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Neuroscientific approaches to study prosociality
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Abstract

Prosociality is a core feature of human functioning and has
been a topic of interest across disciplinary boundaries for de-
cades. In this review, we highlight different neuroscientific ap-
proaches that have enriched traditional psychological methods
for studying prosocial behavior among individuals and groups.
First, we outline findings from task-based neuroimaging
studies that provide correlational evidence for the involvement
of different neural mechanisms in prosocial behavior. Next, we
present different brain stimulation studies that show several
brain areas to be causally related to prosocial behavior.
Furthermore, we outline the task-independent neural trait
approach that quantifies temporally stable brain-based char-
acteristics in an effort to uncover sources of interindividual
differences in prosocial preferences. We discuss how the
findings from these approaches have contributed to our un-
derstanding of prosocial behavior and suggest directions for
future research.
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Introduction
Prosocial behavior — defined as a broad range of actions
intended to benefit another person or group [1] — is

pivotal for maintaining interpersonal relationships at
multiple scales [2, 3], thereby contributing to the
emergence and thriving of small to large-scale societies
[4, 5]. Understanding how prosocial behaviors originate,
develop, and vary across individuals, groups, and

contexts, has been a challenging research endeavor
across various disciplines.

In recent years, the interest in studying prosocial behavior
from a more comprehensive perspective including the
integration of insights from neuroscience into psycho-
logical and related research has grown. Incorporating
neural levels of analysis into the study of human proso-
ciality has, for example, enabled us to unveil hidden
prosocial motives, identify processes that differentiate
between competing theories of social behavior, and build
more extensive models allowing improved predictions
about human behavior. In particular, three neuroscientific
approaches have been influential in expanding our un-
derstanding of prosocial decision-making. First, task-
based brain imaging studies have allowed us to identify
neural activity in specific brain regions or during a specific
time that are functionally involved in the execution of a
given task, thereby informing us about potential processes
underlying prosocial decision-making. Second, brain
stimulation research has enabled us to establish causal
relationships between prosocial behavior and the func-
tioning of specific brain areas. Third, task-independent
brain imaging has provided us with neural trait markers
to investigate potential sources of interindividual vari-
ability in prosocial behavior.

In this review, we will provide an overview of these
approaches and introduce the most commonly applied
neuroscientific methodologies. Furthermore, we will
highlight relevant findings that have emerged from
these approaches and discuss how they have shed light
on the mechanisms underlying human prosociality.
Finally, we propose directions for future research.

Task-based brain imaging: examining

neural processes

One way to study the complex processes underlying
prosocial decision-making is through task-based ‘online’
brain imaging, which involves recording participants’
brain activity while they engage in social decision-
making tasks. These tasks commonly model the
complexity of real-life situations in the form of experi-
mental games, which allow for measuring actual proso-
cial behavior in controlled experimental settings (for an
overview, see van Dijk and De Dreu [6] and Van Lange
et al. [7]). Here, we focus on functional magnetic
resonance imaging as this is the most routinely and
commonly used technique in this field. It provides
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images of the neural activity in the brain, which is
estimated using  the blood  oxygen level
(BOLD response), showing which regions of the brain
are more active during the execution of a task.

In an effort to unravel the neural processes underlying
prosocial decision-making, Bellucci et al. [8] tried to
identify brain regions consistently activated across
different types of prosocial behavior. Using 600 neuro-
imaging studies, they found that neural activation pat-
terns of prosocial behavior partially overlap with
mentalizing and empathy networks, such as the dorsal
posterior and middle cingulate cortex, and — in self-
serving inequality — the temporoparietal junction
(TPJ). Moreover, they showed that prosocial behavior
consistently recruits brain regions such as the ventro-
medial prefrontal cortex (vmPFC) and the dorsolateral
prefrontal cortex (dIPFC). These findings suggest that
prosocial behavior comprises not only mentalizing and
empathetic abilities that enable individuals to under-
stand others’ needs and increase the motivation to
help, but also involves processes such as valuation
(vmPFC), planning, and cognitive control (dIPFC).

In another meta-analysis, Cutler and Campbell-
Meiklejohn [9] examined whether neural activation pat-
terns differ depending on the type of a prosocial act. They
found that although both altruistic and strategic giving
commonly activate brain regions in the reward and value-
computation networks, the two types of giving are
supported by distinct neural regions. For example, stra-
tegically motivated prosocial acts (i.e., with the prospect
of improving one’s situation via reputation or reciprocity)
are associated with greater activity in striatal regions
and the dIPFC, whereas nonstrategic (i.e., intrinsically
rewarding, purely altruistic) decisions show greater ac-
tivity in the posterior vmPFC. In other words, the pres-
ence or absence of extrinsic rewards for prosocial behavior
seems to involve different neural computations, leading
to different prosocial choices [9, 10].

Thus, neuroimaging evidence shows that prosocial be-
haviors consistently recruit a specific set of brain regions
dedicated to social cognition, cognitive control, as well
as reward and value processing. However, there is also
converging evidence showing that the involvement of
specific brain areas in prosocial choices depends on the
strategic nature of a prosocial act [9], and — as further
research shows — on differences in personality charac-
teristics [11—13]. For example, Hackel et al. [11]
recently found that individuals with prosocial traits
show greater vmPFC activity when acting prosocially, as
well as heightened dIPFC activity and dIPFC-vmPFC
connectivity when engaging in a selfish act, whereas
selfish individuals showed the opposite pattern. Hence,
cognitive control implemented by the dIPFC may
encourage or inhibit prosocial behavior depending on an
individual’s prosocial traits and the context in which a

decision occurs [10, 11]. This taps into a long-standing
debate about whether prosocial behavior reflects an
intuitive first reaction, or a second, more deliberate re-
action [14—16]. Looking at this dichotomy from a
neuroscientific perspective, research points to a more
integrative framework: rather than regarding prosociality
as a universally prepotent or deliberative reaction, it
appears that prosocial decisions strongly hinge on the
interaction between individual characteristics and situ-
ational constraints [2, 10, 17].

Although studies using brain imaging have yielded many
fruitful insights into the mechanisms underlying human
prosociality, these methods primarily provide correla-
tional information about the relationship between brain
areas and prosocial decisions. In the next section, we
therefore turn to noninvasive brain stimulation
methods, such as transcranial magnetic stimulation
(TMS) and transcranial electrical stimulation, which
enable us to directly modulate brain activity and thereby
establish causal brain-behavior relations.

Noninvasive brain stimulation: inferring
causality

Advances in noninvasive brain stimulation technologies
over the last decades have equipped us with tools to safely
modulate the brain by inducing changes in cortical
excitability. TMS induces a magnetic field by passing an
electrical current through a conductive coil, using indi-
vidual, paired, or longer trains of regularly spaced pulses.
Transcranial electrical stimulation, on the other hand,
refers to a broad range of different techniques that involve
passing relatively weak currents through the skull,
thereby modulating the likelihood of action potentials to
occur. One of the most common transcranial electrical
stimulation methods is transcranial direct current stimu-
lation (tDCS), where a current of a constant magnitude
passes between two or more electrodes positioned on the
scalp. This current causes a subthreshold modulation of
the resting membrane potential of cortical neurons,
thereby typically increasing (anodal tDCS) or decreasing
(cathodal tDCS) their likelihood of firing [17]. Another
approach is to influence intrinsic oscillatory neural activity
by varying the amplitude and polarity of the current,
which can be achieved using transcranial alternating
current stimulation (for reviews on noninvasive brain
stimulation methods, see for example [18—20]).

As noninvasive brain stimulation methods are generally
limited to the modulation of brain areas lying not more
than a few centimeters away from the cortical surface
[18, 21], studies examining the causal involvement of
neural processes in prosociality typically target cortical
brain areas, such as the vmPFC (associated with, e.g.,
value computation), dIPFC (associated with, e.g.,
behavioral control), or TPJ] (associated with, e.g.,
perspective-taking). For example, Soutschek et al. [22]
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found that participants who received inhibitory TMS
over the TPJ behaved more selfishly than participants
with a vertex stimulation as a control site. Similarly, Li
et al. [23] applied anodal tDCS (i.e., increasing the
cortical excitability) over participants’ TPJ, while they
allocated financially rewarding tokens between them-
selves and a charity. They found that enhancing cortical
excitability in the TPJ increased participants’ charitable
giving, thereby providing further evidence for the causal
involvement of the TP] in prosocial behavior. In addition,
research has also shown that enhancing cortical excit-
ability of the vmPFC increases both prosocial giving [24]
and punishing unfair behaviors at a personal cost [25].

Other studies have focused on the causal link between
the dIPFC and prosocial decision-making. For example,
research has demonstrated that applying inhibitory TMS
[26] or cathodal tDCS [27] over the dIPFC leads to
increased selfishness, whereas stimulating the dIPFC
using anodal tDCS or excitatory TMS increases prosocial
decisions [28—30]. However, other research also shows
that inhibitory TMS increases prosocial giving [31],
which points to a more nuanced role of the dIPFC in
prosocial decision-making that may — in line with in-
sights from neuroimaging studies outlined previously —
be sensitive to situational and individual characteristics.
Providing causal support for this assumption, Gross et al.
[32] found that whether brain stimulation over the right
dIPFC increases or decreases selfishness depends on both
external rules (i.e., a rule that demands to make self- or
other-serving monetary allocations) and individual per-
sonal goals (i.e., unrestricted behavior used as a proxy for
internal motives). More precisely, cathodal tDCS
increased participants’ willingness to follow rules, even if
these rules demanded to hurt oneself or others financially,
whereas anodal tDCS led participants to violate rules
more often that were at odds with their free choices.

Taken together, these findings present causal evidence
showing that activity in brain areas including the theory
of mind network, valuation system, and lateral prefrontal
cortex underlies prosocial decision-making. Further-
more, these results support neuroimaging findings
showing that the dIPFC does not generally inhibit
prosocial or selfish choices but plays a crucial part in
reacting to internal values and contextual constraints.
"This indicates that exploring sources of interindividual
differences in prosocial motives and responses to
external variables may significantly contribute to our
understanding of human prosociality. The neural trait
approach, outlined as follows, is an important attempt to
explain this interindividual variation.

Task-independent brain imaging: explaining
interindividual variability

People exhibit substantial interindividual variability in
their prosocial tendencies [33, 34]. One promising way

to uncover sources of behavioral heterogeneity in
prosociality is through the neural trait approach. This
approach seeks to explain sources of behavioral hetero-
geneity with task-independent ‘offline’ brain-based
characteristics that are objective and stable over time
(i.e., neural traits [17]). One neural trait measure is
resting-state electroencephalogram, which measures
neural baseline electrical activity when participants are
at rest. This activity can be characterized, for example,
by power values for different frequency bands or elec-
trical microstates [35]. Another neural trait measure can
be derived from structural magnetic resonance imaging
by looking at neuroanatomical differences in gray matter
(i.e., cortical volume and thickness) or white matter
(i.e., structural connections).

Using a neural trait approach, Morishima et al. [36] first
demonstrated a positive link between gray matter
volume in the right TPJ and individuals’ prosociality in
situations of self-serving inequality. More recently,
baseline activation in the right TPJ has been linked to
increased conditional cooperation (i.e., individuals who
cooperate if others also cooperate), unconditional
cooperation [37], and compliance with fairness norms
[38]. Furthermore, based on a behavioral study showing
that humans display a ‘cooperative phenotype’ in the
sense of a temporally stable and general inclination
toward prosocial behavior [39], Gianotti et al. [40]
examined whether neural signatures underlie individual
differences in this phenotype. Indeed, they found that
task-independent baseline activation in the TPJ was
associated with interindividual variation in domain-
general prosociality (i.e., prosociality across different
situations). Together, these studies suggest that — even
across different situations — people with higher base-
line activation of the TPJ] consistently behave more
prosocially than others, possibly due to increased abili-
ties in mentalizing and overcoming self-centeredness
[22, 41].

Other neural trait studies found that baseline activation
and/or volume of the orbitofrontal cortex [42], dIPFC
[38, 43, 44], and anterior insula [45] were associated
with individual differences in prosocial decision-making.
For example, Baumgartner et al. [37] showed that con-
ditional cooperators displayed higher baseline dIPFC
activation than unconditional cooperators or non-
cooperators. Similarly, Gianotti et al. [38] found higher
baseline activation in the dIPFC in individuals who
complied with fairness norms when facing potential
sanctions (i.e., sanction-based compliers) compared
with individuals never complied. These findings thus
suggest that higher dIPFC baseline activation may
enable conditional and sanction-based cooperators to
strategically adapt their behavior to changing situations,
providing further evidence that neither prosocial nor
selfish behavior is universally ‘default’ but depends on
an individuals’ personality and context.
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Conclusion and future directions

The many studies combining neuroscience with psy-
chological and related research have provided valuable
insights into the neural underpinnings of prosociality,
suggesting it is a multidimensional phenomenon
consisting of different cognitive and motivational pro-
cesses. Evidence from different approaches — from
task-based correlational neuroimaging to causal brain
stimulation and neural trait research — has revealed a
significant overlap between neural circuits engaged in a
variety of prosocial behaviors. These networks involve
mentalizing and empathy ability, reward and valuation
processing, as well as capacity for cognitive control.
Importantly, these findings also suggest that prosocial
decision-making results from a complex interaction be-
tween individual characteristics and external influences.
For example, among individuals with high mentalizing
abilities expressed by high TPJ] activation who are
generally more prone to make prosocial choices, only
those with high dIPFC activation tend to strategically
align their behavior with contextual factors, such as
rules, potential sanctions, or the behavior of others [9,
32, 37, 38].

Despite these fruitful insights, however, a full under-
standing of the complexity of human prosociality re-
mains elusive. One promising avenue for future
research may be the combination of different neuro-
scientific methodologies and other process tracing
methods. For example, combining offline task-
independent neural traits with online neural activa-
tion within the same sample of participants could pro-
vide more insights into the interplay of brain structure
and function, yielding a clearer understanding of what
functional or structural aspects of brain regions ulti-
mately drive prosocial behavior. Moreover, a combina-
tion of online and/or offline neuroimaging with brain
stimulation might allow researchers to localize cortical
areas and characterize the baseline level of neural
activation, which then allows a more precise investiga-
tion of trait-state interactions. Finally, these approaches
might also benefit from the further integration of pro-
cess tracing methods such as eye- and mouse-tracking,
reaction time measures, or computational modeling
[46, 47]. In addition to combining different method-
ologies, future research could also try to integrate tasks
embedded in more natural contexts and across more
diverse settings. For example, researchers could inves-
tigate whether neural mechanisms underlying prosocial
choices differ when these choices are reached collec-
tively as a group [48] or when they are made toward
future generations [49—51]. By combining theoretical
and methodological advances, we believe that future
research will help us refine our previous knowledge and

generate novel insights into the mechanisms underlying
prosocial decision-making.

Finally, we would like to add that every act of prosocial
behavior is preceded and accompanied by multiple
layers of processes that are utterly intertwined, such as
chemical processes in the brain, hormones, genes, sen-
sory cues, and other environmental influences. Neuro-
science is just one of many disciplines that helps us gain
a fuller understanding of the complex, multifaceted
phenomena of prosociality. We believe that every disci-
pline provides a novel perspective and contributes an
additional layer of knowledge to our understanding of
the factors that allow prosocial behavior to become
apparent. What neuroscience contributes, in particular,
are insights into the neural networks and neural pro-
cesses that influence why, how, and when humans
behave prosocially — including processes that are
sometimes beyond conscious awareness or are hard to
measure in an ‘objective’ manner (as opposed to self-
report measures, for example). However, we would
like to highlight that no discipline is per se superior to
others but that they can complement one another in
several ways and jointly contribute to a more compre-
hensive understanding of prosociality.
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