serosal surfaces with a negatively
charged coat—also referred to as the glycocalyx—that may help to
repulse invading microbes (32) and ensure friction-less movement
of intra-coelomic organs (35). The loss of this negatively charged
coating due to serosal injury, may serve as mesothelium-specific
DAMP or “touch me signal” (36).

Molecules that allow eukaryotic cells to detect the presence of
DAMPs have been termed pattern recognition receptors (PRR).
The expression of PRR such as toll-like receptors 1 through 6
(TLR-1-6), nucleotide-binding oligomerization domain (Nod)-1
and Nod-2 and advanced glycation end product (AGE)
receptors, has been demonstrated for murine and human
mesothelial cells (37). Upon activation, mesothelial cells release
cytokines and inflammatory mediators such as chemokine (C–C
motif) ligand 2 (CCL2), CCL5, (C–X–C motif) ligand 8
(CXCL8), and nitric oxide (38, 39). Furthermore, mesothelial
cells upregulate adhesion molecules that presumably facilitate
the migration of inflammatory leukocytes across and along
serosal surfaces. These include intercellular adhesion molecule-
1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1),
E-cadherin, N-cadherin, CD29 and CD44 (38, 40–42). It is
important to note that cellular adhesion molecules expressed
by mesothelial cells play a dual role in serosal wound repair.
While an initial upregulation may facilitate leukocyte
recruitment, these molecules, especially E-cadherin, are
downregulated later during serosal wound repair. The latter is
associated with loss of mesothelial cohesion enabling the
mesothelium to switch to a more mesenchymal program, a
process that we will discuss in detail below. In addition,
mesothelial cells modulate inflammation by synthesis and
release of hyaluronan (43), which is able to sequester free
radicals and initiate tissue repair responses (38).

In vivo, the initiation of inflammation at serosal surfaces does
not rely on mesothelial cells alone but on a series of events. These
comprise specialized cellular and humoral immune mechanisms
such as leukocyte recruitment, complement activation and
production of natural antibodies. In the rest of this chapter, we
will discuss these elements one by one.
Frontiers in Immunology | www.frontiersin.org 4
Mesothelial Damage Is First Recognized
by Cavity Macrophages
Recent advances in intravital microscopy have allowed to
characterize the sequence of cells recruited to mesothelial
injuries. By using resonant-scanners, multi-photon excitation,
and extremely sensitive hybrid detection systems it became
possible to image the peritoneal cavity through the intact
abdominal wall under real-life conditions (21, 44). Second,
multi-photon imaging allows the use of near-infrared
microscopy lasers to induce focal thermal injuries during
intravital microscopy with high precision (44–46). By combining
intravital microscopy of the abdominal cavity with peritoneal laser
injuries, we were able to image cellular recruitment to mesothelial
injuries. Surprisingly, the first GATA6+ cavity macrophages
attached at the injuries within only a few seconds and the
macrophages completely covered the lesions after 15 minutes of
imaging (44). The recruitment of cavity macrophages to
mesothelial injury was significantly faster than that of
neutrophils, which needed much longer (> 40 minutes) (44).
Cavity macrophages were present in the peritoneal fluid in vast
numbers and traversed the peritoneal cavity in a seemingly
random fashion within respiration-dependent movement of
peritoneal cavity content (44). The observations that these cells
seemed to rely on passive transportation by peritoneal fluid, and
that they—upon contact with cell already adhering to the injury—
were forming stable cell-cell aggregates were very reminiscent of
the platelet aggregation that took place when a nearby blood vessel
wall was damaged using laser injury. We concluded that cavity
macrophages randomly “patrol” the serosal surfaces in a platelet-
like fashion and rapidly form aggregates in response to DAMPs.
This is consistent with a previous electron microscopy study by
Haney showing that peritoneal macrophages invariably detected
and migrated to injuries of the peritoneal membrane (47). In
addition, Wang and Kubes showed that cavity macrophages were
able to detect mesothelial injuries of the liver capsule and migrated
to the injured liver (36). On a molecular level, this interaction
occurred independent of integrins or selectins, instead peritoneal
macrophages relied on different receptor molecules such as
macrophage receptor with collagenous structure (MARCO),
Macrophage scavenger receptor 1 (MSR1), CD44, and
purinergic receptor P2X7. The respective DAMPs recognized by
CD44 and P2X7 are hyaluronan and ATP respectively (36). The
ligands that mediate MARCO and Msr1 dependent macrophage
aggregation are yet to be identified (44).

The function of peritoneal macrophages in sterile injury is multi-
facetted. Current models indicate that ligation of DAMPs to PRR on
macrophages leads to their inflammatory polarization—also
referred to as M1 polarization. This activation would result in the
production of pro-inflammatory cytokines such as tumor necrosis
factor (TNF) and IL-1 (31, 48). However, peritoneal macrophages
recruited to sterile liver injury were shown to skew their phenotype
towards alternative or repair polarization—also referred to as M2
macrophages—increasing their expression of CD273, CD206 and
Arginase 1 (36). Interestingly, Uderhardt et al. recently investigated
the resident tissue macrophages of the muscular abdominal wall.
The abdominal wall macrophages are distinct from the peritoneal
May 2021 | Volume 12 | Article 684967
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cavity macrophages suspended in the peritoneal cavity. They
proposed that abdominal wall macrophages can extend their
pseudopods toward local injury sites within a radius of 100-
150µm. In their study, resident tissue macrophages were able to
completely enclose lesions if their size was below a certain threshold
(microlesions). This—as the authors termed it—cloaking
mechanism, was able to block scouting neutrophils from
interacting with DAMPs and thus prevented subsequent
neutrophil driven inflammation and tissue destruction (45). The
cloaking mechanism was described for tissue resident macrophages
in the muscular abdominal wall, i.e., on the far side of the
mesothelium with respect to the coelomic cavity. It needs to be
determined whether scavenger receptor mediated macrophage
aggregation on the coelomic site of the mesothelium causes
inflammation or whether aggregation of cavity macrophages
serves to contain injuries and is therefore—in essence—anti-
inflammatory. Ultimately, aggregation of peritoneal cavity
macrophages in response to mesothelial injuries was shown to
improve tissue repair (36, 44, 47).

Cavity Macrophage
Disappearance Reaction
Aggregation of peritoneal macrophages causes their number in
the peritoneal lavage to drop. The decrease in their number was
correlated with the injury size (44). With larger injuries of the
mesothelium, such as a surgical laparotomy, the number of
GATA6+ cavity macrophages in the peritoneal lavage was
reduced to zero (44). In other words, these cells disappeared
from the peritoneal fluid (lavage). However, this was not the first
time, the sudden absence of macrophages was observed. In fact,
over half a century ago, Nelson and Boyden described a sharp
decline of macrophage count in peritoneal exudates in response
to a hypersensitivity reaction to tuberculin in Bacille Calmette-
Guérin (BCG)-vaccinated guinea pigs. They termed this the
“macrophage disappearance reaction” (MDR) (49). Since then,
various insults (sterile and microbial) to the peritoneal
compartment have been found to induce the MDR (Table 1).

These studies indicate that theMDR is not a specific reaction but
arguably follows any inflammatory challenge to the peritoneal
compartment. While some reports indicate that peritoneal
macrophages can leave the peritoneal cavity through the draining
lymphatics (52, 60, 64), most of the more recent reports suggest that
peritoneal macrophages have the tendency to adhere to each other
(aggregate) as well as to the mesothelium in response to challenge
(Table 1). Therefore, the loss of dispersion and cellular aggregation
are a commonality among the different models of MDR. The MDR
correlates with increased inflammatory cytokine levels in the
peritoneal fluid and the influx of pro-inflammatory leukocytes
such as monocytes, eosinophils, and neutrophils into the
peritoneal compartment (21, 59). Cailhier et al. used CD11b
driven diphtheria toxin receptor and low dose intraperitoneal
injections of diphtheria toxin to selectively deplete resident
peritoneal macrophages. In an experimental peritonitis model,
this resulted in a significant decrease of inflammation (infiltration
of neutrophils) that could be restored by the adoptive transfer of
resident, non-transgenic, peritoneal macrophages (65). These data
Frontiers in Immunology | www.frontiersin.org 5
indicate that the aggregation of cavity macrophages in response to a
strong stimulus, such as peritonitis, causes inflammation. However,
in the case of smaller insults such as focal injuries or localized
microbial challenges, MDR may compartmentalize the insult, in
analogy to the cloaking mechanism described for macrophages of
the muscular abdominal wall (45). Along those lines, complete
MDR could be interpreted as a threshold above which all
macrophages have been “used up” indicating that the attempt at
cloaking the insult has failed, which in turn results in inflammation.
Either way, it would be important to study the largely unknown
(intracellular) changes in macrophages undergoing a disappearance
reaction in sterile and microbial models.

Dendritic Cells and Mast Cells
The peritoneal cavity harbors CD11c+ dendritic cells as well as
cKit+ mast cells both of which are canonical initiators of
inflammation. Their role as antigen presenting cells and
inducers of inflammation in response to bacterial infection is
well documented. In fact, CD11c+ dendritic cells are required for
survival in murine polymicrobial peritoneal sepsis (66). In
addition to pathogen-derived ligands for PRR, several DAMPs
have been shown to interact with dendritic cells and dramatically
affect their function (67, 68). Interestingly, the response of
dendritic cells to DAMPs is not always clear-cut, with different
responses depending on dendritic cell subtypes and location (67).
For example, activation of dendritic cells in sterile liver injury
leads to the secretion of anti-inflammatory cytokines such as IL-
10 and TGF-b (67) while similar injury models of kidney and gut
may lead to a pro-inflammatory response and secretion of IL-6,
IL-12 and TNF-a (67, 69). So far, the response of peritoneal
dendritic cells to serosal injury is not well understood and
requires further studies. Mast cells have traditionally been
studied in the context off helminthic infections and Ig-E
mediated reactions. It becomes clear, that mast cell
degranulation is also an important modulator of wound
healing of skin wounds (70) and lesions in the gastrointestinal
tract (71–73). Poerwosusanta et al. investigated the role of mast
cell degranulation in mesothelial injury. Mesothelial injury was
carried out by performing laparoscopic surgeries in rats at
different intra-abdominal inflation pressures (74). They showed
that an increased intraabdominal pressure—and presumably
increased stress to the mesothelium—led to an increased
number of mast cells that infiltrated the mesothelium. This
was correlated with increased mast cell degranulation. This
increased mast cell count is consistent with findings from skin
injury models and is due to chemokine-dependent mast cell
immigration rather than local proliferation. More detailed
investigation, e.g. based on intravital microscopy, could help to
elucidate whether mast cells are recruited to mesothelial injuries
by blood or directly from the peritoneal cavity.

Humoral Pattern Recognition Molecules
and Natural Antibodies
The fluid of the pleural and peritoneal cavity in mice and humans
not only contains cells but also large amounts of proteins of the
coagulation system and complement system as well as large
May 2021 | Volume 12 | Article 684967
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amounts of natural antibodies (75, 76). In the peritoneal and
pleural cavities, the complement proteins are produced by
mesothelial cells (75, 77). The complement system is an
ancient enzymatic cascade of proteins with the main function
of opsonization and lysis of bacteria (78). The alternative
pathway of the complement can be activated by injuries and in
the last decade a role of complement activation in wound healing
(79) and regeneration (80, 81) as well as morphogenetic and
developmental processes (82, 83) has been suggested.
Furthermore, some clinical studies have evaluated the role of
blood complement during major surgery and described a
Frontiers in Immunology | www.frontiersin.org 6
correlation of the invasiveness of the procedure with the
amount of complement used, indicating that sterile injury
leads to complement activation in humans (84). Inversely,
humoral molecules that are canonically associated with innate
immunity, have been shown to mediate tissue repair and regulate
fibrosis. For example, pentraxin 3 (PTX3) was shown to reduce
fibrin deposition and fibrosis in several wound models outside of
the peritoneal cavity. While to our knowledge, no humoral
molecule with anti-fibrotic properties has been described in the
peritoneal cavity, the discovery of such could have great
therapeutic potential (85–87).
TABLE 1 | Macrophage disappearance reaction (MDR). Studies describing MDR from 1963 until now.

MDR Trigger (dose) Time between trigger and
complete MDR

Postulated fate of disappeared
macrophages

Molecular mechanism Reference

Sterile Models
Sterile mesothelial injury
(surgery, laser)

3h Form stable cell-cell aggregates that
cover injury and induce post-surgical
adhesions

Scavenger receptors, can be blocked with
Heparin and Poly-(I)

(44)

Sterile Brewer’s Thioglycollate 12-72h Macrophage cell death Not demonstrated (50–52)
Antigen, migration inhibitory
factor, viruses or tumor cells

1 to 96h Undergo activation during MDR in
delayed type hypersensitivity or acute
inflammatory reaction and then
reappear activated to regulate
responses toward pathogens or tumor
cells.

MDR Inhibited by Heparin, L-Fucose,
Hyaluronidase

(53)

Egg Antigen (10ug), purified
protein derivate (10ug)

5h Macrophage activation Desensitization suppress MDR, in
sensitized animals normal MDR

(54)

Tuberculin 2.5 - 6h Not demonstrated MDR completely inhibited by Heparin and
Warfarin

(49, 55)

Ova peptide (50ug) into mice
bearing antigen-primed T cells

5h Macrophage adhesion Suppressed in fibrinogen-
deficient mice, partially suppressed by
thrombin antagonist

(56)

Thrombin (20 Units) 1h -5h Macrophage adhesion MDR suppressed
in fibrinogen-deficient mice.

(56)

RGES Peptide 48h Macrophage bind the mesothelium
overlying draining lymphatics

Integrin-mediated mechanisms involving
VLA-4 and VLA-5 that can be blocked by
RGD (Arg-Gly-Asp peptides) and VLA-4
and VLA-5 blocking antibodies.

(57)

Microbes or microbial products
E. coli (5×107 UV-inactivated) 20d Do not undergo fas-mediated apoptosis No difference in fas-deficient mice. (58)
S. aureus 2h (2 × 107) Not demonstrated Not demonstrated (59)
Lipopolysaccharide 3h (10 µg)

5h (1 µg)
Accumulation in the omentum Macrophage interaction with mesothelial

cells, mainly of the omentum, was
proposed to be a key step in MDR.
Partially inhibited by refludan.

(19, 40,
56)

Zymosan 3-4h (1mg)
4h (0.5mg)
3d (10 µg)

Form large clots to trap
microorganisms; adherence with tissue
and drained to lymph node

MDR reversed completely with Heparin
and partially with Hirudin/loss Factor V
Expression/loss of Integrin activation
adaptor talin-1 Expression/TF deficiency

(21, 51,
60–62)

INF-g (100 U/mL) + LPS
(100ng/ml)

20h Binding to mesothelial cells Monocyte activated by in vitro exposure to
LPS and INF-Y bound with increased
efficiency to mesothelial cells

(40)

Synthethic Lipopetid
(Pam3CSK4)

12h Not demonstrated Not demonstrated (59)

Human studies
Bacterial peritonitis 1 day Shedding of surface CD206 Depletion of CD206+ LPM at day 1 of SPB

Peritonitis with normalization to steady
state after resolution of SPB

(63)

Liver cirrhosis associated
events (Bacterial peritonitis,
encephalopathy, death)

Not demonstrated Severity of liver disease and liver cirrhosis
are correlated with reduced numbers of
CrIghi macrophages. Human CrIghi

macrophages were transcriptionally similar
to mouse F4/80hi peritoneal macrophages.

(25)
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Like complement factors, natural antibodies are abundant in
the coelomic cavity fluids and are primarily thought to combat
microbes by recognizing a wide variety of different microbial
antigen patterns (88). The peritoneal natural antibodies are
mainly produced by self-replenishing peritoneal B1 cells in an
antigen-independent manner (89). The repertoire of natural
antibodies also enables recognition of self-antigens such as
phosphorylcholine, phosphatidylcholine and carbohydrate
determinants. Furthermore, natural antibodies have been
shown to sense apoptotic cells (88) and electronegative
DAMPs (90). In addition, natural antibodies were able to
accelerate wound healing by recruiting additional wound
macrophages (91). Along those lines, Grönwall et al. postulate
that natural IgM antibodies are part of a synapse between an
apoptotic cell (that binds IgM) and the phagocyte. This synapse
is mediated by complement and complement receptors
expressed by phagocytes (92). There is increased interest in
studying the role of natural IgM, and IgM-dependent,
complement-mediated phagocytosis in several disease models
(93–95). Although available data is limited, it is conceivable that
complement and natural antibodies of body cavities play an
important a role in wound repair at serosal surfaces.
BOX 1 | Perspective.

We find it intriguing that fibrin clots after surgery are not focally limited to sites of
injury but seem to be formed at distant sites as well while other regions of the
peritoneal cavity appear to be protected. During sepsis, spontaneous
disseminated intravascular coagulation (DIC) is a major clinical problem. The
distribution of fibrin clot deposits during DIC is poorly understood. Interestingly,
the response of mesothelium and endothelium to inflammation share certain
similarities and both lead to the spontaneous formation of disseminated fibrin
clots. Studying the analogy between these two pathologies, that both involve an
epithelial-like monolayer of mesodermal origin, may lead to the identification of
common patterns andmolecules governing the respective phenomena of DIC and
peritoneal adhesions.
COAGULATION AND FIBRIN DEPOSITION

It is widely accepted that inflammation of the peritoneal, pleural,
or pericardial compartment, is associated with fibrin exudates.
After mesothelial injury, the resulting inflammation as well as the
injury itself, lead to the activation of tissue factor pathway and
the inhibition of the antithrombin-III (AT-III) pathway (96).
This is followed by the spontaneous cleavage of fibrinogen and
cross-linking offibrin. In addition to inflammation, injury causes
the destruction of and consequent leakage from blood vessels of
the abdominal wall. Extravasation of blood results in the
activation of the canonical coagulation cascade which further
enhances the deposition of fibrin (96). In vivo, the deposition of
fibrin is limited at serosal surfaces by activated plasmin which
continuously degrades fibrin. Plasmin levels are regulated by
plasminogen activators tPA and uPA and their respective
plasminogen activator inhibitors 1 and 2 (PAI 1, PAI 2) (96).
Homeostatic mesothelial cells produce large amounts of Plasmin,
uPA and tPA and low amounts of PAI1 and PAI2. Therefore, the
deposition of fibrin at serosal surfaces is tightly controlled.
During inflammation however, the mesothelial production of
PAI1 and PAI2 is significantly increased resulting in a
mesothelial program switch from fibrinolytic towards anti-
fibrinolytic state, resulting in the visible deposition of fibrinous
exudates (96).

The formation of a stable fibrin clot—also referred to as fibrin
matrix or cross-linked fibrin—serves as the scaffold for the
subsequent wound repair (granulation) tissue. This includes
the infiltration of leukocytes and mesenchymal precursors and
results in the deposition of ECM, ingrowth of vessels and nerves
and finally, the re-mesothelialization of the injured serosa. If
these fibrin clots grow too large, they can be the starting point for
Frontiers in Immunology | www.frontiersin.org 7
an abdominal adhesion, a pathology we will discuss in more
detail below. See the Perspective Box 1 speculating on parallels
between vascular and mesothelial coagulation control.
RECRUITMENT OF NEUTROPHILS
AND MONOCYTES

We discovered that the first cells recruited to mesothelial injuries are
the peritoneal cavity macrophages (44). These cells reside suspended
in the peritoneal fluid (19) and are recruited directly from their
suspensive state to the mesothelium in case of injury. This
comprises a special case of leukocyte recruitment that is unique to
coelomic cavities. The canonical route of leukocyte recruitment is
from the blood stream. The processes of leukocytes leaving the
blood stream have been referred to as leukocyte adhesion cascade
and trans-endothelial migration. The underlying mechanisms have
been revisited and reviewed most comprehensively by Nourshargh
et al. (97, 98). In perfused organs such as muscle or liver, neutrophils
are recruited within 30 minutes to the inflammatory site from the
bloodstream (46, 99). In the mesothelium, neutrophils are the first
cells that arrive after peritoneal macrophages, after about 40-60
minutes (44). In response to focal sterile injuries, neutrophils show
an extremely high degree of coordination. While intravascular
chemokine gradient seems to be very important for successful
directional migration over the initial distance within the vessel
(31, 99), different molecules are the most potent chemotactic stimuli
once the neutrophils are close to the wound (31, 99, 100). This has
been demonstrated for molecules such as N-formyl peptides, ATP,
and leukotriene B4 (LTB4) and their respective receptors on
neutrophils called formyl peptide receptor, P2Y2 receptor and
LTB4 receptor (31, 46, 99–102). These so-called gradients and
autocrine feedback loops (LTB4) have been established for solid
organs such as the liver or muscle. Whether neutrophils rely on
similar mechanism to reach serosal surfaces has not been
demonstrated yet but the technical advances of the last years will
now allow us to address these questions using intravital microscopy.

Although the canonical role of neutrophils is to clear
microbes, several reports suggest that they are imperative for
timely restoration of tissue architecture after sterile injury by
clearing necrotic material (99) and producing growth factors
such as transforming growth factor b (TGF-b) and vascular
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endothelial growth factor (VEGF) (103–105). Furthermore, once
neutrophils have cleared all necrotic tissue, they starve each other of
DAMPs. This leads to neutrophils becoming apoptotic and cleared
by macrophages, which is another critical step for tissue repair as it
enables macrophages within the wound to switch from an
inflammatory to an anti-inflammatory, pro-resolution program
(99, 103, 106). In this environment, pro-resolution macrophages
and neutrophils start to produce factors that inhibit the recruitment
of additional neutrophils and enhance pro-resolution properties of
macrophages. These factors include lipoxin A4, resolvins, protectins
(107), phosphatidylserine containing microvesicles shed by
neutrophils, chemokine sequestration through CCR5 modulation
by neutrophils (108), Annexin A1 released from neutrophil granules
or in microvesicles (109) and IL-10 (110). Taken together,
neutrophils play an important role in clearing debris and setting
up a pro-resolution environment.

The second major leukocyte population recruited to
mesothelial injuries comprises inflammatory monocytes and
monocyte-derived macrophages. It is generally accepted that the
recruitment of neutrophils precedes the recruitment of monocytes
in sterile injury (31, 111) but it remains controversial whether
neutrophils recruitment is a necessary prerequisite for subsequent
monocyte recruitment (112, 113). Rather than being pre-
determined, the fate of recruited monocytes appears to be
largely dependent on the environment (62). In the context of
sterile injury repair, monocytes have been shown to differentiate
into mature macrophages at the site of injury. This process has
been reviewed before (114). In brief, Ly6Chi monocytes are
recruited to the wound, where they gradually differentiate into
Ly6Clow macrophages. One of the molecules necessary for this
conversion is nuclear receptor subfamily 4, group a, member 1
(Nr4a1) (115). In the peritoneal cavity, the influx of inflammatory
monocytes due to injury or infection, correlates with the increase
of MHCII+ CD102- GATA6- macrophages (26). These are also
referred to as small peritoneal macrophages or bone marrow
derived macrophages (14, 26). In the peritoneal cavity, PAI-1
and CCL1 were shown to recruit macrophages to the wound
involving the receptor molecules CD11b and CCR8 respectively
(116, 117). Depletion of macrophages using clodronate-loaded
liposomes or genetic constructs results in decreased wound
healing of sterile injuries of serosal surfaces of the liver and
abdominal wall (36, 44). However, novel experimental strategies
will be necessary to experimentally isolate the role of recruited
macrophages compared to that of the resident GATA6+
macrophages in mesothelial wound healing. Furthermore,
monocyte-derived macrophages have been shown to replenish
the resident GATA6+ macrophages. This process is dependent on
the transcription factor IRF4 (118). The degree of this replacement
strongly depends on the degree of initial macrophage
disappearance (50, 62). Taken together, this suggests a dual role
of infiltrating monocytes in wound repair: they act as precursors of
bone-marrow derived macrophages that are directly needed in
wound repair, and they can serve to replace the GATA6+
resident macrophages.

Neutrophils and monocytes are not only recruited into the
abdominal wall (45) but they are also recruited into the
Frontiers in Immunology | www.frontiersin.org 8
peritoneal cavity fluid. In fact, within a few hours after
extensive mesothelial injury (surgery), large numbers of Gr1+
cells (neutrophils) and monocyte derived macrophages were
recruited into the peritoneal cavity (119). This is consistent
with observations in humans undergoing surgery where
billions of neutrophils and monocytes can be isolated from the
peritoneal fluid. This recruitment was proposed to be driven by
chemokines such as MCP-1 and CXCL1 that were released into
the peritoneal cavity by mesothelial cells in response to injury
(119, 120). It is not known what molecules and mechanisms
govern the migration of leukocytes from the interstitium, into the
peritoneal fluid, where these cells adopt a planktonic form once
again. Further, it would be interesting to investigate the
migratory patterns of neutrophils and monocytes after they
have reached their suspended state in the peritoneal cavity.
SEROSAL (MESOTHELIAL) REPAIR

So far, we have seen how a mesothelial injury leads to
inflammation with the consecutive deposition of a fibrin
matrix and infiltration of immune cells. Normal serosal repair
is achieved when a) the underlying organ is repaired, b) the sub-
mesothelial connective tissue layer is restored to its original
composition and thickness and c) the integrity of the
mesothelial membrane is reconstituted (31, 121, 122). The
central role of the mesothelium in tissue repair and fibrosis has
been revisited and comprehensively summarized (38).

The mesothelium is a slowly renewing tissue with less than 1%
of cells undergoing mitosis at any time (123). After mesothelial
injury, activated macrophages induce a pronounced proliferative
expansion of the mesothelial compartment (124, 125). Genetic
lineage tracing of mesothelial cells in several injury and disease
models indicate that regenerating mesothelium originates from
healthy mesothelium rather than submesothelial cells (126–128).
Small focal mesothelial injuries that were induced using thermal
probes on the liver capsule and abdominal wall, healed completely
without any visible defect left after days (36, 44). Because repair of
mesothelial defects is largely independent of the defect size,
investigators have proposed that mesothelial cells not only crawl
into the wound from the borders, but also detach from opposing
surfaces and distant sites and migrate in a free-floating state
through the coelomic cavity until they settle on the wound (125,
129, 130). This is further supported by the fact that adoptively
transferred mesothelial cells improve mesothelial repair in the
recipient (130). The response of mesothelial cells to injury can be
summarized as proliferation, loss of epithelial cohesion and
migration. These phenotypic changes are reminiscent of other
serosal surfaces that undergo epithelial-to-mesenchymal transition
(EMT). In analogy, this reaction has been termed mesothelial-to-
mesenchymal transition (MMT) (131, 132). On a molecular level,
MMT involves the downregulation of epithelial junctional
proteins such as E-cadherin and the upregulation of
mesenchymal marker a-smooth muscle actin (a-SMA) and
production of ECM (133, 134). These changes correlate with an
upregulation of transcription factors canonically associated with
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EMT such as SNAI1, SNAI2, ZEB1, ZEB2, Twist1 (38) and can be
induced by exposing mesothelial cells to TGF-b1, hepatocyte
growth factor, platelet derived growth factor and IL-1b (38). We
will next discuss how mesothelial repair can become defective.
POST-SURGICAL ADHESIONS

Surgeries within body cavities such as the abdominal cavity are often
lifesaving procedures. Following surgical trauma, mesothelial repair
can lead to a restitution of serosal surfaces at integrum. However, in
some patients, the healing process is disrupted, leading to a fibrotic
complication called post-surgical adhesions. Adhesions are fibrous
bridges of various thickness and length containing blood vessels and
nerve tissue (135, 136). Adhesions can also be caused by infection
but today, surgeries comprise by far the most common cause of
mesothelial injury leading to adhesions (96, 135). In the peritoneal
cavity, adhesions result in considerable morbidity as they impair the
free movement of organs. These problems include potentially life-
threatening intestinal occlusions, secondary infertility in women,
and chronic post-operative abdominal pain (96, 137, 138).
Peritoneal adhesions were described for the first time in 1836 in a
post-mortem examination of a patient that had died from peritoneal
tuberculosis (139). It was then suggested in 1849 that these
abnormal structures originate from lymphatic vessels that turn
into fibrinous adhesions (135, 139, 140). Despite tremendous
scientific advances since 1849 including the execution of many
clinical and experimental studies on adhesions, understanding of
their pathogenesis has not evolved enough to develop effective
therapies. To date, few research and development resources are
dedicated towards resolving this significant health problem. The
process of adhesion formation largely depends on the same
mechanisms as “normal” mesothelial repair: Healing is initiated
by damage recognition, inflammation, and coagulation. These steps
lead to the recruitment of leukocytes and the deposition of fibrin.
Then, the stable fibrin matrix (fibrin clot) is infiltrated by
myofibroblasts that start to deposit ECM proteins such as collagen.

The problem with adhesions is that wound healing occurs at
sites it should not (96). The classical paradigm of adhesion
formation states that if serosal surfaces cannot re-establish
homeostatic fibrinolysis soon after injury, excessive amounts of
fibrin are deposited. We have discussed that macrophage
aggregation accompanies fibrin deposition after sterile injury at
serosal surfaces (3). Macrophage-fibrin deposits serve as the
basic scaffold for tissue repair. Clots that span the space
between opposing serosal surfaces are dangerous because they
can be converted into scars that permanently link these surfaces
called adhesions. We will now discuss the events taking place in
more detail and highlight the respective therapeutic
considerations for each (Figure 4).

Macrophage Aggregation and Fibrin
Clot Formation
The idea that mesothelial loss of baseline fibrinolytic activity after
surgical trauma may cause adhesions has been the subject of
various animal models (96). Interestingly, hypofibrinolytic fibrin
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deposition led to adhesion formation in many different injury
models and different species (96) and became generally accepted
as the “classical concept of adhesion formation” (96). We have
seen that an exuberant inflammatory response induced by
peritoneal injury or infection promotes an increased
procoagulatory and antifibrinolytic reaction. On a molecular
level, inflammatory mediators increase the expression of tissue
factor (TF) and PAI-1 and decreases the expression of tPA in
mesothelial cells resulting in increased fibrin deposition (96). This
mechanism was confirmed in peritoneal biopsies of inflamed
peritoneum of humans that underwent surgery. The reduction
of fibrinolytic activity during inflammation was mediated by PAI-
1 (96). Importantly, a prospective study in humans showed that
PAI-1 concentrations in peritoneal fluid were correlated with the
occurrence of adhesions after 8 days (96). Strategies to prevent
postoperative adhesion target the dysregulated fibrin clot
deposition by either inhibiting coagulation, increasing
fibrinolytic activity, or reducing inflammation.

Administration of fibrinolytic (tPA) or anticoagulant agents
(Heparin) significantly reduced adhesions in different animal
models (38, 96, 141–144). However, the only study in humans
that enrolled 102 patients, was unable to confirm this effect. In
this study 5000 I.U. of heparin were diluted in saline and used to
wash the peritoneal cavity. The patients in this study then
underwent a second operation (laparoscopy) 12 days after the
first, to obtain adhesion scores (145). The heparin dose that was
effectively administered in these patients was not reported but it
must have been extremely low as most heparin containing lavage
solution was removed after a few minutes. Based on titration
studies in an animal models, the threshold dose for significant
anti-adhesion effect was (without occurrence of bleeding after
two days) 7.5x10 U/kg/day, which is equivalent to 5250 I.U/day
for a person weighting 70kg (142). Therefore, low heparin dose
or low heparin concentration may be the reason no effect on
adhesion formation was observed in the Jansen study. Further
studies would be necessary. However, whether the current
evidence justifies a human trial testing high dose heparin in
major abdominal surgery remains to be discussed.

Others have tried to use anti-inflammatory agents to restore
mesothelial fibrinolytic activity. Cyclo-oxygenase inhibitors and
steroids were tested in animal models (146–148) with no
resounding success. Experimental animal models demonstrate
potent prevention of postoperative adhesion following
intraperitoneal application of HMG-CoA reductase inhibitors
(statins) (149). HMG-CoA reductase inhibitors stimulate
fibrinolytic activity in human peritoneal mesothelial cell cultures
(150) and exert anti-inflammatory functions (151). In experimental
animal models amelioration of adhesion after administration of
intraperitoneal acylated ghrelin, a 28-amino acid gastric peptide
with anti-fibrotic and anti-inflammatory properties, was
demonstrated. The adhesion prevention by ghrelin application
was modulated via blockage of the TGF-b signaling pathway (152).

Extending on this classical paradigm we have recently
proposed yet another factor in adhesion formation: that of
peritoneal macrophage aggregation. We showed that in
macrophage aggregation to focal peritoneal injuries was tightly
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regulated with just enough cells aggregated to seal the defect.
However, in response to large peritoneal injuries, such as
abdominal surgeries, the aggregation of these macrophages was
dysregulated, resulting in the formation of large super aggregates
that started to join mesothelial surfaces. We found that this
process was dependent on scavenger receptors MARCO and
MSR1. Depleting peritoneal cavity macrophages or inhibiting
their aggregation significantly reduced the amount and severity
of adhesions in amouse model.We therefore propose an adaptation
of the classical paradigm to include peritoneal macrophage
aggregation as an additional event (Figure 4). Before we discuss
the later events in adhesion formation such as fibrotic conversion
and remodeling, we would like to note that the early process of
adhesion formation such as mesothelial inflammation (chapter 3),
macrophage aggregation (chapter 3) and coagulation (chapter 4) are
tightly linked. We have discussed how inflammation directly affects
coagulation. Inversely, coagulation provides a positive feedback to
the mesothelium further increasing inflammation. For example,
activation of proteinase-activated receptor-2 (PAR2) on mesothelial
cells results in increased MIP-2 production and consecutive
neutrophil infiltration (153). Furthermore, peritoneal cavity
macrophages were shown to produce coagulation factors (21, 23,
154) and Factor V produced by peritoneal macrophages was shown
to be essential for the clotting of peritoneal fluid in response to
bacteria (21). Inversely, they showed that macrophage aggregation
(disappearance) was partially dependent on coagulation factors. In
other models such as laser-induced sterile mesothelial injury, the
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aggregation of macrophages was largely independent of fibrin
crosslinking and macrophages showed the ability to aggregate ex
vivo without addition of fibrin (44). Taken together, mesothelial
inflammation, macrophage aggregation, and coagulation, can act
cooperatively but do not necessarily depend on each other. The
relative contribution of each of these three processes likely depends
on the type (sterile, microbial, combined) and strength of the insult
as well as on local shear (3), which in turn is largely dependent on
patient movement and post-surgical intestinal paralysis (Figure 5).

Fibrotic Conversion
Alpha smooth muscle actin (a-SMA) positive myofibroblasts are
considered the main collagen-producing cell in wound healing
and many fibrotic diseases (155–157). The question of the origin
of a-SMA positive myofibroblasts in adhesions has been a matter
of debate. Myofibroblasts in adhesions were believed to be either
derived from the mesothelium or alternatively derived from sub-
mesothelial cells (126). Recently, Fischer at al. used a genetic fate
mapping to permanently and selectively label cells expressing
protein c receptor gene (ProcrCreERT x Rosa26tdTomato).
Tamoxifen administration in these reporter mice resulted in the
selective and permanent labelling of approximately 50% of all
mesothelial cells but not submesothelial cells (127). Using this
approach, they were able to show that the majority of platelet
derived growth factor receptor a positive (PDGFRa+)
myofibroblasts in adhesions were of mesothelial origin (127).
This is in line with older studies that relied on non-genetic
A B
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FIGURE 4 | Post-surgical adhesion formation. (A) Overview of the peritoneal cavity before surgery. (B) Non-focal mesothelial injury such as major abdominal surgery
leads to the uncontrolled aggregation of peritoneal macrophages serving as the nidus for the (C) subsequent Fibrin clot deposition. Inflammation and Coagulation
inter-dependently promote the deposition of fibrin (see text). (D) Overview during or after adhesion formation. The abdominal organs (e.g., intestine) are now attached
to the abdominal wall at anatomic (mesentery) and non-anatomic (adhesion) locations. (E) Mesothelial to mesenchymal transition gives rise to myofibroblasts that
migrate into the wound and into the fibrin clot where they start to deposit extracellular matrix (ECM) such as collagen. (F) Adhesion formation is completed when the
scar tissue is covered with mesothelium. The lesion may become fully perfused and pain-sensitive by ingrowth of blood vessels and nerves.
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lineage tracing methods such as cell tracker dyes or lineage
markers to infer on source of myofibroblasts in adhesions (122,
158, 159). Taken together these data suggest that mesothelial to
mesenchymal transition (MMT) is the major source of
myofibroblasts in adhesion pathogenesis. On a molecular level,
MMT in adhesion formation relies on the same pathways as
mesothelial repair (159). In fact, administration of TGF-b blocking
peptide P144 resulted in a significant reduction of adhesions in an
experimental mouse model (159). This was associated with a
reduced expression of MMT markers such as Snail, a-SMA and
Collagen I in P144 treated mice (159). In addition, the exposure of
mesothelial cells to cyclic mechanical forces was shown to increase
MMT in experimental murine and human models. Biomechanical
induction of MMT cooperates with biochemical signals such as
TGF-b and seemed to be regulated by caveolin-1, a plasma
membrane mechanotransducer (160). Interestingly, MMT-cells
in adhesions also express many markers that are found in the
mesothelium during embryonic development but not within the
adult mesothelium. These markers, includingMesothelin (MSLN),
Uroplakin-1B and Wilms-tumor 1 (WT1), were upregulated in
adhesions indicating that adult mesothelial cells can repurpose
aspects of fetal development (158). Depletion of mesothelial cells
results in a complete reduction of adhesions (127). However,
totally depleting the peritoneal cavity of potential myofibroblasts
may compromise wound healing too much for use in the clinic.
Strategies that inhibit MMT in adhesions but leave mesothelial
repair intact need to be developed.

Remodeling
After fibrotic conversion, adhesions are considered irreversible
and redundant scar bands. Furthermore, animal, and human
studies demonstrated the ingrowth of nerves and vessels into
adhesions. In a murine model, nerve fibers in abdominal
adhesions were detected already two weeks after surgery and 4
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weeks post-surgery the nerve fibers were traversing the whole
adhesion from coecum to abdominal wall (161). Human
peritoneal adhesion specimens collected during surgery from
25 patients contained invariably sensory nerves (162). The
sensory innervation could partially explain the chronic pain a
lot of patients with adhesions experience. Animal studies
revealed blood vessels in adhesions already 6 hours after injury
(163). This process of remodeling from connective tissue to fully
innervated and vasculated tissue might be modulated.

The nerve fibers in adhesions were often associated with blood
vessels indicating angiogenesis could play a key part in regulating
ingrowth of nerves into adhesions (162, 164). Local production of
VEGF by mesothelial cells appears to play a central role in the
process leading to peritoneal angiogenesis (165). In different
murine models, postsurgical adhesion formation was reduced by
inhibition of VEGF suggesting adhesion formation is
angiogenesis-dependent (166, 167). In a human study including
adhesions samples from patients years after first surgery,
adhesions expressing VEGF A and its receptor showed
significantly higher numbers of immature vessels suggesting
ongoing angiogenesis in mature adhesions (163). In addition to
angiogenesis, modulation of the ECM by matrix metallo-
proteinases (MMPs) takes place. MMPs are proteolytic enzymes
involved in degradation of ECM, their activity is opposed by
tissue-derived inhibitors of MMPs (TIMPs) (168). The expression
of both VEGF and MMPs is upregulated during MMT (131). In a
human study, peritoneal samples were collected during initial
laparoscopy and during a second-look laparoscopy 48 hours later.
Patients with pelvic adhesions exhibited significantly lower
amounts of MMP-9 concentrations and significantly higher
MMP-9/TIMP-1 ratios when compared with controls (169). In
peritoneal fluid of patients with excessive adhesions, higher TIMP-
1 levels could be demonstrated compared with those of patients
without adhesions (170). Mice treated with instillation of
FIGURE 5 | Factors influencing adhesion formation. Proposed concept of early local determinants that influence the binary outcome of adhesion formation and may
be exploited therapeutically. tPA, tissue plasminogen activator; uPA, urokinase-type plasminogen activator; PAI, Plasminogen activator inhibitor.
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adenovirus vector encoding mutant MMP-9 gene at the time of
peritoneal injury showed a reduced of severity of de novo
adhesions (168). It remains unclear whether adhesion keep their
capacity for remodeling and thus have the potential to
spontaneously resolve, or whether adhesions are an irreversibly
fixed pathology once they have developed.
CONCLUDING REMARKS

We have discussed how mesothelial repair works for small
injuries and how it can go wrong and result in peritoneal
adhesions. It is important to note that mesothelial repair plays
an important role in other fibrotic disorders in proximity to
serosal surfaces. These disorders include the fibrotic thickening
of the peritoneum (peritoneal fibrosis or encapsulating
peritoneal sclerosis) and the pleura (pleural fibrosis). A
number of studies have also demonstrated that mesothelial
cells play also an important role in fibrotic diseases of the liver
(128) and lung (38, 171–173). This is not surprising, since both,
the liver and the lungs are covered with visceral mesothelium. In
these disorders the mesothelial cell plays an important role and
similar mechanisms are at play. Overall, there are many
questions that need to be addressed to improve our
Frontiers in Immunology | www.frontiersin.org 12
understanding of wound healing at serosal surfaces which in
turn might have great impact on the way we think of any of the
above-mentioned pathologies.
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