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Abstract: Observational studies suggest that early onset of menopause is associated with increased
risk of hypertension. Whether this association is causal or due to residual confounding and/or
reverse causation remains undetermined. We aimed to evaluate the observational and causal asso-
ciation between age at natural menopause (ANM) and blood pressure traits in Caucasian women.
A cross-sectional and one-sample Mendelian randomization (MR) study was conducted in 4451 post-
menopausal women from the CoLaus and Rotterdam studies. Regression models were built with
observational data to study the associations of ANM with systolic and diastolic blood pressure
(SBP/DBP) and hypertension. One-sample MR analysis was performed by calculating a genetic
risk score of 54 ANM-related variants, previously identified in a genome-wide association study
(GWAS) on ANM. In the two-sample MR analysis we used the estimates from the ANM-GWAS and
association estimates from 168,575 women of the UK Biobank to evaluate ANM-related variants
and their causal association with SBP and DBP. Pooled analysis from both cohorts showed that a
one-year delay in menopause onset was associated with 2% (95% CI 0; 4) increased odds of having
hypertension, and that early menopause was associated with lower DBP (β = −1.31, 95% CI −2.43;
−0.18). While one-sample MR did not show a causal association between ANM and blood pressure
traits, the two-sample MR showed a positive causal association of ANM with SBP; the last was driven
by genes related to DNA damage repair. The present study does not support the hypothesis that
early onset of menopause is associated with higher blood pressure. Our results suggest different
ANM-related genetic pathways could differently impact blood pressure.

Keywords: blood pressure; systolic blood pressure; hypertension; menopause; age at menopause;
mendelian randomization analysis

J. Clin. Med. 2021, 10, 4299. https://doi.org/10.3390/jcm10194299 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-0847-0969
https://orcid.org/0000-0003-2830-6813
https://doi.org/10.3390/jcm10194299
https://doi.org/10.3390/jcm10194299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10194299
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10194299?type=check_update&version=3


J. Clin. Med. 2021, 10, 4299 2 of 13

1. Introduction

Hypertension is the leading modifiable risk factor for cardiovascular diseases and
mortality [1]. By 2015, the estimated rate of annual deaths associated with SBP of at
least 140 mm Hg or higher was 106.3 per 100,000 persons [2]. Sex partially explains the
differences in BP and hypertension across populations [3]. In general, men have a higher
prevalence of hypertension compared with age-matched premenopausal women; however,
after menopause women reach a similar prevalence [4].

Menopause onset is considered an independent marker of cardiovascular disease and
mortality risk in women [5]. Early onset of menopause (e.g., <45 years), has been associ-
ated with high BP in several populations [6,7] and could increase cardiovascular disease
risk observed in this group of women [5,6]. Nevertheless, the results of the association
between age at menopause and BP traits are not consistent across studies [6,8,9], and causal
association of age at menopause with BP has not been clarified [6]. Further, the association
between early menopause and cardiovascular disease is independent of BP, suggesting
other pathways (e.g., reverse causation) could explain the association [5,10].

The use of different approaches to address the causal association between ANM and
BP traits is important. Mendelian randomization (MR) uses genetic variants as instrumental
variables to provide evidence of causal relations in observational data. Currently, 54 single
nucleotide polymorphisms (SNPs) have been associated with ANM in a large GWAS of
women of European ancestry [11].

In this study, we aimed to evaluate the observational association between ANM and
BP traits in Caucasian women. Next, we used the genetic loci associated with ANM to
calculate an ANM genetic risk score, and through one- and two-sample MR analyses we
evaluated whether there is a causal association between ANM and BP traits.

2. Methods
2.1. Study Population

We used data from the CoLaus study [12] and Rotterdam Study [13] for the obser-
vational analysis and one-sample MR; the design of these studies has been described
elsewhere [12,13]. For the two-sample MR analysis we used data from the UK Biobank, a
prospective study that recruited 500,000 participants, aged 40–69 years, from across the
United Kingdom [14]. More details are provided in the Supplementary Materials.

2.2. Population for Analyses

Only women reporting natural menopause were included in the observational and one-
sample MR. Of 2875 women eligible in CoLaus, and of 2874, 1693, and 2249 eligible women
in RS-I-3, RS-II-1, and RS-III-1, respectively, 4451 women were included for this analysis.
Reasons of exclusion are depicted in the Figure S1 and include being in perimenopause,
experiencing non-natural menopause, and unavailable data on ANM, BP traits, or genetic
data. To perform the two-sample MR we additionally used the information from the
association analyses with SBP and DBP from the UK Biobank, which was restricted to
168,575 unrelated pre and postmenopausal women with European ancestry, whose variants
had an information score ≥ 0.8 and minor allele frequency (MAF) ≥ 1%.

2.3. Assessment of Variables

In both CoLaus and RS, during the interview, women reporting being in postmenopause
reported whether menopause was natural or due to other causes (e.g., hysterectomy), and the
age at menopause. For women with natural menopause, ANM was defined as self-reported
age at the time of last menstruation. In RS, menopause women were defined as women who
reported the absence of menstrual periods for 12 months [15], while in CoLaus menopause
was defined as the cessation of menses.

In CoLaus, BP was measured thrice on the left arm with an appropriately sized cuff,
after at least a 10 min rest in the seated position using an Omron® HEM-907 automated
oscillometric sphygmomanometer. In RS, BP was measured twice on the right arm (cuff
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size of 32 × 17), after a resting period of 5 min in the seated position using a random-zero
sphygmomanometer. In the UK Biobank, BP was measured twice in a seated position
after 2 min of rest using an Omron HEM-7015IT digital BP monitor and an appropriate
cuff [16]. SBP was recorded at the appearance of sounds (first-phase Korotkoff) and DBP at
the disappearance of sounds (fifth-phase Korotkoff).

In all cohorts, SBP and DBP were calculated as the average of two measurements, in
CoLaus only the last two measurement were used. In CoLaus and RS, hypertension was
defined as a SBP ≥ 140 mm Hg, and/or DBP ≥ 90 mm Hg, and/or the use of antihyper-
tensive medication. Medication use information was based on the home interview in RS
and self-filled questionnaires in CoLaus. Antihypertensive medication use was defined
as diuretics, β-blockers, angiotensin-converting enzyme inhibitors, and calcium channel
blockers. In the RS, a physician also ascertained the indication for which the medica-
tion had been prescribed. Assessment of covariates is presented in the Supplementary
Materials [16].

2.4. Genotyping

In CoLaus, nuclear DNA was extracted from whole blood for whole genome scan anal-
ysis and genotyping was performed using the Affimetrix 500-K SNP chip, as recommended
by the manufacturer [17–19]. In the RS, genotyping was conducted, in self-reported white
participants, using the Illumina 550 K array, genotyping details are provided in the Sup-
plementary Materials. In the UK Biobank, 488,377 participants were genotyped and had
extensive phenotypical information. DNA was extracted from stored blood samples col-
lected from participants during their visit to an assessment center at the UK biobank. The
genotype was performed by the Affymetrix Research Services Laboratory on 106 sequential
batches [14].

2.5. SNPs Selection and the Genetic Risk Score

SNPs were selected based on the most extensive and recent report of association with
self-reported ANM from the GWAS that included 33 studies and 69,360 women of European
ancestry, where 54 SNPs were associated with ANM at the genome-wide significance level
(p < 5 × 10−8), with MAF ranging from 7 to 49% and explaining 6% of the variance in
ANM [11]. Based on this GWAS’s estimates and the genetic information of CoLaus and
RS participants, we calculated a weighted genetic risk score (GRS) [20,21] for each study
participant assuming each SNP to be independently associated with ANM according to an
additive genetic model (Table S1), GRS details are provided in the Supplementary Materials.

2.6. Statistical Analyses
2.6.1. Cross-Sectional Analyses

Multivariable linear and logistic regression models were used to assess the association
of ANM (continuous) with SBP, DBP, and the presence of hypertension in CoLaus, RS-I-3,
RS-II-1, and RS-III-1. For each study, we also compared levels of BP and prevalence of
hypertension by categories of ANM (early, 40–44 years; intermediate, 45–49 years; normal,
50–54 years (reference); and late ≥55 years). Linear trends across ANM categories were
tested by adding ANM categories as a continuous variable in the models. We constructed
four models: model 1 included antihypertensive medications for SBP and DBP as outcomes;
model 2 incorporated the variables in model 1 and chronological age; model 3 additionally
included smoking, alcohol consumption, and educational level; and model 4 additionally
included eGFR, BMI, history of cardiovascular diseases, total cholesterol, prevalent diabetes,
statins, and hormone therapy. Interactions, model evaluations, log transformation of BP
traits (Table S2), and non-linear (spline) models were performed [22], as explained in detail
in the Supplementary Materials. To adjust for potential biases associated with missing data
from the covariates, we used the multiple imputation procedure (n = 10 imputations) in
the RS’s datasets (Table S3).
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To evaluate the individual effect of previous reported confounders of the associ-
ation between ANM and BP, we conducted several sensitivity analyses by excluding
women (a) reporting use of hormone therapy; (b) aged ≥ 65 years; (c) reporting a his-
tory of cardiovascular disease; (d) reporting menopause > 10 years ago; (e) with hyper-
tension; (f) with hypertension defined as use of antihypertensive medication only; and
(g) eGFR < 60 mL/min/1.73 m2. We also further adjusted by time since menopause
and compared the estimates obtained in the imputed vs. the non-imputed database in
the RS. Results across studies were summarized using the fixed effects model. In addi-
tion, the results from the random effects model were provided as a sensitivity analysis.
A p-value < 0.05 was considered as statistically significant.

2.6.2. One-Sample Mendelian Randomization

We performed linear regression and logistic regression analyses to examine the as-
sociation between the GRS-ANM (either as a continuous variable or in quintiles) and
BP traits. Mendelian randomization assumptions were explored (see Supplementary
Materials) [19,20]. Additionally, to further explore the role of the DNA damage response
(DDR) pathway, previously identified in the reference GWAS [11], we constructed two
sub-GRS groups according to the SNPs belonging to the DDR pathway and SNPs related
to other pathways and repeated the analyses.

The 2-stage least squares (2SLS) regression [23] was applied using Stata V.15.1 (Stata
Corp, College Station, TX, USA) command ivregress and control function estimation for
the binary trait (hypertension) [24]. The 2SLS estimation proceeds by first fitting the
regression of exposure (ANM) on the instrument (GRS-ANM) and then assessing the
association of ANM with each outcome (SBP, DBP, and hypertension) on the fitted values
from the first-stage regression. In order to generate estimates comparable with those from
the observational regressions, we included age, eGFR, antihypertensive medication, BMI,
drinking status, diabetes, history of cardiovascular diseases, total cholesterol, smoking
status, statin use, hormone therapy, and education level as covariates.

2.6.3. Two-Sample Mendelian Randomization

Additionally, we performed a two-sample MR to evaluate the casual association of
ANM on SBP and DBP using the summary statistics of the GWAS of ANM [11] and UK
Biobank estimates. ANM-SNPs statistics were extracted from Day et al., GWAS [11]. SNP
rs4886238 was excluded from our final analysis because it did not fulfill the quality criteria.
Using data from the UK Biobank, outcome summary statistics for 53 ANM-related SNPs
and BP traits were generated by carrying out association analyses with SBP and DBP,
adjusted for the first four principal components for the genetic variability of the genome,
age at baseline, and the genotyping array used. The UK Biobank study was not included
in the GWAS of ANM [11], and therefore fulfilled the independency sample criteria of
two-sample MR.

We applied four MR methods including an inverse-variance weighted average ap-
proach (IVW), MR-Egger regression, weighted median approach, and MR-PRESSO [25].
Models are explained in the Supplementary Materials. Linkage disequilibrium (LD) of
the SNPs was assessed against a reference European population from where an LD matrix
of the evaluated SNPs was created; LD values are with respect to the major alleles. SNPs
with values greater than 0.001 LD R-squared and with the highest p value were removed.
Harmonization of the reported alleles was performed according to previous guidelines [26]
(Table S4). To consider the association as causal, three of the four implemented methods
should provide coherent results [27].

The heterogeneity of the estimates was evaluated through Cochran’s Q test and scatter
plot. Second, directional pleiotropy was examined using funnel plots. Third, a leave-one-
out sensitivity analysis was performed to evaluate the effect of each of the variants on the
causal estimate. Fourth, the analysis was repeated by splitting the SNPs into two groups:
one based only on SNPs related to DDR genes (n = 37) and the other based on genes other
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than DDR [11]. Fifth, to address potential pleiotropy, the SNPs previously reported as
associated with BMI and menarche [28] were excluded. Finally, an analysis not adjusting
for correlation and including the weak SNPs was undertaken. Analyses were conducted
using Stata V.15.1 (Stata Corp, College Station, TX, USA) and R software (version 3.6.3;
R Foundation for Statistical Computing, Vienna, Austria) (Mendelian Randomization [29]
and Two-Sample MR [30] packages).

3. Results

The baseline characteristics of the 4451 participants who satisfied the inclusion criteria
from both studies are shown in Table S3. The reported early onset of menopause (<45 years)
varied from 6.8 in RS-III-1 to 9.7% in CoLaus. Prevalence of hypertension ranged between
43.2 in CoLaus and 69.3% in RS-I-3, and SBP ranged between 131 ± 18.7 mm Hg in CoLaus
and 144 ± 21.3 mm Hg in RS-I-3.

No association was found between ANM as a continuous variable and SBP in CoLaus,
RS-I-3, and RS-II-1, while in RS-III-1, the one-year increase in ANM was associated with
0.45 mm Hg increase in SBP (95% CI: 0.11; 0.78) (Figure 1, Table S5). The pooled analysis
showed increased SBP with increasing menopausal age (β = 0.11, 95% CI −0.04; 0.25), albeit
the association was not significant. Early menopause, compared to menopause between
50–54 years, was associated with lower DBP (β = −1.31 mm Hg, 95% CI: −2.43; −0.18),
while no association was found between other ANM categories and DBP (Figure 1). The
pooled analysis of ANM as a continuous variable showed later onset of menopause to
be associated with higher odds of developing hypertension (odds ratio (OR): 1.02, 95%
CI: 1.00; 1.04) while no association was found for the ANM categories and hypertension
(Figure 1).

Interaction of ANM and BMI was not significant in any of the analyses (Table S6). The
main findings did not change when time since menopause was included in the models or
when the analyses were restricted to the non-imputed dataset of the RS cohorts (Table S7).
We did not find evidence of a non-linear association of ANM and BP traits in the spline’s
evaluation (Figure S2). After the exclusion of (a) 827 women reporting use of hormone
therapy, early onset of menopause was associated with lower SBP (β = −2.95, 95% CI
−5.28; −0.62) and DBP (β = −1.29, 95% CI −2.56; −0.02) and decreased odds of hyper-
tension (OR = 0.71, 95% CI: 0.53; 0.94) (Table S8). Similarly, after the exclusion, of (b) 2052
women aged > 65 years; (c) 350 women reporting a history of cardiovascular diseases; and
(e) 2548 women who had hypertension (for SBP and DBP as outcome), early onset of
menopause was associated with lower DBP, while no differences were observed after
exclusion of the other groups of women mentioned in the Methods Section (Figure S3).
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tihypertensive medication. Hypertension was defined as a systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg, 
and/or the use of antihypertensive medication. Early 40–44, intermediate 45–49, normal 50–54, late ≥55. 
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Figure 1. (A) Forest plot of observational estimates for the association between age at natural menopause (continuous) and
blood pressure traits; (B) Forest plot of observational estimates for the association between categories of age at natural
menopause and hypertension; (C) Forest plot of observational estimates for the association between categories of age
at natural menopause and diastolic blood pressure (DBP); (D) Forest plot of observational estimates for the association
between categories of age at natural menopause and systolic blood pressure (SBP). A fixed-effects meta-analysis model
was used in all cases. Models adjusted for age and glomerular filtration rate, body mass index, total cholesterol, drinking
status, education level, smoking status, diabetes, history of cardiovascular diseases, statin use, hormone therapy, and use of
antihypertensive medication. Hypertension was defined as a systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg,
and/or the use of antihypertensive medication. Early 40–44, intermediate 45–49, normal 50–54, late ≥55.

3.1. One-Sample MR

The GRS-ANM was associated with observed ANM and explained between 1.4%
and 3.4% of the ANM variance in the included cohorts; F statistic values were between
11.15 and 40.63 (Table S9). We found no association between GRS-ANM and SBP, DBP, or
hypertension in either of the cohorts (Table S10).
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In the MR analysis using the GRS-ANM as the instrumental variable and pooling the
estimates through meta-analysis, we found no evidence of a causal association between
ANM and BP traits in the crude and adjusted analyses (Table 1). Neither individual genetic
variants nor the GRS were associated with potential confounders (Tables S11 and S12).
Similarly, we found no evidence of association between the 54 SNPs ANM and BP traits
(Table S13). In the “leave-one-out” analyses, we observed that in RS-I-3, RS-II-1, and RS-III-
1, the GRS-ANM excluding SNP rs1054875 showed a weaker association with the observed
ANM, while excluding the others SNPs from the GRS-ANM did not materially change
the association. However, the genetic risk score without including SNP rs1054875 was
evaluated with the instrumental variable approach, and the findings were consistent with
the main analysis (Figures S4 and S5). Finally, we did not observe changes in the pooled
casual estimates when we evaluated a genetic risk score with 37 SNPs related to DDR
genes. Nevertheless, the pooled results of the GRS with the remaining 17 SNPs non-related
to DDR genes showed a marginal causal association of later ANM on SBP (β = −2.16,
95% CI: −4.30; −0.02) (Table S14).

Table 1. Causal estimates derived from instrumental variable analysis for a year increase in ANM and risk of blood pressure
traits. Individual participant data were used for the analyses.

CoLaus (n = 1139) RS-I-3 (n = 1603) RS-II-1 (n = 790) RS-III-1 (n = 919) Meta-
Analysis

Variable β (95% CI) p β (95% CI) p β (95% CI) p β (95% CI) p β (95% CI) I2

Crude

Systolic BP −0.80
(−4.17; 2.61) 0.65 −1.89

(−4.23; 0.45) 0.11 0.68
(−2.50; 3.87) 0.68 0.93

(−1.50; 3.38) 0.45 −0.36
(−1.72; 1.01) 5.9%

Diastolic BP −0.02
(−1.85; 1.81) 0.98 −0.57

(−1.72; 0.58) 0.33 0.48
(−1.06; 2.02) 0.54 0.41

(−0.95; 1.77) 0.56 −0.01
(−0.71; 0.70) 0.0%

* Hypertension 1.09
(0.76; 1.54) 0.68 0.90

(0.71; 1.13) 0.35 1.01
(0.81; 1.47) 0.55 0.97

(0.76; 1.24) 0.84 0.97
(0.85; 1.11) 0.0%

Adjusted (n = 1137)

Systolic BP −0.84
(−3.72; 2.05) † 0.570 −1.86

(−4.13; 0.41) 0.11 −0.76
(−3.92; 2.38) 0.63 0.40

(−2.06; 2.87) 0.75 −0.82
(−2.13; 0.50) 0.0%

Diastolic BP 0.25
(−1.40; 1.90) 0.77 −0.56

(−1.68; 0.56) 0.33 0.27
(−1.42; 1.98) 0.75 0.10

(−1.29; 1.48) 0.89 −0.10
(−0.81; 0.60) 0.0%

* Hypertension 1.03
(0.70; 1.50) 0.89 0.94

(0.73; 1.20) 0.63 1.02
(0.73; 1.43) 0.90 0.92

(0.71; 1.21) 0.56 0.96
(0.83; 1.11) 0.0%

n = number of participants; Adjusted = Fully adjusted model: adjusted for antihypertensive medication; body mass index, drinking status,
diabetes, history of cardiovascular diseases, total cholesterol, smoking status, statin use, hormone therapy, education level. β estimates; CI
= confidence interval; p = p-value * Odds ratio † 1137 observations.

3.2. Two-Sample MR

In the UK Biobank, SNP rs4886238 did not reach quality control; 13 SNPs were
excluded due to LD with other variants, leaving 40 independent SNPs for the analysis. The
results of the two-sample MR were consistent with the findings of non-causal association
between ANM and DBP observed in the one-sample MR analyses. We found evidence of
causal effect of ANM on SBP (p-value < 0.05) in three of the four methods implemented
(weighted median β = 0.36; 95% CI: 0.18; 0.53, IVW β = 0.25; 95% CI: 0.04; 0.45 and MR-
PRESSO β = 0.23; 95% CI: 0.20; 0.26), while MR-Egger did not support a causal effect
(β = 0.28; 95% CI: −0.20; 0.75) and did not indicate potential directional pleiotropy in either
DBP or SBP (p-value for intercept 0.669 and 0.884, respectively). Significant heterogeneity
for ANM was found based on the Cochran’s test < 0.001 (Table 2), and asymmetrical
distribution was observed in the funnel plots (Figure S6).



J. Clin. Med. 2021, 10, 4299 8 of 13

Table 2. Causal estimates of age at natural menopause with blood pressure traits (systolic and diastolic blood pressure)
using methods implemented in the MR-Base with data from the GWAS of ANM and UK Biobank.

40 SNPs

Outcome Method β (95% CI) p-Value ph Q-Statistics

Diastolic BP

Weighted median 0.03 −0.08; 0.14 0.554 <0.001 141.48
Inverse variance Weighted 0.05 −0.08; 0.17 0.460

MR-PRESSO 0.05 0.03; 0.06 0.354
MR-Egger 0.10 −0.19; 0.40 0.481

MR-Egger, intercept −0.01 −0.07; 0.05 0.669

Systolic BP

Weighted median 0.36 0.18; 0.53 0.000 <0.001 138.80
Inverse variance weighted 0.25 0.04; 0.45 0.020

MR-PRESSO 0.23 0.20; 0.26 0.009
MR-Egger 0.28 −0.20; 0.75 0.253

MR-Egger, intercept −0.01 −0.10; 0.09 0.884

CI = Confidence interval; ph, p-value for heterogeneity, exact p-value Cochran’s Q test; Diastolic BP 1.526 × 10−13, exact p-Value Cochran’s
Q test; Systolic BP 4.116 × 10−13.

The scatter plots suggested that the SNP rs16991615 had a dominant effect on the
analysis (Figure S7). However, in the leave-one-out analyses, we did not find any genetic
variant driving the overall effect of the ANM on SBP/DBP (Figure S8). The exclusion of
the four outlier SNPs (Table S15) identified in the MR-PRESSO did not change the findings
(Table 2). The analyses of SNPs related to the DDR genes was coherent with the main
analysis; in contrast, the analysis of the non-DDR genes showed no causal association
with BP traits (Table S16, Figures S9 and S10). Similarly, estimates did not change after
the exclusion of possible pleiotropic SNPs, (six related to adult BMI and two with age at
menarche) (Tables S17 and S18). No evidence of casual effects of ANM on SBP/DBP was
observed after the inclusion in the analysis of the full set of the 53 SNPs (Table S19).

4. Discussion

Our results do not support the hypothesis that early onset of menopause is associated
with higher BP, but they suggest a potential positive causal association between ANM
and SBP, which could depend on specific genetic pathways related to ANM. No causal
association was found for the association of ANM and DBP.

In the observational analysis, after adjustment for a broad range of confounding
factors, we found that early onset of menopause was not associated with an adverse blood
pressure profile. In contrast, there was an indication that later onset of natural menopause
could be associated with higher blood pressure levels and higher odds of hypertension,
which was further supported by the two-sample MR analysis indicating a potential causal
association. Additionally, ANM was associated with a small but statistically significant
increase in the risk of hypertension. In general, age at menopause has been associated
with hypertension in different populations, but results have not been consistent [6,31–34].
A large study of 7893 women reported that age at menopause was associated with high odds
of having hypertension, but this association was not significant after further adjustment
for BMI [35]. Similar findings were reported in a meta-analysis of observational studies
evaluating the association between early menopause and hypertension matched by age
or BMI, with a pooled estimate being marginally significant (OR = 1.13; 95% CI: 1.00;
−1.29) [6]. In addition to confounding, reverse causation can also play a role in explaining
the contradictory findings. Conditions such as hypertension, coronary heart diseases,
and stroke can be related to menopause onset [10]. A physiological explanation for the
effect of hypertension is the possible decline in ovarian blood flow, which could lead to
follicle loss and substantial decrease in ovarian reserve with the acceleration of the onset of
menopause [36–38].

However, in the current study, the two-sample MR analysis, which had higher power
than the one-sample MR to detect small effects between ANM and SBP, suggested a
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causal positive effect of age at menopause on SBP. Nevertheless, due to the complexity of
pathways associated with the onset of menopause and the effects on the hormonal and
vascular systems, it is currently unclear how later onset of menopause could influence
adverse changes in BP levels. The potential causal association of DDR genes with SBP
observed in our study could present a possible pathway linking ANM with BP. Molecular
damage such as DNA fragmentation is frequent in hypertensive patients [39]. On the other
hand, there is evidence to show that prolonged exposure to estrogen [40], which could
be the case in women experiencing late menopause, could lead to DNA damage. DNA
damage induced by estrogen is considered an important risk factor for breast cancer [40,41].
Increased BP and later onset of menopause are both associated with increased risk of
breast cancer [42]. In addition, DNA damage could be induced by stress hormones such
as glucocorticoid and catecholamines, which are affected by menopause [40,43]. To date,
DDR variants have not been associated with BP traits, and the role of DNA repair in BP
is not fully understood. Future studies are needed to elucidate the potential role of DNA
repair as a potential underlying mechanism behind the association of ANM and BP and
the potential interaction of sex hormones with DNA repair and BP in women.

4.1. Strengths and Limitations

Major strengths of our study include the use of instrumental genetic variables strongly
associated with ANM that have been replicated in other studies, the combination of data from
two large comprehensive studies, and accounting for multiple confounding factors. Another
strength is the use of aggregate data from the largest GWAS of ANM and UK Biobank, which
takes advantage of the large sample size and similarity between the studied populations.

Nevertheless, some important limitations are worth considering. ANM related SNPs
explain only a small proportion of the estimated heritability of ANM, and the study sample
was restricted to Caucasian women, which limits the extrapolation of the results to other
racial/ethnic populations. Additionally, age at menopause was assessed retrospectively
several years after the menopause occurred, which could lead to a recall bias [44]. However,
it is assumed that this error was not differential. Furthermore, due to the cross-sectional
design, the reported estimates could be influenced by residual confounding factors related
to hormone therapy, chronological age, and time since menopause; similarly, differences in
sample size and hypertension prevalence could also be related to the heterogeneity of the
estimates in our analysis. One-sample MR analysis might have limited power to detect
small effects; moreover, our analysis inherits all the limitations that the MR itself has as a
method (e.g., buffering mechanisms) [45–48]. In the two-sample MR we could not explore
further sensitivity analyses (i.e., evaluate the genetics associations with other reproductive
traits associated with BP traits that are out of the causal pathway of the ANM). Altogether,
these limitations could lead to the existence of pleiotropic effects. However, the MR-Egger
intercept was indicative of validity of the genetic variants analyzed. Additionally, we
performed a “leave-one-out” analysis, which did not change the findings.

The MR-Egger causal effect was not significant; however, the intercept was not indica-
tive of directional pleiotropy. Therefore, even the causal estimate in the MR-Egger method
was imprecise; it was coherent with the estimates from the other approaches implemented,
which does not contradict the causal relation between ANM and SBP [49]. Additionally,
the MR-Egger analysis is sensitive to outliers [49]; in our study we identified four outlying
SNPs, whose effects were corrected in the MR-PRESSO analysis, and the causal effect
remained significant.

4.2. Future Research and Implications

The results presented here support the importance of considering age at menopause as
an exposure in preclinical and clinical studies [50]. Findings suggest that the mechanisms
behind the observed associations are more complex and need better evidence supporting
the identification of predictors or risk factors to bring timely interventions to women [51].
Therefore, future studies should focus on the evaluation of the DNA damage response
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pathways, ageing process, and their role in the onset of menopause and progression of
cardiovascular disease in women. Another potential pathway linking ANM with BP
could be epigenetic modifications such as DNA methylation of cytosine residues in CpG
dinucleotides and histone modification. Epigenetic mechanisms are associated with both
ANM and BP traits [52], and future studies should explore epigenetic modifications related
to menopause onset and whether the identified epigenetic signatures can explain the
association between ANM and BP. In addition, large observational cohort studies shall
explore whether use of antihypertensive medication and changes in SBP and DBP prior to
menopause are prospectively associated with onset of menopause, and complementary
MR analysis could shed light on whether the effect is casual, given there is an association.
Finally, it is necessary to improve the assessment of age at menopause by assessing it
prospectively and identifying biomarkers associated with the onset of menopause to
achieve greater accuracy.

In conclusion, findings of our study provide additional support that early onset of
menopause is not associated with a higher BP profile. In contrast, later onset of menopause
might be causally associated with adverse systolic blood pressure levels, and the DNA
damage repair pathways might be potential mechanisms underlying the association.
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