
European Journal for Philosophy of Science           (2021) 11:98 
https://doi.org/10.1007/s13194-021-00414-0

PAPER IN PHILOSOPHY OF THE NATURAL SCIENCES

Climate modelling and structural stability

Vincent Lam1,2

Received: 10 June 2020 / Accepted: 2 September 2021 /
© The Author(s) 2021

Abstract
Climate modelling plays a crucial role for understanding and addressing the climate
challenge, in terms of both mitigation and adaptation. It is therefore of central impor-
tance to understand to what extent climate models are adequate for relevant purposes,
such as providing certain kinds of climate change projections in view of decision-
making. In this perspective, the issue of the stability of climate models under small
relevant perturbations in their structure (or small relevant ‘structural model errors’
with respect to the target system) seems particularly important. Within this frame-
work, a debate has emerged in the philosophy of science literature about the relevance
for climate modelling of the mathematical notion of structural stability. This paper
adresses several important foundational and epistemological questions that arise in
this context, in particular about the the role of abstract mathematical considerations
of a qualitative nature (in some precise, topological sense) for concrete modelling
projects with mainly quantitative purposes.

Keywords Climate models · Structural stability · Structural model error ·
Hawkmoth effect · Topology · Dynamical systems theory · Chaos theory ·
Climate projections · Decision-making

1 Introduction

Climate modelling plays a crucial role for understanding and addressing the cli-
mate challenge, in terms of both mitigation and adaptation. It is therefore of central
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importance to understand to what extent climate models are adequate for relevant pur-
poses (Parker, 2009), such as providing certain kinds of climate change projections in
view of decision-making. In this perspective, the issue of the stability of climate mod-
els under small relevant perturbations in their structure (or small relevant ‘structural
model errors’ with respect to the target system) seems particularly important. Besides
difficulties for the decision making relevance of certain climate change projections,
issues related to structural stability (and structural model error) may also point, in
certain cases, towards some kind of epistemically relevant fundamental (irreducible)
limitations of climate modelling (McWilliams, 2007). Such ‘in-principle’ limitations
(with respect to certain purposes) would not be easily mitigated by making climate
models more comprehensive and more complex (e.g. by including more processes)
or by increasing computational power.

These issues are known to the climate science community, where they seem how-
ever to be rather little discussed (see Smith 2002 for an example)—they actually often
fall in the general set of issues labelled ‘structural (model) uncertainty’. Part of the
reasons may come from the fact that the rather abstract and involved mathematical
framework of dynamical systems theory underlying structural stability issues is quite
far removed from the concerns of the working climate scientists and climate mod-
ellers (indeed, these questions tend to be confined to the sub-community interested
in the mathematical foundations of climate science and climate modelling, see e.g.
Ghil et al. (2008) and Majda et al. (2010)) and also from the fact that the concrete
impact of these issues can be rather difficult to quantify.

Interestingly, a debate has emerged in the philosophy of science literature about
the relevance (in particular for climate modelling) of structural model error and struc-
tural stability. Indeed, beyond the difficult purely technical (mathematical) issues,
there is also a number of very interesting more conceptual questions.

On the one hand, Frigg et al. (2014) construct a thought experiment or toy example
using the logistic map in order to illustrate the critical impact of structural model error
on (probabilistic) model outputs (and on their relevance for decision making).1 Their
argument for the general scope of the critical impact of structural model error beyond
the kind of thought experiment they put forward crucially relies on considerations
about (the absence of) structural stability (Frigg et al., 2014, §4)—in this context,
the critical impact on the decision-making relevance of the combination of structural
model error and lack of structural stability is often broadly (and sometimes a bit
loosely) called ‘hawkmoth effect’ in the literature, in reference but also in distinction
to the famous ‘butterfly effect’.2 Relatedly, issues about structural model error and
structural stability lie in the background of the critical assessment of the UKCP09
climate modelling project in Frigg et al. (2013b) and Frigg et al. (2015).

On the other hand, Winsberg and Goodwin (2016), Goodwin and Winsberg
(2016), and Nabergall et al. (2019) raise a number of issues and object to the general

1See also Frigg et al. (2013a) and Bradley et al. (2014); the very relevance of this thought experiment is
debated in the philosophy of science literature.
2The expression ‘hawkmoth effect’ has been introduced in Thompson (2013). We make the hawkmoth
effect argument explicite in Section 2.



European Journal for Philosophy of Science           (2021) 11:98 Page 3 of 14   98 

relevance of the hawkmoth effect for climate projections; in particular, they chal-
lenge the general scope (in view of decision-making) of the absence of (a proof of)
structural stability.3 This paper does not aim to settle all aspects of this debate—
somewhat surprisingly, beyond the bold claims, it seems that both sides actually agree
that structural model error can be a real worry in certain cases, one of the main points
of disagreement being rather about the scope of the worry and the precise role of
structural stability.

This paper aims to highlight the epistemic relevance of structural stability consid-
erations within the framework of climate modelling. To this aim, after introducing
the notions of structural model error and structural stability, we will discuss their role
in the hawkmoth effect argument, with a particular attention to the crucial (but little
discussed) notion of ‘genericity’ in this context (Section 2). We will then address a
series of issues related structural stability that have been raised within the framework
of the debate about the hawkmoth effect, and we will argue that these issues do not
affect the general epistemic relevance of investigating structural stability features of
climate models (Section 3). We will put the discussion in a broader perspective in
Section 4.

Before starting, a note on our focus on climate modelling: the issues discussed here
are of course not specific to climate modelling, but the latter provides an interesting
study case, not least because of the important potential implications in the climate
change context, e.g. in terms of what to expect from climate modelling in view of
decision making and addressing the climate challenge.

2 Structural stability and the hawkmoth effect

Climate models obviously differ in many ways from a perfect representation of
the target climate system (because of, e.g., discretization, approximations, missing
physical processes, . . . ).4 We are here interested in certain structural differences. In
particular, a model has ‘structural model error’ (SME) if its “functional form is rele-
vantly different from that of the true system” (Frigg et al., 2014, 35).5 The dynamics
of a model with SME differs from the dynamics of the true (target) system in a way
that “can destroy the utility of [the] model’s predictions” (Frigg et al., 2014, 39):
as already mentioned in the previous section, when combined with considerations
linked to structural stability, this is often broadly referred to as the ‘hawkmoth effect’
(mainly in the philosophy of science literature), in reference but also in contrast to the
well-known butterfly effect. The intuition underlying this reference (and contrast) is
that the hawkmoth effect is about sensitive dependence on model structure, whereas
the butterfly effect is about sensitive dependence on initial conditions (the notion of

3See also the paragraph 5.6 as well as the appendix in Winsberg (2018).
4Of course, a climate model does not aim to perfectly represent the target climate system, but only the
aspects that are relevant for the specific purposes the model has been designed for (see Parker 2009; see
also the discussion from a climate scientist’s point of view in Knutti (2018)).
5Structural model error is about model structure and so is not equivalent to parameter uncertainty.
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‘sensitive dependence’ needs to be precisely articulated in both cases).6 Frigg et al.
(2014) further argue that the hawkmoth effect cannot be easily mitigated with proba-
bilistic methods, in contrast to the butterfly effect where, very roughly, the sensitive
dependence to initial conditions can be mitigated by considering (the evolution of) a
probability distribution over initial conditions.

The argument for the general relevance of the hawkmoth effect beyond spe-
cific cases (and in particular for climate modelling) crucially relies on mathematical
considerations from dynamical systems theory involving the notion of structural sta-
bility (Frigg et al., 2014, §4). Indeed, dynamical systems theory allows the study of
the qualitative behaviour of physical (mechanical) systems, in particular the study
of the geometrical and topological properties of their phase portrait (the set of all
trajectories of a dynamical system over time in state space). In this context, dynam-
ical systems theorists (and their precursors) have developed the notion of structural
stability in order to address qualitative issues of the following kind:

If a dynamical system X has a known phase portrait P , and is then perturbed
to a slightly different system X′ (for example, changing the coefficients in
its differential equation slightly), then is the new phase portrait P ′ close to
P in some topological sense? This problem is of obvious importance, since
in practice the qualitative information obtained for P is to be applied not to
X, but to some nearby system X′, because the coefficients of the equation
may be determined experimentally or by an approximate model and therefore
approximately. (Abraham & Marsden, 1978, xix)

Suppose our dynamical system is the solution of a differential equation or oth-
erwise comes from a real world physical system. Ordinarily, the system itself
will be only a model of real world phenomena: certain assumptions will have to
be made, and certain approximations and experimental errors will be present.
Hence the dynamical system itself, albeit a completely accurate solution of the
physical model, will nevertheless be only an approximation to reality since the
model itself suffers this flaw. Now, if the dynamical system in question is not
structurally stable, then the small errors and approximations made in the model
have a chance of dramatically changing the structure of the real solution to the
system. That is, our “solution”could be radically wrong or unstable. (Devaney,
1989, 53)

Intuitively, the above mentioned worry related to SME in climate modelling can
be rephrased along similar lines within the framework of dynamical systems theory:
is the phase portrait of a climate model (understood as a dynamical system) with
(small) SME close in some topological sense to the phase portrait of the dynamical
system we are ultimately interested in, namely the target climate system? Or, in other

6The famous expression ‘butterfly effect’ is generally associated with Edward Lorenz, who may have actu-
ally meant something rather different from ‘mere’ sensitive dependence to initial conditions, see Palmer
et al. (2014).
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terms: is the dynamics described by the considered climate model with (small) SME
qualitatively equivalent (‘close in some topological sense’) to the dynamics of the
target climate system? The notion of structural stability precisely provides a way to
characterize when this is the case.7

If on the other hand, the dynamical system in question is structurally sta-
ble, the small errors introduced by approximations and experimental errors
may not matter at all: the solution of the model system may be equivalent or
topologically conjugate to the actual solution. (Devaney, 1989, 53)

In intuitive terms, a dynamical system is structurally stable if its dynamics remains
qualitatively equivalent under small perturbations (of course, ‘qualitatively equiv-
alent’ and ‘small’ need to be made precise in this context). Let us now consider
a somewhat more formal characterization of structural stability. We first need to
define the relevant equivalence relation (we here closely follow Katok & Hasselblatt,
1995, 68-69).

Definition 1 For r ≥ 0 two Cr maps f : M → M and g : M → M are said to
be topologically conjugate if there exists a homeomorphism h : M → M such that
f = h−1 ◦ g ◦ h.8

M typically is a smooth manifold, which can represent the state (phase) space of
the considered dynamical system, f and g can represent possible time evolutions for
this system (e.g., in our context, the model dynamics with SME and the ‘true’ one
of the target system).9 One can similarly define topological conjugacy for flows on
phase space (the homeomorphism has to map orbits of one flow onto orbits of the
other while preserving the orientation).10 The important point to highlight here is that
if two dynamical system evolutions are topologically conjugate, then they have the
same (asymptotic) dynamical properties, such as the same dynamical invariants (e.g.
same fixed points with same properties). We can now define the structural stability
condition.

7There are many different notions of stability in dynamical systems theory, which rely on different equiv-
alence relations (more on that below). In the fascinating development of dynamical systems theory, these
notions primarily aim at classifying dynamical systems with respect to these equivalence relations (and at
characterizing their orbit structure), see the standard references (Abraham & Marsden, 1978, ch. 7) and
(Katok & Hasselblatt, 1995, ch. 2). Besides this purely mathematical perspective, there is also clearly
a practical and epistemic motivation to the investigations of stability properties in dynamical systems,
as exemplified by the quotes in the main text (see also, e.g., Robbin 1972, [§1]); about this epistemic
motivation, see Fletcher (2020).
8A map h : A → B (where A,B are topological spaces or smooth manifolds) is a homeomorphism
if it is continuous, bijective and its inverse is also continuous; in intuitive terms, a homeomorphism
between two spaces captures the idea that they are similar from the topological point of view. A map is of
differentiability class Cr if its derivatives up to the order r exist and are continuous.
9Katok & Hasselblatt (1995, 68) consider f and g on different manifolds M and N respectively; this
changes nothing for our discussion.
10In general, flows describe continuous time dynamics whereas maps—and iterations thereof—describe
discrete time dynamics.
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Definition 2 A Cr map f is Cm structurally stable (1 ≤ m ≤ r) if there exists a
neighbourhood U of f in the Cm topology such that every map g ∈ U is topologi-
cally conjugate to f .

Again, structural stability can be similarly defined for flows on phase space.11 We
can now clearly see the relevance of structural stability for the general scope of the
hawkmoth effect. Indeed, if the model dynamics is not structurally stable, then even if
it has small SME (with respect to the relevant topology) and so is topologically close
to the dynamics of the target system, its dynamics can be topologically inequivalent
to the one of the target system. As a consequence, the model can then have a radically
different dynamical behaviour from the one of the target system and therefore can be
totally inadequate for providing decision relevant projections.12

A crucial step in the argument based on structural stability for the general rele-
vance of the hawkmoth effect relies on mathematical results suggesting that structural
stability is not generic among dynamical systems in dimensions greater than 2. In
this context, one can say that a property is generic in a set S if for any element p ∈ S

the property is either satisfied or is satisfied for some element in any open neighbour-
hood of p (in intuitive terms, the property is either satisfied for p or for an element
that is ‘arbitrarily close’ in some topological sense).13 The claim that structurally
stable dynamical systems are not generic is in particular motivated by a theorem
due to Smale, which basically shows that there exists an open set U of dynamical
systems that are not structurally stable (Smale, 1966):14 so any element of U is a
counterexample for the genericity of structural stability among dynamical systems. It
follows directly from this result that “there are some dynamical systems that cannot
be approximated by structurally stable ones” (Pugh & Peixoto, 2008).

Within the framework of climate modelling, these considerations therefore sug-
gest, the argument goes, that structural stability is not generic (in the precise sense
defined above) among climate models (understood as dynamical systems) and that
the target climate system itself could not be approximated (in the topological sense)
by structurally stable models.15 Because of complexity and dimensionality issues
(among others), it is however extremely difficult to provide rigorous stability results

11Indeed, Pugh and Peixoto (2008) proposes the following general “Bourbaki-style” definition: “If a set
is equipped with a topology and an equivalence relation then its structurally stable elements are those
interior to the equivalence classes. The “structure” is whatever is preserved by the equivalence relation;
its structure remains the same when a structurally stable element is perturbed.” In the case of flows, as
mentioned above in the text, the relevant equivalence relation is orbit preserving.
12The precise nature of the modal aspect here is epistemologically crucial in many ways. The discussion
about genericity which follows lies at the heart of the issue.
13In an alternative measure-theoretic perspective, one can say that a property is generic in a set S if the
ensemble in which it is not satisfied is of zero measure. However, as we will discuss below, the topological
characterization of ‘genericity’ proposed in the main text is more appropriate for the context here.
14“MAIN THEOREM. There exists a compact 4 dimensional manifold M , an open set U in the space of
Cr vector fields, Cr topology, r > 0, on M such that no X ∈ U is structurally stable.” (Smale, 1966, 491)
As already mentioned above, dynamical systems can be represented by flows and their associated vector
fields.
15As we will discuss in this paper, this implies in no way that climate models are useless.
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in the climate context.16 But still, the mathematical considerations discussed above
can be considered as strong indications that nice stability properties should not be
assumed to be generic (in the precise topological sense discussed here) in the climate
context.

As a consequence, intuitively, one could be tempted to say that ‘most’ dynami-
cal systems (in dimensions greater than 2) are therefore not structurally stable. Great
care is required, though. ‘Most’ is generally understood in measure-theoretic terms,
but such measure-theoretic characterization raises subtle questions in the present set-
ting since the ‘space of dynamical systems’ is infinite-dimensional. In this context,
it is therefore more appropriate to introduce a notion of genericity that is topological
rather than measure-theoretic, as we do here. Specifically, Smale’s theorem men-
tioned above is an ‘openness’ and ‘density’ result rather than a measure-theoretic
one: in particular, it does imply that one can be sure that the property of ‘structural
stability’ is not generic in the set of all dynamical systems, so that there are for sure
dynamical systems that cannot be approximated by structurally stable ones. Having
said that, Smale’s theorem does not prevent having certain classes of climate models
that are indeed structurally stable, because it does not rule out the existence of classes
of structurally stable systems that are open and dense in an appropriate (proper) sub-
set of all systems (of non-zero measure in some appropriate measure). The extent to
which these considerations may impact our epistemic attitude with respect to certain
climate model outputs and their decision-making relevance is in many ways at the
heart of the matter (see Section 3).17

We can now summarize the three main steps (HE1)–(HE3) in the hawkmoth effect
argument, which allow to highlight the role of structural stability considerations.

(HE1) Climate models have structural model error (SME).
(HE2) Structural stability is not generic among dynamical systems; since climate

models can be considered as dynamical systems, one should not expect them
to exhibit structural stability in general.18

(HE3) Given SME, lack of structural stability can lead to certain climate model pre-
dictions/projections being misleading and irrelevant for decision-making.

Strictly speaking, ‘lack of structural stability’ should be understood as ‘lack of appro-
priate stability features’, as we will discuss in the next section. Also, note that (HE2)
can be replaced by: (HE′

2) Structural stability is not generic among dynamical systems;
since the target climate system can be considered as a dynamical system, one should
not expect the climate system to exhibit appropriate stability features in general.

The first step (HE1) is uncontroversial. Several issues related to structural stability
have been raised in the literature in connection to (HE2) and mainly (HE3)—we
address these issues in the next section.

16For an explicite expression of this difficulty, see McWilliams (2007, 8711) for instance: “Although we
may expect a chaotic AOS [atmospheric and oceanic simulation] model to be structurally unstable, it is
difficult to explicitly make this determination. The attractor cannot be fully visualized or measured because
the phase space has such a high dimension (i.e., high order).”
17I am grateful to an anonymous referee for pushing me on this.
18Thanks to an anonymous referee for highlighting the structure of this second step to me.
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3 The epistemic relevance of stability features in climatemodelling

In the debate around the hawkmoth effect, a series of issues have been raised in rela-
tion to structural stability.19 These issues point to fundamental aspects of structural
stability as well as to important open questions in climate modelling. The aim of this
section is to discuss these issues focusing on structural stability and to argue that they
do not affect the general epistemic relevance of appropriate stability features within
climate modelling. We consider three main (sets of) issues.

(1) No relevant analogy between lack of structural stability and chaos. The first
issue concerns the analogy between the butterfly effect and the hawkmoth
effect: assuming that the relevance of the latter for climate projections relies on
being analogous to the former, disputing this analogy amounts to disputing the
relevance of the hawkmoth effect itself. To this aim, the strategy in Nabergall
et al. (2019, §3) is to consider standard features of chaotic systems underlying
the butterfly effect and then to stress the difficulties to identify similar features
in the case of the hawkmoth effect. The focus lies in particular on relevant
degrees of sensitive dependence to initial conditions and on topological mix-
ing; for instance, it is pointed out that there is no clear counterpart to the notion
of exponential sensitive dependence in the case of lack of structural stability.20

There is no need to enter into the subtle technical details of chaos theory here;
the interesting point for us is that the lack of structural stability involves a priori
no notion allowing to evaluate how ‘big’ and how ‘fast’ the discrepancies can
grow.21 The worry then is that the related deficiencies in predictive capacities
cannot be quantified, and so are irrelevant for climate projections.

(2) Structural stability is about topological rather than metrical features. The
second issue is closely related to the first: indeed, according to (1), lack of
structural stability is disanalogous to chaos because the first concerns topolog-
ical features and topological features are just not the right kind of features that
are relevant for predictions. The fact that structural stability is about topolog-
ical features just follows from its definition in terms of topological conjugacy
(see definition 2 in Section 2). Of course, a failure of topological conjugacy as
such involves no metrical information. So, the argument goes, a model’s time
evolution that fails to be topologically conjugate to the time evolution of the
considered target system may still be predictively reliable; lack of structural
stability, as a topological rather than metrical notion, is therefore of little or of
no relevance for predictions/projections.

19See Winsberg and Goodwin (2016), Goodwin and Winsberg (2016), and Nabergall et al. (2019), as well
as the paragraph 5.6 and the appendix in Winsberg (2018).
20See Werndl (2009) for a discussion of chaos theory in the philosophy of science literature: in intuitive
terms, sensitive dependence to initial conditions “means that small errors in initial conditions lead to totally
different solutions” (203), and topological mixing “means that any bundle of solutions spread out in phase
space like a drop of ink in a glass of water” (204).
21Such an evaluation requires a metric, which allows to measure distances, e.g. in phase space; no metric
is required to discuss structural stability.
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Regarding the first issue (1), two points are worth making here. First, it should
be noted that chaos can well be characterized topologically, so that the topological
nature alone of structural stability (and lack thereof) cannot be what grounds any
potential disanalogy between lack of structural stability and chaos. Second and most
importantly, a qualitative difference may be relevant (e.g. for climate projections and
decision-making) even if it does not exhibit features analogous to chaotic ones.22

More generally, there is a common difficulty with the two issues (1)–(2) as (some-
what schematically) exposed above, which revolves around the implicit background
assumption that a topological difference (in the sense of lack of topological conju-
gacy) has in general no relevant metrical implication in this context.23 But, clearly,
this may not always be the case. Indeed, the topological character of the structural
stability property implies that a model that is not structurally stable may well display
some qualitatively different behaviour from the target system (e.g. with a different
attractor structure) in a way that renders the model’s predictions/projections unreli-
able (e.g. in view of decision-making)—note that, at this stage, introducing a metric
in order to ‘quantify’ things may not be needed in order to draw relevant (qualitative)
conclusions about the reliability of certain models projections (for certain purposes).

Now, a crucial question includes the prevalence of such unreliability induced by
the lack of structural stability. For instance, given a concrete climate model with
SME, what are the exact implications of its (generic)24 lack of structural stability
features on the reliability of its projections? It is in general extremely difficult to
answer precisely (rigorously) to such questions—for reasons partly related to issues
discussed under (3) below. But this difficulty does not affect the above considera-
tions, that is, the general epistemic relevance of appropriate stability features (or lack
thereof) for certain climate modelling purposes (see also the discussion below).

(3) Issues about the class of models, the notion of similarity, and the time scale.
Structural stability is a feature that is relative to the class of models considered,
as well as to the choice of topology (and to the choice of the metric, if appli-
cable) for defining a notion of similarity (and for defining a metrical notion of
closeness, if applicable). For instance, it follows directly from our definition of
structural stability in Section 2 that it is dependent on the choice of topology
(see definition 2); in intuitive terms, the latter defines what can be regarded as
a small perturbation or a small SME.25 Analogously, the choice of the class
of models is crucial to the definition of structural stability. These considera-
tions then raise the following issue: either the worry about the lack of structural
stability is merely an artefact of considering a class of models that is too

22Mayo-Wilson (2015) also discusses the disanalogies between lack of structural stability and various
notions of chaos; he makes clear that this leaves open the question of the “importance of the various
notions of structural stability for prediction, control, and explanation” (1244).
23The issues (1)–(2) seem to rely on a sort of dichotomy between topological and metrical aspects, but
this need not be the case: the two are actually best conceived as complementary.
24See the discussion about the topological notion of ‘genericity’ in Section 2.
25In the recent philosophy of science literature—albeit in a slightly different context—Fletcher (2020, §4)
clearly highlights the dependence of stability considerations on the choice of topology.
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broad26 or the question of the appropriate class is just too indeterminate to
reach any meaningful conclusion. On top of this issue, there is the further ques-
tion of the time scales at which the lack of structural stability may become
relevant for predictive (and related decision-making) purposes. Again, the
nature of the worry is similar:27 either the time scales at which the lack of struc-
tural stability would have an impact is not relevant for the predictive purposes
we are interested in (e.g. climate change projections for certain variables and
certain emission scenarios at the the end of the 21st century) or we simply have
no clue; in both cases, it may seem that the epistemic relevance of structural
stability considerations is much weakened.

This set of issues points to difficult and still open questions linked to the exact
implications of the lack of structural stability for concrete climate projections (and
related decision-making). However, the fact that these issues remain open actually
calls for further investigations about the manifestation of appropriate stability fea-
tures (and lack thereof) in concrete climate models. For instance, concerning the
relevant time scales, a possible first step can be to investigate how the various sources
of uncertainties (for certain variables) are partitioned for different lead times (e.g.,
Hawkins and Sutton 2009 argue that, for decadal mean surface temperature,28 model
uncertainty tend to dominate over natural internal variability for longer lead times);
such investigations may provide certain indications about the time scales at which
issues linked to SME and the lack of structural stability may manifest themselves. In
the end, however, much depends on the specifics of the particular climate modelling
situation under consideration.29

Globally, the discussion of the issues (1)–(3) above tends to show that questions
related to structural stability—and, more generally, qualitative features of the climate
models phase portrait—do require careful attention in the climate modelling context,
in particular in view of climate decision-making. However, it should be clear that
highlighting the (possible) implications of the lack of structural stability constitutes
in no way an argument for imposing structural stability as a necessary condition for a
climate model to be adequate for certain predictive tasks (this would possibly disqual-
ify most of them).30 The considerations above (as well as the discussion in Section 2)

26Discussing structural stability as defined in Section 2 (see definition 2), Katok and Hasselblatt (1995, 69)
are very explicit: “Attempts to either replace topological conjugacy by smooth equivalence or to allow
arbitrary continuous maps or even arbitrary homeomorphism as perturbations lead to vacuous notions.”
27It should be clear however that the issues are rather different, e.g. the issue of the relevant time scales
being a more practical question for instance.
28The partitioning of uncertainty depends on the variable of interest, but also on the region and the spatial
scale.
29In this sense critical assessment of particular climate modelling projects, such as in Frigg et al. (2013b)
and Frigg et al. (2015), is extremely valuable; however, in general, these issues are not very often
investigated in great depth in concrete cases.
30So, strictly speaking, the challenge posed by Frigg et al. (2014, 47) that “those using non-linear models
for predictive purposes have to argue that the model they use is one that is structurally stable” seems
hopeless; an alternative understanding of Frigg et al. (2014) here can possibly be articulated in terms of
appropriate stability features with respect to some predictive context, very much along the lines of what is
argued for here.
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rather motivates ensuring that the model’s concrete predictions or projections are suf-
ficiently stable (for a certain purpose) and are not the result of some ‘structurally
unstable’ behaviour (in some sense to be made precise)—thereby highlighting the
epistemic relevance of appropriate stability features in climate modelling.31

These considerations are reminiscent of the critical discussions in dynamical sys-
tems theory in the last century around the so-called ‘stability dogma’, according to
which “structurally unstable systems were regarded as somehow suspect” so that
“structural stability was imposed as an a priori restriction on “good” models of
physical phenomena” (Guckenheimer & Holmes, 1983, 259; see also Abraham &
Marsden, 1978, xix-xx).32 But as such this dogma seems too strict (especially given
the lack of genericity of structural stability in dimension greater than two), even if its
underlying epistemic motivation is sound. This latter can be preserved in a weakened
version, for instance following Guckenheimer and Holmes (1983, 259), who suggest
to reformulate the stability dogma “to state that the only properties of a dynamical
system (or a family of dynamical systems) which are physically relevant are those
which are preserved under perturbations of the system”.33

Similarly, in the philosophy of science literature, Fletcher (2020) recently defends
a principle of stability as an epistemological principle “partially constitutive of the
activity of representational modeling itself” (16). It follows from Fletcher’s prin-
ciple that appropriate stability considerations are crucial for justifying a model’s
predictions; this is well in line with the upshot of the discussion above. Moreover,
Fletcher’s topological formalization of the principle allows to explicitly highlight
the importance for stability issues of the topology and the class of models that
are considered—which correspond, as we have seen above, to some fundamental
questions in climate modelling.

4 Perspectives

We would like to conclude with two important perspectives, at two different lev-
els, that are strengthened by taking seriously the question of structural stability in
the climate modelling context. At the mathematical and foundational level, structural
stability considerations have further motivated a stochastic perspective on climate
modelling. In this approach, a stochastic version of structural stability is considered,
which takes into account random perturbations, for instance related to unresolved
processes or linked to natural or anthropogenic forcing; the underlying expectation

31See Fletcher (2020) for a recent discussion of the epistemic motivations for stability features (encoded
in a ‘principle of stability’) in a general modelling context.
32In his famous book The Aim and Structure of Physical Theory first published in French in 1908, Duhem
argues for a criterion of stability for models “to be useful to the physicist” (1991, 143); if Schmidt (2011)
explicitly understands Duhem’s criterion of stability as a precursor to the stability dogma (see also Abra-
ham&Marsden, 1978, xix-xx), Fletcher (2020, §3.3) argues for a more epistemological reading, following
which Duhem’s criterion is about what can be inferred from the models rather than about what is possible
according to the models.
33See also the discussion in Batterman (2002, §4.4).
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is that some level of added noise can improve (the understanding of) the (stochastic)
stability features of the climate models and their projections (see Ghil et al., 2008 for
instance; this approach is also well in line with the stochastic perspective on param-
eterization, see recently Berner et al., 2017 and Palmer, 2019 as well as references
therein). This stochastic approach to stability issues is being developed within the
general framework of random dynamical systems theory (Arnold, 1998), which typi-
cally allows to describe (nonautonomous) dynamical systems with stochastic forcing;
more generally, the stochastic (and statistical) perspective in climate science and cli-
mate modelling actually highlights the relevance of mathematical investigations in
this context.34

At the epistemic and decision-making level, issues related to the lack of struc-
tural stability further highlight the importance of a qualitative perspective on climate
models, especially in view of reliable climate projections and appropriate decision-
making. To the extent that they point to some fundamental epistemic limitations
of climate modelling (McWilliams, 2007), uncertainties linked to SME and lack
of structural stability further stress the crucial role of understanding—or “process
understanding” (Knutti, 2018)—and background knowledge in building confidence
in climate projections (Baumberger et al., 2017). Relatedly, these uncertainties and
limitations also strengthen the case for systematically including expert knowledge
in providing relevant model based support for decision-making in the climate con-
text (Thompson et al. 2016, Thompson & Smith 2019; how precisely to incorporate
expert judgement in a systematic way raises several open questions though). It is
important to stress that, in many ways, these qualitative perspectives can be consid-
ered as a crucial aspect of climate modelling itself—they of course imply in no way
that modelling is useless.

So, issues related to structural stability (and lack thereof) in climate science and
climate modelling raise many important foundational and epistemological questions
that require careful investigations. A preliminary list of such questions includes the
following points: spelling out the extent to which stability features are required for
a certain purpose and in a certain context, exploring the kind of stability (and lack
thereof) involved in concrete modelling projects (as well as the characteristic time
scales at play)35, and further developing the qualitative (in the mathematical sense)
study of climate models. With respect to this last point, it should be highlighted
that stability issues—and more generally the qualitative approach in the sense of
dynamical systems theory, and bifurcation theory in particular—are also central to the

34Methods relying on the mathematical (and statistical physics) framework of the fluctuation-dissipation
theorem have also been exploited in this context; for instance, Majda et al. (2010) develop a linear statisti-
cal response approach based on the fluctuation-dissipation theorem explicitly in order to deal with the lack
of structural stability in climate modelling—showing en passant that this latter is seriously investigated by
some researchers working on the foundations of climate science and climate modelling.
35As already discussed in relation to (3) in Section 3, this is a central question, since lack of structural
stability may become ‘manifest’ (e.g. for decision-making purposes) only asymptotically or at time scales
that are irrelevant for the concrete modelling and decision-making purposes under consideration in a given
context.
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understanding of abrupt climate changes and tipping points.36 In view of the climate
challenge, these questions need to be taken seriously.
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Luis Jaramillo and Tim Räz for valuable exchanges on this topic. I acknowledge support from the Swiss
National Science Foundation professorship grant PP00P1 170460.

Funding Open Access funding provided by Universität Bern.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abraham, R., & Marsden, J. E. (1978). Foundations of Mechanics (2nd edn). Addison-Wesley Publishing
Company.

Arnold, L. (1998). Random dynamical systems. Springer.
Ashwin, P., Wieczorek, S., Vitolo, R., & Cox, P. (2012). Tipping points in open systems: Bifurcation,

noise-induced and rate-dependent examples in the climate science. Philosophical Transactions of the
Royal Society A, 370, 1166–1184.

Bathiany, S., Dijkstra, H. A., Crucifix, M., Dakos, V., Brovkin, V., Williamson, M. S., Lenton, T. M.,
& Scheffer, M. (2016). Beyond bifurcation: Using complex models to understand and predict abrupt
climate change. Dynamics and Statistics of the Climate System, 1, dzw004.

Batterman, R. W. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction and
emergence. Oxford University Press.

Baumberger, C., Knutti, R., & Hirsch Hadorn, G. (2017). Buidling confidence in climate model
projections: An analysis of inferences from fit. WIREs Climate Change, 8, e454.

Berner, et al. (2017). Stochastic parameterization: Towards a new view of weather and climate models.
Bulletin of the American Meteorological Society, 98, 565–588.

Bradley, S., Frigg, R., & Du, H. (2014). Model Error and Ensemble Forecasting: A Cautionary Tale. In
G. C. Guo, & C. Liu (Eds.) Scientific Explanation and Methodology of Science (pp. 58–66). World
Scientific.

Devaney, R. L. (1989). An Introduction to Chaotic Dynamical Systems (2nd edn). Addison-Wesley
Publishing Company.

Duhem, P. (1991). The aim and structure of physical theory. Princeton University Press.
Fletcher, S. (2020). The principle of stability. Philosophers’ Imprint, 20, 1–22.
Frigg, R., Bradley, S., Du, H., & Smith, L.A. (2014). Laplace’s demon and the adventures of his

apprentices. Philosophy of Science, 81, 31–59.
Frigg, R., Bradley, S., Machette, R. L., & Smith, L.A. (2013a). Probabilistic forecasting: Why model

imperfection is a poison pill. In H. Anderson, D. Dieks, G. Wheeler, W. Gonzales, & T. Uebel (Eds.),
New Challenges to Philosophy of Science (pp. 479–491). Springer.

36E.g. see Ashwin et al. (2012), Bathiany et al. (2016) and recently Ghil and Lucarini (2020), in particular
the parts III & V.

http://creativecommons.org/licenses/by/4.0/


   98 Page 14 of 14 European Journal for Philosophy of Science           (2021) 11:98 

Frigg, R., Smith, L. A., & Stainforth, D.A. (2013b). The myopia of imperfect climate models: The case of
UKCP09. Philosophy of Science, 80, 886–897.

Frigg, R., Smith, L. A., & Stainforth, D.A. (2015). An assessment of the foundational assumptions in
high-resolution climate projections: The case of UKCP09. Synthese, 192, 3979–4008.

Ghil, M., Chekroun, M. D., & Simonnet, E. (2008). Climate dynamics and fluid mechanics: Natural
variability and related uncertainties. Physica D, 237, 2111–2126.

Ghil, M., & Lucarini, V. (2020). The physics of climate variability and climate change. Reviews of Modern
Physics, 92, 035002.

Goodwin, W. M., & Winsberg, E. (2016). Missing the forest for the fish: How much does the ‘hawkmoth
effect’ threaten the viability of climate projections? Philosophy of Science, 83, 1122–1132.

Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of
vector fields. Springer.

Hawkins, E., & Sutton, R. T. (2009). The potential to narrow uncertainty in regional climate predictions.
Bulletin of the American Meteorological Society, 90, 1095–1107.

Katok, K., & Hasselblatt, B. (1995). Introduction to the Modern Theory of Dynamical Systems. Cambridge
University Press.

Knutti, R. (2018). Climate model confirmation: From philosophy to predicting climate in the real world.
In E. A. Lloyd, & E.Winsberg (Eds.), Climate modelling: Philosophical and conceptual issues
(pp. 325–359). Cham.

Majda, A. J., Abramov, R., & Gershgorin, B. (2010). High skill in low-frequency climate response through
fluctuation dissipation theorems despite structural instability. Proceedings of the National Academy
of Sciences, 107, 581–586.

Mayo-Wilson, C. (2015). Structural chaos. Philosophy of Science, 82, 1236–1247.
McWilliams, J. (2007). Irreducibe imprecision in atmospheric and oceanic simualtions. Proceedings of the

National Academy of Sciences, 104, 8709–8713.
Nabergall, L., Navas, A., & Winsberg, E. (2019). An antidote for hawkmoths: On the prevalence of

structural chaos in non-linear modeling. European Journal for Philosophy of Science 9.
Palmer, T. N. (2019). Stochastic weather and climate models. Nature Reviews Physics, 1, 463–471.
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