
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
6
0
4
2
0

|

d
o
w
n
l
o
a
d
e
d
:

9
.
4
.
2
0
2
4

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

1

Predictive UAV Base Station Deployment and
Service Offloading with Distributed Edge Learning

Zhongliang Zhao1, Lucas Pacheco2, Hugo Santos23, Minghui Liu1, Antonio Di Maio2, Denis Rosário3,
Eduardo Cerqueira3, Torsten Braun2, Xianbin Cao1

School of Electronic and Information Engineering, Beihang University, China1

Institute of Computer Science, University of Bern, Switzerland2

Institute of Technology, Federal University of Pará, Brazil3

Email: {zhaozl, liumh1213, xbcao}@buaa.edu.cn, {lucas.pacheco, hugo.santos, antonio.dimaio,
torsten.braun}@inf.unibe.ch, {denis, cerqueira}@ufpa.br

Abstract—In modern networks, edge computing will be re-
sponsible for processing and learning from the critical network-
and user-generated data, such as wireless link usage, mobility
information, application requests, and many others. The presence
of Artificial Intelligence-based (AI) applications at the edge of the
network will enable the network to predict necessary user behav-
ior and its impact on network infrastructure, such as base station
overloading. One of the main strategies for offloading users and
base stations is to deploy UAV base stations, or flying base
stations, which can dynamically provide service and connectivity.
In this article, we introduce a framework for distributed learning
over Multi-access Edge Computing (MEC), which manages data
applications in a fully distributed setting across edge servers, thus
reducing the cost of collecting user information in a centralized
server. We couple the proposed distributed learning with a novel
similarity metric for user trajectories, which can aggregate neural
network models with similar costs as other model aggregation
techniques. However, the aggregation technique can achieve much
higher accuracy. Furthermore, we apply the proposed distributed
learning scheme to manage and deploy flying base stations to
areas that experience high demand or poor user connectivity,
thus optimizing connectivity in terms of user satisfaction, delay,
and network throughput.

Index Terms—Distributed machine learning, trajectory pre-
diction, unmanned aerial vehicle, flying base station deployment,
mobility management.

I. INTRODUCTION

With the emergence of Unmanned Aerial Vehicles (UAVs),
flying base stations can be regarded as a promising solution
to provide extensive coverage services to assist mobile users
with limited or no wireless connectivity [1]. In this way, a
UAV as flying Base Station (UAVBS) enables to offload data
traffic from a set of mobile users connected to a congested
base station or user located in the void area, improving the
connectivity and Quality of Service (QoS). In future mobile
networks, mobile users could be connected to a given base
station or UAVBS in a transparent way based on a mobility
management decision [2]. For instance, there are ongoing
standardization activities in 3GPP [3] for providing enhanced
wireless connectivity to personal and commercial UAVBSs via
mobile networks [1]. Many works have been done to deploy

Zhongliang Zhao and Lucas Pacheco contributed equally to this work.
Corresponding author: Zhongliang Zhao (zhaozl@buaa.edu.cn).

UAVBSs to provide temporary network services [4], [5].
Hence, it is essential to understand the network scenario and
user behavior to proactively deploy UAVBS to serve ground
users. While UAVs will play an essential role in providing
service and connectivity to users in remote areas or areas
that are overloaded, they impose new mobility management
challenges [6]. With the presence of UAVs as flying base
stations, users’ anchor points must be carefully managed to
guarantee good QoS for all users in the network.

Machine Learning (ML) brings significant benefits to mo-
bile networks to understand the network scenario and user be-
havior. For instance, predicting user mobility and traffic behav-
ior is one of the main enablers in this setting, as user-generated
events (e.g., mobility, downlink usage, etc.) have significant
impact on the network, which may not be foreseen in the
initial network design [7]–[9]. Hence, research investigating
the application of ML to improve various communication
systems is currently experiencing an incredible boom [10]. The
unique features of wireless systems introduce new challenges
when ML algorithms are applied to improve communication
systems. In particular, these challenges are due to extensive
network scale, geographically dispersed deployment, dynamic
user mobility, exponentially growing data volume, congestion
on the radio interfaces, and data privacy concerns. To cope
with such issues, Distributed Machine Learning (DML) tech-
niques, such as Federated Learning (FL), have been increas-
ingly applied in the last years to wireless communications due
to the improved computational capabilities of wireless devices.
Therefore, ML-enabled wireless systems to start migration
from a centralized to a fully distributed training workflow
by splitting the model learning task on a central server into
multiple geographically distributed servers [11]–[13]. FL has
limited capabilities to converge in the presence of such non-
IID (Independent Identically Distributed) data. Data from
different users can vary greatly and be based on many different
random distributions, which may have different representations
in the trained neural network weights. Thus, in the aggregation
phase of FL, it is required to group users with similar statistical
features such that different learned features do not cancel each
other when averaged.

MEC is a vital component towards future mobile networks

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

2

to assist the deployment of UAVBSs [14]. For instance, 5G
is already considering moving parts of the service-specific
processing from the central cloud to edge nodes, physically
close to the end users [15]. With edge computing, a set of
computing infrastructures could be deployed close to end
devices to provide a viable way to meet the high computation
with low-latency requirements of ML on edge devices. It also
provides additional benefits in terms of privacy, bandwidth
efficiency, and computation scalability. An edge server could
be co-located with a cellular base station, an IoT gateway,
or a campus network. In mobile networks, user mobility
prediction information, such as user trajectory prediction, can
be deployed at the edge servers to improve the UAVBS
deployment and mobility management optimization [16]. In
this sense, edge computing provides a platform for deploying
DML for wireless network management. However, how to
proactively deploy UAVBSs and how to efficiently perform
mobility management by incorporating ML on distributed edge
computing infrastructure to decrease the data retrieval cost
remain still open research questions.

This article introduces the PRedictive- and groUp mobility-
based UAVBS Deployment in Edge-enabled mobile NeTworks
(PRUDENT). It takes advantage of the computing capabilities
of an edge-enabled network to introduce a distributed learning
model for predicting network usage and user mobility with
higher accuracy compared to traditional DML models. Further-
more, we introduce a location-aware scheduling mechanism
for training the DML models in the presence of distributed data
storage. In this sense, PRUDENT uses the trained ML models
to optimize coverage and service provisioning by proactively
deploying UAVBSs and by performing mobility management
decisions.

All contributions proposed in this article constitute enablers
for the maximization of the throughput for mobile users in
UAV-enabled networks, as shown in more details in Sections
IV and V. We consider the distributed nature of the scenario
in order to propose a user trajectory similarity metric, as well
as the allocation mechanism for the metric computation in
a distributed edge computing scenario. Furthermore, we take
advantage of the trajectory similarity information to make
predictions and UAV deployment as well as manage user
connectivity in the mobile scenario. The main contributions
of this article can be summarized as follows:
• We propose a distributed learning framework, where edge

servers act as local data owners to collect connection data
between mobile users and edge servers. The framework
comprises a distributed scheduling solution to decrease
data retrieval costs over a distributed data storage.

• We present a proactive mobility management solution to
provide user content request offloading and service provi-
sion to neighboring cells based on distributed predictions
of user’s future trajectories and content requests.

• We define a proactive UAVBS deployment strategy to
serve mobile users in congested or void areas. With a
distributed user clustering approach, we group users that
are poorly served and define the minimum cluster size to
be served to minimize deployment costs.

• We conduct extensive experiments, and simulation results

show that our framework could consistently optimize
throughput and the network’s service level over differ-
ent scenarios. Furthermore, we improve the distributed
machine learning model’s accuracy at the edge servers
via a novel similarity measure.

The rest of this article is organized as follows. Section II
reviews related works. Section III describes the system model
that is considered in this work. Section IV details our so-
lution to perform predictive UAVBS deployment based on
distributed learning of user trajectory and traffic requests.
Section V describes PRUDENT’s user traffic offloading and
UAVBS deployment scheme for QoS optimization. Section VI
presents the simulation results. Section VII summarizes the
contributions of this work.

II. RELATED WORKS

This section describes the state-of-the-art research results
on wireless signal detection, mobile user mobility, and traffic
flow prediction, distributed machine learning, and UAVBS
deployment. We also discuss their strengths and weaknesses.

A. Machine Learning based Network Optimization

Different ML-based approaches have been published to
optimize the network management aspects, such as channel
estimation and spectrum allocation. Samuel et al. [17] applied
Deep Learning (DL) for massive multi-input multi-output
(MIMO) detection and channel estimation by unfolding a
projected gradient descent method. They apply the approach to
time-invariant and time-varying channels. The DL algorithm
provides lower complexity than approximate message passing
and semi-definite relaxation with the same accuracy and en-
hanced robustness. For channel encoding and decoding, Nach-
mani et al. [18] applied DL to the decoding of linear block
codes with short to moderate block length based on recurrent
neural network architectures. For end-to-end communications,
Dörner et al. [19] provided a solution to train auto encoder-
based communication systems for channel estimation and
construction of channel models. Challita et al. [20] developed
a DL-based resource allocation framework for the coexistence
of long-term evolution (LTE) networks with licensed assisted
access (LTE-LAA) and WiFi in the unlicensed spectrum.
With Long Short-Term Memory (LSTM), each small-cell base
station can decide on its spectrum allocation autonomously by
requiring only limited information on the network state.

Meanwhile, modern networking deployment strategies, such
as the ones from 5G and beyond scenarios, are characterized
by the dense deployment of small cells for more efficient
spectrum usage and higher data rates. Such deployment
strategies can significantly improve the perceived data rates
and connectivity for end-users. However, they also increase
network management’s complexity, especially in terms of
mobility management [21]. While users in indoor spaces
can expect the presence of access points and small cells,
the dense deployment of small cells does not happen at a
fast enough pace to provide demanding services for mobile
users [22]. Therefore, proactive UAVBS deployment must be
carefully managed to consider user mobility and to perform

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

3

handovers and to offload to the UAVBSs. As we can see,
empowering the edge of the network with the capability to
train and execute machine learning models can greatly improve
network management. However, we must take into account the
geographically distributed nature of edge computing.

B. User Mobility and Traffic Flow Prediction

With mobility as an intrinsic feature of mobile networks,
it becomes essential to know mobile users’ future locations
proactively, which can significantly improve urban traffic
management, route recommendation, etc. Simultaneously, with
more mobility datasets available, it becomes possible and
feasible to deploy location prediction services in many net-
work applications to enable proactive mobility management,
handover optimization, content migration, and resource man-
agement. Zhao et al. [23] proposed a proactive mobility
management approach based on group user trajectory pre-
diction by combining LSTM with Reinforcement Learning
(RL) to automate the model training procedure. Ding et
al. [24] proposed a multi-user multi-order Markov model
and a multi-modal user mobility pattern prediction approach.
These works consider that their social relationships influence
people’s mobility patterns in a practical trajectory system to
make a context-based user mobility prediction. However, such
works rely on a large amount of user data, which might
not be immediately available for training. Feng et al. [25]
proposed a short-term traffic flow prediction algorithm based
on an adaptive multi-kernel support vector machine with
spatio-temporal correlation. Wang et al. [26] proposed a deep
attentive adaptation network model to transfer cross-domain
spatio-temporal knowledge for urban crowd flow prediction.
Oliveira et al. [27] proposed an adaptive demand forecasting
model and a slice allocation algorithm based on the forecasting
of the network resources demand to define slice structures in
the most suitable fashion. Zhang et al. [28] used multitask DL
based on fully convolutional networks to predict node flow and
edge flow throughput considering spatio-temporal aspects of
the network. As we can see, traffic and link usage prediction
has been successfully applied in the state-of-the-art. However,
correlating user mobility prediction and traffic prediction in
order to find where in the scenario there might be a traffic
deficit in terms of offered and requested throughput is still an
unexplored research direction that can significantly optimize
network metrics and operation.

C. Distributed Machine Learning

Many efforts have proposed DML, such as FL and par-
titioned learning techniques, to allow wireless devices to
acquire a global model with limited data exchange or based
on partial models and datasets. Mukherjee et al. [29] in-
troduced a distributed deep neural network-based offloading
strategy to minimize the weighted sum of the delay and the
energy consumption in UAV-assisted MEC networks. McMa-
han et al. [30] presented the Federated Averaging (FedAvg)
algorithm, which trains an aggregate model and does not
require uploading client data to a server. However, FedAvg
suffers from slow convergence with large numbers of rounds

and high communication costs per round under non-identical
and independent distributed client datasets [31]. Konečnỳ et
al. [32] introduced the concept of structured and sketched
model updates in order to reduce the quantity of uploaded
data during training significantly. Lin et al. [33] proposed deep
gradient compression, which reduces the redundant gradient in
distributed gradient descent [34] to reduce the communication
bandwidth significantly.

In addition to compression of weights, other techniques to
reduce communication during FedAvg have been proposed.
Yang et al. [35] presented an enhanced FL technique by
proposing an asynchronous learning strategy on the user
devices and a temporally weighted aggregation of the local
models on the server. Furthermore, Mills et al. [36] pro-
posed an adaptive FedAvg algorithm composed of distributed
Adam [34] optimization and compression of uploaded models.
It reduces total uploaded data and rounds compared to sim-
ilarly compression techniques. In power control applications,
Vu et al. [37] proposed a solution for cell-free MIMO systems
to enable FL frameworks. The approach enables each of the
iterations of FL to take place in a long coherence period
to make sure that the FL operation is stable. The joint
optimization of local precision, transmit power, throughput,
and users’ working frequency is formulated as a mixed-
timescale stochastic non-convex power control problem. In
QoS provisioning applications, Habachi et al. [38] proposed
novel resource allocation techniques for Power Domain Non-
Orthogonal Multiple Access (PD-NOMA) to jointly allocate
the channel and transmit power in PD-NOMA systems. The
authors developed a FL approach to allow the collaboration
between the base station and Machine Type Devices (MTD)
to estimate the traffic model and enable massive allocation.

D. Unmanned Aerial Vehicle Base Station Deployment

The use of UAVBSs is expected to play an essential role
in future mobile networks. Compared to traditional com-
munications, UAV-assisted networks have several appealing
advantages, such as on-demand deployment without highly
constrained and expensive infrastructure (e.g., cables), high
flexibility by dynamically changing their positions to provide
on-demand communications to ground users, and a better
chance of having line-of-sight (LOS) communication links [2].
However, deploying UAVBSs in different scenarios with dif-
ferent goals becomes a key challenge. Alzenad et al. [39]
evaluated the 3D position of UAVBSs to maximize the number
of covered users by minimizing their transmit power.

Liu et al. [40] proposed a sophisticated ML-based model for
deploying UAVBSs and determine their transmission power
according to user mobility predictions. Even though the pro-
posal optimizes the total achievable data rate in the system,
it also assumes that each user’s minimum rate requirements
are equal and fixed over time. Other works [41]–[43] have
proposed reactive solutions to position a set of UAVBS ac-
cording to the instantaneous spatial distribution of traffic load
generated by mobile users. However, the spatial distribution
of traffic load can vary considerably faster than the physical
relocation speed of UAVBSs, which may introduce service

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

4

delays. Furthermore, in the case of overloaded or void areas,
deploying UAVBSs is not enough for providing better service,
as a tailored handover strategy is also necessary to meet ap-
plication requirements and supply the throughput required by
end-users. Qian et al. [44] applied a reactive approach, which
means the service offloading operation is performed after the
user movement has finished, and the offloading decision is
solely based on the Channel State Information (CSI) between
the mobile user and the connected base stations. Moreover,
the mobility models applied include only circle-road mobility
and linear-road mobility for vehicle networks, which are much
more regular than the human mobility model considered in
our work. Based on the presented state-of-the-art analysis,
we argue that the problem of detecting and offloading users
located in void areas or with poor connectivity in a mobile
scenario proactively is a crucial task. Furthermore, a UAVBS is
a promising solution for the offloading user in such a situation,
and also a tailored mobility management strategy must be in
place to offload users from the overloaded base station to the
neighboring base station and UAVBSs. While many works
show the usefulness of ML techniques for modern network
management, as well as for traffic and mobility prediction,
they fail to consider certain characteristics of edge computing
scenarios, such as the significant geographical distribution of
servers through the scenario and the challenge of performing
DML tasks in such scenario. Moreover, the use of UAVBSs
jointly with a tailored mobility management algorithm is
required for traffic offloading and throughput maximization.
However, user mobility and traffic prediction play a crucial
role in a UAVBS scenario, as it enables proactive UAV de-
ployment. To the best of our knowledge, none of the previous
work integrated a DML solution to solve UAVBS deployment
combined with an efficient mobility management problem,
while PRUDENT tackles every aforementioned critical issue.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section explains the proposed system, its core compo-
nents, their roles and the interactions among themselves.

A. System Model

Figure 1 shows the proposed network scenario for DML,
which includes on-demand UAVBS deployment and mobility
management in edge-enabled networks. We can observe that
each individual base station in the scenario has a coverage area
associated with it. However, a given base station can only serve
a fix number of users within its coverage area, thus overloading
the traffic in the respective cell. The scenario considers that
the load for each cell is known, and UAVs can be deployed
to offload the traffic of an overloaded cell by extending the
coverage of a cell under lower traffic load. Furthermore, the
services consumed by the users are distributed on the edge
servers with respective to the cell they are associated with,
and different kinds of services can coexist in the network,
such as services used for network operation (e.g., the user
mobility prediction). In this manner, Figure 1 illustrates the
relationships between the different contributions of this article,
such as the user trajectory prediction, similarity estimation and

Bandwidth
Used: 20%

Distributed Edge Learning Framework

Bandwidth
Used: 20% Bandwidth

Used: 80%

Bandwidth
Used: 20%

Bandwidth
Used: 80%

Edge-based Applications

UAVBS

UAVBS

BSBS

BSBS
BS Users

Users

PrioritizationDistributed
Database

Mobility
Prediction

Connectivity Mobility
Similarity

Edge Server Edge Server Edge Server Edge Server

Fig. 1. Proposed distributed edge learning framework architecture, where
edge servers are deployed close to the BSs to provide local data analysis, and
UAVBS are deployed on demand to provide complement services.

clustering process, the UAVBS deployment, as well as mobile
user mobility management, which happen on the edge servers
associated with the ground base stations.

We consider a scenario containing a set C = {c1, c2, ..., cc}
of cellular ground base stations that offer Internet connectivity
to mobile users. In such an area, we assume the presence of
a set of mobile users U = {u1, u2, ..., uu}, each one with a
unique ID u. We define the geographical position of a user
u at time moment t as indicated by point pu(t). A given
mobile user u moves across the scenario and can request a
service (e.g., Virtual/Augmented Reality services, multimedia
content retrieval, web browsing, etc.) from a remote service
provider. Each service has different characteristics in terms of
desired application’s QoS, such as maximum delay, minimum
throughput, average packet loss. In this work, we model
a service’s QoS requirements as the minimum throughput
required by the application to provide the minimum service
quality.

The Internet connectivity in the scenario is provided to
the mobile users via the base stations C, composing a K-
tier cellular network, where each tier models the cell of a
particular access network, such as macrocells, small cells, or
picocells. Each base station has an ID c, located at a fixed
position within the scenario. We also assume a core network
with high capacity fibers connected to avoid congestion on the
backhaul links, supporting all users’ requested traffic without
congestion. In addition to ground base stations, we assume
that our scenario also contains a set of UAVBSs V , which can
be deployed on-demand to arbitrary locations in the scenario to
offload the downlink of nearby base stations. We must consider
characteristics of UAV networks in this setting, most notably:
i) the capacity of the battery included in a given UAV, which
can be extended via the presence of charging stations, or UAVs
must be replaces for service continuity; ii) the presence of LOS
links between UAV and users, as well as between UAV and
ground base stations; iii) the time to reach a certain destination
after an UAV deployment strategy is derived by the network.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

5

Hence, the mobile user u could consume the service-connected
to a ground base station or UAVBS, based on the mobility
management algorithm’s decisions.

The considered scenario includes a mobile edge computing
layer composed of a set of edge computing servers E with
a unique ID e, responsible for data storage, the construction,
and training of ML models, as well as network management
tasks. Each edge computing server e is uniquely associated
with a distinct ground base station according to the standard
defined in Filali et al. [45]. User requests could be processed
and attended by the edge servers, offering the desired content
to be retrieved. The user’s request history is modeled as a
sequence containing user ID, size of the payload transferred
at the downlink, and timestamp of the request. Edge servers
must process and store significant amounts of user data, such
as users’ location and request history, as well as the neural
network models trained for users. We assume that a given
edge server e can retrieve the data of a user u for neural
network training and other processing tasks from other peer
edge servers. In particular, we consider a distributed storage
mechanism similar to the Hadoop Filesystem (HDFS) im-
plementation, which periodically offloads its least-frequently
accessed data to a remote centralized facility. The edge storage
deployment is supported by backhaul links with bandwidth
We, which connect every couple of edge servers. Thus, a given
edge server e can communicate and exchange information with
a particular edge server in the network at all times. Table I
summarizes the main symbols used to explain the considered
edge-enabled network scenario.

In such an edge-enabled network scenario, we assume that
the ML prediction models are pre-trained and stored on the
edge servers. We also assume that applications in this context
are executed on a specific edge server {e ∈ E} that is close
to mobile users. The edge computing layer is responsible
for predicting future locations and down-link usage based
on the DML model for individual users to assist mobility
management and UAVBSs deployment decisions. These issues
are introduced in the following sections.

B. Problem Formulation

Let ψ denote the service level, which is defined as the frac-
tion of users who receive the minimum throughput required
by their applications. The definition of the minimum QoS
threshold varies according to the service requirements. For
instance, service level indicates the minimum throughput or
the maximum latency to provide the minimum QoS to the
user. The formulation of the service level metric can be found
in the target function in Equation (1), where H refers to the
step function, ξ represents the received data rate at the user-
device application layer, ε represents the necessary data rate
for the user’s applications, and λ ∈ [0, 1] is a lenience factor as
to the fraction of the datarate that must be received to count a
user as served (i.e., the minimum required for the application
functioning). We assume that an user is not “served”, as soon
as the network cannot provide a QoS higher than the minimum
threshold. We formulate the problem addressed by PRUDENT
as shown in Equation 1, and we can see that the maximization

TABLE I
SYSTEM MODEL PARAMETERS

Symbol Description

U Set of mobile users
C Set of ground BSs
E Set of edge servers
V Set of UAVBSs
pu(t) Position of user i at time t
ru(t) Rate of user i at time t
Au Machine learning architecture for user m
T User data update periodicity
Mu Mobility history for user u
Su Service request history for user u
Ru

Signal-to-Noise Ratio (SINR) history for user
u

Rc Square tessellation cell which defines the spa-
tial granularity of throughput estimation

Cr Cost to fetch data from one user
Γ Spectral efficiency of a base station in a given

location
Θ Throughput available from a base station in a

given location

of network throughput is the main optimization problem to be
solved by PRUDENT.

max
ψ∈[0,1]

1

U

∑
u∈U

H(ξu − εu × λ)

s.t.
∑
u∈U ′

ξu < ζ∀c ∈ C
(1)

We further model the parameters of the system in terms of
the throughput achievable by users connected to the network,
the tessellation of the coverage areas of the scenario, and
the strategies to improve ψ in Section V. In the following,
we provide the details of the proposed user mobility and
network usage prediction with the distributed machine learning
architecture.

IV. NETWORK USAGE AND USER MOBILITY PREDICTION
WITH DISTRIBUTED MACHINE LEARNING

This section introduces PRUDENT’s DML scheme, which
consists of a distributed user data storage at the edge servers
and the scheduling of neural network training jobs with this
architecture. In the DML training step, user data is considered
to train ML models to predict users’ location and service
requests at the edge server. In a distributed edge computing
scenario, data locality can impact the performance of the learn-
ing process. In this context, most of the user data generated at
the edge of the network tend not to leave the edge to be stored
in a cloud environment. Such data can be stored at edge servers
distributed through the scenario, and there is a communication
cost associated with moving such data to the cloud or even to
other edge servers. The necessity for distributed learning arises
from the limitations of individual edge computing servers to
process the entire dataset. Distributed user similarity search
finds similar statistical features, which are learned similarly
by given neural network architecture. In the prediction step,
the user mobility and request prediction models are used to
forecast overloaded cells and areas in the scenario.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

6

A. DML Models Training

In this step, the PRUDENT execution requires pre-existing
user data at the edge layer to train ML models in a distributed
fashion to predict users’ future location and downlink usage
at the edge servers. In this context, a user is modeled as a
quadruple composed of: i) its user ID u, ii) its mobility history
Mu, iii) its downlink usage history Su, and iv) history of
the SINR of the signals Ru received by the user’s serving
and neighboring base stations. We assume that users period-
ically report their information to the network edge servers.
Afterwards, PRUDENT applies a clustering algorithm to group
users with similar data features at the edge server. For instance,
neural network models are aggregated over ID users, reducing
the number of models stored in the network. This helps
to maintain higher accuracy than in traditional distributed
learning techniques, which may train a single model for non-
ID users. For data storage, we consider a Distributed Multi-
Level Storage (DMLS) deployed at the edge of the network
in which edge servers function as remote storage servers.

B. Distributed User Similarity Search

Given the limited storage capabilities of the edge servers, we
introduce a distributed similarity search scheme by analyzing
users’ downlink usage and mobility to group machine learning
models. Model grouping is required because the system may
need to store several thousands of parameters for each machine
learning model, which could introduce a high storage cost.
Thus, it is advantageous to group models if the system can
maintain low error rates. Traditionally, model aggregation
is made by averaging the weights of all trained models
into a single model. This approach has the disadvantage of
grouping together machine learning models with potentially
very different and contrasting statistical features, which may
negatively impact error rates and accuracy. In this article,
we propose intermediate clustering processing to decrease the
number of trained parameters to be stored by the network
while maintaining high accuracy levels.

The first operation performed by PRUDENT on user data is
a distributed similarity search: user pairs are scored according
to a similarity metric. This operation is beneficial because it
groups users with similar mobility patterns to aggregate neural
network models with similar statistical features. PRUDENT
performs the similarity search for both the user mobility data
and the user link usage information. In this manner, two
users with similar overall trajectories in their data sequences
will have a higher similarity value concerning mobility, and
users with similar service request patterns will have a higher
similarity value concerning their requests.

We consider the Longest Common Sub-sequence (LCSS)
[46] for trajectory similarity, which is a reliable similar-
ity metric to measure the similarities of trajectories. We
denote the trajectories of two mobile users u1 and u2
as Tu1 = (pu1(1), . . . , pu1(n)) ∈ R2n and Tu2 =
(pu2(1), . . . , pu2(m)) ∈ R2m with pu1(i), pu2(j) ∈ R2,∀i, j.
We define the operator h : R2n → R2(n−1), which returns
a trajectory made of the first n − 1 points of a trajec-
tory made of n points. Equation 2 defines L(Tu1, Tu2) ∈

pu1(t)

pu2(t)

pu1(t+ 1)

pu1(t+ 2)

pu1(t+ 3)

T1

pu2(t+ 1)

pu2(t+ 2)

pu2(t+ 3)

T2

(a) Two trajectories with different shapes

pu1(1) pu1(2) pu1(3)

pu2(3) pu2(2) pu2(1)

T1

T2

(b) Two trajectories in the opposite directions

Fig. 2. Limitations of the LCSS algorithm.

{1, . . . ,min(n,m)} as the LCSS between two trajectories Tu1
and Tu2. The constants γ and δ are the matching threshold
and the time shift, respectively, and can be adjusted offline
according to the scenario’s characteristics.

L(Tu1, Tu2) =

0, if dim(Tu1) = 0 or dim(Tu2) = 0

1 + L(h(Tu1), h(Tu2)),
if ‖pu1(n)− pu2(m)‖ < γ and |n−m| ≤ δ

max

{
L(h(Tu1), Tu2)
L(Tu1, h(Tu2))

, otherwise

(2)

Equation 2 is the recursive formulation of the LCSS al-
gorithm, and its rationale is detailed hereafter. The second
expression of Equation 2 means that if the time distance
between the two last data points of the two trajectories is
less than a threshold δ and they are located closer to each
other than a threshold distance γ, the LCSS associated to
those trajectories is recursively computed by adding 1 to
the LCSS score associated to the two trajectories. The third
expression of Equation 2 states that if the second expression’s
conditions are not satisfied, i.e., the two last data points are
further apart than the threshold γ or the trajectories’ length
difference is more than δ, the LCSS score associated to the two
considered trajectories is the largest LCSS between the same
two trajectories, computed after removing the last data point
from either of them. Finally, the first expression of Equation 2
states that when the algorithm calculates the LCSS between
two trajectories, of which at least one contains no data points,
it will return an LCSS value of zero, and this will terminate
the recursion.

Equation 3 defines the similarity between two trajectories
Tu1 and Tu2 based on LCSS.

σL(Tu1, Tu2) =
L(Tu1, Tu2)

min(n,m)
(3)

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

7

The LCSS algorithm does not consider the shape of
trajectory segments, as it uses only the distances be-
tween points on the two different trajectories, as location
data can be noisy, and traditional approaches do not con-
sider the direction of movement. For instance, two tra-
jectories Tu1 = (pu1(1), pu1(2), . . . , pu1(n)) and Tu2 =
(pu2(1), pu2(2), . . . , pu2(m)), shown in Figure 2(a), are sig-
nificantly different, especially after the intersection point P ,
but their similarity value will be high according to the LCSS
algorithm. Figure 2(b) shows an extreme example that satisfies
the condition ‖pu1(1) − pu2(1)‖ < γ. The two trajectories
are nevertheless considered highly similar and grouped with
the conventional LCSS algorithm, but they represent opposite
directions. Therefore, calculating trajectory similarity using
only the distance between data points on trajectories will not
consider all the relevant information of user data.

To solve this issue, we hereafter propose a novel similarity
measure between user mobility trajectories. In order to im-
prove the accuracy of similarity measurements, we measure
the similarities between pairs of segments instead of individual
data points distance on the trajectory. The i-th segment on a
trajectory is defined as a directed vector v(i) ∈ R4 in a two-
dimensional space R2 and can be represented by a couple of
points (p(i), p(i+1)) on the R2 plane. Specifically, p(i) ∈ R2

is the point where the segment starts, and p(i+1) ∈ R2 is the
point where the segments end. We define the distance metric
d : R4×R4 → R between segment vu1(i) and segment vu2(j)
as the sum of Euclidean distances between the two pairs of
endpoints, as shown in Figure 3 and defined in Equation 4.
This definition of distance between two segments satisfies the
properties of positivity, symmetry, and triangular inequality.

d(vu1(i),vu2(j)) = ||pu1(i)−pu2(j)||+||pu1(i+1)−pu2(j+1)||
(4)

The distance similarity σd is defined in Equation 5, where
α is a random variable between [0, 0.1] to ensure that the
denominator is not zero when two segments overlap.

σd(vu1(i),vu2(j)) =
1

d(vu1(i),vu2(j)) + α
(5)

The angle similarity σθ between two segments is based on
cosine similarity and is defined in Equation 6.

σθ(vu1(i),vu2(j)) =

{
0, vu1(i) · vu2(j) ≤ 0
vu1(i)·vu2(j)
|vu1(i)||vu2(j)| , otherwise

(6)

where vu1(i)·vu2(j)
|vu1(i)||vu2(j)| is the cosine of the angle between

vu1(i) and vu2(j). If the directions of the two segments are
widely different, it makes no sense to compute the distance of
the segments. Thus, σθ(vu1(i),vu2(j)) is set to 0 for θ greater
than π/2. Finally, we define the segment similarity metric σ
as the product of metrics σθ and σd as in Equation 7.

σ(vu1(i),vu2(j)) = σθ (vu1(i),vu2(j)) · σd (vu1(i),vu2(j))
(7)

Based on the proposed segment similarity, PRUDENT clas-
sifies each pair of users in order to cluster them. Specifically,

pu1(i)

pu1(i+ 1)

T1

pu2(j)

pu2(j + 1)

T2

vu1(i)

vu2(j)

Fig. 3. Similarity between trajectory segments

Algorithm 1: Trajectory Similarity Measurement

1 for each user pair Pt do
2 Vu1 = (vu1(1), . . . ,vu1(n− 1));
3 Vu2 = (vu2(1), . . . ,vu2(m− 1));
4 Vu1,Vu2: Sets of directed vectors for Tut1 and Tut2;
5 for i = 1 to n− 1 do
6 for j = 1 to m− 1 do
7 if i = 1 or j = 1 then
8 D(vu1(i),vu2(j)) = 0

9 else
10 if σ(vu1(i),vu2(j)) > τ and

|n−m| ≤ δ then
11 D(vu1(i),vu2(j)) =

1 +D(vu1(i− 1),vu2(j − 1))

12 else
13 D(vu1(i),vu2(j)) =

max{D(vu1(i− 1),vu2(j)),
14 D(vu1(i),vu2(j − 1))}

15 return Φt = D(vu1(n−1),vu2(m−1))
min(n−1,m−1)

considering a pair of users as a 2-tuple composed of users u1
and u2, we must apply the proposed similarity metric over
each pair of users to score how similar the users are.

In our scenario, we consider a system contains a set of U
users, and there are Np = |U |2−|U |

2 distinct pairs of users,
where such calculation can be performed in parallel to take
advantage of the distributed nature of edge computing. Let
us define, for each pair of users Pt|∀t ∈ {1, 2, . . . , Np}, a
job consisting of the calculation of trajectory similarity in
Algorithm 1, where ut1 and ut2 are the users within Pt. In
the proposed algorithm, we define D(vu1,vu2) as the LCSS
between vu1 and vu2 in Pt. The similarity value between
a pair of users is represented by Φt [0, 1]. The constant τ ,
shown in line 10, is the segment similarity threshold. A large
value of τ will lead to better precision but smaller recall
results. For careful consideration, τ can be selected by F1-
measure. Note that for trajectories of lengths m and n, the
complexity of the comparison operation will be O(n × m).
In terms of convergence, the LCSS algorithm is based on the
construction of a matrix which is filled with the largest found

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

8

sequence at each step of the algorithm. Thus, the algorithm
converges to the largest sequence in m × n steps, as it is
always necessary to consider all elements of each sequence.
The cost of execution may vary based on the policy used to
consider that two sequences, defining an optimality model for
the algorithm may be complex as the yielded results differ in
nature as such policy is changed.

Algorithm 2: Similarity Search Scheduling

1 for each user pair Pt do
2 Su1 = Set of servers which contain the data for ut1;
3 Su2 = Set of servers which contain the data for ut2;
4 if Su1 ∩ Su2 6= ∅ then
5 for Each server in Su1 ∩ Su2 do
6 if Server has available computing resources

then
7 Allocate job Pt to server;
8 Break;

9 for Each server in Su1 ∩ Su2 do
10 if Server has available computing resources

then
11 Retrieve data of missing user;
12 Allocate job Pt to server;
13 Break;

14 if Pair Pt not allocated then
15 Query edge server with available computing

resources;
16 Retrieve data if user ut1;
17 Retrieve data if user ut2;
18 Allocate job Pt to server;

We define a scheduling policy for the calculation of all
Np similarity values in the system. For such, we consider the
locality of the data. As previously stated, each data piece is
stored at the edge of the network and has ρ copies of itself.
The data of a specific user can be found at a given server with
probability ρ(1−pd)

C , where pd represents the probability that
the user data is no longer available on the specific edge server.

The cost for a given edge server to retrieve certain user data
u is denoted by Cr and is considered to be uniform across the
network (i.e., the cost is the same for any server to retrieve
any user who is not stored locally at the server). We propose
Algorithm 2 to minimize the costs for retrieving a user not
stored locally at the server in which the computation will
occur. In the proposed scheduling strategy, we prioritize edge
servers that are storing the data of specific users to perform
the learning process over such data. In this, we do not spend
resources in retrieving user data from a remote server, as
shown in Algorithm 2, lines 4 to 8. However, if no servers
have the data for both users locally, we consider all the servers
that have the data for one of the users. In that case, if any of
the servers with data from one of the users have the available
resources, we retrieve the data of the user not locally stored
and perform the computation, with cost Cr to retrieve the user
data, as shown between lines 9 and 13 of the algorithm. As a

fallback case, if none of the servers that have user data locally
stored have the necessary resources, we allocate the job to the
first server found with the necessary resources, with cost 2Cr
to retrieve the user data, as shown between lines 14 and 18.
Note that the complexity of the job allocation is proportional
to the product between Np and the number of edge servers. In
the case of Algorithm 2, we find that the execution complexity
is proportional to the product between the number of users and
the number of edge servers available for computation in the
network. We consider such to not have a significant impact
in the algorithm execution, as the scheduling and similarity
estimation processes can happen offline or at the initialization
of the system, and iterate over the existing user data at the
moment.

After the similarity values for all pairs of users have been
calculated, we apply a clustering algorithm to group users
with high similarity indexes among themselves. By clustering
users, we obtain a number of subsets composed of similarly
distributed user data. For instance, users with similar mobility
patterns or with similar service request patterns are more likely
to be part of the same cluster. In this sense, users in the same
cluster have a stronger similarity among themselves. While
many different clustering algorithms can be applied for this
problem, we apply Spectral Clustering (SC) in the PRUDENT
functioning, as it can be easily used with the pre-computed
affinity matrix obtained, as well as having a low complexity
under a predefined number of clusters.

C. Distributed Mobility and Traffic Flow Prediction
The user clusters found in the distributed user similarity

search step are composed of users with similar statistical
features, which are learned in a similar manner by a given
neural network. With the proposed framework, we consider
two categories of data on which learning is applied: (i) user
mobility data, and (ii) user service requests. While other
categories of data can be used in the proposed ML framework,
the complexity of integrating another data sequence may have
diminishing returns compared to the ones chosen.

Similar to the distributed user similarity search operation,
we take advantage of the distributed nature of the computing
power and storage in the network by creating a series of neural
network training jobs to be distributed over the participating
edge servers. We consider the edge servers in the network to be
homogeneous in terms of computing power and connectivity.
In that sense, all servers can participate in the training process.

We assume an existing neural network architecture search
scheme to be present in the network, which will decide on
the best neural network architecture for the system based
on the user data available. For each of the trainable data
categories, a neural network architecture is chosen by a Neural
Architecture Search (NAS) in place. In this sense, we consider
the two distinct architectures: i) Archmobility takes as input a
sequence of user coordinates and outputs a pair of coordinates
predicted for the next time step; ii) Archrequests takes as input
a sequence of past service requests and outputs the request on
the next time step. All hyper-parameters of the architectures
are chosen by the NAS system, and the base architectures are
stored over the network.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

9

With the pre-existing base architectures, we must define a
neural network training scheduler. The scheduler is a gener-
alization of the one presented in Algorithm 2 for the case of
retrieving data from a single user instead of a pair of users.
The scheduler takes into account the locality of the data in the
network by attempting to train a given user u at the same edge
server e in which the data from u is stored. Thus, for each
user u, we iterate over the ρ servers, that possess the user’s
data if such a date has not been sent to remote storage. If any
of such servers have the necessary computing resources for
the training, the framework allocated the training job to the
server in question. However, if the user data has been sent to
remote storage, or if the servers that possess the user data do
not have the necessary resources, the framework will allocate
the training job for the first server with available computing
resources available.

In this sense, user models that have been individually trained
are aggregated into more general neural network models by
performing a parameter-by-parameter averaging so that the ag-
gregated model has parameters from all its participating users.
Aggregated user models not only result in lower transmission
and storage costs over the network but can also be reused
(e.g., a new user joining the network can inherit a pre-existing
model, and transfer learning strategies can be applied to speed
up the training process). Such clustered neural network models
are stored in the edge computing DML and are retrieved when
the system must perform a prediction for a given user. In our
view, PRUDENT retrieves the clustered neural network and
estimates the future user coordinates and downlink usage based
on historical user data.

V. PROACTIVE UAVBS DEPLOYMENT WITH
EDGE-ENABLED DML SERVICES

In this section, we introduce the PRUDENT scheme with the
aim to maximize the network service level. This is achieved
by detecting in which areas of the network it is important
to offload the user-to-infrastructure traffic to UAVBSs. We
start by describing how PRUDENT estimates the available
throughput in the network as a function of user location to
detect overloaded and void areas in the ground base station
deployment. Afterwards, we describe how to offload the traffic
from such users to neighbor cells and by deploying UAVBSs
together with mobility management.

PRUDENT takes into consideration the users’ radio mea-
surements, as well as distributed predictions of users’ future
trajectories and content requests provided by the prediction
step, in order to serve mobile users in overloaded or void
areas. PRUDENT operations depend on three main decisions:
(i): UAVBS deployment to decide the number and the positions
of a set of UAVBSs, which are deployed to cover and offload
the traffic from a set of users in a certain area; (ii): mobility
management to decide whether user traffic should be offloaded
to a UAVBS or keep connected to a ground base station; and
(iii): mobility management to connect the UAVBS to a ground
base station as their backhaul link.

Fig. 4. Genereric voronoi tessellation for the considered scenario.

A. Detection of Overloaded or Void Areas

The first step in the optimization process is to proactively
predict which area of the scenario might be overloaded by user
requests. We model the scenario as an Euclidean space on R2,
and we partition it into a number of Voronoi cells containing
exactly one fixed ground base station c each. Equation 8
defines the generic Voronoi cell V (c) associated to the base
station c.

V (c) = {x ∈ R2|∀c′ ∈ C : d(x, c) ≤ d(x, c′)} (8)

Each cell V (c) can be interpreted as the set of positions in the
scenario (or points in the R2 space) closer to c than any other
base station. Due to its mathematical properties, the union
of all Voronoi cells completely covers the scenario without
overlapping or, equivalently, ∀x ∈ R2 : ∃!c ∈ C|x ∈ V (c)
and

⋃
c∈C V (c) = R2. As in a real deployment, each user

u is uniquely associated with a single cell (i.e., to a single
ground base station c). As an example, Figure 4 shows the
Voronoi tessellation (i.e., the process of dividing the scenario
in voronoi cells) for a generic scenario containing C base sta-
tions. We can see that the cells’ borders lay on the orthogonal
bisecting lines of each segment that connects the base station
c to its other neighboring base stations. Every user located
in each colored region can communicate only with the single
base station associated with that cell.

At the beginning of the algorithm execution, we assume that
the considered scenario is an isotropic space with monotonic
decay of transmission power from the signal source. Under
this assumption, every user u is therefore served by the base
station c associated with the Voronoi cell in which the user is
located. Under PRUDENT, users do not necessarily have to
be attached to the base station with the highest SINR values.

Let us assume that the scenario is partitioned into
identically-large square cells Rc, and the set of all Rc is ρ.
We consider each tessellation cell Rc to be small enough that
the received SINR in a given cell does not vary significantly.
In this sense, we consider the SINR S(Rc) in each of the
square cells Rc to be constant at any position within the cell.
Therefore, it is also reasonable to assume that the throughput
offered by the base stations c to the user u is also constant
at any position within the base station area Rc. In this case,
smaller cells will lead to better performance of the proposed
solution at the cost of an increased computational load on the
edge servers. The cell size Rc should be decided according to
the available computing power of the deployed edge servers.
Equation 9 presents the definition of spectral efficiency Γ(Rc)
of the network within the cell area Rc. It represents how

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

10

efficiently the physical and MAC layers of the user devices
use the communication channel.

For a given base station detectable in Rc, we define the
link bandwidth W as the link bandwidth offered by the
base station, such that bandwidth corresponds to the Shannon
capacity (i.e., the theoretical limit of the data rate in the
channel) of the system and depends on the frequency used
by the base station, the transmission mode used (i.e., SISO or
MIMO), the number of antennas used, and other parameters.
We consider W to be already known at system startup. Thus,
the available throughput at a given location is proportional to
the link bandwidth W and to the Spectral Efficiency Γ(Rc) at
the location. We also define the normalized average signaling
overhead Uc ∈ [0, 1] as the average ratio of the bandwidth used
by users to transmit network control information. We finally
define the throughput Θ(Rc) offered to an user u located in
the cell Rc as in Equation 10, which is derived from the
offered throughput definition proposed in Arshad et al. [47]
and the work by Demarchou et al. [48]. We can observe that
the throughput of a given point of Rc is proportional to the
spectral bandwidth in Rc, and inversely proportional to the
cost of signaling Uc, given by the fraction of the bandwidth
used to transmit control messages. We assume that the average
user speed, the average Voronoi cell density, and the handover-
induced delay are such that the handover cost term is zero.

Γ(Rc) =

∫ ∞
0

P (log2(1 + S(Rc)) > z) dz (9)

Θ(Rc) = W · Γ(Rc) · (1− Uc) (10)

In summary, we compute the throughput for each user u
for all base stations within the user radio range. For each base
station c, we divide its coverage into multiple identically large
square cells Rc. The square cells Rc value must provide a
good granularity while being computationally efficient for base
stations with high transmission power. The offered throughput
Θ(Rc) in a given square cell Rc is assumed to be constant at
any point, reducing the computation required by PRUDENT.
In this way, a given user u located with any point of square cell
Rc can benefit from a throughput Θ(Rc), as shown in Figure 5.
Finally, the user u must be connected to the base station c that
offers the highest throughput Θ(Rc) in such location pu(t).
The offered throughput map can be computed offline by the
network infrastructure, as the ground base stations’ positions
and characteristics do not change over time.

PRUDENT detects overloaded areas in the scenario by
correlating the user’s current and future link usage to the
actual throughput in the user’s location. For each user in the
network, we assess the user location and the Rc cell in which
the user is. Afterwards, we check if the available throughput
from any detectable base station in Rc is sufficient to provide
the necessary throughput for the user. Furthermore, PRUDENT
tries to detect other bottlenecks such as the backhaul of the
available Base Stations (BSs) in the user location. Based on
such calculations, we detect void and overloaded areas in the
base station deployment. In this sense, we assume that an user
placed in such areas could not be “served”, as soon as the

0 100 200 300 400 500
X Coordinate (m)

0

100

200

300

400

500

Y
 C

oo
rd

in
at

e
(m

)

Base Stations

0

2

4

6

8

10

A
vailable T

hroughput (M
bps)

Θ(Rc) < 2Mbps

Void area

Fig. 5. Void areas under a 2 Mbit/s user service request

network cannot provide the required QoS for a given service.
Hence, it is important to offload user traffic in such areas to
neighbor cells and to UAVBS, which is achieved by UAVBSs
deployment and mobility management operations performed
by PRUDENT.

B. Mobility Management

Algorithm 3 details the mobility management and UAV
positioning scheme, which are responsible for estimating the
service level of the network, detecting unserved users, and
clustering users for better UAV deployments. From lines 1 to
11 of Algorithm 3, the network must estimate the service level
and detect unserved users. This is done through the throughput
estimation as given in Equation (10). Following this step, in
lines from 12 to 18, the network clusters unserved users for
the allocation on UAVs and calculates the centroid of each
cluster proportionally to the individual requirements of users,
as given by Equation (11).

Pcentroid =
1

k

k∑
i=0

ψixi (11)

As described, the mobility management step of the algo-
rithm is tailored towards the offloading of unserved users with
the use of flying base stations. Thus, the offloading decision
responsible for performing handover for unserved users to a
UAVBS can coexist in the network with a standard handover
policy applied to users served normally within their require-
ments. While the standard handover policy in the network can
be arbitrary, we consider that the user offloading proposed
in PRUDENT can override the default mobility management.
Performance metrics for the proposed mobility management
are given in terms of throughput maximization achieved by
the user offloading, as well as by the service level of the
network, while other metrics may depend more heavily on
the default handover policy. PRUDENT offloads users from
overloaded base stations to neighboring non-overloaded base
stations. This is required due to the limited number of UAVBSs
available for positioning, the configuration of a directional
backhaul link, and others. PRUDENT performs a user-by-user
handover decision for users located in the overloaded and void

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

11

Algorithm 3: Mobility Management

1 Unserved Users← ∅;
2 for Each user in the network do
3 Perform forward propagation on prediction models;
4 for Each predicted location and throughput of user

do
5 if BS responsible for Voronoi cell cannot serve

predicted user requirement then
6 for Each BS detectable do
7 if Considered BS can provide the

service throughput requirements then
8 Perform handover;
9 Continue;

10 else
11 Unserved Users→

Unserved Users ∪ {user};

12 Cluster unserved users based according to geographical
positions;

13 for Each user cluster do
14 Calculate Centroid of Cluster;
15 Allocate closest unused UAV to centroid;
16 Flag allocated UAV as in use;
17 Connect UAV to a directional link of closest

non-overloaded cell;
18 Perform handover of unserved users to allocated

UAV;

areas, maximizing the service level in the scenario, as shown
in Algorithm 3. In the mobility management operations, we
create an empty set of all users not being served with their
minimum requirements. Then, for each user, we perform a
forward propagation on their trained ML models in order to
estimate the future positions and network usage from the user
services periodically.

At each prediction, we evaluate the expected base station
for the user to be connected, according to a traditional signal-
based handover algorithm. This corresponds to the base station
that yields the Voronoi cell in which the user is at the moment.
PRUDENT will only perform a signal-based handover for a
given user u, as soon as the user’s expected base station is
not able to provide the necessary throughput for the user’s
services, according to the previously calculated throughput
map (Section V-A). Note that PRUDENT now knows that at
a given moment, such user will be consuming a known base
station’s bandwidth, so we subtract this amount from the the-
oretical capacity of the base station can provide, considering
its backhaul link and access layer. Hence, we model the base
station capacity corresponding to the minimum between the
access layer capacity of the base station and the backhaul link
capacity for the base station being considered.

C. UAV Deployment

Even after performing handovers from users of overloaded
base stations to neighboring cells, there are users who can-

not be properly served by the existing infrastructure. User
offloading via UAVBSs is applicable in the case of the
sudden increase in traffic volume, which cannot be quickly,
or economically viable to fix via ground base station deploy-
ment. In such cases, PRUDENT offloads user traffic from the
overloaded base stations to UAVBSs. We define Uunserved
as the set of under-served users that cannot utilize the link
capacity necessary for their applications, which cannot also
be offloaded to another base station. This can be due to
insufficient link bandwidth or due to a congested backhaul link
at the base station. In the first step of the UAVBS positioning
decision, PRUDENT considers the geographical position of
the under-served users Uunder−served in the network. In the
case that users are not properly served due to one or more
overloaded cells, under-served users will be grouped close to
each other.

While PRUDENT is able to predict when a user is going
to be under-served within a time window t, it is necessary to
also evaluate which UAVBS can be allocated to the user or a
group of users. UAVBSs require a directional link to a ground
base station to work as backhaul since they can effectively
work as a relay to a base station with lower load, increasing
the available throughput at overloaded locations.

Under-served users in the network are clustered in order
to maximize the number of users served by a UAVBS.
PRUDENT considers the K-means clustering algorithm to
group together users not receiving their minimum application
requirements, in which the number of clusters formed is
initially set as the number of UAVBSs available in the network.
In this sense, each user in the Uunserved set is part of V
clusters formed by PRUDENT.

After pruning small clusters, we have V ′ ≤ V user clusters.
For each cluster, PRUDENT computes the cluster’s weighted
centroid as given in Equation (11), where k is the number of
users belonging to the cluster, ψi is the throughput requested
by the i-th user, and xi is the i-th user position. Then, UAVBSs
are deployed at each centroid location to serve the under-
served users in the cluster so that the UAVBS is closer to the
users requesting greater bandwidth. This way, more demanding
users will have a better link quality with the UAVBS, and
therefore they will be able to achieve a greater throughput. For
each cluster centroid, PRUDENT queries the closest UAVBS
available and requests the UAVBS to move to the centroid
being considered. When a UAVBS is allocated to a user cluster,
it is flagged as being used for the duration of the cluster and
is not considered for use in subsequent clusters.

VI. PERFORMANCE EVALUATION

This section describes the simulations conducted over dif-
ferent mobility and edge management techniques to evaluate
PRUDENT’s performance against a set of state-of-the-art
UAVBS positioning strategies.

A. Simulation Setup

We evaluated PRUDENT in a simulated network environ-
ment using realistic user mobility traces in the city of Köln
(TAPASCologne scenario [49]), as well as for the deployment

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

12

Fig. 6. The simulated Köln scenario, where blue dots represent the user
positions and red dots represent the ground base stations.

of ground base stations. The Köln mobility trace consists of a
large simulation of vehicular mobility, which can be integrated
with network simulators as input for the node positioning
and mobility. The networking and mobility simulations have
been carried out using ns-31 and SUMO2, respectively. We
consider a partition of the Köln scenario into square cells
with 2 km edge. The simulated user mobility and the ground
base station deployment are taken from [49], which provides
synthetic mobility information about several thousands of
vehicles through a period of 24 hours in a 20 km × 20 km
area around the city of Köln. The use of SUMO as a realistic
traffic simulator is required by the TAPASCologne (i.e., the
Köln mobility dataset) in order to generate mobility traces
for a large number of vehicles in the given scenario. This
allows us to simulate a realistic network based on SUMO-
generated empirical data for user mobility. From such vehicles,
we randomly choose the number specified in the simulation
and use their generated mobility in ns-3 as inputs to nodes
positions and mobility, as well as the positions of base stations,
which are also given by the dataset, constituting a highly
realistic mobility scenario. However, in the present work, we
restrict our scenario to a 3 km × 3 km squal near the city
center, as represented in Figure 6. Note that in Figure 6, the
blue dots represent every location where a user is recorded in
the dataset, which marks all user locations registered within
the shown area.

In this context, UAVBSs are first randomly allocated
through the scenario, and when necessary, a UAVBS is reallo-
cated by the management algorithm in place. We assume that
UAVBSs are charged via a distributed laser-charging system,
as described by Liu et al. [40], in which directional charging
stations can be mounted at ground base stations and be made
available jointly with backhaul links supplied by cells.

Furthermore, downlink usage and requests made to edge
computing servers are modeled according to usage from the

1https://www.nsnam.org/
2https://sumo.dlr.de/

TABLE II
SIMULATION PARAMETERS

Parameters Values

Number of UAVs 10
Number of Ground BSs 31
Number of Users {30, 60, 90}
Mobility Model Köln mobility [49]
BS Deployment Köln BS deployment [49]
UAVs Speed Range 10 m/s to 16 m/s
UAVs Transmission Power 16 dBm
UAVs Height 30 m to 40 m
UAVs Type of Transmission ITU’s Line-of-Sight (LOS)
LOS/Transmission Range 160 m
Propagation Loss Model Hybrid Buildings
PHY / MAC LTE release 14, half-duplex
Simulation Time 100 s
User Service Request Model Google Cloud HPC traces [50]

real High Power Computing (HPC) trace showcasing comput-
ing jobs submitted to the Google Cloud infrastructure [50],
which describes the jobs in terms of user, time of the allo-
cation, memory usage, and other features. In this way, we
selected individual users and assigned the jobs submitted by
such users to individual users in the simulation scenario. We
conducted 33 simulations with different randomly generated
seeds by the simulator’s default pseudo-random number gen-
erator (MRG32k3a). Results show the values with a confidence
interval of 95%. Table II summarizes the main simulation
parameters, which describes the key features of UAVs.

Besides PRUDENT, we have implemented three other mo-
bility management and UAVBS deployment strategies for the
same simulation scenario. Firstly, we consider the UAV posi-
tioning scheme proposed by Sun et al. [51] called STABLE,
which maximizes the spectral efficiency of UAV deployments
considering a half-duplex in-band mode. STABLE is a reactive
scheme, which means that users are offloaded only after the
congestion is detected, but not proactively. Furthermore, it con-
siders an optimization process, which can be computationally
intensive. Besides STABLE, we implemented the deployment
strategy proposed by Rahman et al. [52], which proposes a
UAV deployment strategy based aimed at maximizing network
throughput via a heuristic to find the optimal locations for
UAVBSs. However, such an approach is also reactive and may
need to be recalculated as users move, potentially taking a
significant amount of time in case of high user density. Finally,
we implemented a baseline scenario without any UAVBS
deployment. Note that in this No-UAV approach, we deploy
an additional number of ground base stations corresponding
to the UAVBSs present in other approaches in order to assess
their performance fairly. In the No-UAV scenario, users follow
the same mobility patterns and application requests as before,
but only ground base stations are available to the users.

The following metrics are collected in the evaluation of
the algorithms: i) The number of neural network parameters
stored in the edge distributed storage; ii) The Root Mean
Squared Error (RMSE) of the link usage prediction performed,
in terms of the value of the predicted downlink usage per user
in Mbit/s; iii) The service level of the network, in terms of
the fraction of users able to consume the minimum amount of
bandwidth required by their applications, as defined in the link

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

13

TABLE III
DISTRIBUTED LEARNING OPTIMIZATION RESULTS.

Number of Stored Parameters RMSE (m)

PRUDENT 9.57 · 104 1.11
FedAvg 9.57 · 103 2.65

No-clustering 1.55 · 106 0.43

usage trace in place; iv) The delay distribution for the user-
generated traffic flows in the network; v) The total network
throughput in Mbit/s, measured as the average downlink
throughput achieved by all users over the simulation time.

B. Experimental Results

In our experiments, we trained the neural network models
for a random set of 100 users. For each user, we consider
80% of raw data for training and 20% for test. For this
experiment, we consider raw user data stored at the edge
servers to feed to an LSTM neural network, such as intro-
duced in Section IV. We show the sequences in which the
learning is performed as the sequence of downlink usage
historical data for each user. However, learning is performed
in the same manner as in the users’ mobility data. In this
way, the different prediction algorithms must estimate the
downlink usage in the next interval based on the previous
ten samples. We considered PRUDENT, FedAvg, and the no-
clustering algorithms for traffic flow prediction. The FedAvg
algorithm [30] is a traditional DML algorithm, which serves as
a baseline. FedAvg aggregates all neural networks into a single
network by averaging the trained weights of all users. The no-
clustering algorithm applies a non-distributed ML algorithm to
train a single neural network for each user. Finally, PRUDENT
considers the proposed similarity metric to cluster users with
similar statistical features, such that the features learned by
the neural networks do not cancel each other when averaged
into an aggregated model, as introduced in Section IV-B.

Table III shows the number of neural network parameters
that must be stored in the edge servers for different traffic flow
prediction algorithms and their impact on the edge servers’
storage capabilities. The use of the proposed user similarity
metric is used in order to cluster the neural network models
of similar users. As users with similar mobility patterns yield
neural networks with similar features after the training process,
the same neural network can be trained for multiple users,
requiring fewer networks to be stored in the edge servers,
which have limited storage capabilities. Thus, by analyzing
user similarity and clustering, we store a single neural network
for each user cluster, which can be used to make predictions
for any given user in the cluster. By analyzing the results,
we conclude that clustering neural network models, as done
by PRUDENT can reduce the number of neural network
weights stored in the DMLS by up to 93.8% than the no-
clustering algorithm. PRUDENT’s storage requirements are
lower because the network is required to store only a small
number of neural network models (one set per cluster formed).
Following this logic, the FedAvg aggregation provides the best
space-reduction properties among all compared approaches

0 200 400 600 800 1000 1200 1400 1600
Request number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
eq

ue
st

 p
ay

lo
ad

 (M
b)

Real Request Predicted Request

Fig. 7. Real and predicted downlink usage for a randomly selected user

because it requires storing a single neural network for all users
but provides a higher RMSE.

Table III also shows the RMSE performance for traffic flow
prediction considering different prediction algorithms. PRU-
DENT can deliver RMSE up to 59.2% lower than FedAvg.
Furthermore, the models formed in PRUDENT have a better
accuracy due to being built for users with similar statistical
features. Hence, even though in PRUDENT the network must
store more neural network parameters than in FedAvg, it can
deliver predictions of significantly better quality, as seen in
Figure III. This is because, in contrast to traditional FedAvg
model aggregation, we only aggregate models from users who
already have similar statistical features. While in FedAvg,
certain learned features from different users may cancel each
other in the aggregation step, in PRUDENT, similar features
are grouped in the same models. The clustered neural network
models built by PRUDENT are then used to predict actual user
downlink usage in a mobile network as the usage value in a
given moment in Mbit/s. The aggregated models can predict
with a satisfactory performance, as they can be applied to
many users with similar statistical features.

Figure 7 shows the real and predicted downlink usage
history for a single user, highlighting that the real usage
is accurately predicted by the model (RMSE=0.04 Mbit/s).
Since the prediction is produced by a clustered model, the
noisier request behavior of this specific user is not closely
predicted, as it is likely not a relevant behavior for the other
users of the cluster. This shows that even for individual users,
clustering and aggregation proposed by PRUDENT are able
to provide reliable predictions for the variable relevant to the
offloading and UAVBS positioning decisions.

Figure 8 shows the scenario’s throughput maps to detect
overloaded or void areas, as described in Section V-A. We
define void areas as areas in the scenario where users cannot do
access the desired bandwidth for their applications according
to the trace used. Void areas depend not only on ground
base station deployment but also on users’ locations and
requested throughput. Figure 8(b) shows real user and base
station locations from the scenario, coupled with downlink
usage values contained in the requests dataset. Figure 8(a)
shows the spatial distribution of the throughput offered by

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

14

0 250 500 750 1000 1250 1500 1750 2000
X Coordinate (m)

0

250

500

750

1000

1250

1500

1750

2000
Y

 C
oo

rd
in

at
e

(m
)

Base Stations

0

2

4

6

8

10

A
vailable Throughput (M

bps)

(a) Throughput offered by the ground base sta-
tions in the Köln scenario. The red dots represent
the ground base stations’ positions.

0 250 500 750 1000 1250 1500 1750 2000
X Coordinate (m)

0

250

500

750

1000

1250

1500

1750

2000

Y
 C

oo
rd

in
at

e
(m

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
ow

nlink U
sage (M

bps)

(b) Throughput requested by the mobile users.
The red dots represent the mobile users’ posi-
tions.

0 250 500 750 1000 1250 1500 1750 2000
X Coordinate (m)

0

250

500

750

1000

1250

1500

1750

2000

Y
 C

oo
rd

in
at

e
(m

)

0

2

4

6

8

D
ow

nlink C
apacit D

eficit (M
bps)

(c) Difference between the throughout offered
by the ground base stations and the throughput
requested by the mobile users.

Fig. 8. Throughput maps for the simulated scenario at the beginning of the simulation

the ground base stations, as well as the estimated throughput
offered by the cell at a given location, based on the expected
SINR and link bandwidth in said location. This throughput
configuration is calculated at the beginning of PRUDENT
execution. In the considered scenario, we have 13 ground base
stations deployed to cover an area of 2 km × 2 km with n
mobile users, considering square cells Rc having a 100 m
edge each. As expected, regions closer to the base station
location have a higher throughput (e.g., 10 Mbit/s) compared
to regions far from the base station. As we can see in Figure
8(a), areas in the scenario are not uniformly served. Instead,
there are regions with significantly lower available throughput.
The offered throughput map can be computed offline by the
network infrastructure, as the ground base station’s positions
and characteristics do not change over time. Figure 8(b) shows
the actual user locations, as well as the downlink usage they
request. Figure 8(b) shows the throughput requested by 30
mobile users in the scenario, each requesting up to 5 Mbit/s of
downlink traffic at their respective locations. Figure 8(c) shows
the throughput deficit map used to detect overloaded or void
areas. It is computed as the difference between the throughput
offered by the base station and the throughput requested by
the mobile users. As expected, users located distant from base
stations may not be served with the minimum requirements of
their applications. This configuration is realistic, as the con-
sidered base station deployment is extracted from a real-world
dataset. For instance, the darker areas of the plot correspond to
the overloaded regions of the scenario, in which user requests
are close to or surpass the throughput offered by the ground
base stations. Hence, the throughput deficit map is used by
PRUDENT to determine to which base station a user should
connect and where to position the UAVBSs. Since the main
goal of PRUDENT is network performance optimization in
terms of user request satisfaction, we evaluate the service level
and throughput per user for different management strategies
for offloading and UAVBS positioning in the scenario.

Figure 9 shows the network performance considering the
different number of users requesting services and also different
management strategies for offloading and UAVBS positioning
in the scenario. We define the service level as the fraction of

users able to access throughput equal or greater to the amount
necessary for their applications. As the throughput requested
by users varies during the simulation, we average the service
level values over time for each of the algorithms tested. By
analyzing the results of Figure 9(a), we can see that the service
level achieved by PRUDENT is considerably superior to the
other tested algorithms, as it is able to deliver a 36.7%, 27.1%,
and 53.7% higher service level when compared to STABLE,
the Demand-based positioning, and the No-UAV algorithms,
respectively. Since PRUDENT only focuses on users who are
currently served below their requests, it can further increase
service level and maximize network throughput. Furthermore,
the predictive approach introduced in PRUDENT can better
balance the time UAVBSs take to reach predicted centroids.

Figure 9(b) depicts the average throughput per user in each
of the tested scenarios, as well as for each of the algorithms
tested. By analyzing the results, we can see that users receive,
on average, a 31% higher throughput under PRUDENT, when
compared to other algorithms. This is due to the better UAVBS
deployment and mobility management strategies. We observe
in the simulations that the offloading of users who do not
have their requirements met significantly increases the network
throughput, as these are often users who demand high link
usage and may not have enough throughput available. With
PRUDENT, demanding users are served with higher priority,
whereas less demanding users are offloaded to neighboring
cells. STABLE and the Demand-based positioning algorithm
lack an efficient handover mechanism between UAVBSs and
ground base stations, which can significantly reduce the effi-
ciency of the UAV deployment.

We can see the evolution of the system under each of the
algorithms considering a simulation with 60 users in which
UAVs start the simulation located randomly in the scenario
and users consume downlink bandwidth. Figure 10 shows the
average downlink throughput over the simulated time, obtained
as the summation of the downlink traffic in all base stations
in the network, both ground base stations, and UAVs. We can
see that the network starts at a similar throughput level for
all the tested approaches. However, as users are marked as
under-served by PRUDENT, since the start of the simulation,

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

15

30 60 90
Number of Users

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
Se

rv
ic

e
Le

ve
l

PRUDENT
STABLE

Demand-based Positioning
No-UAV

(a) Network Service Level

30 60 90
Number of Users

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 p

er
 u

se
r (

M
bp

s)

PRUDENT
STABLE

Demand-based Positioning
No-UAV

(b) Throughput per user

Fig. 9. Network results considering different number of users requesting services.

0 10 20 30 40 50
Time (s)

8

10

12

14

16

18

20

Th
ro

ug
hp

ut
 (M

bp
s)

PRUDENT
STABLE

Demand-based Positioning
No-UAV

Fig. 10. Network throughput over time

requests are sent to the UAVBSs to move to the nearest under-
served centroid. We can see that for PRUDENT, the first
5 seconds of the simulation have little variance in terms of
network throughput. This is due to a warm-up time in which
UAVBSs need to be correctly positioned and for handover
requests to be made. Afterwards, we can see that network
throughput significantly increases under PRUDENT. We also
notice moments in which the network throughput decreases,
such as near 12, 25, and 35 seconds. Such drops in network
throughput can be explained by the constant user mobility,
which leaves the coverage area of UAVBSs and experiences
temporary lower throughput. Upon the detection of throughput
drops, PRUDENT periodically evaluates the positioning of
UAVBSs and connections to restore users’ QoS. We can also
notice that for competing approaches, such as the No-UAV,
little variance over the initial throughput values is noticed, as
users are allocated to ground base stations and additional base
stations are not deployed through the simulation.

Figure 11 shows the distribution of delay values in the
simulated traffic flows for every tested approach. We can see
that PRUDENT is able to achieve shorter delays compared
to the competing algorithms. The No-UAV approach achieves
the most stable and lowest delay values distribution since
the paths in this scenario are a single hop between user and
server through the base stations. PRUDENT improves both

PRUDENT STABLE Demand-based Positioning No-UAV0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
el

ay
 (S

ec
on

ds
)

Fig. 11. Distribution of delay values for each of the algorithms tested.

throughput and delay compared to other UAVBS deployment
approaches (STABLE and demand-based position) due to opti-
mized network connections, meaning that users with poor con-
nections are more likely to experience packet losses and thus
increase network delay due to re-transmissions. We can also
observe that the distribution of delay values under PRUDENT
has a large number of very low delay measurements. While the
user requests patterns are collected from real-world data traces
with a specific distribution, the deployment of the UAVBSs is
based on the predicted request values in order to maximize
throughput for highly demanding users, thus adapting to large
surges in throughput. This is because base station offloading
under PRUDENT impacted the quality of the connection of
individual users, either by offloading them directly or by
improving the QoS in offloaded base stations. This contributes
to better spectrum usage and lower transmission delays, thus
reducing the overall delay for users. Delay values are measured
as the end-to-end delay between user devices and the servers
from which they consume applications, modeled here as UDP
flows with payloads predefined by a real-world dataset [50].
It is worth noting that delays in a real-world edge-computing
setup would be smaller than the simulated results, because in
our considered scenario, services are provided by servers from
the network core. This difference is not crucial here because,
in this work we mainly focus on evaluating the impact of UAV
deployment strategies on the delay at the network edge.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

16

0 10 20 30 40 50
Time (s)

0

5

10

15

20

25

30

35

40

45

U
AV

 U
sa

ge
 (%

)

PRUDENT
STABLE

Demand-based Positioning
No-UAV

Fig. 12. Percentage of users connected to a UAVBS during the simulation.

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

U
se

r T
hr

ou
gh

pu
t (

M
bp

s)

Handover to
UAVBS

User Downlink
 Usage (Mbit/s)

Average User Downlink
 Usage (Mbit/s)

Fig. 13. Downlink network throughput before and after UAVBS offloading.

Furthermore, delay metrics are also impacted by UAVBS
usage in the simulations, as we can see in Figure 12, which
shows the percentage of users connected to UAVBSs during
the simulated time. Note that we choose only simulations with
30 users, as the number of users may impact these values. We
can see that a larger number of users is offloaded to UAVBSs
under PRUDENT, given that users are offloaded due to poor
QoS. This implies that the network is indeed overloaded
during the simulated time. Note that in the No-UAV approach,
the same number of base stations is deployed as in the
other algorithms, as UAVBSs are substituted for ground base
stations. We can see that the dynamism of UAVBSs allocation
can greatly improve networking metrics even when compared
to a similar number of deployed base stations. This is due to
the fact that in a UAVBS scenario, void areas and overloaded
cells can be corrected in real-time and, thus, adapt to changing
usage and mobility patterns in the network.

Figure 13 shows the measured throughput over time for a
single user. We can see that in the moments prior to offloading
of the user to a UAVBS, the derived user throughput is
provided by an overloaded cell, and their requests are served
at lower throughput than the average requested. When the user
is offloaded to a UAVBS, after 13 seconds from the beginning
of the simulation, we observe that user requests are served
within the actual requested values. The variation in values of
requests is rather a feature of the user requests dataset and not
a consequence of network limitations.

As we can observe, PRUDENT has the best overall per-

formance in terms of service level and delay, which can be
explained by the combination of a throughput-based UAVBS
positioning with a request and mobility prediction scheme.
On the other hand, the proposals STABLE and Demand-based
positioning, while providing improved performance compared
to the No-UAV approach in scenarios with a larger quantity
of users, cannot achieve throughput and service level as
good as PRUDENT due to lacking a predictive mechanism.
Furthermore, PRUDENT is able to improve the accuracy
of aggregated neural network parameters by using a novel
similarity metric for user clustering.

VII. CONCLUSION

In this article, we proposed a distributed learning frame-
work, where edge servers act as local data owners to collect
connection data between mobile devices and edge servers.
With the framework, we presented a proactive resource man-
agement scheme to offload user content requests and service
provision to neighboring cells based on distributed predictions
of user’s future trajectories and content request patterns. Fur-
thermore, we defined an UAVBS deployment strategy to serve
mobile users in overloaded or shadow areas with the help
of distributed group clustering solutions. Extensive simulation
results showed that our framework could consistently optimize
throughput and the network’s service level over different
scenarios. Furthermore, we improved the distributed machine
learning model’s accuracy via a novel similarity measure.

ACKNOWLEDGE

This study was financed in part by the NSFC project with
grant ID 91738301, Beihang Zhuobai program with grant
ID ZG216S2176, Brazilian CNPq and CAPES project with
finance code 001.

REFERENCES

[1] I. Bor-Yaliniz, M. Salem, G. Senerath, and H. Yanikomeroglu, “Is 5g
ready for drones: A look into contemporary and prospective wireless
networks from a standardization perspective,” IEEE Wireless Communi-
cations, vol. 26, no. 1, pp. 18–27, 2019.

[2] M. J. Sobouti, Z. Rahimi, A. H. Mohajerzadeh, S. A. H. Seno, R. Ghan-
bari, J. M. Marquez-Barja, and H. Ahmadi, “Efficient deployment of
small cell base stations mounted on unmanned aerial vehicles for the
internet of things infrastructure,” IEEE Sensors Journal, 2020.

[3] 3GPP, “Study on remote identification of unmanned aerial systems
(uas),” 3GPP TR 22.825. Rel. 16,, Tech. Rep., 2018.

[4] Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. B. Letaief, “Uav-assisted wireless
powered cooperative mobile edge computing: Joint offloading, cpu
control, and trajectory optimization,” IEEE Internet of Things Journal,
vol. 7, no. 4, pp. 2777–2790, 2020.

[5] H. Wang, H. Ke, and W. Sun, “Unmanned-aerial-vehicle-assisted com-
putation offloading for mobile edge computing based on deep reinforce-
ment learning,” IEEE Access, vol. 8, pp. 180 784–180 798, 2020.

[6] J. Lyu, Y. Zeng, and R. Zhang, “Uav-aided offloading for cellular
hotspot,” IEEE Transactions on Wireless Communications, vol. 17, no. 6,
pp. 3988–4001, 2018.

[7] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo, “Ma-
chine learning paradigms for next-generation wireless networks,” IEEE
Wireless Communications, vol. 24, no. 2, pp. 98–105, 2017.

[8] L. Liang, H. Ye, and G. Y. Li, “Toward intelligent vehicular networks: A
machine learning framework,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 124–135, 2019.

[9] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3123216, IEEE
Transactions on Network and Service Management

17

[10] F.-L. Luo, Machine Learning for Future Wireless Communications.
Wiley-IEEE Press, 2020.

[11] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient
multi-uav navigation for long-term communication coverage by deep
reinforcement learning,” IEEE Transactions on Mobile Computing,
vol. 19, no. 6, pp. 1274–1285, 2020.

[12] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Communications
Surveys Tutorials, vol. 22, no. 1, pp. 38–67, 2020.

[13] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen, “Deep
reinforcement learning for autonomous internet of things: Model, ap-
plications and challenges,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 1722–1760, 2020.

[14] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft, and
P. Hui, “Edge intelligence: Architectures, challenges, and applications,”
2020.

[15] E. Peltonen, M. Bennis, M. Capobianco, M. Debbah, A. Ding, F. Gil-
Castiñeira, M. Jurmu, T. Karvonen, M. Kelanti, A. Kliks et al., “6g white
paper on edge intelligence,” arXiv preprint arXiv:2004.14850, 2020.

[16] H. Wei, H. Luo, and Y. Sun, “Mobility-aware service caching in mobile
edge computing for internet of things,” Sensors, vol. 20, no. 3, p. 610,
2020.

[17] N. Samuel, T. Diskin, and A. Wiesel, “Deep mimo detection,” in 2017
IEEE 18th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2017, pp. 1–5.

[18] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 119–131, 2018.

[19] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep learning
based communication over the air,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 132–143, 2018.

[20] U. Challita, L. Dong, and W. Saad, “Proactive resource management
for lte in unlicensed spectrum: A deep learning perspective,” IEEE
Transactions on Wireless Communications, vol. 17, no. 7, pp. 4674–
4689, 2018.

[21] A. Jain, E. Lopez-Aguilera, and I. Demirkol, “Are mobility management
solutions ready for 5G and beyond?” Computer Communications, vol.
161, no. November 2019, pp. 50–75, 2020.

[22] E. Montero, D. Rosario, and A. Santos, “Clustering Users for the
Deployment of UAV as Base Station to Improve the Quality of the
Data,” Proceedings - 2019 IEEE Latin-American Conference on Com-
munications, LATINCOM 2019, 2019.

[23] Z. Zhao, M. Karimzadeh, L. Pacheco, H. Santos, D. Rosário, T. Braun,
and E. Cerqueira, “Mobility management with transferable reinforce-
ment learning trajectory prediction,” IEEE Transactions on Network and
Service Management, vol. 17, no. 4, pp. 2102–2116, 2020.

[24] J. Ding, H. Liu, L. T. Yang, T. Yao, and W. Zuo, “Multiuser multivariate
multiorder markov-based multimodal user mobility pattern prediction,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4519–4531, 2020.

[25] X. Feng, X. Ling, H. Zheng, Z. Chen, and Y. Xu, “Adaptive multi-
kernel svm with spatial–temporal correlation for short-term traffic flow
prediction,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 6, pp. 2001–2013, 2019.

[26] S. Wang, H. Miao, J. Li, and J. Cao, “Spatio-temporal knowledge
transfer for urban crowd flow prediction via deep attentive adaptation
networks,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–11, 2021.

[27] D. H. L. Oliveira, T. P. de Araujo, and R. L. Gomes, “An adaptive
forecasting model for slice allocation in softwarized networks,” IEEE
Transactions on Network and Service Management, pp. 1–1, 2021.

[28] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic
flow prediction: Deep belief networks with multitask learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp.
2191–2201, Oct 2014.

[29] M. Mukherjee, V. Kumar, A. Lat, M. Guo, R. Matam, and Y. Lv, “Dis-
tributed deep learning-based task offloading for uav-enabled mobile edge
computing,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2020, pp.
1208–1212.

[30] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated
learning of deep networks using model averaging,” arXiv preprint
arXiv:1602.05629, 2016.

[31] S. Hu, X. Chen, W. Ni, E. Hossain, and X. Wang, “Distributed
machine learning for wireless communication networks: Techniques,
architectures, and applications,” 2020.

[32] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[33] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[34] N. S. Keskar and R. Socher, “Improving generalization performance by
switching from adam to sgd,” arXiv preprint arXiv:1712.07628, 2017.

[35] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,” IEEE transactions on neural networks and
learning systems, vol. 31, no. 10, pp. 4229–4238, 2019.

[36] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in iot,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5986–5994, 2019.

[37] T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and R. H.
Middleton, “Cell-free massive mimo for wireless federated learning,”
IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp.
6377–6392, 2020.

[38] O. Habachi, M.-A. Adjif, and J.-P. Cances, “Fast uplink grant for noma:
a federated learning based approach,” 2019.

[39] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-d place-
ment of an unmanned aerial vehicle base station (uav-bs) for energy-
efficient maximal coverage,” IEEE Wireless Communications Letters,
vol. 6, no. 4, pp. 434–437, 2017.

[40] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power
control for multi-uav assisted wireless networks: A machine learning
approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8,
pp. 7957–7969, 2019.

[41] C. Lai, C. Chen, and L. Wang, “On-demand density-aware uav base
station 3d placement for arbitrarily distributed users with guaranteed
data rates,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp.
913–916, 2019.

[42] A. V. Savkin and H. Huang, “Deployment of unmanned aerial vehicle
base stations for optimal quality of coverage,” IEEE Wireless Commu-
nications Letters, vol. 8, no. 1, pp. 321–324, 2019.

[43] P. Yang, X. Cao, C. Yin, Z. Xiao, X. Xi, and D. Wu, “Proactive drone-
cell deployment: Overload relief for a cellular network under flash
crowd traffic,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 10, pp. 2877–2892, 2017.

[44] L. P. Qian, Y. Wu, H. Zhou, and X. Shen, “Dynamic cell association
for non-orthogonal multiple-access v2s networks,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 10, pp. 2342–2356,
2017.

[45] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, and M. Guizani,
“Multi-access edge computing: A survey,” IEEE Access, vol. 8, pp.
197 017–197 046, 2020.

[46] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multi-
dimensional trajectories,” in Proceedings 18th international conference
on data engineering. IEEE, 2002, pp. 673–684.

[47] R. Arshad, H. Elsawy, S. Sorour, T. Y. Al-Naffouri, and M. S. Alouini,
“Cooperative handover management in dense cellular networks,” 2016
IEEE Global Communications Conference, GLOBECOM 2016 - Pro-
ceedings, 2016.

[48] E. Demarchou, C. Psomas, and I. Krikidis, “Mobility Management in
Ultra-Dense Networks: Handover Skipping Techniques,” IEEE Access,
vol. 6, pp. 11 921–11 930, 2018.

[49] S. Uppoor and M. Fiore, “Large-scale urban vehicular mobility for
networking research,” in 2011 IEEE Vehicular Networking Conference
(VNC). IEEE, 2011, pp. 62–69.

[50] A. Hussain and M. Aleem, “GoCJ: Google cloud jobs dataset for
distributed and cloud computing infrastructures,” Data, vol. 3, no. 4,
pp. 1–12, 2018.

[51] X. Sun and N. Ansari, “Jointly optimizing drone-mounted base station
placement and user association in heterogeneous networks,” IEEE In-
ternational Conference on Communications, vol. 2018-May, pp. 0–5,
2018.

[52] S. Rahman and Y. Z. Cho, “UAV positioning for throughput maximiza-
tion,” Eurasip Journal on Wireless Communications and Networking,
vol. 2018, no. 1, 2018.

	1

