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ABSTRACT Registration of histological serial sections is a challenging task. Serial sections exhibit
distortions and damage from sectioning. Missing information on how the tissue looked before cutting
makes a realistic validation of 2D registrations extremely difficult.
This work proposes methods for ground-truth-based evaluation of registrations. Firstly, we present a
methodology to generate test data for registrations. We distort an innately registered image stack in the
manner similar to the cutting distortion of serial sections. Test cases are generated from existing 3D
data sets, thus the ground truth is known. Secondly, our test case generation premises evaluation of the
registrations with known ground truths. Our methodology for such an evaluation technique distinguishes
this work from other approaches. Both under- and over-registration become evident in our evaluations.
We also survey existing validation efforts.
We present a full-series evaluation across six different registration methods applied to our distorted 3D
data sets of animal lungs. Our distorted and ground truth data sets are made publicly available.

INDEX TERMS registration, ground truth, histological sections, evaluation, image processing

I. INTRODUCTION

M
ICROSCOPY has a long tradition, and microscopic
imaging is still one of the most frequently used

and powerful tools in biomedical research. From light
microscopic (LM) techniques, including conventional flu-
orescent stainings, to transmission and scanning electron
microscopic (EM) methods, the last two decades have
witnessed substantial methodological progress in terms of
resolution, speed, and automation. Tissue clearing and super
resolution LM at the one end, and serial block-face as well as

focused ion beam scanning EM at the other end, have paved
the way for a three-dimensional visualization of biological
specimens.

Still, the use of serial sections remains an essential and
cost-efficient tool to gain 3D insight into specimens for
several reasons: Despite the progress in LM techniques
the penetration depth of staining solutions, in particular
fluorescent antibody staining, is limited, thus limiting the size
of the sample that can be visualized. Genetically modified
organisms, such as mice, expressing fluorescent proteins
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under cell-specific promoters, are available. This method,
though, cannot be applied to human samples for obvious
reasons. Thus, the use of serial sections in LM is often
the method of choice for obtaining 3D information both
from conventional and fluorescent microscopic imaging, in
particular when human samples are investigated.

However, microscopic sections are inherently two-
dimensional (2D) and their 3D information has to be regained
from 2D images. The manual or automated cutting of thin
sections for microscopy, however, induces—even in perfectly
trained and experienced hands—varying distortions and
deformations, such as stretching or compression. Positioning
the sections on the glass slides further contributes to spatial
distortion. This problem is especially evident in large
sections. Further processing such as antigen retrieval and
staining may further damage the section. Even digitization
of the sections can be faulty and create partially corrupt
representations.

The alignment or registration is an important method in
medical image processing. An absence of the ground truth
is a major problem during the development of new and
fine-tuning of existing registration methods. While some
simple synthetic data or phantoms can be generated, those
would not adequately represent the problem. Firstly, some
registration methods, for example, those based on feature
detection, thrive from complexity of the input data. Such
“sparse” methods might perform very well especially in the
lung tissue, where the fraction of empty space is very high.
Secondly, the distortions in phantom data might not truly
represent the distortions in serial sections. Thirdly, in most
real cases, no ground truths from other modalities exist in
the typical acquisition resolution of the serial sections. Most
“real” 3D methods either do not reach the resolution of
conventional LM (e.g., micro-CT) or have typically much
smaller spatial dimensions of the probe (e.g., nano-CT,
EM). Aforementioned LS microscopy and tissue clearing
are possible palliatives in model animals, but all those
methods are still too complex, too expensive, or require a
radically different biological processing pipeline that makes
it impossible to apply both modalities to the same specimen.
It is also much harder to apply aforementioned advanced
methods in humans.

A. CONTRIBUTIONS

In this paper we present a methodology to apply typical
sectioning distortions to real data sets from other modalities.
We digitally “mock up” the distortions from sectioning on
real biological data. Arbitrary general-purpose images can
be distorted (Fig. 1, Fig. 2) and registration methods can be
applied to distorted images. The results of the registrations
can be immediately compared with ground truth data. Our
benchmark is open to further registrations, new quality
measures, and new images. As we present the method and
not only the data, further data sets, even from additional
modalities, can be produced by others. We focus our current
presentation on animal lung images. However, our method

is generic; it should be applicable to virtually any kind of
innately 3D data of any organ from any species. Our goal
is to enable the evaluation of registration methods for serial
sections with a ground truth from real biological data. To
fulfill it, we mimic sectioning distortions in an artificial,
but statistically meaningful and reproducible manner. We
then proceed to evaluate some existing registrations with our
method. Among other approaches we present a full-series
evaluation.

In this paper, we consider possible distortions during
sectioning and apply those to 2D series from the innately
3D data. Our data sets originate from further modalities in
bioimaging. The data sets aim to come close to LM sections
of the lung in their scale—on both sides. We use both CT
and LS as coarser scale and EM as a finer scale. As original,
non-distorted data fit perfectly, those serve as a ground truth.

The contributions of this paper are threefold. Firstly, we
provide an overview over the field with the emphasis on
validations of registration. In most such validations, the
problem of an absent ground truth motivates the search for
further methods. Our approach is novel, we work with a
present ground truth.

Secondly, we suggest a technique to generate a benchmark
input from existing inherently 3D data. This way, we are,
thirdly, able to compare registration methods on a common
foundation by comparing the registered data with the ground
truth. We perform an extensive image-based statistical
evaluation of the full series.

The source code for this paper is available under
https://github.com/olegl/distort, the distorted and ground truth
data sets can be found under https://zenodo.org/record/4282448.

B. PAPER STRUCTURE

The remaining part of the paper is organized as follows: In
Section II we survey existing registration methods and discuss
the approaches towards validation of registration. Section III
elaborates on our approach for generating distortions. The
same section also presents the registration methods and
the data sets we used in our benchmark. In Section IV
we evaluate the results of the registration benchmark. We
compare the registered images with the ground truth in this
section. We present there both image-based evaluations
and statistical gauges of the results. Section V discusses
possible limitations and further developments of our method.
Section VI concludes the manuscript.

II. RELATED WORK
A. REGISTRATION IN GENERAL

There is a lot of research on registration, esp. in the context of
medical imaging. Brown [1], Zitová and Flusser [2] provide
early surveys; Pluim et al. [3] and Oliveira and Tavares [4]
are more focused on the medical topics. Viergever et al. [5]
and Pichat et al. [6] are recent overviews of the field. Zitova
[7] gives a mathematical overview of the methods. Although
some manual alignment [e.g., 8] has been performed in the
past, we ultimately focus on computational methods.

2 VOLUME 4, 2016
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(a) Input (b) Local
distortions

(c) Distortion
map

(d) Rigid
transform

Figure 1: Showcasing our method on a synthetic image
of a color gradient. The distortion magnitude is increased
tenfold for demonstration. The images are slightly cropped
for presentation.

Sotiras et al. [9] survey non-rigid registration methods.
In the context of the registration of serial sections, non-
rigid registration is definitely required, as distortions during
sectioning are non-linear. Even if we currently do not
represent tearings or foldings of the tissue, cutting-induced
local distortions are still present even in the most perfectly
prepared sections. (Instead of tearings and foldings we can
easily encompass missing parts of the images. Salvaging
damaged or missing sections is a separate problem in our
eyes.) Non-rigid registration methods include Rueckert et al.
[10]; Schnabel et al. [11]; Chui et al. [12]; Hömke [13];
Zhang et al. [14]. Saalfeld et al. [15] focused on as-rigid-
as-possible registration for EM.

Punithakumar et al. [16] is a recent example of a GPU-
accelerated registration. Crum et al. [17] provide an
overview of medical image registration, they highlight both
the importance of validation and its difficulty. One of the
popular software packages for registration is Elastix [18, 19]
and further developments around it [20, 21]. Another popular
package is ANTs [22, 23]. One of the somewhat frequent
ideas is to work with images on multiple levels [see, e.g.,
24, 25].

A kind of “sparse” methods involves feature detection
and description. Ma et al. [26] presents a recent survey
of the field. The actual detectors and descriptors include
SIFT [27, 28], SURF [29, 30], AKAZE [31, 32]. A basic
“sparse” registration identifies distinctive regions of both
input images and then computes a correspondence between
them based on the correspondence of the regions alone. In
such a rigid registration RANSAC [33] is used. “Sparse”
methods have been used to register medical images [e.g.,
34, 35, 36, 37, 38]. Arganda-Carreras et al. [39] is the origin
of ImageJ’s “Register virtual stack slices” implementation.
(ImageJ [40] and Fiji [41] have served as a basis for many
registration and analysis approaches.) They focus strongly
on various rigid approaches, although an elastic extension
exists. The ImageJ plugin “TrakEM2” [42] also utilizes
feature detection, but it not only performs registration, but
also includes tools for 3D modeling, editing, and annotation.
Ma et al. [43] and Zhang et al. [44], for example, improve
the correspondence of features (“matching”). Cieslewski et al.
[45] is an example of an alternative to feature descriptors.

Registration of whole sections [e.g., 46] motivated the usage
of feature detection in Ulrich et al. [47].

Optical flow [48, 49] is a yet another method to find
“moving parts” in images [50, 51, 52]. Applications of
optical flow in medical images include Dougherty et al. [53],
Carata et al. [54], Lobachev et al. [55]. Feature descriptors
have been used on dense, optical-flow-like data [56, 57].

A diffusion model based on thermodynamics [58] is
widely used [e.g., 59, 60, 61]. Further registration ap-
proaches include graph-cut-based methods [62], smoothness
assumption [63], higher-order derivatives [64], chamfer
matching [65], particle swarm optimization [66], Gauss-
Seidel optimization [67], Markov random fields [68, 69],
over-segmentation regularization [70], elastic triangulation of
a spring model [71], blending rigid transforms [72], empirical
mode decomposition [73], and remote sensing [74].

Some methods register a complete stack of images at once,
this approach was used, e.g., by Nikou et al. [75], Saalfeld
et al. [15], Lobachev et al. [25].

B. VALIDATION, IMAGE GENERATION, AND

BENCHMARKS

In a sense, this paper is dual to Cifor et al. [63]. They thought
explicitly about possible distortions during sectioning and
displaced the real section images in a way that would counter
this distortion—a similar idea is behind most registration
methods. Our distorted ground-truth data are the input of
a registration benchmark. We validate multiple existing
registration methods by comparing (previously distorted
and) registered images to the distorted, but not registered,
and to the (not distorted, perfectly aligned) original data.
Sections III-F and III-I detail on our evaluation methodology.

Pluim et al. [76] provide an overview on validations of
medical registrations. Van Sint Jan et al. [77] showcase a
very special kind of a registration that was validated with
kinematics. The method by Delaby et al. [78] is a more
typical case, where the 3D reconstructions were validated by
a different modality. Schnabel et al. [11] discuss physically
plausible distortions in breast MR data. Shojaii et al. [79]
use block-face images and fluidical markers for validation
of the registration. Kybic [80] undertakes special efforts for
the evaluation of registration accuracy in absence of ground
truth. In contrast to all those approaches, we suggest to use
multiple image-based quality measures for the evaluation
of the registrations. The essence of the present manuscript
is the availability of ground truth, so no further modalities,
manual interventions or external markers are required.

Generation of further images is by far not new in medical
image processing, to name a few, Xue et al. [81] generate
synthetic images for better T1 MRI; Duchateau et al. [82]
generate pathological cardiac images; and Grova et al. [83]
use computer-generated SPECT data to validate their MRI-
SPECT registration. Image generation is connected to
validation, because as long as we are able to generate images
with given properties, these can be used to validate other
image-based methods. Hamarneh et al. [84] use all kinds of
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(a) Input image (b) Extended borders (c) Local distortions

(d) Visualization of the
distortion map for (c)

(e) Center from (b) (f) Center from (c)

(g) Center from (d) (h) Optional damage (i) Highlighted
differences

Figure 2: Details of local distortion and damage generation.
Our method works also on general-purpose images. The test
image is from the Japanese ITE data set of UHD images,
we took 1k × 1k pixels crop from the center of the "Ship"
image (U10, 2K version). A lot of straight lines allows for
good identification of distortions. Global rigid transformation
is omitted for its simplicity. The distortion map is in line
with our usual settings. The visualization in (i) compares
PSNR (peak signal-to-noise ratio) between (b) and (h); it is
thresholded at 20%.

statistical and physically-based distortions, noise, artifacts
but their method is focused on MRI and CT data. Even
though distortions of 2D images are also possible with their
framework, the method is focused on other modalities.

Vlachopoulos et al. [85] generate distorted CT images
using landmarks and thin-plate splines. Their warping
method was specially chosen to imitate aspiration. The
images were used to evaluate registration methods in normal
lungs and organs with interstitial lung disease. The idea
of the evaluation is similar to ours, however, we focus on
histological serial sections and provide an elaborate method-
ology to generate such distorted images. Both the nature of
the deformation and the method of its implementation are
different in this work. We are concerned with sectioning
and processing artifacts in removed tissue. We do not use
thin-plate splines and landmarks to compute distortions.

Zhang et al. [86] both generate synthetic images and
use real data to compare their global registration method to
others with promising results. Unlike the present work here,
they distort the images using quadric 2D polynomials and
focus on either homography or distortions commonly found
in digital cameras. These kinds of distortions differ a lot
from our approach, since they are induced by the optical
pathway in the camera and not by physical sectioning of the
specimen.

Related to above methods are registration benchmarks
and challenges. We would like to specially mention the
EMPIRE10 challenge [87]. Borovec et al. [88] benchmark
registrations of differently stained serial sections [a rather
distinctive kind of registration: 46, 89, 90, 91, 92]. Basically,
registration of differently stained serial sections is about
transferring the distortions from one kind of staining to
another one. Also co-registrations across modalities are a
tangent topic to our work, e.g., CT to MRI [93, 94, 95],
serial sections to MRI [96, 97, 98], or MRI to ultrasound
[99]. We distort images from other modalities (similarly to
the distortions in serial sections) in order to obtain challenges
for testing registration methods with a known ground truth.
In this work, during each of the registration attempts we
remain within a single selected modality.

A recent ANHIR challenge [100] uses multiple data sets,
where the ground truth is obtained by external markers on
the histological series. Their landmarks were placed by
multiple human annotators. We use automatic image-based
metrics in this work and do not use external markers, however
our approach is open to further measures. (It would be
easiest to integrate further image-based markers, though.)
We eschew external markers, as we have a ground truth,
which contrasts our work from histology-based challenges,
where no direct ground truth is available. Further, the ability
to fully automatically compute the “score” of a registration
method from ground truths and registration output allows
our approach to be used in automatic tests of registrations,
such as continuous integration (Section V-G).

The NIREP project [101] evaluates specifically non-rigid
registrations, with absent ground truth. This paper is about
distorting a known ground truth for the evaluation of rigid
and, mostly, non-rigid registrations, we circumvent the main
problem of non-available ground truth.

To name further related papers, Pontré et al. [102] presents
a cardiac perfusion MRI registration challenge focused on
motion correction; Brock [103] compare accuracy of different
deformable registration methods on MRI and CT data; West
et al. [104] and Hellier et al. [105] are examples of the
evaluations of inter-subject registrations. Klein et al. [106]
and Ou et al. [107] evaluate registration methods for inter-
patient brain MRI.

C. QUALITY MEASURES FOR REGISTRATION

Image registration can be seen as an optimization problem.
Similarity measures are key to both good registrations and
their evaluation, as a similarity measure is basically the
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(a) Before deformation (b) Locally deformed (c) Differences, PSNR, 5% (d) Differences, PSNR, 20%

(e) Crop from (a) (f) Crop from (b) (g) Optical flow, crop (h) Crop from (d)

Figure 3: The effect of the local distortions on real data: an unfiltered micro-CT image of a rabbit lung. Fig. (a) features
the extended (for later rigid transformation), but not distorted image. Fig. (b) is the result of non-linear distortions. The
distortions may be hardly noticeable by a human, but they are enough to confuse computational methods. Such distortions
are clearly visible in the next panels. Figs. (c) and (d) show the PSNR visualization between (a) and (b) with 5% and 20%
threshold for the red color. Figs. (e)–(h) show crops, Fig. (g) shows an optical flow visualization computed from full images,
but then cropped in the same manner as others. The optical flow shows the “movements” between two input images.
Scale bars in (a)–(d) are 5 mm, scale bars in (e)–(h) are 1 mm.

objective of optimization. Mutual information is often used
as such a measure [108, 3, 109, 110]. A related problem
is the selection of the reference in a series of histological
sections [111]. Nanayakkara et al. [112] introduce a metric
for registration errors. Luo et al. [113] discuss the relation
between registration errors and uncertainty.

In this work, we choose image-based measures as an
arbiter in quality of the registration. Such approach allows
not only for automatic generation of the inputs and for
automatic execution of the registration, but also for an
automatic evaluation of the results. In our evaluation we
use the standard measures by Jaccard [114] and Wang et al.
[115], as well as the dense optical flow [50]. We also use
the Dice [116] measure as a visualization of the Jaccard
measure—as the formulation of Dice can be converted to
a formulation of Jaccard. (Details on thresholding methods
are in the supplementary material.) We use a visualization
based on PSNR (peak signal-to-noise ratio) as well.

Crum et al. [117] discuss generalizations of overlap-
based measures, but in this work we opted for the well-
known measures. Rohlfing [118] criticizes the usual image-

based measures, but our method can use any measures for
evaluation. Our method is not imbued with the measures we
use, hence any extensions or further measures are possible.
The core idea is to use (now-distorted) inherently 3D images
to benchmark 2D registrations.

D. MACHINE LEARNING

With modern deep learning methods, the measure can be
implicitly learned, as Krebs et al. [119] mention. Maier
et al. [120] provide an introduction to deep learning in
medical imaging. Li et al. [121] use style transfer to
generate images from different vendors, such generated
images enable better machine learning. Fu et al. [122] and
Haskins et al. [123] provide an overview of machine learning
in registrations. Examples of advances of deep learning in
registrations include Dalca et al. [124] and Sarlin et al.
[125].

We stress that our method generates distorted images
without any use of machine learning. Thus, our method
can be used to generate additional data sets or to augment
machine learning input.
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E. LUNG IN 3D

The methods, options, and research outcomes in 3D recon-
structions of the lung using any modalities from corrosion
cast and up to 3D EM methods [e.g., 126] are reviewed
by Mühlfeld et al. [127]; practical applications include
[128, 129]. Although, EM studies of the lung are popular
and important [e.g., 130, 131, 132, 133], serial sections
for LM have their place in the investigation repertoire [e.g.,
134, 135, 136]. Putting stereology aside, a proper registration
is paramount in any investigation of serial sections as a 3D
data set.

III. METHODS
The typical sectioning-induced distortion in paraffin embed-
ding was found by Schormann et al. [137] to be Rayleigh
distributed. This basically means a normal distribution in
each of the image axis. We showcase our method on a
synthetic image (Fig. 1), on a standard test image (Fig. 2),
and on real data, a 2D image from a micro-CT scan of an
animal lung (Fig. 3). Notice that Fig. 1 overemphasizes the
effect of our method: we use there 10 times larger distortions
than usual.

Now, Figs. 1a, 2a show the original specimen. In real
applications we extend the border (Figs. 2b, 3a). Figs. 1b, 2c,
3b demonstrate the distorted images, Figs. 1c, 2d show the
color-coded distortion map. The detailed crops in Figs. 2, (e)–
(g), and Figs. 3, (e)–(h), demonstrate the local movements
induced by the distortion. The goal of the registration is to
precisely eliminate such movements.

To simulate lost or damaged parts of the sections [which
we recently learned how to repair: 91], additional arbitrarily
placed “damage” can be added to the image (Fig. 2h). Finally,
a global rigid transformation is applied (Fig. 1d). The
rationale behind this step is that only in very rare cases the
sections can be placed on the glass slide while maintaining
the exact orientation. We randomly apply a rotation and
translation to the images to simulate the uneven positioning.
Such images serve then as inputs for the benchmark of
registrations.

Fig. 4 visualizes the core approach and the complete
pipeline of this paper. We present a distortion generator that
is in a sense dual to a registration. We derive an evaluation of
a registration method from original 3D stack and registration
results.

A. LOCAL DISTORTIONS

Generation of local, non-rigid distortions is of high impor-
tance for our method. At the heart of the local distortion
lies the generation of normally distributed values. Two inde-
pendent normally distributed random values form the x and
y coordinates of a displacement, making the displacements
Rayleigh-distributed [137]. The coordinates of locations,
where the distortions are placed, lie on a rectilinear grid.

We generate multiple distortion “levels” using a classical
multiscale approach. The distortions are stored as coordinates
of “new” points in a matrix holding both x and y coordinates

as an element—this is a typical remap matrix of OpenCV.
The distortions are blurred with a Gaussian kernel in each
multiscale level to make the displacements smoother. This
way we avoid undesirable and unrealistic foldings, as real
sections folds look differently.

In the implementation, we used Mersenne Twister pseu-
dorandom generator [138, a standard one in Python]. The
distortion maps are applied to the input images with OpenCV
remap function using bicubic interpolation. The distortion
maps are saved for further analysis. We can generate those
maps in a fully deterministic manner, if desired. This
determinism contributes to reproducibility.

In our application, the final distortion map is visualized
(Fig. 1c, 2d) using HSV colorspace. The Cartesian coor-
dinates of the displacements are mapped to a polar angle
(associated with hue); vector magnitude basically codes the
intensity.

Our distortion maps are a simple, reproducible, and
well-defined way to add sectioning-inspired distortions to
arbitrarily registered data. We aimed to define a stable
and reproducible way to model such distortions using the
statistical properties of the real-world distortions.

The reproducibility is given through multiple efforts. We
have the initial, “ideal” state, the ground truth. We save the
exact rigid transform, the non-rigid distortion field, and the
distorted result. Through the use of pre-defined, deterministic
states of the pseudorandom generator, we can basically
save all the transformations in form of the seed value (plus
original images, of course). Above issues would be useful to
ensure reproducibility, e.g., for automatic regression testing
of registration methods.

B. ADDING RIGID TRANSFORM

The locally distorted images are further processed. In our
application we add an image-wide rigid transform: a random
rotation and a translation (Fig. 1d). The rotation angle
is uniformly distributed between −180 and +180 degrees.
The translations are also uniformly distributed, but they are
chosen in a range [−d/4, d/4], where d is maximal image
dimension, in order to not truncate too much of the image
content. The rigid transform is recorded, as it is the ground
truth for the first, rigid step of the registration.

C. THE USE OF THE DISTORTED IMAGES

The distorted images serve as a starting point for the
evaluation of registration methods. The registration should,
basically, “undo” the distortions and transforms we applied
to the original images. For the benchmark and evaluation
purposes we suggest using innately registered data, i.e.,
original 3D images. The benefit of doing so is the available
ground truth, the original undistorted 3D stack. Summarizing,
we circumvent the problem of missing the real ground truth
when comparing registrations of serial sections.
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Figure 4: Illustrating the steps in this paper. Individual normalization of benchmark inputs and the application of global
normalization are not mandatory. Currently, we do not use damage generation and damage repair in our benchmark images,
but we could also test the repair methods in this manner. The evaluation ensues from comparison of the image series. The
dotted boxes show two larger conceptual components, the distortion generator and the registration.

D. DAMAGING THE IMAGES (OPTIONAL)

An optional extension is to mimic the damage to which the
sections are subjected to during the processing (Fig. 2h).
Using normally-distributed pseudorandom values for dimen-
sions and placement we iteratively generate an ImageMagick
[139] script that deletes selected parts of an image. This is
a quite crude approximation to the variety of possible kinds
of damage to a section [91]—from an unsharp region (due
to focus error) to a teared section. However, we would like
to model missing parts of a section in an understandable and
straightforward way. Our test subject, a registration method,
would not necessarily care about the reason why some image
regions are not matchable to other images. It is not our
current goal to model the damaged sections realistically.

E. REGISTRATION METHODS

In order to demonstrate our methodology of the evaluation
of registration, we apply the following registration methods
to our distorted data sets:

1. “Rigid-SURF”: Feature-based rigid-only registration
based on weighted RANSAC [33, 25] and SURF
feature detector [29];

2. “Rigid-SIFT”: same as above, but with SIFT feature
detector [27, 28];

3. “Deform-SURF”: Feature-based deformable registra-
tion [25], first stage based on “Rigid-SURF”, followed
by multiple non-rigid stages using B-splines;

4. “Elastix”: a generic Elastix [18, 19] configuration, we
used rigidly registered result from “Rigid-SURF” as
input. The parameter file is made available in the
supplementary material. The non-rigid stage is not a
feature-based method;

5. “GS”: Registration method based on Gauss-Seidel op-
timization [67], we used rigidly registered result from
“Rigid-SURF” as input. However, the actual non-rigid
deformation is based on different principles, among
others, on the gray-level co-occurrence matrices;

6. “Blending”: Registration method based on blending
rigid transforms in image regions [72];

The rigid methods work pair-wise on the images. We
operated Elastix pair-wise on the images, hence the possible
accumulation of “drift” with the progress of the series.
“Deform-SURF” optimizes the whole stack at once in the non-
rigid phase, “GS” does the same. The “Blending” method
works backward and forward from a reference frame. In this
case, the inputs were used “back and forth”, for a series of
1, . . . , n images, the input was n, . . . , 1, 1, . . . , n, essentially
doubling the length of the series. The border interpolation
was less of our concern, the images were padded before
processing.

Why the rigid transformations? The rigid-only methods
we used clearly cannot undo the non-rigid distortions. But
the non-rigid distortions also make harder the search for
correspondences for the rigid transformations between image
features. Further, a rigid-only registration is also not
necessarily perfect in what it does, in other words, a rigidly
transformed (Section III-B) and then rigid-only registered
series is different from the series before such transformations.

F. RESULT EVALUATION WITH QUALITY MEASURES

We propose the use of established image quality measures:
structural similarity [SSIM, 115], Jaccard measure [114],
often visualized here with slight implementation differences
as a Dice measure [116], a visualization of dense optical
flow [50]. In the latter, color stands for a direction and
intensity for the magnitude of the movement. We also use
PSNR visualization, as implemented in ImageMagick. There,
red highlights a non-correspondence. Details of Jaccard and
Dice implementations are in the supplementary material. The
latter material also details on the manner in which we crop
the images for evaluation in order to eliminate border effects.
In our visualizations, black is “neither”, magenta and green
means “in one image, but not in another”, white is in both.

As for image pairs, used for the evaluation, we always use
two consecutive images from each of the series. To illustrate
the exact procedure, let image pairs “ground truth 1” and
“ground truth 2”, as well as “registered 1” and “registered 2”,
be our inputs. We compare with above image measures

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124341, IEEE Access

Lobachev et al.: Evaluation with distortions of ground truths

the both “ground truth” images with each other, as well
as both “registered” images with each other. This means,
we compute, e.g., SSIM of “ground truth 1” and “ground
truth 2” as well as SSIM of “registered 1” and “registered 2”.
While it might seem compelling to compare, e.g., “ground
truth 1” with “registered 1”, we would see there some larger
movements that are rather irrelevant for our goals.

Namely, each, esp. non-rigid, registration has “drifts”
in its results. There is a larger dissimilarity between an
ith registered image and ith ground truth. Such drifts are,
however, not quite the object of our interest. We would
like to compare, how much consecutive images in the series
fit each other. With ground truth we now know, how the
real consecutive images should fit each other. When we
compare each image to the ground truth, we measure the
“global” accumulated registration error, but not the “local”
registration error in the series itself. We deem a “local”
error, such as an discontinuity in the structures, far more
important as a “global” error, where a rather correct structure
is merely shifted few pixels in the whole series. Of course,
a throughout investigation of also the “global” errors is of
interest. We would like to perform them not on the images
themselves, but on their distortion descriptions. This is,
however, an issue of the future (Section VI-A).

To give an example, Figure 5 shows some of the quality
measures, applied to different registration of the same data.
Top row (b)–(f) shows the SSIM, bottom row (h)–(l) shows
the optical flow visualization. We registered a full LS series
with all methods. We used the distorted images that were
also globally transformed as the input. Then, a 1k×1k pixels
crop from the full registration was used for evaluation to
eschew the border effects. Panels (a) and (g) from Fig.
5 show regions cropped from the original images. Panels
5(b) and (h) show locally distorted images, before the global
rigid transform. For all registrations, the images were locally
distorted and globally transformed. Images shown in panels
(c) and (i) were then registered with “Rigid-SIFT”, it is
the rigid transformation only. Panels (d) and (j) show the
evaluation of images, registered with “Deform-SURF”, both
rigidly and non-rigidly. Images shown in panels (e) and (k)
were rigidly registered with “Rigid-SURF”, then non-rigidly
registered with “GS”. Panels (f) and (l) show the evaluation
of original, non-distorted data, i.e., the ground truth.

G. SPECIMENS

We applied our method to micro-CT (abbreviated as “CT”
in data set labels), light sheet (abbreviated LS), and EM
images of animal lungs (Fig. 6). Our CT data is isotropic,
our LS data set is anisotropic. The EM data set was captured
anisotropically, however then resampled to be isotropic. The
data was processed in the manner standard for each modality,
basically, for the processing in this paper, we perceived the
data as already processed and ready-to-use 3D images. The
images were extended to the size specified below in order to
not lose data during the global movement phase. Specifically,
we used:

• A rabbit lung acquired with micro-CT (Fig. 6a). The
specimen was a New Zealand White rabbit that was
artificially delivered 3 days early by cesarean section
and that spent 7 days in hyperoxia (95 %), the lung
was perfusion fixed. The sample comes from a
project studying the bronchopulmonary dysplasia in
a hyperoxia preterm rabbit model [141, 142], part of
a larger study of bronchopulmonary dysplasia models
[143]. The experiments have been approved by the
ethics committee for animal experimentation of KU
Leuven, project number P081/2017.
The sample was imaged on a Bruker SkyScan 1272 high-
resolution microtomography machine (Control software
version 1.1.19, Bruker microCT, Kontich, Belgium).
The X-ray source was set to a tube voltage of 80 kV
and a tube current of 125.0 µA, the X-ray spectrum
was filtered by 1 mm of Aluminum prior to incidence
onto the sample. We recorded a set of 2 stacked
scans overlapping the sample height, each stack was
recorded with 488 projections of 3104 × 1091 pixels
(2 projections stitched laterally) at every 0.4° over a 180°
sample rotation. Every single projection was exposed
for 2247 ms, 5 projections were averaged to greatly
reduce image noise. This resulted in a scan time of
approximately 8 hours. The projection images were then
subsequently reconstructed into a 3D stack of images
with NRecon (Version 1.7.4.2, Bruker microCT, Kontich,
Belgium) using a ring artifact correction of 7. The
whole process resulted in a data set of 1135 images
with an isometric voxel size of 7.0 µm (see also Fig. 3).
The images were pre-processed with a 2D anisotropic
diffusion denoising filter based on lattice basis reduction
[140].
We extracted 600 images from the middle of the filtered
data set for our benchmark and padded them (Sec. III-H),
yielding images at 3954 × 3954 pixels;

• An EM serial block-face (SBF-SEM) data set of adult
mouse lung (Fig. 6b). The specimen was a 4 weeks old
C57BL/6 mouse, the lung was perfusion-fixed [144].
The experiments were approved by Regierungspräsidium
Karlsruhe. Overall, 5246 sections with 80 nm thickness
were cut in a Zeiss Merlin VP Compact SEM (Carl Zeiss
Microscopy GmbH, Jena, Germany), using a Gatan
3View2XP system (Gatan Inc., Pleasanton, CA, USA).
The block-face was captured with the view port of
525 × 525 µm, yielding 15k × 15k pixels with 0.5 µs
dwell time, 3.0 kV acceleration voltage and variable
pressure mode at 30 Pa.
The benchmark uses a crop from the full data set with
1000 images at 1.5k×1.5k pixels. The final resolution is
0.15 µm/voxel. The data set was denoised with gradient
anisotropic diffusion using ITK before usage. We did
not apply any registration in post-processing, but we
individually normalized the images—as detailed below;

• A lung for the light sheet (LS) data set was obtained
from a male 24 week-old Fisher 344 rat with a body
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(a) Original crop 1 (b) Distorted,
SSIM = 0.714

(c) Rigid-SURF,
SSIM = 0.802

(d) Deform-SURF,
SSIM = 0.967

(e) GS, SSIM = 0.971 (f) Ground truth,
SSIM = 0.938

(g) Original crop 2 (h) Distorted, flow (i) Rigid-SIFT, flow (j) Deform-SURF, flow (k) GS, flow (l) Ground truth, flow

Figure 5: Evaluating image measures on 1k × 1k pixels crop from full registration of LS. The “flow” images are the
visualization of optical flow. The color codes the direction of the movement. Images (f), (l) show the ground truth values:
here two concecutive images of the ground truth were used to produce the quality measures.
All scale bars are 1 mm.

(a) Micro-CT, rabbit lung (b) Electron microscopy, mouse lung (c) Light sheet microscopy, rat
lung

(d) A fragment of a reference serial
section, rabbit lung, toluidine blue

Figure 6: The data sets used in our benchmark. The micro-CT (a) is filtered with anisotropic diffusion [140]; the EM (b)
and the light sheet data (c) are normalized individually; two consecutive non-registered serial sections (d) are provided as a
reference. Further data sets can be created from 3D data using the methodology we present here.
Scale bars are: (a): 5 mm, (b): 50 µm, (c): 3 mm, (d): 1 mm.

weight of 320 g, which was part of a ventilation study
approved by the LAVES in Oldenburg, the number
of animal experiment proposal is 17/2608. The lung
was fixed in an inflated state with an airway pressure
corresponding to 20 cm of H2O and perfusion fixed,
compare Krischer et al. [145]. By means of a “tissue
slicer” the lung was cut in slices of 2 mm thickness.
The image data was acquired with the UltraMicro-
scope II (LaVision BioTec GmbH, Bielefeld, Germany).
The lung slices were pinned up to a mandrel in the
ethyl cinnamate-filled detection chamber and illuminated

unidirectionally with 6 light sheets. An sCMOS camera
detected the fluorescence light with a wavelength of
490 nm, which matches the tissues autofluorescence,
perpendicular to the illumination plane. Due to the large
dimensions of the rat lung and the intention to depict the
complete lung the only zoom factor to choose was 0.63,
corresponding a 1.26-fold magnification. The series was
acquired as 336 images with 5.16×5.16×15 µm/voxel
(Fig. 6c).
For the benchmark we use 300 images at 3,9k×3,9k pix-
els that were individually normalized, see below;
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• As a reference, we also provide two serial sections
of the same rabbit lung as in micro-CT, stained with
toluidine blue. Fig. 6d shows one of those sections.
The images were acquired in transmitted LM with a
Zeiss AxioScan.Z1 scanning microscope (Carl Zeiss
Microscopy GmbH, Jena, Germany) at 0.22 µm/pixel
(20× lens). The section thickness was 2 µm.

H. DATA PREPARATION, NORMALIZATION, AND

AVAILABILITY

All benchmark images were extended to a larger square to
reduce the loss of information during rotation and translation.
Their bit depth was reduced to 8 bit, LS and EM images
were normalized individually using ImageMagick and GNU
parallel [146]. The normalization of individual images is
introduced to mimic a slightly varying image intensity [111,
147, 148] due to varying thickness of slices [149] or varying
penetration of the fixation and the staining solutions [e.g.,
150, 151, 152].

We provide as supplementary data the original, undistorted
images, the locally distorted images, the locally distorted
and rigidly transformed images, the local distortions, and
the values for the rigid transformations.

I. EVALUATION METHODOLOGY

Our concept of the evaluation focuses on comparing con-
secutive sections from the registered series to the same
consecutive sections from the ground truth. We decided
against comparing the images from the registered series
directly to the ground truth images: Accumulated errors
from the rigid transformations and non-rigid distortions
impact such comparisons. We would be more interested
in how the now-registered series fits to itself in comparison
to how it should have fit. In a direct comparison we would
have found too many rather irrelevant mismatches. To
give a simple example, many methods might over-fit the
registrations of their inputs for the better numerical quality
values (“over-registration”, “banana problem”). The “banana
problem” (Fig. 7) denotes the undesired tendency of non-
rigid registration methods to straighten curved structures by
optimizing the individual images’ similarity to its respective
neighbors. With our ground truth series we would be able
to find such cases.

The measures were computed on the 500 × 500 pixels
crop from the middle of the images, throughout the series.
Lower values in the beginning and in the end of the series
can be explained with less tissue in the region. However,
we advocate the use of the center crop as a simple to
define and “fair” way to define a region. As detailed in
the supplementary material, it is impractical to use the full
image for the evaluation. Also, some methods used additional
padding, making the uniform and comparable use of general
cropping offsets harder. The middle of the image should
arguably have meaningful tissue contents in most cases.
The “drifting away” tissue, i.e., the case when different
registrations accumulate the errors so differently, that we

Figure 7: An illustration of the “banana problem”. An
attempt to maintain better similarity to the neighbors pro-
duces too large distortions, destroying the originally present
curvature.

obtain fully different image regions at the same offset, is
rather an exception. This way, we have meaningful content
in the most of the series duration.

We present box plots of the appropriate values of quality
measures. In this case we decided against using violin plots.
Violin plots show outliers similarly, but the median and the
shape of the inliers can be discerned with less clarity in most
of our particular cases. (We still present some violin plots
in Fig. 11, see also supplementary material.)

We also present a statistical evaluation. We performed an
unpaired t-test with different means and unequal variances, a
Welch two sample t-test, to be exact. We always compared
a measure of registration results to the same measure of the
ground truth. We deem p < 10−6 significant; most of the
time we find even smaller p values.

IV. RESULTS
Beforehand, we have established our specimens, discussed
the data processing (Section III-G), data preparation (Sec-
tion III-H), and evaluation methodology (Section III-I). The
main result of this section is a full-series evaluation with
statistical means (Section IV-A). We also include some
special cases (Section IV-B). A pair-wise evaluation is
included in the supplementary material.

Notice that full images were always used for the registra-
tion. We mostly look at the center crops for the consistency
of the evaluation, but full images were processed beforehand.

A. FULL-SERIES EVALUATION

For an evaluation of full series, we computed the three
numerical measures SSIM, Jaccard, PSNR over the whole
series and evaluate these values statistically. All Jaccard
values below are computed with threshold 100.
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1) CT

Consider Fig. 8, presenting box plots of the full-series
evaluations. Overall “Deform-SURF” and “GS” stand out
for their good performance. Panel (a) shows SSIM values.
Notice, how the median in “GS” is higher than in ground
truth (0.895 17 vs. 0.877 45). In panel (a) “GS” and “Deform-
SURF” are close to the ground truth, while there are a lot of
outliers in “Deform-SURF” and “GS” seems to overshoot a
bit, but has some lower outliers. There are few outliers in the
ground truth, too, but they are rather symmetric. The latter
also holds for the Jaccard measure. In panel (b) there are
some outliers with high Jaccard values in “GS”. In (c) we
see, again, similar values in “GS” and “Deform-SURF” to
the ground truth, but now there are many outliers with high

and very low PSNR values in “Deform-SURF”. Notice also
the shape of the ground truth box content for PSNR: there
are quite many values above the median. Overall, Elastix
has good results, but quite tall box plots, indicating high
variance. A possible reason is that Elastix operated pair-wise
on the image sequence in this case. Both “Deform-SURF”
and “GS” operate on a full image stack at once.

Table 1 shows a statistical evaluation. We aim to decide
with a Welch t-test, if the quality measures of a registered
series are similar to the ground truth. This is almost never
the case. In “GS” with respect to Jaccard measure ((b))
we see the largest similarity, according to the test, but p
is still quite low there, under 4.3 · 10−4. Sometimes, the
maximal values of the quality measures for a registration
method are higher than the maximal ground truth value for
the same measure. We attribute this to a wider “spread” of
the variance, induced by the registration. To give an example
for the SSIM measure, the variance of “Deform-SURF” for
the full series is 4.29 · 10−3, while the variance of the ground
truth is 1.05 · 10−4.

2) EM

Figure 9 presents the box plots of the quality measures for
the full EM series. The normalized, 8 bit ground truth was
the actual input for our distortion method. Its output was
the input of the registrations. The 16 bit ground truth is
the original data and is provided as a reference. Fig. 9
necessitated some adjustments. There were some very low
SSIM values. We adjusted the scale of y-axis in panel (a) to
show more of the relevant details around the median values
and to remove some outliers. Panel (b) was plotted without
any adjustments. We had to filter the PSNR data to remove
infinite values in panel 9c. Also, the quality values there for
the ground truth, 16 bit, were much higher than for other
modalities. We adjusted the scale of y-axis to show the
results from the registrations more detailed.

We see in panel (a) that “GS” almost reaches the level of
the ground truth, normalized with respect to SSIM. The 16 bit
ground truth has lower SSIM values because of more details.
As before, “GS”, “Deform-SURF”, and Elastix look quite
good in box plots. The Jaccard values (b) were rather high,
though. The probable reason is the amount of background in

Table 1: The Welch two sample t-test for the quality measures
on CT data set. Similar as above, the “locally distorted”
values originate from applying only local distortions with
our method. The registrations’ input was also globally
transformed.
Concerning the appropriate measures’ values, we compare
the means from each of the registration results to the mean for
the ground truth. The differences are statistically significant
in almost all cases, we show the p value for “not equal”.
The hypothesis of the equal mean was almost always refuted
with a high confidence.
We additionally show the maximal value of a measure (“Max”
column). The “local” row is for the local distortions only,
without global movements.
The mean value marked with * is the one closest to the
ground per t-test. The maximum values marked with † are
larger than the maximum of the ground truth. This is a
“crime” many good methods commit in our evaluation.
The closer is the mean to the ground truth, the better.

(a)

CT, SSIM

Method Mean p < Max

Rigid-SIFT 0.477 2.2 · 10−16 0.814
Rigid-SURF 0.489 2.2 · 10−16 0.827

Deform-SURF 0.852 2.2 · 10−16 0.915†

GS 0.893 2.2 · 10−16 0.920†

Blending 0.484 2.2 · 10−16 0.814
Elastix 0.755 2.2 · 10−16 0.918†

Locally distorted 0.391 2.2 · 10−16 0.699
Ground truth 0.878 – 0.905

(b)

CT, Jaccard

Method Mean p < Max

Rigid-SIFT 0.0817 2.2 · 10−16 0.474
Rigid-SURF 0.0815 2.2 · 10−16 0.468

Deform-SURF 0.493 5.7 · 10−10 0.670
GS 0.510* 0.000 43 0.676

Blending 0.0793 2.2 · 10−16 0.463
Elastix 0.391 2.2 · 10−16 0.743

Locally distorted 0.0340 2.2 · 10−16 0.315
Ground truth 0.520 – 0.764

(c)

CT, PSNR

Method Mean p < Max

Rigid-SIFT 23.1 2.2 · 10−16 32.1
Rigid-SURF 23.0 2.2 · 10−16 32.8

Deform-SURF 31.5* 3.1 · 10−7 35.6†

GS 31.3 2.2 · 10−16 32.6
Blending 23.4 2.2 · 10−16 34.2

Elastix 28.9 2.2 · 10−16 34.4
locally distorted 21.0 2.2 · 10−16 29.5

Ground truth 31.9 – 35.4

11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124341, IEEE Access

Lobachev et al.: Evaluation with distortions of ground truths

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. truth

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

CT, SSIM

(a)

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. truth

0
.0

0
.2

0
.4

0
.6

CT, Jaccard

(b)

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. truth

2
0

2
5

3
0

3
5

CT, PSNR

(c)

Figure 8: Box plots of quality measures for the CT data
set. “R.-SIFT” stands for Rigid-SIFT, “R.-SURF” for Rigid-
SURF, “D.-SURF” stands for Deform-SURF, “local” means
local distortions only, without a global rigid transformation,
“Gr. truth” stands for ground truth.

the EM data set. In both discussed measures there are some
outliers on the lower side. PSNR (c) shows very high values
for 16 bit ground truth, we disregard them as all other values
are 8 bit. Concerning PSNR, we see some over-registration
in “GS”, less so in Elastix and “Deform-SURF”: the median
values and most of the box contents (the box represents 50%
of the data around the median) are higher than in ground
truth. The box plot for the normalized ground truth shows
some outliers for the larger PSNR values, however.

In the statistical evaluation (Table 2), we see a slightly
larger p value for “GS” with respect to SSIM, but nothing
extraordinary for this measure. The high values of 1.0 for

SSIM originate from the region at the end of the series
with few changes because of low amount of tissue. It rather
indicates a failure of the registration, as the measure is
computed on a center crop. As mentioned above, the Jaccard
values are rather high, again, “GS” manages to obtain a
slightly higher p for its mean. Quite of interest is PNSR,
where “Deform-SURF” manages a p ≤ 0.02713, but even
more spectacularly, Elastix has p ≤ 0.7992. This value
basically means that the mean of the PSNR for this data set,
registered with Elastix, matches the mean of the normalized
ground truth with a high probability. Such a match is an
exception in our evaluations.

3) LS

Consider Fig. 10. The SSIM for LS method shows quite
good values for “Deform-SURF”, “GS”, and also for Elastix,
but in this case with some outliers. Surprisingly, the plot for
the normalized ground truth is less convincing, the original,
16 bit ground truth shows even less similarity. The variance is
clearly much larger in the 16 bit data. We can thus conclude,
that above “good” registration method over-register. Looking
into Fig. 11a, we concludes that “GS”, “Deform-SURF”,
and less so, Elastix, produce much higher SSIM values than
they should have in order to be similar with the normalized
ground truth. The variance in the results of those registration
methods is also lower than in the normalized ground truth.
Panel (b) shows in a violin plot how the distribution of SSIM
values changed between the methods.

We see quite high values for Jaccard measure in Fig. 10b,
but also a lot of outliers in almost all methods. To study
those further, we present a zoomed-in version in Fig. 11c.
Even more interesting is panel 11d. There we have removed
the values 0 and 1.0 from the evaluation. Basically, those
extreme Jaccard values mean that either no correspondence
at all was found or the full correspondence. The latter can
be caused by too low threshold value or too little detail
in the particular region. In those both panels we see a
superior performance of the “Blending” method compared
to all other registrations. We notice also that our local
distortions do not change the Jaccard index very much. The
statistical analysis (below) does not support the superiority
of “Blending”, however.

As also in other modalities, the PSNR value of the 16 bit
ground truth is much larger, than in all other methods that
utilize 8 bit images (Fig. 10c). In a zoomed-in version
in Fig. 11, (e) we see that for PSNR the median of no
registration method exceeds the median of the ground truth.
This means that PSNR detects no over-registration in this
case. The somewhat peculiar, uneven shapes of the PSNR
distributions are visualized as violin plots in panel (f).

Now, consider Table 3. Statistically, no registration method
matches the mean of the SSIM of normalized ground truth
well. Most of the methods (namely, “Deform-SURF”, “GS”,
Elastix) are well above and also all registrations overshoot
the maximum of the ground truth SSIM. In Jaccard, we have
many 1.0 values (which were not removed in this case, as
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Table 2: The Welch two sample t-test for the quality measures
on EM data set. The origin of the “locally distorted” values
is as above.
We compare the means from each of the registration results
to the mean for the normalized, 8 bit ground truth. The
differences are statistically significant in almost all cases, we
show the p value for “not equal”. The hypothesis of the equal
mean was almost always refuted with a high confidence.
Notice Elastix with respect to PSNR with p < 0.7992, it
matches the mean of the normalized ground truth PSNR up
to −0.2 % relative error.
The mean value marked with * is the one closest to the
normalized ground per t-test. We also show the maximal
value of a measure (the “Max” column). The maximum
values marked with † are larger than the maximum of the
normalized ground truth. Notice that the quality measures
are unusually high for this data set. In contrast to Fig. 9, we
operate on unfiltered data for SSIM and Jaccard. We still had
to remove infinite values of PSNR for a meaningful analysis.
The sole method where data was individually filtered in the
above manner is marked with ¶.
The closer is the mean to the ground truth, the better.

(a)

EM, SSIM

Method Mean p < Max

Rigid-SIFT 0.901 2.2 · 10−16 1.00 †

Rigid-SURF 0.888 2.2 · 10−16 0.989
Deform-SURF 0.948 2.2 · 10−16 0.991

GS 0.957* 1.6 · 10−9 0.992
Blending 0.883 2.2 · 10−16 0.983

Elastix 0.943 2.2 · 10−16 0.983
Locally distorted 0.888 2.2 · 10−16 0.993

Ground truth, 16 bit 0.937 2.2 · 10−16 0.989
Ground truth, norm. 0.964 – 0.997

(b)

EM, Jaccard

Method Mean p < Max

Rigid-SIFT 0.9604 2.2 · 10−16 1.000 †

Rigid-SURF 0.9610 2.2 · 10−16 0.9991
Deform-SURF 0.9864 1.2 · 10−11 1.000 †

GS 0.9883* 3.2 · 10−5 0.9995
Blending 0.9531 2.2 · 10−16 0.9963

Elastix 0.9861 1.1 · 10−12 0.9989
Locally distorted 0.9548 2.2 · 10−16 0.9996

Ground truth, 16 bit 0.9998 2.2 · 10−16 1.000 †

Ground truth, norm. 0.9902 – 0.9998

(c)

EM, PSNR

Method Mean p < Max

Rigid-SIFT ¶ 18.0 2.2 · 10−16 36.55
Rigid-SURF 21.3 2.2 · 10−16 34.35

Deform-SURF 27.5 0.027 13 40.20†

GS 28.9 2.2 · 10−16 39.96
Blending 19.4 2.2 · 10−16 31.78

Elastix 26.9* 0.7992 35.42
Locally distorted 20.0 2.2 · 10−16 37.72

Ground truth, 16 bit 44.9 2.2 · 10−16 58.52
Ground truth, norm. 27.0 – 40.15

Table 3: The Welch two sample t-test for the quality measures
on LS data set. The “locally distorted” values are as above.
We compare the means from each of the registration results
to the mean for the normalized, 8 bit ground truth. The
differences are statistically significant in almost all cases, we
show the p value for “not equal”. The hypothesis of the equal
mean was almost always refuted with a high confidence.
The maximum of the normalized ground truth for SSIM was
rather low. For Jaccard, “Deform-SURF” reaches p < 0.168,
and for PSNR the same method reaches p < 0.7875. For the
latter, it matches the mean of the ground truth up to 0.1865 %,
the 95 % confidence interval is −0.4345 to 0.5728. The mean
value marked with * is the one closest to the normalized
ground per t-test. We also show the maximal value of a
measure (the “Max” column). The maximum values marked
with † are larger than the maximum of the normalized ground
truth. Notice that the quality measures are unusually high
for this data set. Similar to Fig. 10, we operate on unfiltered
data for SSIM and Jaccard. The method marked with ¶ has
no good values. The closer is the mean to the ground truth,
the better.

(a)

LS, SSIM

Method Mean p < Max

Rigid-SIFT 0.796 2.2 · 10−16 0.968†

Rigid-SURF 0.678 2.2 · 10−16 0.992†

Deform-SURF 0.964 2.2 · 10−16 0.993†

GS 0.971 2.2 · 10−16 0.994†

Blending 0.819 2.2 · 10−16 0.966†

Elastix 0.945* 1.0 · 10−10 0.985†

Locally distorted 0.721 2.2 · 10−16 0.914
Ground truth, 16 bit 0.572 2.2 · 10−16 0.851
Ground truth, norm. 0.915 – 0.950

(b)

LS, Jaccard

Method Mean p < Max

Rigid-SIFT 0.8399 0.097 31 1.000
Rigid-SURF 0.6347 2.2 · 10−16 1.000

Deform-SURF 0.8487* 0.1680 0.9890
GS 0.8444 0.1245 0.9882

Blending 0.8353 0.068 07 1.000
Elastix 0.8337 0.045 40 0.9893

Locally distorted 0.9700 1.3 · 10−7 1.000
Ground truth, 16 bit ¶ 1.000 2.2 · 10−16 1.000

Ground truth, norm. 0.8795 – 1.000

(c)

LS, PSNR

Method Mean p < Max

Rigid-SIFT 26.9 2.2 · 10−16 42.29†

Rigid-SURF 24.6 2.2 · 10−16 48.96†

Deform-SURF 37.1 0.7875 50.04†

GS 37.3 0.3101 50.45†

Blending 27.8 2.2 · 10−16 42.35†

Elastix 35.7 5.8 · 10−5 47.30†

Locally distorted 27.0 2.2 · 10−16 39.69
Ground truth, 16 bit 56.3 2.2 · 10−16 69.20†

Ground truth, norm. 27.0 – 41.36
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Figure 9: Box plots of quality measures for the EM data
set. “R.-SIFT” stands for Rigid-SIFT, “R.-SURF” for Rigid-
SURF, “D.-SURF” for Deform-SURF, “local” for only
local distortions, “Gr. tr. n.” for “ground truth, normalized”,
“Gr. tr. 16” for “ground truth, 16 bit”.

we want to contrast those statistics to the box plots). We see
a match in the means with p < 0.168 in “Deform-SURF”,
however we would be quite cautions in this case because of
some “invalid”, too low or too high Jaccard values. With
PSNR, “Deform-SURF” manages to match the mean with
p < 0.7875.

Some methods (e.g., “GS”, Elastix) have even larger mean
values of PSNR. We would deem those methods as better
than “Deform-SURF” in this case, if we did not have the
ground truth. We have to note, however, that all registrations
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Figure 10: Box plots of quality measures for the LS data
set. “R.-SIFT” stands for Rigid-SIFT, “R.-SURF” for Rigid-
SURF, “D.-SURF” for Deform-SURF, “local” for only
local distortions, “Gr. tr. n.” for “ground truth, normalized”,
“Gr. tr. 16” for “ground truth, 16 bit”. Fig. 11 shows some
further details.

overshoot the maximum of the PSNR in the ground truth, as
evident from Table 3c. A repeated look on Fig. 11, panels (e),
(f) shows that the distributions of the PSNR values for “GS”
and “Deform-SURF” are much more similar to each other
than to that of the normalized ground truth.

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3124341, IEEE Access

Lobachev et al.: Evaluation with distortions of ground truths

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. tr. n.

0
.9
0

0
.9
2

0
.9
4

0
.9
6

(a) LS, SSIM, zoom in

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. tr. n. Gr. tr. 16

(b) LS, SSIM, violin plot, bottom truncated

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. tr. n.

0
.8
5

0
.9
0

0
.9
5

1
.0
0

(c) LS, Jaccard, bottom truncated

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. tr. n.

0
.8
5

0
.9
0

0
.9
5

1
.0
0

(d) LS, Jaccard, filtered extreme values, bottom truncated

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. tr. n.

3
2

3
4

3
6

3
8

4
0

(e) LS, PSNR, top and bottom truncated

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

R.-SIFT R.-SURF D.-SURF GS Blending elastix local Gr. tr. n.

(f) LS, PSNR, full violin plot

Figure 11: More detailed plots of LS quality measures. Abbreviations are same as above. “Truncated” means that not the
full range of the measure was plotted. In Jaccard, “filtered extreme values” means that numerous zero and 1.0 values were
removed. They can be attributed to missing tissue or completely full region, were no meaningful comparison can be made at
current threshold. We also show some violin plots where those might bring additional insight through their shape.
Concerning the “Rigid-SURF” method, its quality was much lower. As this figure aims to provide a more detailed view, we
scale the box plots to better visualize the differences between other methods. Fig. 10 as well as the violin plot (f) show the
full picture.
As before, “R.-SIFT” stands for Rigid-SIFT, “R.-SURF” for Rigid-SURF, “D.-SURF” for Deform-SURF, “local” for only
local distortions, “Gr. tr. n.” for “ground truth, normalized”, “Gr. tr. 16” for “ground truth, 16 bit”.

B. SPECIAL CASES

For the pair-wise evaluation in supplementary material we
intentionally picked the center of a series and a clearly defined
region. Here we would like to separately highlight some
especially good of bad consecutive image pairs in Fig. 12.
This is a subjective selection of image pairs, as contrasted
with the previous section.

In panel (a) a larger global shift in non-linear distortion
phase of the registrations’ input is shown. It is CT data
set, sections 95–96, Dice visualization. Fig. (b) shows

uncorrected global movement in Elastix-based registration,
same data set, sections 99–100, Dice visualization. There is
a “floppy end”, a movement, in Elastix result (c), from same
data set, sections 305–306, Dice visualization. Mostly the
registration is good, but in the depicted region the offsets
are much larger.

In panels (d), (e) the measures of an interesting image pair
from “Deform-SURF” are depicted. We show Dice (d) and
optical flow (e) visualizations from the same region. There
is some movement, but is it all explainable with the “natural”
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differences in consecutive images?
The areas with little tissue (as found in our EM series

near its end) are a greater challenge for the feature-based
methods, as Figs. (f), (g) show. We see there a failure of the
feature-based SIFT method to find a correct rigid alignment.
Full images from EM data set, sections 702–703, are shown.
The probable reason is the low number of viable key points
found by the feature detection.

Subfigures (h)–(j) show a small evaluation of a particularly
good GS-registered image pair, LS data set, images 161–
162. We show there Dice visualization, PSNR, and SSIM,
respectively, for the same region. Notice the low values and
very few differences.

V. DISCUSSION
A. THE RESULTS AND THE “BANANA PROBLEM”

We have mostly discussed the results in the previous section,
still there is an issue we would like to specially highlight.
We have quite often seen that methods which produce better
image-based metrics also seem to over-register the series.
It would be very hard to find such an over-registration (a
“banana problem”, Fig. 7) without a ground truth. CT
scans of the specimens before sectioning might help, but, as
mentioned above, they lack on the resolution. Basically, our
ground truth bounds from above the amount of correspon-
dence between consecutive images. Such challenges as ours
would help to develop better registrations that try to reach
such a bound, but not to overstep it.

Occasionally, we have found the values of our quality
measures for a particular registration method higher than
for the ground truth. How is this possible? Our reasoning
is that the ground truth does not constitute a perfect cor-
respondence of the consecutive input images. It is merely
their real correspondence drawn from inherently 3D data.
This means that those registrations might create too much

correspondence, they over-register their inputs. We have also
seen an interesting effect, where the correspondences after a
registration where more heterogeneous than in ground truth.
It appears to us that some areas were over-registered and
some areas were under-registered. Again, without a ground
truth such observations would be impossible.

In other words, to obtain good values overall or on average
(while high variance cannot be reduced), some registrations
seem to attempt to shift all of the correspondences between
the images towards their maximums. Naturally, this behavior
forces the maximal values to exceed the maximum of the
ground truth while the mean is still under the mean of the
ground truth. This leads to the “banana problem”.

B. DISTORTION MECHANISM

Our distortions “stretch” and “shrink” the images, but their
positions are organized in a rectilinear grid, even if the
distortions themselves are random and Rayleigh-distributed.
It would also make sense to choose the distortion positions
randomly, too. However, we opted for a grid for a better
reproducibility of the appearance of the test images: a human

would know where to look. Still, the actual distorted images
do not show that much “bad” regularity, the above grid
is not visible, so we argue that no problems arise from
such a rectilinear grid placement. If our method is used to
benchmark registrations using neural networks with a direct
assignment of neurons to either pixels or distortions, the
randomization of the distortion positions might be required.

We use a rigid transformation to model the inaccuracy
in section placement. If a fully affine or an even more
generic transform is needed, our code can be easily extended
to incorporate it. Indeed, some registration methods [e.g.,
42, 153] use affine global transformations to model wedge-
shaped sections.

To contrast phantoms to our approach: the argument on
not fully representing the distortions might also hold for
our distortion generation, but we still work with real data.
Hence, the reasoning on lacking data complexity does not
hold. This issue is especially prominent in methods based
on feature detection.

C. FURTHER IDEAS FOR THE DISTORTION MODELING

Our method currently does not directly account for tissue
folding and tearing. Such damaged areas can be represented
with “holes” in the images, but they currently would not
correlate with larger distortions in the connected areas.
A realistic modeling of section damage was not our current
goal. Nowadays, methods to bridge section damage exist
[91]. Basically, any kinds of damage can be assessed with
masks for the repair, similar to the masks we use here to
simulate the damage. Some further recent works assess
cracks and discontinuities [154, 155].

A convolutional neural network, transforming “clean”
images into damaged ones with some kind of a style
transfer [156, 157, 158, 159] is an interesting idea. We
sought for a functional and well-defined image deformation
that allowed for using transformed images as a benchmark
input. Neural-network-generated images might have some
unnoticeable for humans drawbacks that would obscure and
throw off-track some other (probably, also deep-learning-
based) registrations—detection of adversarial examples is
a separate problem. Our test images are produced through
simple, robust, reproducible, and well-understood image
transformations.

D. IMPACT OF A 3D SERIES

We use full-blown, inherently 3D images as a series of 2D
images. Those 2D inputs are used for our benchmark for a
reason. Some registrations do not operate on image pairs,
but optimize the spatial positions of the full image stack at
one.

Next, the presence of already three-dimensional images
as the starting point enables us to state how the final image
stack should look like. We digitally simulate the distortions
by sectioning and further section handling. Then we apply
a registration method (we evaluate multiple of them in this
work). The discrepancy between the distorted series is
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(a) CT, local dist. (b) CT, Elastix (c) CT, Elastix (d) CT, “Deform-SURF” (e) CT, “Deform-SURF”

(f) EM, “Rigid-SIFT” (g) EM, “Rigid-SIFT” (h) LS, “GS” (i) LS, “GS” (j) LS, “GS”

Figure 12: Special cases, especially good or bad image pairs.
Scale bars are: (a)=1 mm, (b)=500 µm, (c)=1 mm, (d)=500 µm, (e)=500 µm, (f)=50 mm, (g)=50 mm, (h)–(j)=500 µm.

larger, than in the registered series; this is the whole idea of
registration. But, contrary to the usual 2D registrations of
serial sections, we still have the initial starting point, the 3D
images. They are in the same resolution as the registered
series. We call those initial images the ground truth. We
can compare the registered series to the ground truth and
find out, what was wrong with the registration method in
question.

E. CHALLENGES IN PROJECT EXECUTION

It was quite hard for some methods to cope with large angles
in rigid transformations, in those cases we used SURF-based
rigid registrations as an initial phase. Many registrations are
inherently trimmed for the most used input data kinds and
modalities. Adaptation to further images is possible, but
requires more or less tuning. In the best case, the tuning can
be commenced with parameter files, such as with Elastix.

The present project was quite large. A decent automation
of the workflow (we used Python, bash, and GNU Make)
was key for fast and error-free processing. This issue was
of especial importance in case of the evaluations.

F. EVALUATIONS

The different normalization issues, esp. in EM data set, might
also explain the observed variations in the measurements.
This is a typical trade-off: a better normalization allows for
better registration, but a normalization also changes the data
set, so a direct comparison with non-normalized data might
be harder.

The visualizations of optical flow we used as one of
the measures is, on the one hand, a valuable tool. Those

visualizations show issues less visible otherwise, the “hot
spots”. On the other hand, a direct comparison of such
visualizations with each other in their present form might
be misleading because of individual magnitudes.

One of the ideas for further improvement of our work is
to compare not images, but deformation fields from various
methods. However, multiple implementation questions would
arise. One of the issue is the registration “drift” that would
be different in various methods: Currently, our challenge
is complete open: the participants need to obtain the input
images and produce the result images, the registration method
itself does not need to be adapted or changed, it can remain
closed-source or even a commercial secret. If we would like
to compare the deformation fields, we would need to provide
a consistent way to output comparable distortions across all
the implementations, libraries, programming languages the
participants use. The code for the actual method needs to
be changed, which means it should be available and human
resources for the change need to be allocated.

G. CONTINUOUS INTEGRATION

Our visualizations and measures are computed automatically.
No human interaction what so ever is needed: the distortions
of the ground truth, registrations, and evaluations can happen
fully automatically. Thus, our evaluation method is a gateway
to wide-scale registration challenges and to regression
testing of further developing registration methods. Our
method can be applied as a part of a continuous integration
workflow [160]. With our approach, better and more thorough
regression testing of registration becomes possible.

Basically, this paper shows a further path towards automat-
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ically testing different regularizations in image registrations.
The goal would be to reduce the magnitude of the “banana
problem”, while still maintaining good registration results.
Such testing can be done with image-based metrics, as we
do here, but any other metric would work too.

VI. CONCLUSIONS
We introduce an approach to generate individual 2D distor-
tions applied to existing 3D medical data. Those distortions
have the basic statistic properties of the cutting-induced
variations in serial sections. The distortions are computed in
a straightforward, understandable, and reproducible manner.
We also apply a global rigid transform to mimic the inexact
placement of a section on glass slide. Modeling damaged
sections is also possible. Combined, we can simulate the
transition from a tissue block to a set of serial sections. Thus,
we are able to test registration methods on such simulated
data originating from real tissues.

We provide an overview of the existing registration and
evaluation efforts. To our knowledge, the approach, we
pursue in this work, has not been undertaken previously.

The key contribution of this work is the utilization of the
original, undistorted data for the evaluation. Previously, it
was impossible to evaluate registrations of serial sections with
ground truth, as the tissue block is destroyed by sectioning.
Micro-CT scans currently do not have sufficient resolution
and can serve only as a coarse guide in a co-registration of
micro-CT to real serial sections. Phantoms and synthetic
images might not have the needed complexity. We use real,
micrometer-scale lung images from other modalities in this
work. By using real images of animal lungs we affirm that
the kind of the images used is comparable to real serial
sections of the same tissue. Our method is, however, directly
applicable to other organs or generic images (Figs. 1, 2).

In this work we evaluate six registration methods on
three distorted data sets. In each of them, a ground truth is
present. With the ground truth, we can not only compare the
registrations with each other, but also with the inherent 3D
data, in other words: with original data, with how the 2D
“slices” should have been aligned if no cutting took place. We
address the quality of registrations with four visualizations
of image metrics and three image-based quality measures.
In this work, we both look at a specific image pair (in the
supplementary material) and provide an evaluation over the
full range of the series. Our method can be applied in a
continuous integration workflow.

We make the source code and the data sets publicly
available. Further contributions, both in form of additional
registration results and further data sets, are welcome.

A. FUTURE WORK

Utilization of our method, statistical analysis of real sections
[similar to 137], and an introduction of better quality
measures may lead to better registrations, both utilizing
deep learning and not. We definitely look forward to more
comparisons of registration methods. If the sectioning

distortions in resin embeddings are found to be similar to
the model we use here, or if a different model is derived,
our method can be also adapted to simulate distortions in
such embeddings. Further tests on CT or MRT data sets
with artificially increased anisotropy can be of interest.

It would be very interesting to find a way to compare
the registration result to ground truth directly. (In this
work we compare consecutive images from each of the
results and evaluate the resulting measures.) Presently, the
accumulation of registration “drift” and some global offsets
make a well-founded assessment more complicated than our
present evaluation.
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