Statistical characteristics of extreme daily precipitation during 1501 BCE–1849 CE in the Community Earth System Model

Kim, Woon Mi; Blender, Richard; Sigl, Michael; Messmer, Martina; Raible, Christoph C. (2021). Statistical characteristics of extreme daily precipitation during 1501 BCE–1849 CE in the Community Earth System Model. Climate of the past, 17(5), pp. 2031-2053. Copernicus Publications 10.5194/cp-17-2031-2021

[img]
Preview
Text
Kim2021_cp-17-2031-2021-1.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).
This work is distributed under the Creative Commons Attribution 4.0 License.

Download (10MB) | Preview
[img] Text
Kim_et_al_accepted.pdf - Accepted Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (8MB) | Request a copy

In this study, we analyze extreme daily precipitation during the pre-industrial period from 1501 BCE to 1849 CE in simulations from the Community Earth System Model version 1.2.2. A peak-over-threshold (POT) extreme value analysis is employed to examine characteristics of extreme precipitation and to identify connections of extreme precipitation with the external forcing and with modes of internal variability. The POT analysis shows that extreme precipitation with similar statistical characteristics, i.e., the probability density distributions, tends to cluster spatially. There are differences in the distribution of extreme precipitation between the Pacific and Atlantic sectors and between the northern-high and southern-low latitudes. Extreme precipitation during the pre-industrial period is largely influenced by modes of internal variability, such as El Niño-Southern Oscillation (ENSO), the Pacific North American, and Pacific South American patterns among others, and regional surface temperatures. In general, the modes of variability exhibit a statistically significant connection to extreme precipitation in the vicinity to their regions of action.The exception is ENSO, which shows more widespread influence on extreme precipitation across the Earth. In addition, the regions where extreme precipitation is more associated either by a mode of variability or by
the regional surface temperature are distinguished. Regional surface temperatures are associated with extreme precipitation over lands at the extratropical latitudes and over the tropical oceans. In other regions, the influences of modes of variability are still dominant. Effects of the changes in the orbital parameters on extreme precipitation are rather weak compared to those of the modes of internal variability and of the regional surface temperatures. Still, some regions in central Africa, southern Asia, and the tropical Atlantic ocean show statistically significant connections between extreme precipitation and orbital forcing, implying that in these regions, extreme precipitation has increased linearly during the 3351-year pre-industrial period. Tropical volcanic eruptions affect extreme precipitation more clearly in the short term up to a few years, altering both the intensity and frequency of extreme precipitation. However, more apparent changes are found in the frequency than the intensity of extreme precipitation. After eruptions, the return periods of extreme precipitation increase over the extratropical regions and the tropical Pacific, while a decrease is found in other regions. The post-eruption changes in the frequency of extreme precipitation are associated with ENSO, which itself is influenced by tropical eruptions. Overall, the results show that climate simulations are useful to complement the information on pre-industrial extreme precipitation, as they elucidate statistical characteristics and long-term connections of extreme events with natural variability.

Item Type:

Journal Article (Original Article)

Division/Institute:

10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Physics Institute > Climate and Environmental Physics
08 Faculty of Science > Physics Institute

Graduate School:

Graduate School of Climate Sciences

UniBE Contributor:

Kim, Woon Mi, Sigl, Michael, Messmer, Martina Barbara, Raible, Christoph

Subjects:

500 Science > 530 Physics
500 Science > 550 Earth sciences & geology

ISSN:

1814-9324

Publisher:

Copernicus Publications

Funders:

Organisations 1314 not found.

Projects:

[1314] Timing of Holocene volcanic eruptions and their radiative aerosol forcing

Language:

English

Submitter:

Michael Sigl

Date Deposited:

09 Nov 2021 13:17

Last Modified:

05 Dec 2022 15:53

Publisher DOI:

10.5194/cp-17-2031-2021

BORIS DOI:

10.48350/160397

URI:

https://boris.unibe.ch/id/eprint/160397

Actions (login required)

Edit item Edit item
Provide Feedback