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The innate immune system is the oldest protection strategy that is conserved across all
organisms. Although having an unspecific action, it is the first and fastest defense
mechanism against pathogens. Development of predominantly the adaptive immune
system takes place after birth. However, some key components of the innate immune
system evolve during the prenatal period of life, which endows the newborn with the ability
to mount an immune response against pathogenic invaders directly after birth.
Undoubtedly, the crosstalk between maternal immune cells, antibodies, dietary
antigens, and microbial metabolites originating from the maternal microbiota are the key
players in preparing the neonate’s immunity to the outer world. Birth represents the
biggest substantial environmental change in life, where the newborn leaves the protective
amniotic sac and is exposed for the first time to a countless variety of microbes.
Colonization of all body surfaces commences, including skin, lung, and gastrointestinal
tract, leading to the establishment of the commensal microbiota and the maturation of the
newborn immune system, and hence lifelong health. Pregnancy, birth, and the
consumption of breast milk shape the immune development in coordination with
maternal and newborn microbiota. Discrepancies in these fine-tuned microbiota
interactions during each developmental stage can have long-term effects on disease
susceptibility, such as metabolic syndrome, childhood asthma, or autoimmune type 1
diabetes. In this review, we will give an overview of the recent studies by discussing the
multifaceted emergence of the newborn innate immune development in line with the
importance of maternal and early life microbiota exposure and breast milk intake.
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INTRODUCTION

Our understanding of how microbial communities can influence
health and disease of their host has significantly improved in the
last decades. This boost of scientific discoveries in the
microbiome field has been facilitated mainly by the availability
and affordability of different techniques, such as gnotobiology,
next-generation sequencing (NGS), and metatranscriptomics.
Evidence linking the microbiome with the pathophysiology of
diseases, for instance, such as inflammatory bowel diseases (IBD)
(1–3), cancer (4, 5), obesity (6, 7), type 2 diabetes (8), and
neurological disorders (9, 10) is increasing and future research in
the field will in-depth dissect how the microbiota and changes in
its composition lead to multiple effects in the host.

Birth marks the start of colonization with microbial
communities. Many factors are known to influence the
microbiota composition in these early days, e.g. birth mode
(11), antibiotic treatment during pregnancy (12, 13), or infancy
(14, 15), maternal diet (16), breast- or formula feeding (17, 18),
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and the introduction to solid food (19), while the host genetic
background is estimated to only shape about 9% of the intestinal
microbiota (20, 21). The microbiome of an infant in its first three
years of life is clearly distinguishable from an adult microbiome
by a lower diversity index reflected in half as many operational
taxonomic units (OTUs) compared to adults and higher
interindividual variability (22, 23). Dominant bacterial taxa in
the first weeks of life of a newborn include Enterococcacae,
Clostridiaceae, Lactobacillaceae, Bifidobacteriaceae, and
Streptococcaceae. In the first months of life, Bifidobacteriaceae
thrive since they feed on oligosaccharides, which are highly
abundant in maternal milk, the main energy source of
newborn babies. During weaning, when solid food is
introduced, the abundance of Bifidobacteriaceae decreases,
while Bacteroides, Ruminococcus, and Clostridium become
more prevalent (Figure 1) (24).

The enormous impact of the microbiota on the development
of the immune system was in the spotlight early on. Pioneers like
René Dubos, Russell Schaedler, and Dwayne Savage have
FIGURE 1 | Overview of environmental factors shaping the development of the newborn microbiota and mucosal immune system. Throughout pregnancy, fetal
immune development is supported by microbial metabolites originating from the maternal microbiota and by dietary compounds. Innate immune cell populations,
such as monocytes, ILCs, and neutrophils belong to the most affected immune cells at this stage. Only at birth, the emerging immune system of the newborn is
confronted with live bacteria and thus, is still dependent on maternal protection, which is ensured through breastfeeding. Apart from passive immunization via breast
milk, neonatal iNKTs, NK cells, ILCs, and the gastrointestinal epithelial barrier protect against invading pathogens and promote the beneficial interplay with the
neonatal microbiota. The adaptive immune system in mice develops primarily postnatally, while a component of adaptive immunity is already present in the human
fetus. Birth mode, feeding, and the intake of antibiotics are additional factors that shape the early life microbiota and the neonatal immune system. During the
subsequent weaning reaction, when solid food is introduced to the infant’s diet, a tremendous shift occurs in its intestinal bacterial community composition.
Consequently, the microbiota is no longer represented by Bifidobacteria and Lactobacilli, but increases in metabolomic diversity evolving to a more adult-like
microbiota that is established during this early period of life. This period is often also called the window of opportunity since particularly during this time, external cues
have a profound impact on life-long health, the evolving microbiota, and the mucosal immune system. IBD, inflammatory bowel disease; sIgA, secretory
immunoglobulin A; ILCs, innate lymphoid cells; iNKTs, invariant natural killer T cells; MAIT, mucosal-associated invariant T cells; moDCs, monocyte-derived dendritic
cells; NK, natural killer cells; Th cells, T helper cells; Treg, regulatory T cells; T1D, type 1 diabetes.
May 2021 | Volume 12 | Article 683022

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kalbermatter et al. Microbiota and Early Life Immunity
revealed the importance of the gastrointestinal microbiota and its
interaction with the host immune system (25–28). Here, we want
to guide through the manifold changes that occur in the
microbiota during early life and how this leads to a temporally
layered postnatal establishment of the intestinal immune system,
starting from gestation, via birth, followed by lactation, and the
first years of life (Figure 1). A strong focus has been put on
reviewing literature on innate immune development.
THE INNATE IMMUNE SYSTEM IN THE
GASTROINTESTINAL TRACT

The first line of defense against invaders in the gastrointestinal
tract includes the mucus layer, the intestinal epithelial cell layer,
and hematopoietic immune cells, either scattered throughout the
lamina propria or settled as intraepithelial lymphocytes, all of
which extensively interact with the microbiota as well as with
microbial and diet-derived metabolites.

Mucins build a physical wall that separates the host tissue
from the microbial community in the lumen. The large, highly
O-glycosylated mucin proteins are either covering the apical
surface of enterocytes or secreted into the lumen by goblet cells
as gel-forming mucus (Figure 2). The small intestine has a single
unattached mucus layer, whereas in the colon and the stomach,
two layers exist. There, the inner layer is attached to the
epithelium, while the outer layer is unattached and less dense.
Frontiers in Immunology | www.frontiersin.org 3
The mucus fulfills different important functions: (1) It protects
against the invasion of pathogens, (2) builds a physical barrier
between microbial consortia and the host tissue, (3) protects
against self-digestion (for example in the highly acidic
environment of the stomach), and (4) directly modulates the
expansion of different bacterial strains and the composition of
the whole community (Figure 2). Mucins do not only protect
from too close contact to the commensal consortia but also serve
as a nutrient source for some bacteria that possess glycosidases;
These glycosidases enable bacteria to cleave mucin 2 (MUC2)
proteins and use them as an energy source. In turn, bacteria
release short-chain fatty acids (SCFAs) that are beneficial for the
host (29–31). The mucus is bathed with defensins, different
antimicrobial peptides (AMPs) originating from Paneth cells,
and secretory immunoglobulin type A (sIgA) deriving from
plasma cells in the lamina propria. On the other hand, the
microbiota affects mucus property and function (32, 33).

The mucosal immune system further comprises the single
epithelial cell layer, the underlying lamina propria, and the
organized lymphoid structures, such as Peyer’s Patches,
isolated lymphoid follicles, and mesenteric lymph nodes
(MLNs). Different hematopoietic cells of the innate immune
system can be found in the mucosa including mononuclear
phagocytes, intestinal macrophages, intestinal dendritic cells
(DCs), eosinophils, mast cells, and innate lymphoid cells
(ILCs) (Figure 1). They sense the presence of microbes
through pattern recognition receptors (PRRs) both in the
context of an infection with a pathogen and under homeostatic
FIGURE 2 | Architecture of the mucus layer in the small intestine. The small intestine has a loose mucus layer (illustrated in green), which keeps commensals at
distance. In addition, the epithelium is covered by a glycocalyx, a dense layer composed of secreted mucus proteins (MUC2) that is attached to epithelial cells via the
transmembrane part. These layers do not only protect from bacterial penetration, but also from self-digestion of host intestinal tissue. Secretion of AMPs by Paneth
cells and other epithelial cells as well as sIgA by plasma cells regulate the growth of different commensal bacterial strains. Furthermore, signals from the neonatal
microbiota shape the DNA methylome in intestinal stem cells from birth until weaning. Genes associated with cell glycosylation are particularly affected by a DNA
methylation gain, which also correlates with an increase in gene expression. Hence, barrier integrity during early life is additionally ensured through epigenetic
remodeling triggered by the microbiota.
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conditions. Many such PRRs and their signaling pathways have
been identified in the last decades, including Toll-like receptors
(TLRs) , C-type lect ins (CTLs) , nucleot ide-binding
oligomerization (NOD)-like receptors (NLRs), RIG-I-like
receptors (RLRs), and others. These PRRs bind to pathogen-
associated molecular patterns (PAMPs) for example
lipopolysaccharides (LPS), an outer cell wall component of
gram-negative bacteria (Figure 3).
THE “WINDOW OF OPPORTUNITY”

First hints of the possible existence of a “window of opportunity”
in early life during which environmental influences can have
long-lasting effects on microbiota composition, immune
Frontiers in Immunology | www.frontiersin.org 4
regulation, and disease susceptibility of the host, came from
epidemiological studies. Scientists observed a positive correlation
between higher hygiene standards in industrialized countries and
a rising incidence of autoimmune and allergic diseases (34, 35),
which was followed by studies that suggested a reduced exposure
to a microbial-rich environment as a possible cause. For example,
growing up on a farm, being representative for a microbial-rich
environment, prevents the development of allergic asthma
(36–39) and this effect has been shown to be long-lasting (40).
Furthermore, optimal nutrition is pivotal for both the pregnant
mother and her unborn child, as perturbations in this critical
time pose the fetus at risk of later developing a plethora of
chronic disorders, such as metabolic syndrome, type 2 diabetes,
coronary heart disease, adiposity, and osteoporosis (41–44).
Until now, therapeutic interventions – for example via fecal
FIGURE 3 | Crosstalk between the microbiota and intestinal epithelial cells. Different signaling molecules from the microbiota bind to PRRs expressed on the
epithelium, which subsequently activate innate immune mechanisms. This activation can elicit a wide range of effects: It may trigger a pro-inflammatory state for the
elimination of pathogens or induce tolerance to commensals by increasing the production of mucins and AMPs, promoting epithelial cell turnover, and mediating
stem cell survival. AMPs, antimicrobial peptides; MDP, muramyl dipeptide; PGE2, prostaglandin E2; ROS, reactive oxygen species; TSS, type secretion system.
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transplantation – were of limited success, one reason why much
effort is taken to further dissect the causal mechanisms of how
such early events can lead to later disease onset. The microbiota
certainly is a key player during this window of opportunity. Early
colonization during this critical time window by a microbial
consortium is crucial for the proper development of the immune
system and has been demonstrated in various mouse models (14,
45–48). It seems that the window of opportunity in mice closes
around the time of weaning. In humans, we know that a stable
microbiota composition is established at the age of 2-3 years.
However, no clear data are yet available to assess the exact time
when the window of opportunity closes. While the immune
system of the child predominantly matures in the first few years
after birth, it is still strongly shaped later during childhood. Due
to the distinct needs at different stages in life, the structural
organization of various immune layers at the intestine has been
identified. In neonatal mice, there is no established crypt-villous
axis, and their epithelium is characterized by a lower turnover
compared to adult mice (48–50). Additionally, there are almost
no mature Paneth cells present in neonatal mice and the mucus
layer is much thinner – it is only around the time of weaning
when a reliable mucus shield against invaders is established (48).
Further, PRRs are expressed in an age-dependent manner. For
example, TLR4 expression is increased in the prenatal period and
decreases at term, whereas TLR9 expression is reduced during
gestation and increases after birth. This pattern of expression for
TLR4 and TLR9 is inversed in tissue from infants suffering
from necrotizing enterocolitis (NEC) and might be of
pathophysiological relevance (51). TLR3 expression is low at
birth and increases during the postnatal period (52). Sensing of
LPS in the neonatal intestine via TLR4 leads to expression of the
microRNA miR-146a which maintains phosphorylation of IkBa,
subsequently inhibiting IRAK expression and resulting in LPS
tolerance (53, 54) (Figure 3). One could hypothesize that age-
dependent expression of PRRs may represent a strategy of the
host to push colonization of the mucosal sites towards beneficial
commensals and it is possible that altering expression levels of
different PRRs in a timely manner helps to fine-tune age-
dependent requirements of the host, e.g., in terms of nutrients
provided by certain bacteria.

What has started as epidemiological correlation-based
observations has developed into in-depth experimental
research. These scientific investigations have revealed
mechanistic insights into how events during this critical
window affect long-term health of the host. The window of
opportunity not only opens after birth but already during
pregnancy, having manifold effects on the developing fetus, in
ways that we will discuss next.
GESTATIONAL IMPRINTING OF THE
NEONATAL INTESTINAL INNATE
IMMUNE SYSTEM

Adaptations of the female body during pregnancy are
remarkable, affecting all organ systems and including the
Frontiers in Immunology | www.frontiersin.org 5
development of the placenta, a highly specialized organ that
provides an anatomical separation of the fetus and the mother
for preventing immunogenicity of the mother against the fetus
and vice versa. At the same time, this complex organ ensures the
maternofetal exchange of molecules, including those originating
from the maternal microbiota (55). In recent years, much
attention has been drawn to the possible existence of a
placental microbiome itself.

Is There a Placental Microbiome?
Whether the placenta harbors a microbial community is a matter
of debate and has started when a study from the Versalovic group
in 2014 has challenged the paradigm of a sterile womb. They
performed 16S sequencing on human placental samples and
detected a microbial community (56). Before that, others have
found bacteria in the human placenta during term (57, 58) and
preterm deliveries (58). Bacteria have also been identified from
human umbilical cord blood (59), meconium (60), and amniotic
fluid (57). Additionally, genetically labeled E. faecium was
administered orally to pregnant mice and subsequently isolated
from the culture of amniotic fluid (59) and meconium (60),
many studies followed claiming the existence of a placental
microbiome (61–64).

Immediately after the Versalovic group published their
paper in 2014, Harvey Kliman pointed out that the sole
detection of DNA does not provide evidence for the
existence of living microbes (65). Over time, it became more
and more obvious that contamination issues (66, 67) and the
Test-Kit’s own “microbiome”, the so-called “kitome” (68),
represent big challenges in the search for a microbiota
inhabiting the placenta. Subsequently, several groups had a
closer look and performed even more careful evaluations (1)
by adding controls at every step of the process, (2) only
including samples of cesarian (C)- section-derived tissue to
reduce the risk for contamination during the birth process, (3)
combining high-throughput sequencing with qPCR and
bacterial culture, (4) comparing the bacterial taxa from those
found in the close environment (e.g. the processing room),
and (5) subtracting the taxa that overlapped with the kitome.
Scientists were not able to detect a placental microbiome by
including the above-mentioned precautions (68–73).
However, the issue does not seem settled, as a recently
published paper claims to have detected bacterial DNA and
viable bacteria in the fetal intestine by using 16S rRNA gene
sequencing, qPCR, electron microscopy, and bacterial culture
(74), which re-sparked the controversy whether a placental
microbiome exists (74–76).

From a biological perspective, we doubt the presence of an
established microbial community in the placenta (55, 77). As
elegantly reasoned by Walter & Hornef, «multi-layered
contextual evidence» has not been taken into account by
proponents of the in utero colonization hypothesis, but most
studies have focused on sequencing techniques only (78). They
further emphasized that there is no overlap between the bacterial
taxa detected in utero in the different sequencing studies but
almost a congruence between the bacterial taxa identified in
utero and the controls (78).
May 2021 | Volume 12 | Article 683022
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Maternofetal Exchange Influencing the
Development of the Neonate’s Mucosal
Innate Immune System
Even though the existence of a placental microbiota is
questionable, the transport of commensal bacteria-derived
metabolites via the placental barrier is well established. The gut
maternal microbiota plays an important role in this maternofetal
molecular transfer and is thereby able to modulate fetal
development (79). Our group showed that reversible
colonization of germ-free females with a genetically modified
E. coli strain (80) during pregnancy induced distinct changes in
the intestinal innate immune system of the offspring (77). This
was dependent on the transfer of maternal microbiota-derived
aryl hydrocarbon receptor (AhR) ligands (81), which stimulated
the proliferation of innate lymphoid cells type 3 (ILC3s) (77).
ILC3s are crucial for maintaining the gut epithelial barrier and
host defense by the production of IL-22 and IL-17 and
subsequently inducing the secretion of AMPs (82, 83).
Moreover, the expression of genes involved in epithelial cell
differentiation, integrity, and homeostasis was altered in small
intestinal epithelial cells of the offspring born to mothers who
had experienced reversible colonization during pregnancy (77).
Our group recently reviewed how manifold metabolites
processed by the maternal microbiota can reach the fetus and
affect its development and physiology (55).

Antibiotics and other drugs can indirectly influence the
maternal microbiota-fetus crosstalk, by altering the microbiota
composition and subsequently the metabolite-pool derived from
the microbiota. Perinatal antibiotic exposure reduced Nrp-1-

RORgt-Foxp3+ regulatory T cells (Tregs) in the offspring and
was irreversible after weaning (84). Another study found lower
levels of IL-17 and granulocyte colony-stimulating factor (G-
CSF) in the intestine of antibiotic-treated dams. Their neonates
exhibited decreased numbers of circulating and bone marrow
neutrophils as well as granulocyte/macrophage-restricted
progenitor cells in the bone marrow (82). However, the
offspring of antibiotic-treated non-obese diabetic dams were
protected against the development of type 1 diabetes through
mechanisms of alteration in the microbiota composition and
induction of tolerogenic antigen-presenting cells (APCs) (85,
86). In humans, a population-based Danish cohort study found a
positive correlation between antibiotic exposure during
pregnancy and a risk for severe infections in children (87).
Antibiotic treatment during pregnancy was further associated
with an increased risk for very early onset of IBD in the
offspring (88).

An important side note is the observation that a healthy
pregnancy leads to changes in the microbiota composition that
resembles a dysbiotic composition – however, in the context of
pregnancy with its unique needs and requirements, these
adaptations are physiological (89, 90). For example,
Faecalibacterium, which is a SCFA producer, decreases in
abundance in the last trimester of pregnancy. This decline of
Faecalibacterium has also been observed in populations with
metabolic syndrome (91). Overall, pregnancy is associated with a
decrease in microbial diversity and richness, and an increase in
Frontiers in Immunology | www.frontiersin.org 6
bacterial load with an expansion in Proteobacteria and
Actinobacteria (92, 93). This shift in the microbiota of
pregnant women is subjected to adjustments in dietary habits,
which are accompanied by changes in the pool of bacterial
metabolites to fully support the development of the fetal
immune system. A fiber-rich diet during pregnancy protected
the offspring against the onset of asthma, probably via inhibition
of histone deacetylase 9 (HDAC9) mediated by acetate resulting
in higher gene transcription of Foxp3 in Tregs. They further
lowered frequencies of eosinophils and macrophages in the blood
and bronchoalveolar lavage fluid as well as serum IgE levels of
the offspring (94).

1,25-dihydroxyvitamin D3 plays an important role in
epithelial barrier integrity. Mice with vitamin D deficiency and
C. rodentium challenge demonstrated increased colonic
hyperplasia and epithelial barrier dysfunction (95).
Malnourished pregnant mothers, specifically in 1,25-
dihydroxyvitamin D3, might be at higher risk for developing
intestinal infections, which poses a substantial risk to the unborn
child. Another study found that lymphocytes isolated from the
cord blood downregulated TLR1, -2, -4, -6, and -9 upon
supplementation with high doses of 1,25-dihydroxyvitamin D3

during pregnancy (96). In mice, maternal dietary-derived
retinoic acid, the active form of vitamin A, influences
secondary lymphoid development in the offspring as lymphoid
tissue inducer (LTi) cells, a subset of ILC3s (97). Mechanistic
insights on a molecular level for the relation between prenatal
nutrition and intrauterine immune development come from a
study investigating metastable alleles in a Gambian human
population with seasonal variations in food supply. A
metastable allele, VTRNA2-1, was differentially methylated
between offspring from mothers, which were either at
conception when food was available in adequate or insufficient
amounts. Strikingly, VTRNA2-1 has been identified to play a role
in viral immunity (98), which reflects common observations
linking undernutrition with higher infection rates.

While the mentioned examples illustrate that the maternal
microbiota can affect the development of the offspring’s immune
system already in utero, additional studies are needed in the
future to better understand this crosstalk.
THE INTERPLAY OF EARLY
LIFE COLONIZATION AND
NEONATAL IMMUNITY

When it comes to the development and maturation of the
newborn’s immune system to guarantee lifelong health, the
immediate period after birth is as important as the gestational
stage. Although several key steps regarding innate immune
development take place already in utero, many others require
postnatal antigen exposure to evolve. NK cells and ILCs are
present already at birth and subsequently expand and even reach
higher frequencies than in adulthood. This ensures that the
newborn is prepared against immediate threads and protected
against infections early in life (99–103). Even though the
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neonate’s innate immune system is capable to mount an
immediate response against potential pathogens right after
birth, it still has to mature in coordination with the microbiota
and many other environmental factors (48, 104–106). In
contrast, the murine adaptive immune system develops
predominately postnatally. This is not completely transferrable
to the human organism. Data are available that demonstrate the
presence of adaptive immune cells in the developing fetus.
Teichmann and colleagues detected thymic T cells in the fetus
as early as 7 weeks post conception (107), while effector CD4+ T
cells were described in the intestine of the developing fetus
during the second trimester of pregnancy (108). In addition,
mucosal-associated invariant T (MAIT) cells are already present
during in utero development of humans and can protect the
newborn baby from infections (109).

Are the Newborn Microbiota Development
and Immune Maturation Shaped by the
Birth Mode With Long-Term
Consequences on Human Health?
The event of birth represents the change from the sterile
environment in utero to the rapid colonization of all body
surfaces. For a vaginally born baby, this is initiated by vertical
transmission of microbes when passing the birth canal and
primarily includes microbes inhabiting the maternal gut lumen
(110). A thorough metagenomic shotgun sequencing analysis of
fecal samples collected at different timepoints from full-term
infants during their first year of life points out the dynamics and
importance of the microbiota early in life. As previously
mentioned, the complexity of the gut microbiota increases
during the first year after birth (Figure 1). Simultaneously, the
composition of the gut microbiota progressively resembles the
maternal gut microbiota and ultimately develops into the adult
gut microbiota (13, 23, 111).

This process of early life colonization can be perturbed by
external factors, for example, when a baby is delivered by C-
section. Babies born via surgical delivery share around 30% less
bacterial species with their mother than naturally born babies,
indicating different sources of gut colonizers. Indeed, infants
born via C-section harbor an increased number of species usually
colonizing the skin (Staph. saprophyticus) or circulating in the
hospital (Enterococcus faecalis, Enterobacter cloacae, Klebsiella
pneumoniae, and Clostridium perfringens) (13, 112). Most often,
acquired from the hospital environment, these strains are
opportunistic pathogens, also relevant in nosocomial infections
and harboring antimicrobial resistance genes (112). At the
phylum level, the microbiota of babies born via C-section is
dominated by Firmicutes and Proteobacteria, with a shift to fewer
Bacteriodetes and Actinobacteria (113). Additionally to the
missing passage through the birth canal, also the use of
antibiotics, which is the first-line pharmacological therapy
intrapartum, disturbs the microbial colonization of the neonate
at birth. Within the first year of life, the microbiota of C-section
babies is able to recover but may also persist for longer (13, 111,
113–116). Therefore, it is still highly debated whether surgical
delivery has life-long consequences. A comprehensive study
Frontiers in Immunology | www.frontiersin.org 7
performed in Denmark associated a multitude of inflammatory
diseases to C-section delivery. Over 2.5 million candidates were
followed from birth up to 40 years of age. Indeed, participants
born via C-section were at a higher risk to develop diabetes,
arthritis, celiac disease, or IBD. Nonetheless, a correlation
between a distinct microbiota early in life as a consequence of
cesarean section and the onset of immune-mediated etiologies
later in life could not be disentangled (117). In a recently
published study, Stockholm and colleagues addressed this
relationship (110). They could demonstrate that infants with a
long-term C-section-associated microbiota composition suffer
from a higher susceptibility to childhood asthma or an increased
risk of allergic sensitization marked by high IgE. Children who
retained a C-section microbiota profile at the age of one year also
mounted a different immune response during episodes of acute
airway symptoms, determined by lower levels of immune
mediators, such as TNF-a, IL-4, IL-13, or IL-1b. It is not yet
clear, which changes specifically in the gut microbiota are the key
factors driving these allergic phenotypes (113). In contrast,
children born via C-section, who could normalize their
microbial colonization pattern during their first year of life,
were not affected by either a higher risk for childhood asthma
or allergic sensitization early in life. Hence, other impacts on gut
microbial composition, such as the contact with the maternal
microbiota from body sites other than the gut or having older
siblings in the family might play a pivotal role in maturing the
neonatal microbiota towards a less sensitizing composition (110,
113, 118, 119).

Since the immune system is largely evolving during this
window of opportunity, a C-section-associated composition
could interfere with the healthy development of the immune
system and conclusively explain the threefold risk to develop
childhood asthma or other immune-related disorders after
cesarean delivery (113, 117). Specifically, the development of
the regulatory immune system is affected by the birth mode, as
shown in several murine studies. Mice born via C-section had
stunted levels of Tregs in the spleen and MLNs and reduced
systemic IL-10 levels until adulthood (120, 121). On the other
hand, the proportion of invariant natural killer T cells (iNKT)
was increased in the colon, as well as their expression of Il4 and
Il15. A prebiotic diet was able to reestablish reduced numbers of
iNKTs similarly to vaginally delivered mice. However, the levels
of Tregs were unaffected and remained low (121). The causative
effect of high iNKTs and the early life microbial colonization
pattern after C-section in humans has yet to be elucidated.
Notably, normal iNKT cell levels in the colonic lamina propria
could only be restored when germ-free mice were colonized in
the first few weeks of life but not at later time points (46).
Additionally, germ-free mice and mice delivered via C-section
were more susceptible to iNKT cell-mediated oxazolone-induced
colitis, a murine model for IBD (46, 122).

The practice of C-section, specifically without any urgent
medical indication, is increasing worldwide, and in wealthy
countries even with a skyrocketing prevalence (123). Hence, it
is also of interest to overcome the imbalanced mother-to-
neonate transmission after surgical delivery. In a proof-of-
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concept safety study, Korpela and colleagues orally transplanted
fecal microbiota, collected from a total of 7 mothers, to their C-
section-born neonates. Fecal microbiota transplantation (FMT)
could shift the gut microbiota towards a vaginally born
colonization pattern, including the restoration of a healthy
Bacteroides level (124). Additionally, FMT alleviated the
abundance of opportunistic pathogens characteristic of a C-
section microbiota (112, 124). Even though the proof-of-
concept safety study displayed benefits for FMT after cesarean
delivery, such practices should be regarded with caution. The
mother could harbor potential pathogens or viruses, with which
her immune system is able to cope, but not the immature
immune system of the newborn. Therefore, thorough
microbiota profiling beforehand is crucial. In the mentioned
study, for example, only 7 out of 17 mothers were selected after
careful examination (124). A different approach for microbiota
restoration in newborns is vaginal microbiota transfer at birth.
Nevertheless, the major source for neonatal gut colonizers is the
maternal intestinal microbiota, hence, not surprisingly vaginal
swabbing at birth was unable to durably establish a microbiota
similar to vaginally born babies (110, 124). These findings stand
in contrast with the conclusions drawn by Dominguez and
colleagues. Exposure of newborns with vaginal fluids at birth,
exhibited a vaginal microbiome-like signature during the first
week of life, which was similar to vaginally born babies and to the
vaginal microbiota of the mother (125). Hence, even though the
effects of C-section on the development of the newborn
microbiota and its immune maturation are well established,
the options to adjust the imbalance during the window of
opportunity and particularly its consequences on long-term
microbiota composition and human health are still a matter of
debate and extensive research.
The Effect of Environmental Cues, Such as
Xenobiotics, Vitamins, or Other Dietary
Agents on Neonatal Immune
Development and Susceptibility
to Immune-Mediated Diseases
Antibiotic Treatment
The postnatal maturation of the immune system is highly
sensitive to environmental factors. Preterm babies are
particularly weak and complications at this stage are still a
major cause of neonatal death (126). Preterm babies often need
to undergo empirical antibiotic treatment in the neonatal
intensive care unit (NICU), leading to nosocomial late-onset
sepsis (LOS), which can appear 3 days after birth or later (127,
128). Empirical antibiotic treatments include generally broad-
spectrum antibiotics, including Vancomycin and thus, the
increasing prevalence of antimicrobial-resistant pathogens,
such as the multidrug-resistant Staphylococcus capitis clone
(NRCS-A) is alarming. Not only because NRCS-A is
exceptionally disseminating in NICUs, but also due to its
probable relevance in LOS pathogenesis (129, 130).
Approaches, such as the MinION seq platform, aim to rapidly
(in less than 5 h) identify the pathogenic species and their
antimicrobial-resistant genes to reduce broad-spectrum
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antibiotic treatment early in life and specifically target LOS in
the newborn patient (131). Neonatal antibiotic treatment
impedes the building microbiota and may set the basis for
pathological colonization and finally LOS. Likewise, the
maturation of the immune system is impaired due to its
indispensable relationship with the microbiota. In a murine
model, Niu et al. could unravel the effects of antibiotic use and
LOS on the innate immune system (83). Specific pathogen-free
(SPF) dams were treated with antibiotics either shortly (3 d) or
for a prolonged period (7 d) while they were nursing their
neonates, resulting in antibiotic exposure of the neonates
through their mother. This experimental design mimics the
situation of preterm babies receiving empirical antibiotic
treatments resulting in a stunted microbiota. Both, in short,
and in prolonged antibiotic exposure and similar to human
babies born via C-section, Proteobacteria expanded
persistently, whereas Enterobacter and Enterococcus species
could only translocate to the spleen and the liver after long-
term antibiotic exposure. Due to this shift in neonatal
microbiota, K. pneumoniae was able to colonize the neonatal
gut and additionally translocate systemically, resulting in sepsis.
Reduced bacterial signals diminished epithelial TLR2 and TLR4
gene expression, which commonly drive ILC3 expansion.
Ultimately, long-term antibiotics also diminished the ILC3
population in the lamina propria. Since microbiota restoration
reestablished ILC3s and rescued the antibiotic-treated pups from
sepsis, this innate immune population contributes to the
important protection of the neonate after birth. However,
changes in the abundance of ILC3s through neonatal antibiotic
exposure by treating the dams might also be explained by
changes in the maternal microbiota or breast milk itself (83).
The importance of maternal microbiota-induced intestinal ILC3s
in regulating early life colonization was also demonstrated by our
group as discussed earlier (77).

Early Life Vitamin D Supplementation
Vitamin D deficiency during the first years after birth was
previously associated with an increased risk to develop asthma,
eczema, or atopic sensitization during childhood (132, 133). One
of the determinants of risk for childhood asthma development
might be early nasopharyngeal colonization with pathogenic
Streptococcus species (132). The immunological mechanism
behind, most probably involves the development of tolerogenic
DCs and Tregs after repeated exposure to aeroallergens, which
affects normal maturation of pulmonary function, followed by
cumulative airway tissue damage (134, 135). Under healthy
conditions, CD11b+ migratory DCs are sensitized after house
dust mite and microbial LPS exposure, which prompts them to
dampen type 2 T helper (Th2) cell differentiation through TNF-
a signaling. This process is well-developed in adult mice, in
contrast to younger mice, where the threshold for sensitization is
decreased. Thus, young mice are more prone to develop
asthmatic inflammation due to the weakened response of DCs
towards microbial low-dose LPS stimuli, which then
insufficiently suppress Th2 cell development (136). Latest
studies report altered differentiation and activation of several T
cell subsets, including Th1 and Th2 cells after oral vitamin D
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supplementation or UV exposure in neonates. Especially the
differentiation of naïve CD4+ T cells into Th2 cells was reduced
by lower IL-2 production (137, 138).

Apart from vitamin D deficiency, childhood asthma has also
been associated with respiratory viral infections early in life.
Therefore, vitamin D supplementation could alleviate asthma
risk by reducing viral infections, explained through distinct
neonatal IFN-g production and abnormal neutrophil responses
(139, 140). A study performed in Vietnam confirmed that an 8-
month supplementation of vitamin D during infancy
diminished the frequency of respiratory infections caused by
non-influenza viruses, such as rhinoviruses. However, the
influenza infection rate remained unaffected by vitamin D
administration (141). Collectively, neonatal vitamin D is
crucial for the healthy development of the respiratory
immune system and notably to improve the communication
between respiratory microbial signals, the innate and the
adaptive immune system with life-long consequences on
asthma susceptibility (133, 136, 137).

Short-Chain Fatty Acids and Extensive Gluten Intake
During Infancy
Gut commensals play a key role in processing indigestible food
components to provide essential vitamins and SCFAs to the host.
The period when solid food is gradually introduced coincides
with a burst in microbial changes and immune regulatory
processes, also known as the weaning reaction. In case of an
absent weaning reaction, pathological imprinting occurs, having
life-long consequences on host allergy and cancer susceptibility
(19). The weaning reaction is dependent on the microbiota and
additionally on a specific time window since the reconstitution of
germ-free mice at later stages could not rescue from pathological
imprinting in the small intestine (19). During a preweaning
interval, goblet cell-associated antigen passages (GAPs) are
formed and specifically deliver antigens from epithelium-
adhering bacteria to the colonic lamina propria. These
encounters prime Foxp3+ Tregs to protect the neonate from
dextran sulfate sodium (DSS)-induced colitis later in life.
Essentially, blocking GAPs before weaning inhibited Treg
development in the colonic lamina propria and resulted in an
impaired establishment of early life bacterial-induced tolerance
(142). The microbiota produces SCFAs from dietary fibers,
which promote the expansion of RORgt+ Tregs in the small
intestine and thereby prevent pathological imprinting.
Nevertheless, SCFAs alone were not able to induce Tregs in
germ-free mice, nor was exclusive bacterial colonization. Hence,
additional signals are required and we will display later in this
review that the weaning reaction is not solely happening because
of the digestion of dietary fibers by gut microbes, but that it
depends further on components in the breast milk, which delay
the weaning reaction (19).

Dietary fibers are found in plant-derived food. Apart from
vegetables and fruits, also barley, rye, and wheat are vital fiber
sources. These different grain varieties contain gluten, an
important food antigen, which can cause celiac disease in
genetically predisposed individuals. Since not all individuals
with the celiac-relevant HLA antigen genotype develop celiac
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disease, environmental factors seem to play an essential role. One
currently discussed environmental aspect is the effect of early life
gluten intake because the disease often manifests during infancy
(143–145). Several studies highlight the association of extensive
gluten intake during childhood with an increased risk of
developing celiac disease if genetically predisposed (146–148).
It is hypothesized that shifts in the microbiota composition
during the first year of life precede the disease pathology.
These include high abundance of Bifidobacterium breve and
Enterococcus spp., whereas increases in Firmicutes and
Bifidobacterium longum are correlated with a reduced risk.
Even though the overall changes in the commensal community
were minute, children who later developed celiac disease
exhibited a premature microbial diversity and complexity,
followed by increased IL-6, reduced sIgA, and TNF-a levels in
the feces (149). However, the cause for the microbial shift and its
consequences on immune regulation and response to the gluten
antigen could again be attributed to different cues in utero or
after birth, such as the feeding practice (150).

Celiac disease onset as a result of early life development
summarizes the importance of a balanced interplay between
food intake, gut microbial metabolism, and mucosal immune
function, which altogether maintain gastrointestinal epithelial
barrier integrity, an innate immune mechanism we will highlight
in the next section (149–152).
GASTROINTESTINAL EPITHELIAL
BARRIER AND GUT COMMENSALS
EARLY IN LIFE

The gastrointestinal epithelium acts as a physical barrier to
prevent translocation of pathogens, but it also senses microbial
antigens to maintain host-microbial mutualism (153). The oral
epithelium is a multilayered, stratified epithelium similar to the
cutaneous epithelium, whereas the lower parts of the intestine are
aligned with a single layer of cells. Therefore, the epithelial
establishment and its crosstalk with immune cells and the
microbiota evolve to some extent differently in the oral cavity,
the small intestine, and the colon (49, 50, 154, 155).

The oral cavity belongs to the earliest microbially exposed
body surfaces. Nevertheless, little is known about the
development of its mucosal immune system. Only recently,
light was shed on the mutual interplay between microbiota
development and local immunity. In contrast to the intestine,
neutrophils are highly abundant in the neonatal oral mucosa and
due to the increased permeability of the oral epithelium before
weaning, they play an important role in the first line of defense
against the high microbial load acquired at birth. Upon microbial
stimulation, gd T cells produce IL-17 and induce the recruitment
of prenatally established neutrophils. At weaning, these gd T cells
diminish and simultaneously the oral epithelial barrier
strengthens by reducing its permeability and upregulating
saliva production. With the higher levels of salivary AMPs, the
microbial load decreases and the oral epithelium finally matures,
having a greater turnover and a reduced expression of microbial
May 2021 | Volume 12 | Article 683022

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kalbermatter et al. Microbiota and Early Life Immunity
recognition receptors, including TLR2 and TLR4, and lower
expression of antimicrobial defensins. Conclusively, the early
defense mechanisms of the innate immune system against the
oral microbiota enable the development of a tolerogenic oral
epithelium, which during the neonatal phase is most
vulnerable (49).

In the lower intestine, where microbial density increases,
luminal metabolites change dramatically during weaning. This
newly introduced metabolome not only affects the
development of the immune system but also its regulation
through epithelial cells by strengthening the physical barrier
and supporting epithelial maturation to an absorptive
phenotype (19, 156). Identical to the oral cavity, the small
intestinal and cecal epithelia reduce the transcription of TLRs
and AMPs at the suckling-to-weaning transition (156–158). A
recent study by Hornef and colleagues found an age-dependent
expression of TLR5, where relative expression was 200-fold
higher in newborns compared to adult mice. Importantly, this
difference in TLR5 expression was specific to the intestinal
epithelium and had a lifelong impact on microbial composition
in the gut (158). Specifically, stimulation of Reg3g production
mediated by TLR5 controlled counter-selection of flagellated
bacteria and thereby modulated the intestinal microbiota until
adulthood (Figure 3).

Apart from microbial sensing, the microbiota shapes the
functionality and performance of the intestinal epithelial stem
cell niche during development. Bacterial exposure at weaning
affected gene expression of the erythroid differentiation
regulator-1 (Erdr1), which is important for stem cell
proliferation and regeneration after epithelial damage in the
neonatal colon (159). However, already before weaning,
microbial metabolites influence intestinal epithelial renewal.
Small intestinal organoids stimulated with sterile filtered stool
supernatant obtained from term-babies exhibited higher
proliferation and accelerated maturation than untreated
organoids. Stool supernatants from pre-term babies, having a
stunted microbiota composition, were unable to stimulate
organoid development (160). From this mixture of microbial
metabolites produced by a healthy microbiota, it is the ambitious
goal of mucosal immunologists to identify substances to use as
possible therapeutic agents to modulate the imbalanced mucosal
homeostasis in susceptible newborns. To narrow down the
myriad of possible metabolites, analyses on less diverse systems
are performed. Monocolonization of murine pups with a
particular Bifidobacterium breve strain (UCC2003) was able to
boost epithelial regeneration by supporting the stem cell niche
and increasing epithelial differentiation in the small intestine.
Additionally, upregulation of integrins, tight-junction molecules,
and increased mucus production in pups after Bifidobacterium
breve treatment supported its role in strengthening the physical
intestinal barrier (161).

The turnover rate of the small intestinal epithelium is slower
in neonates than in adult mice (49, 50). This might explain the
protection of neonatal mice against inflammation-induced cell
shedding after LPS administration. Since apoptotic signaling
cascades, including TNF-a production, were intact in
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neonates, it appears that innate immune mechanisms guided
through IFN-g provide the necessary protection against
pathological cell shedding. Again, gut commensals were crucial
to orchestrate the immune system towards a tolerogenic
phenotype with elevated IL-10 levels to protect from increased
LPS-induced epithelial cell death (162).

Long-lasting epithelial homeostasis is partially driven by
epigenetic remodeling as a response to microbial stimuli
early in life. The most intensively studied metabolite with
epigenetic relevance is butyrate, a product from bacterial
fiber metabolism. Its supportive role on epithelial sealing,
which coincides with the implementation of dietary fibers in
combination with its inhibitory effect on histone deacetylases,
suggests an important role in regulating epithelial maturation
to ensure lifelong mucosal homeostasis (156). Nonetheless,
epigenetic remodeling on the level of DNA methylation
appears to be more central early in life. Already in 2015,
Yu et al. demonstrated that a DNA methylation gain in
intestinal stem cells from birth until weaning had lifelong
consequences on barrier integrity (163). Genes associated
with a methylation gain were involved in intestinal
maturation and glycosphingolipid biosynthetic processes.
Also, the expression of these genes affecting glycosylation
was increased, indicating that the DNA methylation gain is
affecting regulatory regions and further supporting the role of
epigenetic remodeling in early life barrier formation (163).
Glycosphingolipids contribute to the epithelial cell barrier
integrity by shaping the glycocalyx of intestinal epithelial
cells (Figure 2). Furthermore, the glycosylation pattern of
intestinal epithelial cells has been directly associated with
beneficial effects on age susceptibility to pathogenic bacterial
infections, IBD, and cancer metastasis (164, 165). The DNA
methylation gain is microbiota-dependent since mice raised
germ-free showed a dysregulated DNA methylation
development in the colon from birth until adulthood when
compared to conven t iona l l y ra i s ed mice (CNV) .
Conventionalizing germ-free pups with FMT at postnatal day
25 partially restored the gain in DNAmethylation in adulthood
(163). The impact of the microbiota on the DNA methylome in
colonic or small intestinal epithelial cells is most probably
restricted to specific gene sets and does not affect the DNA
methylation pattern on a global scale (157, 163). Enhancer
elements known to be lowly methylated, so-called low-
methylated regions (LMRs) are strongly affected by the
microbiota. This DNA methylation analysis stays in
agreement with the transcriptomic analysis and indicates that
gut colonization integrates DNA demethylation in LMRs early
in life with consequences on gene transcription, which finally
drives intestinal development and homeostasis. The
epigenomic differences between germ-free and CNV mice
had functional consequences on gastrointestinal health,
confirmed by increased chromatin accessibility after
induction of DSS colitis in genes playing a role in the
inflammatory response of the colonic epithelium in CNV
mice (166). These findings indicate a profound effect of the
microbiota on intestinal epithelial cell homeostasis through
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epigenetic regulation early in life, certainly, an area that
requires further analytic investigations in the future (157,
163, 166).
THE IMPORTANCE OF BREAST MILK FOR
THE DEVELOPMENT OF THE NEONATE

Breastfeeding is one of the most meaningful exposures during
early life. It is considered the best nutrition source for the infant
as it contains the perfect balance of lipids, proteins, and
carbohydrates, as well as high amounts of micronutrients that
are crucial for neonatal growth (167–169). Many of the breast
milk components are not only a nutrient source but are
additionally biologically active, protect the neonate against
pathogen- and immune-mediated diseases (Figure 4) (168,
170–174), and drive the maturation of its immune system
(175, 176). Recently, a human study showed that breast milk
promotes neonatal immune tolerance in response to antigenic
stimulation by increasing the proportion of Tregs while reducing
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the proliferation of T helper cells and cytokine production (177).
This may be one mechanism of considerable importance to
ensure lifelong health.

Human Milk Oligosaccharides (HMOs) in
Breast Milk
Human milk contains substantial amounts of HMOs, which are
fucosylated or sialylated. These complex carbohydrates are one
of the most important biologically active compounds that are
present in human milk playing essential roles in the development
of the newborn (178, 179). They act as prebiotics in the
establishment of the infant gut microbiota and inhibit for
example the expansion of B. Streptococci, which can cause
invasive infections in neonates (180, 181). HMOs also protect
against NEC, a widespread and serious gastrointestinal condition
affecting predominantly premature infants, leading to the
destruction of the intestinal barrier (182, 183). Interestingly,
the level of HMOs in breast milk was recently shown to
negatively correlate with the incidence of this disease (184,
185). HMOs increase the intestinal mucin level thereby
FIGURE 4 | Breastfeeding mediates the transfer of biologically active molecules from the mother to the infant. Breast milk contains a huge diversity of components,
ranging from simple sugars, antibodies, and cells to molecules that directly trigger reactions in target cells and/or tissues, such as cytokines, growth factors, and
exosomes. Thereby, milk molecules ensure the infant’s well-being by driving innate and adaptive immune maturation, and further contributing to the development of
its mucosal and nervous system. HMOs, human milk oligosaccharides; ILCs, innate lymphoid cells; Mj, macrophages; MDSCs, mononuclear-derived suppressor
cells; MO, monocytes; NP, neutrophils; SC, stem cells.
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reducing bacterial attachment to the gut epithelium and the risk
to develop NEC (186). Remarkably, not only the incidence of
pathogen-mediated illnesses is influenced by HMOs, but also the
onset of immune-mediated etiologies, such as autoimmune type
1 diabetes (187). Overall, the protective capacity of HMOs raises
questions such as: Could additional HMO supplementation
during early life be used as a therapeutic strategy for the
treatment or prevention of diseases?

HMOs are known to support the development of neonatal
immunity. They positively affect the expansion of intestinal
commensals, which is part of our first line defense strategy by
providing colonization resistance and contributing to mucosal
homeostasis (179, 188). Furthermore, HMOs directly support
the intestinal barrier function by affecting the maturation of
epithelial cells (179). In vitro studies revealed that they protect
the gut barrier in a dose-dependent manner by conferring
resistance against inflammation-induced epithelial cell
dysfunction (189).

The contribution of HMOs to immune cell development and
function is also well established (179). For instance, it was
recently published that they drive the maturation of monocyte-
derived dendritic cells (moDCs), which in turn stimulate the
generation of Tregs. Hence, HMOs enhance immune tolerance,
which may be one of the central mechanisms by which they
contribute to the prevention of immune-mediated diseases in the
newborn (187, 190).

Apart from the immune-related and prebiotic functions of
HMOs, which have long been recognized and accepted, they are
also crucial for the infant’s nutrition. Recent publications display
associations between the breast milk HMO composition and
infant growth (191). Moreover, its supplementation during
childhood has been proposed to be a promising tool to support
the development and even improve growth in undernourished
infants (192, 193). Additionally, HMOs were suggested to have
beneficial effects on brain development by altering the expression
of several genes relevant to improve recognition memory (194).

To sum up, HMOs are fundamental breast milk components
for the newborn when it comes to the development of its first line
defense mechanism by promoting intestinal barrier function and
contributing to immune cell maturation, both key factors for
guaranteeing lifelong health.

Proteins and Peptides in Breast Milk
A broad range of peptides and proteins is found in human milk,
which are involved in nutrient absorption (amylase, a1-
antitrypsin), have immune and antimicrobial properties
(immunoglobulins, lactoferrin, cytokines), and possess the
ability to promote growth (e.g. epidermal growth factor
(EGF)). Among all, a-lactalbumin, casein, lysozyme, and sIgA
are the most abundant ones (167, 195, 196). As previously
discussed, the neonatal immune system is inexperienced and
immature. Thus, neonates rely on passive immunization through
breast milk by maternally derived antibodies that offer effective
and specific protection against pathogens (171). Lately, it has
been demonstrated that maternal IgA prevents NEC in preterm
infants by binding to intestinal bacteria (172). Hence, breast milk
Frontiers in Immunology | www.frontiersin.org 12
additionally sustains host-microbiota homeostasis, which is key
for the establishment and maintenance of an equilibrated
immune system. However, the binding of maternal antibodies
to bacteria in the neonatal intestine not only prevents infections
but also diminishes immune responses towards commensals by
limiting T cell-mediated reactions early in life. An in vivo study
found that commensal specific antibodies are transferred from
the mother to the offspring via breast milk and persist in the
offspring until weaning. In addition, mice born to antibody-
deficient mothers had higher numbers of activated follicular T
helper cells, which was accompanied by an increase in germinal
center B cells in MLNs and Peyer’s Patches. This demonstrated
that maternal commensal-specific antibodies delivered to the
newborn via breast milk dampen host-mediated commensal
specific T cell responses in the offspring, thereby contributing
to mucosal homeostasis (197).

Generally, milk-derived proteins are considered essential
contributors to the first line defense strategy. For instance,
lactoferrin, which is part of the innate immune system, has
important antimicrobial and immunomodulatory properties that
support health and prevent disorders in the neonate (198). It
elicits beneficial effects in a disease state on the intestinal barrier
by stimulating the proliferation of epithelial cells and reducing
the expression of pro-inflammatory cytokines in innate immune
cells (199, 200). b-defensin 1, another protein in human milk, has
antimicrobial functions and further promotes the differentiation
of moDCs from neonatal cord-blood-derived monocytic
precursors. This further drives the maturation of DCs, which
thereby obtain their characteristic antigen-presenting capacity
(201, 202). Moreover, a study revealed that milk fat globule
epidermal growth factor VIII (MFGE8), also known as
lactadherin, prevents NEC by limiting intestinal permeability
and thus reinforces the barrier function (203). Accordingly, the
amount of MFGE8 in breast milk correlated with the infant’s
inflammatory state, with higher levels being associated with an
anti-inflammatory gut environment (204).

Cytokines are essential contributors to the immune response,
which stimulate the differentiation and maturation of various
immune cells. The cytokine TGF-b is found in breast milk and is
ingested by the neonate, where it stimulates mucosal IgA
production and inhibits the synthesis of pro-inflammatory
cytokines (205). TGF-b supplementation by oral gavage during
the suckling period promoted immune maturation. It lowered
NK cell frequency in the MLNs and altered the cytokine profile
in the neonate (206). The same group showed that oral
administration of TGF-b during this period of life further
modified the splenic lymphocyte composition, suggesting
effects on systemic immunity (207). Furthermore, breast milk
levels of TGF-b negatively correlated with the occurrence of
eczema in neonates (208). This supports the assumed potential of
maternally derived cytokines to drive the maturation of the
neonatal systemic and mucosal immune system. IL-7 in breast
milk correlated with thymic development in the offspring (209).

Last, milk contains EGF, which was shown to prevent the
weaning reaction (19). This finding suggests that breast milk may
be involved in determining the duration of the previously
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discussed window of opportunity. Additionally, milk-derived
EGF has been attributed protective features by inhibiting the
formation of GAPs during the early postnatal phase, which in
turn prevents the translocation of gut bacteria and thus, systemic
pathogen dissemination (210). Nevertheless, and as previously
mentioned, the formation of GAPs must also happen during a
precise time window before weaning to develop lifelong tolerance
to the gut bacteria (142). This switch to inhibit GAP formation
around weaning may be fine-tuned by breast milk since the levels
of milk EGF decrease throughout lactation. Overall, breast milk
may not only protect the neonate but also timely regulate the
different immune developmental steps (142, 210).

Exosomes/miRNAs in Breast Milk
Exosomes are endosome-derived extracellular vesicles that are
30 - 100 nm in size and circulate in body fluids, including blood,
saliva, and breast milk (211–213). They are involved in
physiological and pathophysiological immune-related
processes, such as antigen-presentation, immune activation,
and suppression, as well as intercellular communication.
Overall, they are carriers that mediate communication between
different parts of the body by transferring proteins, lipids,
miRNAs, and other substances (213, 214). miRNAs are small
non-coding single-stranded RNA molecules, about 22
nucleotides long, which regulate gene expression and protein
translation (215, 216). It is well established that they have
immunoregulatory functions by interfering with inflammatory
responses thereby playing a role in health and disease. Aberrant
expression of miRNAs is associated with severe consequences,
ranging from cell death to autoimmunity and cancer (217–220).
About a decade ago, several immune-related miRNAs were
discovered in breast milk and found to be highly enriched in
milk-derived exosomes, suggesting that they may influence the
development of the offspring (221, 222). At this time, in vitro
studies revealed the uptake of milk-derived exosomes by human
macrophages. Nevertheless, their role upon cellular absorption
remains to be elucidated (223, 224). Although the capacity of
cells to ingest those vesicles was demonstrated, it remained
unknown whether they survive the digestive processes and
whether they are eventually absorbed by intestinal cells. The
latter would mean that breast milk-derived exosomes may
transfer cellular components from the mother to the offspring,
implying a role in the infant’s development. In more recent
studies, scientists investigated whether those vesicles survive
digestion by mimicking the infant’s gastric and pancreatic
digestion by adjusting the pH and the addition of digestive
enzymes to in vitro cultures. Here, milk-derived vesicles were
resistant to proteolysis and survived digestion in vitro. They
further showed that exosomal miRNAs content remained stable
and were absorbed by human intestinal cells in vitro, suggesting
the maternal-neonatal transfer of nucleic acids via breast milk-
derived exosomes (225, 226).

The transfer of miRNA from the mother to the offspring was
further investigated in vivo. A study conducted with pigs showed
that colostrum contains higher levels of miRNA compared to
mature milk and the serum of pigs, which were only fed with
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colostrum, had higher levels of colostrum-derived miRNAs,
indicating absorption of maternally derived miRNAs (227).
Another study further discovered a dose-depended increase in
miRNAs in human serum post-cow milk consumption (228). In
contrast, a third study did not show any evidence of miRNA
absorption after milk consumption (229). These studies did not
differentiate between endogenous and exogenous miRNAs.
Therefore, Title et al. generated KO mice for specific miRNAs,
which were then fostered by wild-type (miRNA sufficient)
mothers and their results revealed no evidence for mother-to-
offspring transfer of these particular miRNAs (230). In the
meanwhile, a publication showed that bovine miRNAs were
found in human plasma after bovine milk consumption,
insinuating uptake of milk-derived miRNAs (231, 232).

A recent study using newborn calves examined the
postprandial ingestion of colostrum-derived miRNAs.
Colostrum, as well as maternal and calf blood, were sampled
and bioavailability of colostrum-derived vesicles in calf blood
and miRNA expression profiles in the different samples were
assessed by small RNA-Seq. Although colostrum-derived
vesicles were detected in the blood of calves, the miRNA
expression profiles of the neonatal blood did not match that
of colostrum. The authors consequently proposed two
possible mechanisms: First, a disassembly of extracellular
vesicles and a release of miRNAs, which may take place during
their uptake into epithelial cells, leading to an unequal
availability of vesicles and miRNAs in the circulation. Second,
an imbalanced absorption of vesicle subpopulations within
the colostrum. Other tissues were not analyzed for the
presence of milk-derived miRNAs (233). Hence, the transfer
of maternal miRNAs into the neonatal systemic circulation
remains elusive and a highly discussed topic, which still needs
further investigation.

The role of milk-derived exosomes and miRNAs may be of
particular interest during neonatal development. The nutritional
hypothesis was rapidly completed by a functional hypothesis,
suggesting that they may regulate gene expression and immune
processes in the newborn (234). Recently, the focus was set on
investigating the ability of milk-derived exosomes to protect the
mucosal epithelium during infection. Intestinal epithelial cells
were incubated with H2O2, which increases oxidative stress-
mediated cell death and mimics an inflammatory environment,
and simultaneously treated with human breast milk-derived
exosomes. The treatment had a protective effect on intestinal
epithelial cells by attenuating cell death (235). Another study
investigated the effect of breast milk-derived exosomes on goblet
cell activity by incubating human colonic epithelial cells with
bovine milk-derived exosomes. Interestingly, those vesicles
promoted the expression of mucin-related genes. Moreover,
they assessed whether this effect was of clinical relevance.
Therefore, they induced experimental NEC in murine pups by
exposing them to hypoxia and LPS and supplemented them with
breast milk-derived exosomes. The treatment with milk-derived
exosomes prevented intestinal injury and the reduction of goblet
cells, which is a hallmark of NEC (236). Lately, human milk-
derived exosomes attenuated intestinal damage and protected
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intestinal stem cells from undergoing apoptosis due to oxidative
stress in vitro (237, 238). Altogether, breast milk-derived
exosomes seem to protect the mucosal environment against
injury and inflammation-mediated cell death by positively
affecting different cell types of the intestinal epithelium.

As previously reviewed, the intestinal epithelium is protected
against injury through breast milk-derived extracellular vesicles
also in the context of NEC (236). An additional study could
show that the administration of human breast milk-derived
exosomes decreased the incidence of NEC, confirming their
ability to prevent this disease (239). Furthermore, mice that
were administered with milk-derived exosomes showed reduced
signs of inflammation induced by DSS, which was accompanied
by a lower expression of IL-6 and TNF-a, suggesting a protective
effect in the context of colitis (240). Overall, existing in vivo
studies indicate the possibility of using breast milk-derived
exosomes as a potential treatment for infants with intestinal
injury and NEC, or for patients with IBD.

Finally, a study investigated the direct effect on the immune
system by analyzing the influence of breast milk-derived
exosomes on immune cells. Human-derived peripheral blood
mononuclear cells (PBMCs) were treated with milk-derived
exosomes and stimulated in vitro. This resulted in stronger
activation of NK cells as well as gd T cells, but only in the
presence of IL-2 and IL-12. This indicates that while milk
exosomes alone may not activate immune cells, they may do so
under inflammatory conditions (241). This could be an
additional mechanism by which maternal exosomes in breast
milk contribute to the prevention of immune-mediated diseases
in the offspring.

Cells Present in Breast Milk
The presence of immune cells in breast milk, including
neutrophils, macrophages, and lymphocytes, is well established.
Many animal studies demonstrated the transfer of those
maternal cells to the neonate, and it is assumed that they
contribute to the maturation of the offspring innate immune
system (175, 242–244). Furthermore, flow cytometric analysis
revealed the presence of ILCs in human milk, with ILC1s being
the most abundant subset followed by ILC3s and ILC2s (245).
While ILC1s and ILC3s are crucial to protect against bacteria and
to maintain epithelial homeostasis, ILC2s play a crucial role in
the defense against parasitic infections at mucosal surfaces (82,
83, 246). The role of ILCs in breast milk remains unexplored and
needs further research. Another study confirmed the presence of
MAIT cells and gd T cells in human milk (247). Both cell types
display features of innate immunity and are predominantly
found in the gut (248), suggesting that they may influence the
development of the infant’s microbiota, and thus also its first line
defense strategy at mucosal surfaces.

Myeloid-derived suppressor cells (MDSCs) have repressing
effects on other immune cells of the innate and adaptive immune
system, such as monocytes and T cells. There are two main
subsets of MDSCs, monocytic MDSCs (MO-MDSCs) and
granulocytic MDSCs (GR-MDSCs) (249). Remarkably, GR-
MDSCs accumulate in breast milk and suppress neonatal T cell
proliferation, suggesting that milk-derived GR-MDSCs may be
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able to promote immune tolerance in the offspring. The same
group found that GR-MDSCs reduced TLR expression on
monocytes, indicating that they regulate innate immune
responses in young infants (250). They also showed that the
level of GR-MDSCs correlated with gestational and postnatal
age, while the levels of those cells in breast milk of mothers who
had delivered preterm infants were lowest (251). The authors
suggested that these low levels of GR-MDSCs may contribute to
reduced immune tolerance and consequently to increased
susceptibility to infections, which is in line with preterm
infants being at highest risk to develop NEC. Another recent
study revealed that the macrophage profile in breast milk
changes in response to ongoing respiratory infections in the
nursing infant. The researchers observed increased frequencies of
anti-inflammatory macrophages and higher IL-6 and IL-8
concentrations in the milk of mothers whose infants had an
ongoing respiratory infection, indicating that the composition of
breast milk changes according to the infant’s needs to ensure
neonatal protection (252).

A reduction in the frequency of IL-13 producing cells in
human milk has been associated with an increased incidence of
atopic dermatitis in newborns (253). This cytokine is an important
mediator of atopic diseases (254), implying that maternal-derived
IL-13 producing cells may be involved in protecting the infant
from allergy. For instance, maternal-derived IL-13 may prevent its
synthesis in the offspring, thereby avoiding the activation of
eosinophils and secretion of IgE, which are both central in the
pathophysiological mechanism of atopy.

Apart from immune cells, breast milk contains stem cells
which are more abundant in colostrum compared to mature milk
(255, 256). An in vivo study using wild-type pups that were
fostered by GFP+ expressing transgenic mice detected breast
milk-derived stem cells in the blood as well as in the brain of the
suckling pups, confirming the transfer of milk-derived cells to
the offspring. Those cells differentiated into neuronal and glial
cells in the pup’s brain, indicating that they play a role in the
development of the offspring’s nervous system (257). Maternal
immune cells found in breast milk may therefore even be
implicated in the development of the infant’s immune system.
However, further research is required to prove this hypothesis. A
recent study using breast milk stem cells to treat spinal cord
injury showed that the administration of these cells reduced
apoptosis and inflammation at the site of injury, indicating their
influence on immune responses and therapeutic potential (258).

Dynamics of Breast Milk Composition
Breast milk is categorized into colostrum and mature milk,
although the general components of the milk remain stable
throughout lactation. As previously mentioned, the composition
of milk is believed to alter, depending on the neonate’s needs. An
example is that newborns are at the greatest risk to develop
diseases just after birth and thus rely on maternal-derived
protection. Accordingly, colostrum contains significantly higher
amounts of maternally derived antibodies than mature milk.
Therefore, it is widely accepted that colostrum has a principal
immunologic function, while mature milk plays a more nutritional
role for the neonate. Correspondingly, in humans andmice, the fat
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content increases throughout lactation. Hence, the milk
composition adapts not only to the protective need but also to
the nutritional requirements of the growing infant (195, 259).

Studies further revealed that the disease state of the mother
also influences the composition of breast milk. Recently, aberrant
levels of miRNAs in breast milk exosomes of diabetic mothers
were found (260). Furthermore, the milk of mothers with IBD
contained significantly lower levels of IgA and higher
concentrations of pro-inflammatory cytokines (261). Therefore,
breast milk may lead to differential immune priming of the
neonate in a disease context. However, more studies are needed
to investigate how breast milk affects the development of the
infant’s immune system in such situations. Moreover, we have
previously shown that bacteria-derived metabolites, such as AhR
ligands from the maternal microbiota translocate into breast
milk and contribute to the development of innate immune cells
in the offspring, namely ILC3s and F4/80+CD11b+ mononuclear
cells (77). Hence, the maternal intestinal microbiota can also
alter breast milk composition, an area still largely elusive.
CONCLUSION

In this review, we have covered the period from the very
beginning of the developing embryo and fetus in utero up to
the weaning of the young offspring and have given an overview
on recent publications that show an impact of the commensal
microbiota on the emerging immune system. Although we have
focused on findings regarding the innate immune system, we also
highlighted few key studies that demonstrated an impact on the
adaptive immune system.

We hope we have convinced the reader that already during
gestation the maternal microbiota can efficiently influence innate
immune maturation in the developing fetus, despite the inborn
character of the innate immune system. We have spread light on
early life environmental factors, including birth mode and the
intake of antibiotics in regard to microbiota and immune
development in the neonate. We have further emphasized that
the maturation of the intestinal microbiota and the evolving
immune system go hand in hand and influence each other during
the first few weeks (mice) or years (human) after birth. Last, we
have tried to give an extensive overview on classical and non-
classical immunological compounds present in breast milk and
how those affect innate immune maturation in the offspring.
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While evidence for an influence of the maternal microbiota,
the neonate’s own microbiota or the breast milk during this
critical time window is undoubtedly increasing, many aspects
remain to be understood: What are the molecular mechanisms
underlying the described phenotypes? How is long-term
persistence into adulthood achieved? Why does the window of
opportunity close around weaning, could it be reopened later in
life, and how? To which extent does the maternal microbiota
influence the composition of breast milk and thus immune
development in the offspring? Finally, how do the maternal
diet and later the offspring’s diet, and additional factors (e.g.
exposure to environmental toxins or drugs) interact with the
microbiota and mutually or independently influence immune
maturation in the growing organism?

With our current and future research projects, we aim to
complement the understanding of the window of opportunity
and to use this knowledge in a preventive or therapeutic setting
to improve human health from the neonatal age on.
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60. Jiménez E, Marıń ML, Martıń R, Odriozola JM, Olivares M, Xaus J, et al. Is
Meconium From Healthy Newborns Actually Sterile? Res Microbiol (2008)
159(3):187–93. doi: 10.1016/j.resmic.2007.12.007

61. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human Gut
Colonisation may be Initiated In Utero by Distinct Microbial Communities
in the Placenta and Amniotic Fluid. Sci Rep (2016) 6(1):23129. doi: 10.1038/
srep23129

62. Bassols J, Serino M, Carreras-Badosa G, Burcelin R, Blasco-Baque V, Lopez-
Bermejo A, et al. Gestational Diabetes is Associated With Changes in
Placental Microbiota and Microbiome. Pediatr Res (2016) 80(6):777–84.
doi: 10.1038/pr.2016.155
Frontiers in Immunology | www.frontiersin.org 17
63. Antony KM, Ma J, Mitchell KB, Racusin DA, Versalovic J, Aagaard K. The
Preterm Placental Microbiome Varies in Association With Excess Maternal
Gestational Weight Gain. Am J Obstet Gynecol (2015) 212(5):653.e1–.e16.
doi: 10.1016/j.ajog.2014.12.041

64. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. The Placental Microbiome
Varies in Association With Low Birth Weight in Full-Term Neonates.
Nutrients (2015) 7(8):6924–37. doi: 10.3390/nu7085315

65. Kliman HJ. Comment on “The Placenta Harbors a Unique Microbiome”.
Sci Trans Med (2014) 6(254):254le4–le4. doi: 10.1126/scitranslmed.3009864

66. de Goffau MC, Lager S, Salter SJ, Wagner J, Kronbichler A, Charnock-Jones
DS, et al. Recognizing the Reagent Microbiome. Nat Microbiol (2018) 3
(8):851–3. doi: 10.1038/s41564-018-0202-y

67. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al.
Reagent and Laboratory Contamination can Critically Impact Sequence-
Based Microbiome Analyses. BMC Biol (2014) 12(1):87. doi: 10.1186/
s12915-014-0087-z

68. Olomu IN, Pena-Cortes LC, Long RA, Vyas A, Krichevskiy O, Luellwitz R,
et al. Elimination of “Kitome” and “Splashome” Contamination Results in
Lack of Detection of a Unique Placental Microbiome. BMCMicrobiol (2020)
20(1):157. doi: 10.1186/s12866-020-01839-y

69. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al.
Human Placenta has No Microbiome But can Contain Potential Pathogens.
Nature (2019) 572(7769):329–34. doi: 10.1038/s41586-019-1451-5

70. Kuperman A, Zimmerman A, Hamadia S, Ziv O, Gurevich V, Fichtman B,
et al. Deep Microbial Analysis of Multiple Placentas Shows No Evidence for
a Placental Microbiome. BJOG: Int J Obstet Gynaecol (2020) 127(2):159–69.
doi: 10.1111/1471-0528.15896

71. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K,
et al. Comparison of Placenta Samples With Contamination Controls Does
Not Provide Evidence for a Distinct Placenta Microbiota.Microbiome (2016)
4(1):29. doi: 10.1186/s40168-016-0172-3

72. Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N,
Alhousseini A, et al. Does the Human Placenta Delivered At Term Have a
Microbiota? Results of Cultivation, Quantitative Real-Time PCR, 16s rRNA
Gene Sequencing, and Metagenomics. Am J Obstet Gynecol (2019) 220
(3):267.e1–.e39. doi: 10.1016/j.ajog.2018.10.018

73. Li Y, Toothaker JM, Ben-Simon S, Ozeri L, Schweitzer R, McCourt BT, et al.
In Utero Human Intestine Harbors Unique Metabolome, Including Bacterial
Metabolites. JCI Insight (2020) 5(21):e138751. doi: 10.1172/
jci.insight.138751

74. Rackaityte E, Halkias J, Fukui EM, Mendoza VF, Hayzelden C, Crawford ED,
et al. Corroborating Evidence Refutes Batch Effect as Explanation for Fetal
Bacteria. Microbiome (2021) 9(1):10. doi: 10.1186/s40168-020-00948-0

75. de Goffau MC, Charnock-Jones DS, Smith GCS, Parkhill J. Batch Effects
Account for the Main Findings of an In Utero Human Intestinal Bacterial
Colonization Study. Microbiome (2021) 9(1):6. doi: 10.1186/s40168-020-
00949-z

76. Rackaityte E, Halkias J, Fukui EM, Mendoza VF, Hayzelden C,
Crawford ED, et al. Viable Bacterial Colonization is Highly Limited in the
Human Intestine In Utero. Nat Med (2020) 26(4):599–607. doi: 10.1038/
s41591-020-0761-3

77. Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y,
Li H, et al. The Maternal Microbiota Drives Early Postnatal Innate Immune
Development. Science (2016) 351(6279):1296–302. doi: 10.1126/
science.aad2571

78. Walter J, Hornef MW. A Philosophical Perspective on the Prenatal In Utero
Microbiome Debate. Microbiome (2021) 9(1):5. doi: 10.1186/s40168-020-
00979-7

79. Macpherson AJ, de Aguero MG, Ganal-Vonarburg SC. How Nutrition and
the Maternal Microbiota Shape the Neonatal Immune System. Nat Rev
Immunol (2017) 17(8):508–17. doi: 10.1038/nri.2017.58

80. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M,
et al. Reversible Microbial Colonization of Germ-Free Mice Reveals the
Dynamics of IgA Immune Responses. Science (2010) 328(5986):1705–9.
doi: 10.1126/science.1188454

81. Stockinger B, Meglio PD, Gialitakis M, Duarte JH. The Aryl Hydrocarbon
Receptor: Multitasking in the Immune System. Annu Rev Immunol (2014)
32(1):403–32. doi: 10.1146/annurev-immunol-032713-120245
May 2021 | Volume 12 | Article 683022

https://doi.org/10.1056/NEJMra0708473
https://doi.org/10.1016/j.chom.2013.10.004
https://doi.org/10.1126/science.1219328
https://doi.org/10.1038/s41385-020-0257-y
https://doi.org/10.1038/s41385-020-0257-y
https://doi.org/10.1111/imm.13149
https://doi.org/10.1016/j.chom.2020.12.006
https://doi.org/10.1038/ncomms1463
https://doi.org/10.4049/jimmunol.182.1.636
https://doi.org/10.1371/journal.ppat.1002670
https://doi.org/10.1371/journal.ppat.1002670
https://doi.org/10.1016/j.chom.2010.09.005
https://doi.org/10.1084/jem.20050625
https://doi.org/10.1126/science.aba0478
https://doi.org/10.1126/science.aba0478
https://doi.org/10.1126/scitranslmed.3008599
https://doi.org/10.1159/000339182
https://doi.org/10.1016/j.ajog.2013.01.018
https://doi.org/10.1007/s00284-005-0020-3
https://doi.org/10.1016/j.resmic.2007.12.007
https://doi.org/10.1038/srep23129
https://doi.org/10.1038/srep23129
https://doi.org/10.1038/pr.2016.155
https://doi.org/10.1016/j.ajog.2014.12.041
https://doi.org/10.3390/nu7085315
https://doi.org/10.1126/scitranslmed.3009864
https://doi.org/10.1038/s41564-018-0202-y
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s12915-014-0087-z
https://doi.org/10.1186/s12866-020-01839-y
https://doi.org/10.1038/s41586-019-1451-5
https://doi.org/10.1111/1471-0528.15896
https://doi.org/10.1186/s40168-016-0172-3
https://doi.org/10.1016/j.ajog.2018.10.018
https://doi.org/10.1172/jci.insight.138751
https://doi.org/10.1172/jci.insight.138751
https://doi.org/10.1186/s40168-020-00948-0
https://doi.org/10.1186/s40168-020-00949-z
https://doi.org/10.1186/s40168-020-00949-z
https://doi.org/10.1038/s41591-020-0761-3
https://doi.org/10.1038/s41591-020-0761-3
https://doi.org/10.1126/science.aad2571
https://doi.org/10.1126/science.aad2571
https://doi.org/10.1186/s40168-020-00979-7
https://doi.org/10.1186/s40168-020-00979-7
https://doi.org/10.1038/nri.2017.58
https://doi.org/10.1126/science.1188454
https://doi.org/10.1146/annurev-immunol-032713-120245
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kalbermatter et al. Microbiota and Early Life Immunity
82. Deshmukh HS, Liu Y, Menkiti OR, Mei J, Dai N, O’Leary CE, et al. The
Microbiota Regulates Neutrophil Homeostasis and Host Resistance to
Escherichia Coli K1 Sepsis in Neonatal Mice. Nat Med (2014) 20(5):524–
30. doi: 10.1038/nm.3542

83. Niu X, Daniel S, Kumar D, Ding EY, Savani RC, Koh AY, et al.
Transient Neonatal Antibiotic Exposure Increases Susceptibility to Late-
Onset Sepsis Driven by Microbiota-Dependent Suppression of Type 3
Innate Lymphoid Cells. Sci Rep (2020) 10(1):12974. doi: 10.1038/s41598-
020-69797-z

84. Zhang X, Borbet TC, Fallegger A, Wipperman MF, Blaser MJ, Müller A. An
Antibiotic-Impacted Microbiota Compromises the Development of Colonic
Regulatory T Cells and Predisposes to Dysregulated Immune Responses.
mBio (2021) 12(1):e03335–20. doi: 10.1128/mBio.03335-20

85. Hu Y, Peng J, Tai N, Hu C, Zhang X, Wong FS, et al. Maternal Antibiotic
Treatment Protects Offspring From Diabetes Development in Nonobese
Diabetic Mice by Generation of Tolerogenic Apcs. J Immunol (2015) 195
(9):4176–84. doi: 10.4049/jimmunol.1500884

86. Hu Y, Jin P, Peng J, Zhang X, Wong FS, Wen L. Different Immunological
Responses to Early-Life Antibiotic Exposure Affecting Autoimmune
Diabetes Development in NOD Mice. J Autoimmun (2016) 72:47–56.
doi: 10.1016/j.jaut.2016.05.001

87. Miller JE, Wu C, Pedersen LH, de Klerk N, Olsen J, Burgner DP. Maternal
Antibiotic Exposure During Pregnancy and Hospitalization With Infection
in Offspring: A Population-Based Cohort Study. Int J Epidemiol (2018) 47
(2):561–71. doi: 10.1093/ije/dyx272

88. Örtqvist AK, Lundholm C, Halfvarson J, Ludvigsson JF, Almqvist C. Fetal
and Early Life Antibiotics Exposure and Very Early Onset Inflammatory
Bowel Disease: A Population-Based Study. Gut (2019) 68(2):218–25.
doi: 10.1136/gutjnl-2017-314352

89. Neuman H, Koren O. Chapter 1 - The Microbiome in a Healthy Pregnancy.
In: O Koren and S Rautava, editors. The Human Microbiome in Early Life.
Cambridge, Massachusettes, USA: Academic Press (2021). p. 3–20.

90. Sato Y, Sakurai K, Tanabe H, Kato T, Nakanishi Y, Ohno H, et al. Maternal
Gut Microbiota is Associated With Newborn Anthropometrics in a Sex-
Specific Manner. J Dev Origins Health Dis (2019) 10(6):659–66. doi: 10.1017/
S2040174419000138

91. Haro C, Garcia-Carpintero S, Alcala-Diaz JF, Gomez-Delgado F, Delgado-
Lista J, Perez-Martinez P, et al. The Gut Microbial Community in Metabolic
Syndrome Patients is Modified by Diet. J Nutr Biochem (2016) 27:27–31.
doi: 10.1016/j.jnutbio.2015.08.011

92. Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct Composition of Gut
Microbiota During Pregnancy in Overweight and Normal-Weight Women.
Am J Clin Nutr (2008) 88(4):894–9. doi: 10.1093/ajcn/88.4.894

93. Koren O, Goodrich Julia K, Cullender Tyler C, Spor A, Laitinen K, Kling
Bäckhed H, et al. Host Remodeling of the Gut Microbiome and Metabolic
Changes During Pregnancy. Cell (2012) 150(3):470–80. doi: 10.1016/
j.cell.2012.07.008

94. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al.
Evidence That Asthma is a Developmental Origin Disease Influenced by
Maternal Diet and Bacterial Metabolites. Nat Commun (2015) 6(1):7320.
doi: 10.1038/ncomms8320

95. Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM.
Vitamin D Deficiency Promotes Epithelial Barrier Dysfunction and
Intestinal Inflammation. J Infect Dis (2014) 210(8):1296–305. doi: 10.1093/
infdis/jiu235

96. Akhtar E, Mily A, Haq A, Al-Mahmud A, El-Arifeen S, Hel Baqui A, et al.
Prenatal High-Dose Vitamin D3 Supplementation has Balanced Effects on
Cord Blood Th1 and Th2 Responses. Nutr J (2016) 15(1):75. doi: 10.1186/
s12937-016-0194-5

97. van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R,
Moreira-Santos L, et al. Maternal Retinoids Control Type 3 Innate
Lymphoid Cells and Set the Offspring Immunity. Nature (2014) 508
(7494):123–7. doi: 10.1038/nature13158

98. Silver MJ, Kessler NJ, Hennig BJ, Dominguez-Salas P, Laritsky E, Baker MS,
et al. Independent Genomewide Screens Identify the Tumor Suppressor
VTRNA2-1 as a Human Epiallele Responsive to Periconceptional
Environment. Genome Biol (2015) 16(1):118. doi: 10.1186/s13059-015-
0660-y
Frontiers in Immunology | www.frontiersin.org 18
99. Forkel M, Berglin L, Kekäläinen E, Carlsson A, Svedin E, Michaëlsson J, et al.
Composition and Functionality of the Intrahepatic Innate Lymphoid Cell-
Compartment in Human Nonfibrotic and Fibrotic Livers. Eur J Immunol
(2017) 47(8):1280–94. doi: 10.1002/eji.201646890

100. Phillips JH, Hori T, Nagler A, Bhat N, Spits H, Lanier LL. Ontogeny of
Human Natural Killer (NK) Cells: Fetal NK Cells Mediate Cytolytic Function
and Express Cytoplasmic CD3 Epsilon,Delta Proteins. J Exp Med (1992) 175
(4):1055–66. doi: 10.1084/jem.175.4.1055

101. Popescu D-M, Botting RA, Stephenson E, Green K, Webb S, Jardine L, et al.
Decoding Human Fetal Liver Haematopoiesis. Nature (2019) 574
(7778):365–71. doi: 10.1038/s41586-019-1652-y

102. Sagebiel AF, Steinert F, Lunemann S, Körner C, Schreurs RRCE, Altfeld M,
et al. Tissue-Resident Eomes+ NK Cells are the Major Innate Lymphoid Cell
Population in Human Infant Intestine. Nat Commun (2019) 10(1):975.
doi: 10.1038/s41467-018-08267-7

103. Stras SF, Werner L, Toothaker JM, Olaloye OO, Oldham AL, McCourt CC,
et al. Maturation of the Human Intestinal Immune System Occurs Early in
Fetal Development. Dev Cell (2019) 51(3):357–73.e5. doi: 10.1016/
j.devcel.2019.09.008

104. Renz H, Adkins BD, Bartfeld S, Blumberg RS, Farber DL, Garssen J, et al. The
Neonatal Window of Opportunity - Early Priming for Life. J Allergy Clin
Immunol (2017) 141(4):1212–4. doi: 10.1016/j.jaci.2017.11.019

105. Torow N, Hornef MW. The Neonatal Window of Opportunity: Setting the
Stage for Life-Long Host-Microbial Interaction and Immune Homeostasis.
J Immunol (2017) 198(2):557–63. doi: 10.4049/jimmunol.1601253

106. Park JE, Jardine L, Gottgens B, Teichmann SA, Haniffa M. Prenatal
Development of Human Immunity. Science (2020) 368(6491):600–3.
doi: 10.1126/science.aaz9330

107. Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz
DJ, et al. A Cell Atlas of Human Thymic Development Defines T Cell
Repertoire Formation. Science (2020) 367(6480):eaay3224. doi: 10.1126/
science.aay3224

108. Schreurs R, Baumdick ME, Sagebiel AF, Kaufmann M, Mokry M, Klarenbeek
PL, et al. Human Fetal TNF-Alpha-Cytokine-Producing CD4(+) Effector
Memory T Cells Promote Intestinal Development and Mediate
Inflammation Early in Life. Immunity (2019) 50(2):462–76 e8.
doi: 10.1016/j.immuni.2018.12.010

109. Leeansyah E, Loh L, Nixon DF, Sandberg JK. Acquisition of Innate-Like
Microbial Reactivity in Mucosal Tissues During Human Fetal MAIT-cell
Development. Nat Commun (2014) 5:3143. doi: 10.1038/ncomms4143

110. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-
Infant Microbial Transmission From Different Body Sites Shapes the
Developing Infant Gut Microbiome. Cell Host Microbe (2018) 24(1):133–
45.e5. doi: 10.1016/j.chom.2018.06.005

111. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al.
Antibiotics, Birth Mode, and Diet Shape Microbiome Maturation During
Early Life. Sci Trans Med (2016) 8(343):343ra82. doi: 10.1126/
scitranslmed.aad7121

112. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted
Microbiota and Opportunistic Pathogen Colonization in Caesarean-Section
Birth. Nature (2019) 574(7776):117–21. doi: 10.1038/s41586-019-1560-1

113. Stokholm J, Thorsen J, Blaser MJ, Rasmussen MA, Hjelmsø M, Shah S, et al.
Delivery Mode and Gut Microbial Changes Correlate With an Increased Risk
of Childhood Asthma. Sci Trans Med (2020) 12(569):eaax9929. doi: 10.1126/
scitranslmed.aax9929

114. Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al.
Impact of Maternal Intrapartum Antibiotics, Method of Birth and
Breastfeeding on Gut Microbiota During the First Year of Life: A
Prospective Cohort Study. BJOG: Int J Obstet Gynaecol (2016) 123(6):983–
93. doi: 10.1111/1471-0528.13601

115. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C,
Jernberg C, et al. Decreased Gut Microbiota Diversity, Delayed
Bacteroidetes Colonisation and Reduced Th1 Responses in Infants
Delivered by Caesarean Section. Gut (2014) 63(4):559. doi: 10.1136/gutjnl-
2012-303249

116. Stokholm J, Thorsen J, Chawes BL, Schjørring S, Krogfelt KA, Bønnelykke K,
et al. Cesarean Section Changes Neonatal Gut Colonization. J Allergy Clin
Immunol (2016) 138(3):881–9.e2. doi: 10.1016/j.jaci.2016.01.028
May 2021 | Volume 12 | Article 683022

https://doi.org/10.1038/nm.3542
https://doi.org/10.1038/s41598-020-69797-z
https://doi.org/10.1038/s41598-020-69797-z
https://doi.org/10.1128/mBio.03335-20
https://doi.org/10.4049/jimmunol.1500884
https://doi.org/10.1016/j.jaut.2016.05.001
https://doi.org/10.1093/ije/dyx272
https://doi.org/10.1136/gutjnl-2017-314352
https://doi.org/10.1017/S2040174419000138
https://doi.org/10.1017/S2040174419000138
https://doi.org/10.1016/j.jnutbio.2015.08.011
https://doi.org/10.1093/ajcn/88.4.894
https://doi.org/10.1016/j.cell.2012.07.008
https://doi.org/10.1016/j.cell.2012.07.008
https://doi.org/10.1038/ncomms8320
https://doi.org/10.1093/infdis/jiu235
https://doi.org/10.1093/infdis/jiu235
https://doi.org/10.1186/s12937-016-0194-5
https://doi.org/10.1186/s12937-016-0194-5
https://doi.org/10.1038/nature13158
https://doi.org/10.1186/s13059-015-0660-y
https://doi.org/10.1186/s13059-015-0660-y
https://doi.org/10.1002/eji.201646890
https://doi.org/10.1084/jem.175.4.1055
https://doi.org/10.1038/s41586-019-1652-y
https://doi.org/10.1038/s41467-018-08267-7
https://doi.org/10.1016/j.devcel.2019.09.008
https://doi.org/10.1016/j.devcel.2019.09.008
https://doi.org/10.1016/j.jaci.2017.11.019
https://doi.org/10.4049/jimmunol.1601253
https://doi.org/10.1126/science.aaz9330
https://doi.org/10.1126/science.aay3224
https://doi.org/10.1126/science.aay3224
https://doi.org/10.1016/j.immuni.2018.12.010
https://doi.org/10.1038/ncomms4143
https://doi.org/10.1016/j.chom.2018.06.005
https://doi.org/10.1126/scitranslmed.aad7121
https://doi.org/10.1126/scitranslmed.aad7121
https://doi.org/10.1038/s41586-019-1560-1
https://doi.org/10.1126/scitranslmed.aax9929
https://doi.org/10.1126/scitranslmed.aax9929
https://doi.org/10.1111/1471-0528.13601
https://doi.org/10.1136/gutjnl-2012-303249
https://doi.org/10.1136/gutjnl-2012-303249
https://doi.org/10.1016/j.jaci.2016.01.028
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kalbermatter et al. Microbiota and Early Life Immunity
117. Andersen V, Möller S, Jensen PB, Møller FT, Green A. Caesarean Delivery
and Risk of Chronic Inflammatory Diseases (Inflammatory Bowel Disease,
Rheumatoid Arthritis, Coeliac Disease, and Diabetes Mellitus): A Population
Based Registry Study of 2,699,479 Births in Denmark During 1973-2016.
Clin Epidemiol (2020) 12:287–93. doi: 10.2147/CLEP.S229056

118. Laursen MF, Zachariassen G, Bahl MI, Bergström A, Høst A, Michaelsen KF,
et al. Having Older Siblings is Associated With Gut Microbiota Development
During Early Childhood. BMC Microbiol (2015) 15(1):154. doi: 10.1186/
s12866-015-0477-6

119. Penders J, Gerhold K, Thijs C, Zimmermann K, Wahn U, Lau S, et al. New
Insights Into the Hygiene Hypothesis in Allergic Diseases. Gut Microbes
(2014) 5(2):239–44. doi: 10.4161/gmic.27905

120. Hansen CHF, Andersen LSF, Krych Ł, Metzdorff SB, Hasselby JP, Skov S,
et al. Mode of Delivery Shapes Gut Colonization Pattern and Modulates
Regulatory Immunity in Mice. J Immunol (2014) 193(3):1213. doi: 10.4049/
jimmunol.1400085

121. Zachariassen LF, Krych L, Rasmussen SH, Nielsen DS, Kot W, Holm TL,
et al. Cesarean Section Induces Microbiota-Regulated Immune Disturbances
in C57BL/6 Mice. J Immunol (2019) 202(1):142. doi: 10.4049/
jimmunol.1800666

122. Zachariassen LF, Hansen AK, Krych L, Nielsen DS, Holm TL, Tougaard P,
et al. Cesarean Section Increases Sensitivity to Oxazolone-Induced Colitis in
C57BL/6 Mice. Mucosal Immunol (2019) 12(6):1348–57. doi: 10.1038/
s41385-019-0207-8

123. Boatin AA, Schlotheuber A, Betran AP, Moller A-B, Barros AJD, Boerma T,
et al. Within Country Inequalities in Caesarean Section Rates: Observational
Study of 72 Low and Middle Income Countries. BMJ (2018) 360:k55.
doi: 10.1136/bmj.k55

124. Korpela K, Helve O, Kolho K-L, Saisto T, Skogberg K, Dikareva E, et al.
Maternal Fecal Microbiota Transplantation in Cesarean-Born Infants Rapidly
Restores Normal Gut Microbial Development: A Proof-of-Concept Study.
Cell (2020) 183(2):324–34.e5. doi: 10.1016/j.cell.2020.08.047

125. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A,
Gonzalez A, et al. Partial Restoration of the Microbiota of Cesarean-Born
Infants Via Vaginal Microbial Transfer. Nat Med (2016) 22(3):250–3.
doi: 10.1038/nm.4039

126. Clements E, Schlichting LE, Clyne A, Vivier PM. Underlying Causes and
Distribution of Infant Mortality in a Statewide Assessment From 2005 to
2016 by Infant, Maternal, and Neighborhood Characteristics. R I Med J
(2013) (2019) 102(9):15–22.

127. Boghossian NS, Page GP, Bell EF, Stoll BJ, Murray JC, Cotten CM, et al. Late-
Onset Sepsis in Very Low Birth Weight Infants From Singleton and
Multiple-Gestation Births. J Pediatr (2013) 162(6):1120–4.e1. doi: 10.1016/
j.jpeds.2012.11.089

128. Clark RH, Bloom BT, Spitzer AR, Gerstmann DR. Empiric Use of Ampicillin
and Cefotaxime, Compared With Ampicillin and Gentamicin, for Neonates
At Risk for Sepsis is Associated With an Increased Risk of Neonatal Death.
Pediatrics (2006) 117(1):67. doi: 10.1542/peds.2005-0179

129. Carter GP, Ussher JE, Da Silva AG, Baines SL, Heffernan H, Riley TV, et al.
Genomic Analysis of Multiresistant &Lt;Span Class=&Quot;Named-Content
Genus-Species&Quot; Id=&Quot;named-content-1&quot;<Staphylococcus
Capitis&Lt;/Span< Associated With Neonatal Sepsis. Antimicrob Agents
Chemother (2018) 62(11):e00898–18. doi: 10.1128/AAC.00898-18

130. Wirth T, Bergot M, Rasigade J-P, Pichon B, Barbier M, Martins-Simoes P,
et al. Niche Specialization and Spread of Staphylococcus Capitis Involved in
Neonatal Sepsis. Nat Microbiol (2020) 5(5):735–45. doi: 10.1038/s41564-
020-0676-2

131. Leggett RM, Alcon-Giner C, Heavens D, Caim S, Brook TC, Kujawska M,
et al. Rapid MinION Profiling of Preterm Microbiota and Antimicrobial-
Resistant Pathogens. Nat Microbiol (2020) 5(3):430–42. doi: 10.1038/s41564-
019-0626-z

132. Hollams EM, Teo SM, Kusel M, Holt BJ, Holt KE, Inouye M, et al. Vitamin D
Over the First Decade and Susceptibility to Childhood Allergy and Asthma.
J Allergy Clin Immunol (2017) 139(2):472–81.e9. doi: 10.1016/j.jaci.2016.07.032

133. Thorsteinsdottir F, Cardoso I, Keller A, Stougaard M, Frederiksen P, Cohen
AS, et al. Neonatal Vitamin D Status and Risk of Asthma in Childhood:
Results From the D-Tect Study. Nutrients (2020) 12(3):842–55. doi: 10.3390/
nu12030842
Frontiers in Immunology | www.frontiersin.org 19
134. Chambers ES, Suwannasaen D, Mann EH, Urry Z, Richards DF,
Lertmemongkolchai G, et al. 1a,25-Dihydroxyvitamin D3 in Combination
With Transforming Growth Factor-b Increases the Frequency of Foxp3+
Regulatory T Cells Through Preferential Expansion and Usage of
Interleukin-2. Immunology (2014) 143(1):52–60. doi: 10.1111/imm.12289

135. Penna G, Amuchastegui S, Giarratana N, Daniel KC, Vulcano M, Sozzani S,
et al. 1,25-Dihydroxyvitamin D3 Selectively Modulates Tolerogenic
Properties in Myeloid But Not Plasmacytoid Dendritic Cells. J Immunol
(2007) 178(1):145. doi: 10.4049/jimmunol.178.1.145

136. Bachus H, Kaur K, Papillion AM, Marquez-Lago TT, Yu Z, Ballesteros-Tato
A, et al. Impaired Tumor-Necrosis-Factor-a-Driven Dendritic Cell
Activation Limits Lipopolysaccharide-Induced Protection From Allergic
Inflammation in Infants. Immunity (2019) 50(1):225–40.e4. doi: 10.1016/
j.immuni.2018.11.012

137. Rueter K, Jones AP, Siafarikas A, Lim E-M, Bear N, Noakes PS, et al. Direct
Infant UV Light Exposure is Associated With Eczema and Immune
Development. J Allergy Clin Immunol (2019) 143(3):1012–20.e2.
doi: 10.1016/j.jaci.2018.08.037

138. Youssef MAM, Zahran AM, Hussien AM, Elsayh KI, Askar EA, Farghaly HS.
In Neonates With Vitamin D Deficiency, Low Lymphocyte Activation
Markers are Risk Factors for Infection. Paediatr Int Child Health (2019)
39(2):111–8. doi: 10.1080/20469047.2018.1528755

139. Hornsby E, Pfeffer PE, Laranjo N, Cruikshank W, Tuzova M, Litonjua AA,
et al. Vitamin D Supplementation During Pregnancy: Effect on the Neonatal
Immune System in a Randomized Controlled Trial. J Allergy Clin Immunol
(2018) 141(1):269–78.e1. doi: 10.1016/j.jaci.2017.02.039

140. Thysen AH, Waage J, Larsen JM, Rasmussen MA, Stokholm J, Chawes B,
et al. Distinct Immune Phenotypes in Infants Developing Asthma During
Childhood. Sci Trans Med (2020) 12(529):eaaw0258. doi: 10.1126/
scitranslmed.aaw0258

141. Loeb M, Dang AD, Thiem VD, Thanabalan V, Wang B, Nguyen NB, et al.
Effect of Vitamin D Supplementation to Reduce Respiratory Infections in
Children and Adolescents in Vietnam: A Randomized Controlled Trial.
Influenza Other Respir Viruses (2019) 13(2):176–83. doi: 10.1111/irv.12615

142. Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE,
McCrate S, et al. Microbial Antigen Encounter During a Preweaning Interval
is Critical for Tolerance to Gut Bacteria. Sci Immunol (2017) 2(18):eaao1314.
doi: 10.1126/sciimmunol.aao1314

143. Husby S, Koletzko S, Korponay-Szabó IR, Mearin ML, Phillips A, Shamir R,
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MJ, Pérez-Cano FJ, et al. Modulation of the Systemic Immune Response in
Suckling Rats by Breast Milk Tgf-b2, EGF and FGF21 Supplementation.
Nutrients (2020) 12(6):1888. doi: 10.3390/nu12061888

208. Morita Y, Campos-Alberto E, Yamaide F, Nakano T, Ohnisi H, Kawamoto
M, et al. Tgf-b Concentration in Breast Milk is Associated With the
Frontiers in Immunology | www.frontiersin.org 21
Development of Eczema in Infants. Front Pediatr (2018) 6:162.
doi: 10.3389/fped.2018.00162

209. Hossny EM, El-Ghoneimy DH, El-Owaidy RH, Mansour MG, Hamza MT,
El-Said AF. Breast Milk Interleukin-7 and Thymic Gland Development in
Infancy. Eur J Nutr (2020) 59(1):111–8. doi: 10.1007/s00394-018-01891-5

210. Knoop KA, Coughlin PE, Floyd AN, Ndao IM, Hall-Moore C, Shaikh N,
et al. Maternal Activation of the EGFR Prevents Translocation of Gut-
Residing Pathogenic &Lt;Em<Escherichia Coli&Lt;/Em< in a Model of Late-
Onset Neonatal Sepsis. Proc Natl Acad Sci (2020) 117(14):7941. doi: 10.1073/
pnas.1912022117

211. Admyre C, Johansson SM, Qazi KR, Filén J-J, Lahesmaa R, Norman M, et al.
Exosomes With Immune Modulatory Features are Present in Human Breast
Milk. J Immunol (2007) 179(3):1969. doi: 10.4049/jimmunol.179.3.1969

212. Lönnerdal B. Human Milk Micrornas/Exosomes: Composition and
Biological Effects. Nestle Nutr Inst Workshop Ser (2019) 90:83–92.
doi: 10.1159/000490297

213. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: Proteomic
Insights and Diagnostic Potential. Expert Rev Proteomics (2009) 6(3):267–
83. doi: 10.1586/epr.09.17

214. Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and Their
Roles in Immune Regulation and Cancer. Semin Cell Dev Biol (2015) 40:72–
81. doi: 10.1016/j.semcdb.2015.02.009

215. Ambros V. The Functions of Animal Micrornas. Nature (2004) 431
(7006):350–5. doi: 10.1038/nature02871

216. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many Roads to Maturity:
microRNA Biogenesis Pathways and Their Regulation. Nat Cell Biol (2009)
11(3):228–34. doi: 10.1038/ncb0309-228

217. O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA,
et al. MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing
Inflammatory T Cell Development. Immunity (2010) 33(4):607–19.
doi: 10.1016/j.immuni.2010.09.009

218. O’Connell RM, Rao DS, Baltimore D. microRNA Regulation of
Inflammatory Responses. Annu Rev Immunol (2012) 30:295–312.
doi: 10.1146/annurev-immunol-020711-075013

219. Tili E, Michaille JJ, Calin GA. Expression and Function of micro-RNAs in
Immune Cells During Normal or Disease State. Int J Med Sci (2008) 5(2):73–
9. doi: 10.7150/ijms.5.73

220. Xiao C, Rajewsky K. MicroRNA Control in the Immune System: Basic
Principles. Cell (2009) 136(1):26–36. doi: 10.1016/j.cell.2008.12.027

221. KosakaN, IzumiH, SekineK,OchiyaT.microRNAas aNew Immune-Regulatory
Agent in Breast Milk. Silence (2010) 1(1):7. doi: 10.1186/1758-907x-1-7

222. Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-Related
microRNAs are Abundant in Breast Milk Exosomes. Int J Biol Sci (2012) 8
(1):118–23. doi: 10.7150/ijbs.8.118

223. Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, et al. Bovine Milk
Exosomes Contain microRNA and mRNA and are Taken Up by Human
Macrophages. J Dairy Sci (2015) 98(5):2920–33. doi: 10.3168/jds.2014-9076

224. Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, et al.
Human Saliva, Plasma and Breast Milk Exosomes Contain RNA: Uptake by
Macrophages. J Transl Med (2011) 9:9. doi: 10.1186/1479-5876-9-9

225. Kahn S, Liao Y, Du X, Xu W, Li J, Lönnerdal B. Exosomal MicroRNAs in
Milk From Mothers Delivering Preterm Infants Survive in Vitro Digestion
and Are Taken Up by Human Intestinal Cells. Mol Nutr Food Res (2018) 62
(11):1701050. doi: 10.1002/mnfr.201701050

226. Liao Y, Du X, Li J, Lonnerdal B. Human Milk Exosomes and Their
microRNAs Survive Digestion In Vitro and are Taken Up by Human
Intestinal Cells. Mol Nutr Food Res (2017) 61. doi: 10.1002/mnfr.201700082

227. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-Related
microRNA Expression Profiles of Porcine Breast Milk Exosomes. PloS One
(2012) 7(8):e43691. doi: 10.1371/journal.pone.0043691

228. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are Absorbed
in Biologically Meaningful Amounts From Nutritionally Relevant Doses of
Cow Milk and Affect Gene Expression in Peripheral Blood Mononuclear
Cells, HEK-293 Kidney Cell Cultures, and Mouse Livers. J Nutr (2014) 144
(10):1495–500. doi: 10.3945/jn.114.196436

229. Laubier J, Castille J, Le Guillou S, Le Provost F. No Effect of an Elevated miR-
30b Level in Mouse Milk on its Level in Pup Tissues. RNA Biol (2015) 12
(1):26–9. doi: 10.1080/15476286.2015.1017212
May 2021 | Volume 12 | Article 683022

https://doi.org/10.3390/nu12103047
https://doi.org/10.3390/nu12103047
https://doi.org/10.1002/eji.201847971
https://doi.org/10.1093/ajcn/nqaa010
https://doi.org/10.1093/ajcn/nqaa010
https://doi.org/10.1016/j.cell.2016.01.024
https://doi.org/10.5223/pghn.2019.22.4.330
https://doi.org/10.3389/fnins.2020.00770
https://doi.org/10.1016/j.earlhumdev.2015.08.013
https://doi.org/10.4081/pmc.2017.155
https://doi.org/10.1016/j.cell.2016.04.055
https://doi.org/10.3390/nu10091228
https://doi.org/10.1016/j.jpedsurg.2019.08.046
https://doi.org/10.1111/cei.13108
https://doi.org/10.1016/j.molimm.2019.03.007
https://doi.org/10.1016/j.molimm.2019.03.007
https://doi.org/10.1017/S0007114513003292
https://doi.org/10.1002/jcb.29255
https://doi.org/10.1016/j.jpeds.2020.11.014
https://doi.org/10.1016/j.beem.2018.01.006
https://doi.org/10.3390/nu10091171
https://doi.org/10.3390/nu12061888
https://doi.org/10.3389/fped.2018.00162
https://doi.org/10.1007/s00394-018-01891-5
https://doi.org/10.1073/pnas.1912022117
https://doi.org/10.1073/pnas.1912022117
https://doi.org/10.4049/jimmunol.179.3.1969
https://doi.org/10.1159/000490297
https://doi.org/10.1586/epr.09.17
https://doi.org/10.1016/j.semcdb.2015.02.009
https://doi.org/10.1038/nature02871
https://doi.org/10.1038/ncb0309-228
https://doi.org/10.1016/j.immuni.2010.09.009
https://doi.org/10.1146/annurev-immunol-020711-075013
https://doi.org/10.7150/ijms.5.73
https://doi.org/10.1016/j.cell.2008.12.027
https://doi.org/10.1186/1758-907x-1-7
https://doi.org/10.7150/ijbs.8.118
https://doi.org/10.3168/jds.2014-9076
https://doi.org/10.1186/1479-5876-9-9
https://doi.org/10.1002/mnfr.201701050
https://doi.org/10.1002/mnfr.201700082
https://doi.org/10.1371/journal.pone.0043691
https://doi.org/10.3945/jn.114.196436
https://doi.org/10.1080/15476286.2015.1017212
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kalbermatter et al. Microbiota and Early Life Immunity
230. Title AC, Denzler R, Stoffel M. Uptake and Function Studies of Maternal
Milk-Derived Micrornas. J Biol Chem (2015) 290(39):23680–91.
doi: 10.1074/jbc.M115.676734

231. Wang L, Sadri M, Giraud D, Zempleni J. Rnase H2-Dependent Polymerase
Chain Reaction and Elimination of Confounders in Sample Collection, Storage,
and Analysis Strengthen Evidence That microRNAs in Bovine Milk Are
Bioavailable in Humans. J Nutr (2018) 148(1):153–9. doi: 10.1093/jn/nxx024

232. Fromm B, Tosar JP, Lu Y, Halushka MK, Witwer KW. Human and Cow
Have Identical miR-21-5p and Mir-30a-5p Sequences, Which Are Likely
Unsuited to Study Dietary Uptake From Cow Milk. J Nutr (2018) 148
(9):1506–7. doi: 10.1093/jn/nxy144

233. Kirchner B, Buschmann D, Paul V, Pfaffl MW. Postprandial Transfer of
Colostral Extracellular Vesicles and Their Protein and miRNA Cargo in
Neonatal Calves. PloS One (2020) 15(2):e0229606–e. doi: 10.1371/
journal.pone.0229606

234. Nguyen T. Unravelling the Mysteries of microRNA in Breast Milk. Nature
(2020) 582:S12–S3. doi: 10.1038/d41586-020-01768-w

235. Martin C, Patel M, Williams S, Arora H, Brawner K, Sims B. Human Breast
Milk-Derived Exosomes Attenuate Cell Death in Intestinal Epithelial Cells.
Innate Immun (2018) 24(5):278–84. doi: 10.1177/1753425918785715

236. Li B, Hock A, Wu RY, Minich A, Botts SR, Lee C, et al. Bovine Milk-Derived
Exosomes Enhance Goblet Cell Activity and Prevent the Development of
Experimental Necrotizing Enterocolitis. PloS One (2019) 14(1):e0211431.
doi: 10.1371/journal.pone.0211431

237. Dong P, Zhang Y, Yan DY, Wang Y, Xu X, Zhao YC, et al. Protective Effects
of Human Milk-Derived Exosomes on Intestinal Stem Cells Damaged by
Oxidative Stress. Cell Transplant (2020) 29:963689720912690. doi: 10.1177/
0963689720912690

238. Miyake H, Lee C, Chusilp S, Bhalla M, Li B, Pitino M, et al. Human Breast
Milk Exosomes Attenuate Intestinal Damage. Pediatr Surg Int (2020) 36
(2):155–63. doi: 10.1007/s00383-019-04599-7

239. Pisano C, Galley J, Elbahrawy M, Wang Y, Farrell A, Brigstock D, et al.
Human Breast Milk-Derived Extracellular Vesicles in the Protection Against
Experimental Necrotizing Enterocolitis. J Pediatr Surg (2020) 55(1):54–8.
doi: 10.1016/j.jpedsurg.2019.09.052

240. Reif S, Elbaum-Shiff Y, Koroukhov N, Shilo I, Musseri M, Golan-Gerstl R.
Cow and Human Milk-Derived Exosomes Ameliorate Colitis in DSS Murine
Model. Nutrients (2020) 12(9):2589. doi: 10.3390/nu12092589

241. Komine-Aizawa S, Ito S, Aizawa S, Namiki T, Hayakawa S. Cow Milk
Exosomes Activate NK Cells and gdt Cells in Human PBMCs In Vitro.
Immunol Med (2020) 43(4):161–70. doi: 10.1080/25785826.2020.
1791400

242. Reber A, Donovan DC, Gabbard J, Galland K, Aceves-Avila M, Holbert KA,
et al. Transfer of Maternal Colostral Leukocytes Promotes Development of
the Neonatal Immune System I. Effects on Monocyte Lineage Cells.
Veterinary Immunol Immunopathol (2008) 123:186–96. doi: 10.1016/
j.vetimm.2008.01.034

243. Reber AJ, Donovan DC, Gabbard J, Galland K, Aceves-Avila M, Holbert KA,
et al. Transfer of Maternal Colostral Leukocytes Promotes Development of
the Neonatal Immune System Part Ii. Effects on Neonatal Lymphocytes. Vet
Immunol Immunopathol (2008) 123(3-4):305–13. doi: 10.1016/
j.vetimm.2008.02.009

244. Trend S, de Jong E, Lloyd ML, Kok CH, Richmond P, Doherty DA, et al.
Leukocyte Populations in Human Preterm and Term Breast Milk Identified
by Multicolour Flow Cytometry. PloS One (2015) 10(8):e0135580.
doi: 10.1371/journal.pone.0135580

245. Baban B, Malik A, Bhatia J, Yu JC. Presence and Profile of Innate Lymphoid
Cells in Human Breast Milk. JAMA Pediatr (2018) 172(6):594–6.
doi: 10.1001/jamapediatrics.2018.0148

246. Artis D, Spits H. The Biology of Innate Lymphoid Cells. Nature (2015) 517
(7534):293–301. doi: 10.1038/nature14189

247. Bedin AS, Molès JP, Rutagwera D, Nagot N, Kankasa C, Tylleskär T, et al.
MAIT Cells, TCR gd+ Cells and ILCs Cells in Human Breast Milk and Blood
FromHIV Infected and UninfectedWomen. Pediatr Allergy Immunol (2019)
30(4):479–87. doi: 10.1111/pai.13037
Frontiers in Immunology | www.frontiersin.org 22
248. Born WK, Reardon CL, O’Brien RL. The Function of gd T Cells in Innate
Immunity. Curr Opin Immunol (2006) 18(1):31–8. doi: 10.1016/
j.coi.2005.11.007

249. Gabrilovich DI, Nagaraj S. Myeloid-Derived Suppressor Cells as Regulators
of the Immune System. Nat Rev Immunol (2009) 9(3):162–74. doi: 10.1038/
nri2506

250. Köstlin N, Schoetensack C, Schwarz J, Spring B, Marmé A, Goelz R, et al.
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