The synovium of human osteoarthritic joints retains its chondrogenic potential irrespective of age.

Hunziker, Ernst B.; Shintani, Nahoko; Haspl, Miroslav; Lippuner, Kurt; Voegelin, Esther; Keel, Marius J (2022). The synovium of human osteoarthritic joints retains its chondrogenic potential irrespective of age. Tissue engineering. Part A, 28(5-6), pp. 283-295. Mary Ann Liebert 10.1089/ten.TEA.2021.0105

[img]
Preview
Text
ten.tea.2021.0105.pdf - Accepted Version
Available under License Publisher holds Copyright.

Download (1MB) | Preview

The autologous synovium is a potential tissue source for local induction of chondrogenesis by tissue engineering approaches to repair articular cartilage defects such as they occur in osteoarthritis. It was the aim of the present study to ascertain whether the aging of human osteoarthritic patients compromises the chondrogenic potential of their knee-joint synovium and the structural and metabolic stability of the transformed tissue. The patients were allocated to one of the following two age categories: 54 - 65 years and 66 - 86 years (n = 7-11 donors per time point and experimental group; total number of donors: 64). Synovial biopsies were induced in vitro to undergo chondrogenesis by exposure to either bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-ß1 (TGF-ß1) alone, or a combination of the two growth factors, for up to 6 weeks. The differentiated explants were evaluated morphologically and morphometrically for the volume fraction of metachromasia (sulfated proteoglycans), immunohistochemically for type-II collagen, and for the gene-expression levels of anabolic chondrogenic markers as well as catabolic factors by a real-time polymerase-chain-reaction (RT-PCR) analysis. Quantitative metachromasia revealed that chondrogenic differentiation of human synovial explants was induced to the greatest degree by either BMP-2 alone or the BMP-2/TGF-1 combination, i.e. to a comparable level with each of the two stimulation protocols and within both age categories. The BMP-2/TGF-1combination protocol resulted in chondrocytes of a physiological size for normal human articular cartilage, unlike the BMP-2 alone stimulation that resulted in cell sizes of terminal hypertrophy. The stable gene-expression levels of the anabolic chondrogenic markers confirmed the superiority of these two stimulation protocols and demonstrated the hyaline-like qualities of the generated cartilage matrix. The gene-expression levels of the catabolic markers remained extremely low. The data also confirmed the usefulness of experimental in vitro studies with bovine synovial tissue as a paradigm for human synovial investigations. Our data reveal the chondrogenic potential of the human knee-joint synovium of osteoarthritic patients to be uncompromised by ageing and catabolic processes. The potential of synovium-based clinical engineering (repair) of cartilage tissue using autologous synovium may thus not be reduced by the age of the human patient.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Orthopaedic, Plastic and Hand Surgery (DOPH) > Clinic of Osteoporosis
04 Faculty of Medicine > Department of Orthopaedic, Plastic and Hand Surgery (DOPH) > Clinic of Plastic and Hand Surgery > Hand Surgery
04 Faculty of Medicine > Department of Orthopaedic, Plastic and Hand Surgery (DOPH) > Clinic of Plastic and Hand Surgery

UniBE Contributor:

Hunziker, Ernst Bruno, Lippuner, Kurt, Vögelin, Esther

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1937-3341

Publisher:

Mary Ann Liebert

Language:

English

Submitter:

Veronika Picha

Date Deposited:

11 Nov 2021 09:52

Last Modified:

05 Dec 2022 15:53

Publisher DOI:

10.1089/ten.TEA.2021.0105

PubMed ID:

34693739

BORIS DOI:

10.48350/160359

URI:

https://boris.unibe.ch/id/eprint/160359

Actions (login required)

Edit item Edit item
Provide Feedback