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Abstract
An understanding of the diversity spatial organization in plant communities provides 
essential information for management and conservation planning. In this study we inves-
tigated, using a multi-species approach, how plant–plant interactions determine the local 
structure and composition of diversity in a set of Mediterranean plant communities, rang-
ing from semi-arid to subalpine habitats. Specifically, we evaluated the spatial pattern of 
diversity (i.e., diversity aggregation or segregation) in the local neighborhood of peren-
nial plant species using the ISAR (individual species–area relationship) method. We also 
assessed the local pattern of beta-diversity (i.e., the spatial heterogeneity in species compo-
sition among local assemblages), including the contribution of species turnover (i.e., spe-
cies replacement) and nestedness (i.e., differences in species richness) to the overall local 
beta-diversity. Our results showed that local diversity segregation decreased in the less pro-
ductive plant communities. Also, we found that graminoids largely acted as diversity seg-
regators, while forbs showed more diverse neighborhoods than expected in less productive 
study sites. Interestingly, not all shrub and dwarf shrub species aggregated diversity in their 
surroundings. Finally, an increase in nestedness was associated with less segregated diver-
sity patterns in the local neighborhood of shrub species, underlining their role in creating 
diversity islands in less productive environmental conditions. Our results provide further 
insights into the effect of plant–plant interactions in shaping the structure and composition 
of diversity in Mediterranean plant communities, and highlight the species and groups of 
species that management and conservation strategies should focus on in order to prevent a 
loss of biodiversity.
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Introduction

An understanding of the spatial distribution of diversity in plant communities constitutes 
essential information for conservation planning (Socolar et al. 2016). At local scales, com-
munity assembly and species coexistence are determined primarily by biotic interactions 
among neighboring individuals (Pearson and Dawson 2003; Götzenberger et al. 2012; Mod 
et al. 2020; King et al. 2021). Traditionally, competition for resources and space has been 
considered the most important interaction involved in community organization (Grime 
1973; Tilman 1982; Chesson 2000). In this respect, only the best-adapted and competitive 
species are able to persist in the community, leading to the exclusion of the less competi-
tive ones. Yet competition can also favor species coexistence, as it is a strong force in spe-
cies differentiation (Chesson 2000; Bruno et al. 2003). However, over the last two decades, 
a growing body of studies has acknowledged the importance of facilitation in shaping the 
structure and composition of plant communities, especially those living under more severe 
environmental conditions (Bruno et  al. 2003; Brooker et  al. 2008; McIntire and Fajardo 
2014; Michalet and Pugnaire 2016). The presence of species with a predominance of 
facilitative interactions (i.e., nurse species) in the community enables the persistence of 
species that usually are poor competitors, less-well adapted to harsh abiotic conditions or 
have a low reproductive performance (Soliveres et al. 2015a; O’Brien et al. 2019; Calat-
ayud et al. 2020); thus, promoting and sustaining local diversity and species coexistence 
(Le Bagousse-Pinguet et al. 2014; Cavieres et al. 2014). More specifically, nurse species 
facilitate other species by expanding their niche through microhabitat amelioration (Bruno 
et al. 2003; Callaway 2007; O’Brien et al. 2019) and by enhancing their populations (Soli-
veres et al. 2015a). Therefore, plant–plant interactions constitute the so called “biotic filter” 
(Götzenberger et  al. 2012) that selects which species can appear in the vicinity of each 
species in the community, shaping the local pattern of diversity and the subsequent spatial 
heterogeneity in species composition.

Accordingly, one of the most common methods for identifying interspecific plant–plant 
interactions in natural communities is to test whether plant species are spatially independ-
ent from each other (Soliveres and Maestre 2014; López et al. 2016; Alados et al. 2017; 
Saiz et al. 2017; O’Brien et al. 2019). Specifically, a positive net interaction (i.e. facilita-
tion) between two or more species can be inferred when they aggregate in space more than 
could be expected by chance. Conversely, a negative net interaction (i.e. competition or 
allelopathy) between two or more species can be inferred when they segregate in space 
more than expected. However, spatial patterns in plant species are also determined by other 
ecological factors apart from plant–plant interactions, including fine-scale environmental 
and resources heterogeneity (Pescador et al. 2020), herbivory (Saiz and Alados 2012), seed 
dispersal limitation and other stochastic processes (Alados et  al. 2010; Chacón‐Labella 
et  al. 2017; D’Amen et  al. 2018). Thus, inferring the magnitude and direction of biotic 
interactions from the analysis of species patterning requires the use of suitable null models 
that can separate processes operating at different scales (Wiegand and Moloney 2014). This 
is particularly relevant when multiple plant communities are compared. However, the few 
studies evaluating the effect exerted by each species in the community in shaping the local 
pattern of diversity (i.e., diversity aggregation or segregation in their vicinity) as a result 
of plant–plant interactions are often performed on one or two plant communities (Wiegand 
et  al. 2007; Rayburn and Wiegand 2012; e.g., Arroyo et  al. 2015; Chacón‐Labella et  al. 
2016), rather than including multiple plant communities along a regional environmental 
gradient.
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Importantly, the net balance between positive and negative interactions depends on 
environmental conditions. In particular, the frequency of positive interactions is expected 
to rise as the level of environmental severity increases, while under milder conditions 
communities are expected to be governed by negative interactions (Bertness and Calla-
way 1994; He et al. 2013). Nevertheless, some studies have found a collapse of facilita-
tion under extreme environmental conditions (Maestre et al. 2009; Holmgren and Scheffer 
2010; Michalet et al. 2014; Alados et al. 2017). Future climate change scenarios foresee an 
increase in aridity, especially in arid and semiarid ecosystems (IPCC 2014), where positive 
plant interactions are closely related to the structure of plant diversity (Saiz et  al. 2018) 
and their decline can precede a diversity loss (Valiente‐Banuet et al. 2015; Berdugo et al. 
2020). In addition, biodiversity is an important biotic attribute that enhances key ecosys-
tem functions, such as productivity and nutrient cycling (Hooper et al. 2005; Maestre et al. 
2012, 2016). Therefore, ecosystem management strategies should focus primarily on iden-
tifying species involved in positive interactions in order to prevent biodiversity loss. Usu-
ally, shrubs act as nurses for other species in the community by creating and maintaining 
diversity islands, and have been a successful tool in restoration practices (Gómez-Aparicio 
et al. 2004; Padilla and Pugnaire 2006; Gómez-Aparicio 2009; Liczner et al. 2019). How-
ever, most research has focused on a few shrub species of interest and their species-specific 
effects, while there are much fewer studies taking a multi-species approach to assess their 
general role in structuring diversity at community level (Rayburn and Wiegand 2012; Soli-
veres and Maestre 2014; Chacón‐Labella et al. 2016).

Beyond traditional local diversity metrics, beta-diversity measures the spatial variation 
in the composition of species among assemblages (Whittaker 1960). Recent developmen-
tal framework proposes that beta-diversity can be decomposed into two additive compo-
nents, namely species turnover and nestedness, which describe two different ecological 
processes causing spatial heterogeneity in species composition (Baselga 2010; Legendre 
2014; Baselga and Leprieur 2015). Specifically, species turnover measures the replace-
ment of some species by others, while nestedness measures the loss (or gain) of species as 
a consequence of some assemblages being subsets of richer assemblages (Baselga 2010; 
Legendre 2014; Socolar et al. 2016). Beta-diversity metrics are normally used to assess the 
spatial heterogeneity in species composition at regional scale (Umaña et al. 2020; Fontana 
et  al. 2020). Nevertheless, quantification of how the local patterns of beta-diversity and 
its components change within natural plant communities may provide further insight into 
the effect of plant–plant interactions in local diversity organization. For instance, although 
species turnover is usually the largest component of beta-diversity (Soininen et al. 2018), 
in plant communities where nurse species are present an increase in the contribution of 
the nestedness component to the overall local beta-diversity can be expected, due to ben-
eficiary species appearing mostly in microsites created by nurse plants. However, to our 
knowledge, the local pattern of beta-diversity has seldom been explicitly addressed within 
plant communities.

In this study we aimed to investigate, using a multi-species approach, the spatial struc-
ture of diversity in a set of Mediterranean plant communities, ranging from semi-arid to 
subalpine habitats in Spain, in order to identify species playing a key role in shaping local 
diversity through plant–plant interactions. Specifically, we assessed (1) the spatial pattern 
of diversity (i.e., diversity aggregation or segregation) in the local neighborhood of per-
ennial plant species and (2) the local pattern of beta-diversity (i.e., spatial heterogeneity 
in species composition among local assemblages), including the contribution of species 
turnover and nestedness components to overall local beta-diversity. We expected that (i) 
the proportion of species aggregating diversity in their local neighborhood would be higher 
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than the proportion of species segregating diversity in plant communities subjected to 
more severe environmental conditions, as a consequence of the prevalence of facilitative 
interactions in these communities. Furthermore, we expected that species with different life 
forms, and thus with different biological traits, would exhibit different effects in shaping 
the local spatial pattern of diversity. We particularly expected that (ii) shrubs and dwarf 
shrubs would aggregate diversity in their local neighborhood due to their prominent role as 
nurse species, while other plant groups would mainly act as diversity segregators. Finally, 
we expected that (iii) in those plant communities under more severe environmental condi-
tions, where positive plant–plant interactions prevail, local species assemblages would be 
characterized by high nestedness due to the presence of key nurse species that promote 
diversity islands.

Materials and methods

Study area and vegetation surveys

This study was conducted in 14 well-preserved Mediterranean plant communities distrib-
uted across four regions in Spain (Cabo de Gata-Níjar, middle Ebro Valley, Sierra Nevada 
and Sierra de Guara; Fig. 1). Study sites had varying environmental conditions (Table1). 
For instance, mean annual rainfall ranged from 250 to 1150 mm, mean annual minimum 
temperature ranged from 1.6 to 13.8  °C and elevation ranged from 125 to 2270  m.a.s.l. 
(Table 1). Productivity, more precisely aboveground biomass, is considered to be closely 
related to the overall environmental severity (Grime 1973; Michalet et al. 2006, 2021). In 
fact, most studies use biomass as surrogate for productivity (Fraser et al. 2015; Guo et al. 
2019; Li et al. 2020; Michalet et al. 2021). Accordingly, we defined a productivity gradi-
ent based on perennial plant species biomass (but see Gillman and Wright 2006; Jenkins 
2015). Specifically, for each study site, aboveground biomass was computed as the sum 
of every perennial plant species height × cover (i.e., species volume). Thus, the study site 
with the lowest plant biomass represented the extreme of the gradient with the highest level 
of environmental severity. Conversely, sites with higher biomass represented the milder 
extreme of the gradient (Michalet et al. 2006, 2021).

Vegetation in Cabo de Gata-Níjar and the middle Ebro Valley sites consisted of rela-
tively open steppes dominated by dwarf shrubs and perennial grasses. In the Sierra Nevada 
sites, vegetation consisted of subalpine shrublands dominated by cushion plant species, 
and in Sierra de Guara vegetation consisted of a Mediterranean deciduous forest domi-
nated by Quercus faginea. At each study site, vegetation was surveyed by performing three 
500-m linear transects following the point-intercept method (Goodall 1952). Specifically, 
we recorded the presence of all species found at evenly located points along the transects, 
without distinguishing plant ontogenetic stages. Points were located every 20 cm in steppes 
and shrublands (11 sites, 2500 points per transect), and every 40 cm in forests (three sites, 
1250 points per transect).

Local pattern of diversity

We analyzed the spatial pattern of diversity in the local neighborhood of all perennial plant 
species occurring more than 75 times within the set of transects carried out at each study 
site (i.e., perennial species with a cover greater than 1% in steppes and shrublands or 2% 
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in forests; referred to as target species). Specifically, the ISAR method (individual spe-
cies–area relationship; Wiegand et al. 2007) was used to evaluate the expected number of 
species j found within a distance d from the target species t,

where 1 − Ptj(0, d) is the probability that species j was present in the vicinity (d) of indi-
viduals of target species t. Thus, the ISAR(d) value for such target species would be the sum 
of the probabilities for all species j in the plant community. The ISAR(d) was computed 
along the 1500-m transect resulting from combining the three 500-m transects performed 
at each study site to ensure enough statistical power, and to a maximum distance d of 4 m 
(i.e., distance within plant–plant interactions are expected to occur; Arroyo et al. 2015).

To determine whether the ISAR(d) value for a given target species was different from 
that expected by chance, we computed confidence envelopes by performing a Monte Carlo 
test with 199 heterogeneous Poisson null model simulations (Wiegand et  al. 2007). The 
heterogeneous Poisson null model accounts for the effect of large-scale habitat association 
(Wiegand et al. 2007; Wiegand and Moloney 2014), thus controlling for potential effects of 
soil heterogeneity driving plant spatial patterns. Each simulation randomized the position 

ISAR(d) =

S
∑

j=1

[

1 − Ptj(0, d)
]

,

Fig. 1   Locations of study sites in Spain
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of target species in the transect within the maximum distance d (i.e. 4  m), while main-
taining their spatial distribution at longer distances. When the ISAR(d) value was greater 
than the fifth greatest simulated value, the local neighborhood of target species was more 
diverse than expected by chance (p  ≈  0.05). Conversely, when the ISAR(d) value was 
lower than the fifth lowest simulated value, the local neighborhood was less diverse than 
expected (p ≈ 0.05). If the ISAR(d) values fell within simulated envelopes, then the local 
pattern of diversity was as diverse as expected by the null model (Wiegand et al. 2007). 
Thus, diversity aggregation or segregation in the local neighborhood of target species can 
be regarded as a consequence of the predominance of positive or negative plant–plant inter-
actions respectively, whereas a predominance of weak, or a neutral net balance of positive 
and negative interactions, leads to a local neighborhood as diverse as expected by chance 
(Wiegand et al. 2007; Arroyo et al. 2015; Chacón‐Labella et al. 2016).

Later, we computed the proportion of target species with a local neighborhood more 
diverse, less diverse and as diverse as expected by the null model, per study site and dis-
tance d. In addition, each target species was arranged as a diversity aggregator, segregator 
or neutral based on the observed pattern of diversity below d = 1 m, since most departures 
of the ISAR curve from the confidence envelopes were found below this distance. Also, 
each target species was classified into one of six groups based on their biological traits and 
life form: trees, climbing phanerophytes, shrubs, dwarf shrubs (including cushion species), 
graminoids (i.e., Poaceae, Juncaceae and Cyperaceae) and forbs (i.e., the rest of perennial 
herbaceous species). Thus, the local pattern of diversity for each group was summarized 
as:

This index ranges between 1 and − 1. Positive values indicate that species within the 
group predominantly aggregated diversity, while negative values indicate that they pre-
dominantly segregated diversity. Values around zero indicate that species within the group 
had a neutral net effect on diversity, due to a predominance of weak interactions or a simi-
lar proportion of diversity aggregators and segregators.

ISAR analysis and Monte Carlo simulations were performed with MATLAB R2013a.

Local pattern of beta‑diversity

At each study site, we measured local beta-diversity as the spatial variation in species com-
position among local assemblages (i.e., species assemblages co-occurring with target spe-
cies). More specifically, we computed incidence based beta-diversity, species turnover (i.e., 
compositional heterogeneity due to species replacement among local assemblages) and 
nestedness (i.e., compositional heterogeneity due to differences in species richness among 
local assemblages) metrics following the framework in Baselga (2010). To control for the 
effect of target species abundance on the composition of local assemblages, we built 999 
co-occurrence matrices (target species in rows and presence-absence of co-occurring spe-
cies in columns) per study site using a resampling procedure. Each matrix was built from 
75 randomly selected records per target species, according to the minimum cover used to 
define a target species. A final matrix of co-occurrences for each study site was obtained by 
including only those species co-occurring with target species in more than 95% of cases.

Local pattern of diversity (d < 1 m) =
n◦diversity aggregators − n◦diversity segregators

n◦target species
,
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When the attribute of interest is the overall heterogeneity in species composition among 
a pool of assemblages (e.g., target species), multiple site dissimilarity measures are recom-
mended (Baselga 2013). Therefore, beta-diversity and its components were computed using 
the beta.multi function in the betapart package (Baselga et  al. 2018) in R (R Core Team 
2020). This function quantifies overall beta-diversity as Sørensen-based multiple-site dissimi-
larity (βSOR), species turnover as Simpson-based multiple-site dissimilarity (βSIM) and nested-
ness as βSOR − βSIM (βNES). These indices range between 0, meaning a lack of heterogeneity in 
species composition, and 1, indicating maximum heterogeneity in species composition among 
local assemblages. Values computed for sites with a different number of target species were 
made comparable by using a resampling procedure, taking 8 (according to the site with the 
fewest target species) random target species per site 999 times and calculating the averaged 
value (beta.sample function; Baselga 2010).

Finally, the relative contribution of species turnover and nestedness to the overall local 
beta-diversity at each study site was calculated as:

This index ranges between 1 and − 1. Positive values indicate a higher contribution of the 
species turnover component to local beta-diversity, while negative values show a predomi-
nance of the nestedness component.

Statistical analyses

The effect of environmental conditions and target species life form, as well as their interaction, 
in the local pattern of diversity was evaluated by fitting a linear mixed model (LMM). Study 
site was included as a random factor in the model. Selection of the best random effect struc-
ture (i.e., random intercept effect vs random slope effect) was based on Akaike´s Informa-
tion Criterion (> 2 AICc points difference; Zuur et al. 2009). Aboveground biomass was used 
as the indicator of environmental conditions. Post hoc Tukey´s honest significant difference 
(HSD) test was used to detect significant differences between pairs of plant life form groups.

Linear models were fitted to assess the significance of the effect of environmental con-
ditions on beta-diversity metrics (i.e., local beta-diversity, species turnover, nestedness 
and the relative contribution of species turnover and nestedness to local beta-diversity). 
Aboveground biomass was used in the models to define environmental conditions. On the 
other hand, the significance of the relationship between the local pattern of diversity and 
beta-diversity metrics was tested, for each target species life form group, by fitting separate 
linear models. The region where study sites are located was not included as a random fac-
tor in any of these models, since no significant improvement was found (< 2 AICc points 
difference; Zuur et al. 2009).

Trees and climbing phanerophytes were excluded from data analysis because they were 
only present in few study sites. All statistical analyses were performed in R 4.0.3 (R Core 
Team 2020).

Relative Contribution =
Species Turnover − Nestedness

Beta Diversity
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Results

Spatial pattern of diversity in the local neighborhood of target species

The local pattern of diversity was analyzed for 190 target species (Supplementary Figure 
S1), ranging between 8 (Planerón, middle Ebro Valley) and 19 (Rapun, Sierra de Guara) 
per study site. We found target species with a diversity pattern in its local neighborhood 
significantly different than expected by the null model in all study sites (Supplementary 
Figure S2; Table 2). The distance d at which such departures were observed (i.e., scale at 
which plant interactions occur) differed among target species, but, overall, they were found 
at d < 1 m, while significant departures of the ISAR curve at d > 1 m were rare (Supple-
mentary Figure S2). Accordingly, the prevalence of diversity segregation was particularly 
relevant at d = 0 (i.e., at those points at which different species co-occur; Supplementary 
Figure S2). Conversely, the proportion of target species with a local pattern of diversity as 
diverse as expected by the null model prevailed at d > 0.5 m for all study sites (Supplemen-
tary Figure S2).

We found a significant relationship between the spatial pattern of diversity in the local 
neighborhood of target species and the productivity gradient (F1,12 = 12.81, p < 0.01). Spe-
cifically, a predominance of diversity segregation was observed in more productive envi-
ronments, whereas the local pattern of diversity tended to be neutral or slightly aggregated 
under less productive conditions (Fig. 2).

Significant differences in the local pattern of diversity were found among plant life 
forms (F3,31 = 4.14, p < 0.05). Post hoc Tukey’s HSD test showed that diversity was more 
segregated in the local neighborhood of graminoids than in the surroundings of forbs spe-
cies, while shrubs and dwarf shrubs had an intermediate behavior with respect to diversity 
(Fig.  2). On the other hand, we did not find a significant interaction between plant life 
form and environmental conditions (F3,31 = 1.40, p = 0.26), indicating that all plant groups 
showed similar responses along the productivity gradient (Fig. 2).

Compositional heterogeneity of species assemblages associated with target species

We found that neither local beta-diversity, nor species turnover, nor nestedness varied 
significantly along the productivity gradient (Fig. 3A–C). Species turnover was the beta-
diversity component with the largest contribution to the overall spatial heterogeneity in 
species composition among local assemblages, and this effect did not vary significantly 
with environmental conditions (Fig. 3D).

On the other hand, we found a significant relationship between the nestedness compo-
nent of beta-diversity and the pattern of diversity in the local neighborhood of shrub spe-
cies (F1,9 = 6.13, p < 0.05). Specifically, a higher nestedness among local assemblages (i.e., 
higher richness differences among species assemblages co-occurring with target species) 
was associated with more aggregated (or less segregated) patterns of diversity in the local 
neighborhood of shrub species (Fig. 4C). Non-significant relationships between beta-diver-
sity metrics and the local pattern of diversity were found for other beta-diversity compo-
nents and plant life forms (p > 0.05).
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Discussion

The purpose of this study was to investigate, from a multi-species perspective, how 
biotic interactions of different plant species and plant life forms determine the spatial 
structure and composition of local diversity in a range of Mediterranean plant commu-
nities. We found that diversity segregation in the local neighborhood of target species 
decreased in the less productive environments. This finding is in line with a reduction 

Fig. 2   Relationship between the 
local pattern of diversity and the 
productivity gradient defined as 
aboveground biomass (log-
transformed for better visualiza-
tion). Positive values indicate 
a predominance of diversity 
aggregation. Negative values 
indicate a predominance of diver-
sity segregation. Different letters 
indicate significant differences 
among plant life forms (Tukey´s 
HSD test). Trees and climbing 
phanerophytes were not included 
in data analysis

Fig. 3   Relationship between A local beta-diversity, B species turnover, C nestedness and D relative contri-
bution of species turnover and nestedness to the overall local beta-diversity, and the productivity gradient 
defined as aboveground biomass (log-transformed for better visualization). In D, positive values indicate a 
predominance of species turnover over the nestedness component
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in competition in plant communities under more severe environmental conditions (Bert-
ness and Callaway 1994; He et  al. 2013). In fact, we found that in some plant com-
munities at the less productive extreme of the gradient (i.e., Planerón and Leciñena) 
the proportion of target species that aggregated diversity in their vicinity was higher 
than those that segregated it, in agreement with results from previous research (Chacón‐
Labella et al. 2016; Foronda et al. 2019). However, we did not observe a general shift 
towards local diversity aggregation (i.e., towards a net positive interaction outcome) 
with increasing environmental severity. This kind of shift is frequently found in stud-
ies testing how the magnitude of interactions between a few pairs of species changes 
with the environmental conditions (Soliveres et al. 2015b; Liancourt et al. 2017). Unlike 
those studies, our diversity spatial pattern analysis allowed us to evaluate biotic interac-
tions at community level, including interactions among all plant species in the commu-
nity and giving a more realistic perspective on the prevalence of positive interactions 
under different conditions (He and Bertness 2014; Cavieres et al. 2014; Soliveres et al. 
2015b; Liancourt et  al. 2017; Liancourt and Dolezal 2020). At this level, a collapse 
in facilitation can be found at the least productive extreme of the gradient (Soliveres 
et  al. 2015b; Liancourt et  al. 2017), especially when communities along the gradient 
are composed by different species (Liancourt et al. 2017). However, we did not find this 
pattern either. One possible explanation is that our productivity gradient was not wide 
enough to include the most severe extreme, which would have prevented us from find-
ing the expected shift (He et al. 2013; Liancourt et al. 2017). Nonetheless, our results 
emphasize that, although the relative importance of positive interactions increases with 

Fig. 4   Relationship between A local beta-diversity, B species turnover, C nestedness and D relative contri-
bution of species turnover and nestedness to the overall local beta-diversity, and the pattern of diversity in 
the local neighborhood of shrubs species. In D, positive values indicate a predominance of species turnover 
over the nestedness component
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environmental severity, it is not always enough to overcome the negative ones at com-
munity level, while further studies are necessary to explain the exact causes.

Interestingly, in our study, the amount of target species with a neutral effect on diver-
sity was notably high, especially in the less productive study sites (approx. 50% of tar-
get species; Supplementary Figure S3A). This finding contrasts with those reported 
by Chacón-Labella et al. (2016), who found that less than 20% of perennial plant spe-
cies present in a semiarid Mediterranean plant community had a local neighborhood 
as diverse as expected. It could be argued that a lack of statistical power might cause 
scarce or rare species to appear as neutral despite having strong interspecific interac-
tions (Wiegand et al. 2007; Rajala et al. 2019). However, in our study sites, the propor-
tion of neutral species was not associated with species richness (Supplementary Fig-
ure S3B), assuming that richer plant communities have more rare species (Rajala et al. 
2019). Furthermore, we found target species with very low relative abundance (around 
1%) and a diversity pattern in their local neighborhood different than expected by the 
null model. On the other hand, some authors have argued that neutral or random biolog-
ical processes govern the organization of plant communities, or that plant–plant inter-
specific interactions are weak (Hubbell 2001; Chacón‐Labella et al. 2017; Perry et al. 
2017). In this line, other studies have also found that only a few species aggregate or 
segregate diversity in comparison with neutral species (Perry et al. 2017; Foronda et al. 
2019). However, interspecific positive and negative interactions occur simultaneously 
(Holzapfel and Mahall 1999; Schöb et al. 2013; Poulos et al. 2014; Saiz et al. 2017). In 
this sense, it is likely that target species had a net positive effect on a set of beneficiary 
species, while being segregated from others, eventually resulting in a neutral effect on 
diversity (Wiegand et al. 2007; Arroyo et al. 2015; Foronda et al. 2019). Thus, taken as 
a whole, our results suggest that the observed shift from a segregated pattern of diver-
sity to a local pattern as diverse as expected would respond to an increase in positive 
interactions in less productive environmental conditions, counteracting negative ones, 
and highlighting the importance of facilitation for diversity maintenance in these plant 
communities.

As expected, we found differences among plant life form groups in shaping the local 
pattern of diversity. Overall, graminoids acted as diversity segregators, creating less diverse 
neighborhoods than predicted by the null model (e.g., Brachypodium retusum, Lygeum 
spartum or Stipa lagascae). Graminoids are known to exert a strong belowground competi-
tion for resources, especially in water uptake, due to their dense root system in the upper 
soil layers (Jackson et al. 1996; Armas and Pugnaire 2011; Pueyo et al. 2016). In addition, 
species with a clonal growth form, as is commonly the case for grasses, are strong competi-
tors for space (Pottier and Evette 2010; Benot et al. 2013). Furthermore, it has been docu-
mented how some grass species are facilitated in their early stages of development, to even-
tually replace the nurse plant when becoming adults (Armas and Pugnaire 2005). Thus, the 
high competitive capacity of graminoids prevents other species from being stablished in 
their surroundings, leading to the observed pattern of diversity segregation. On the con-
trary, we found that forbs generally had a more diverse local neighborhood than expected 
in less productive study sites (e.g., Asperula aristata, Polygala rupestris or Psoralea bitu-
minosa). It is probable that plant species falling within this group were mostly facilitated 
species that appeared, together with annuals, in microhabitats with less severe environmen-
tal conditions (Holzapfel et al. 2006; Arroyo et al. 2015; Gonzalez and Ghermandi 2019). 
As these microhabitats in Mediterranean plant communities are usually highly diverse, 
those facilitated forb species were ultimately observed as diversity aggregators. Hence, 
they could be viewed as indicators of diversity islands in these plant communities.
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Interestingly, the effect of shrub and dwarf shrub species on diversity patterning was 
intermediate. Shrubs are usually presented as good candidates to act as nurse species. In 
Mediterranean ecosystems, shrubs are relatively long-lived species adapted to local condi-
tions with a dense canopy and deep roots that enhance microclimatic conditions for other 
species in the community (Callaway 2007; Pueyo et  al. 2016). Accordingly, we found a 
number of shrub and dwarf shrub species that aggregated diversity in their local neigh-
borhood, especially in plant communities at the less productive extreme of our gradient 
(Table 2). However, we also found many other shrubs and dwarf shrubs with neutral and 
negative effects on the local diversity pattern. On the one hand, the net interaction out-
come between shrubs and other species in the community shifts to neutral (e.g., Teucrium 
charidemi) or negative (e.g., Plantago albicans, Ulex parviflorus or Artemisia herba-alba) 
in milder environmental conditions (Holzapfel et al. 2006), thus explaining their behavior 
as diversity segregators in more productive plant communities. On the second hand, some 
shrub and dwarf shrub species present key traits that can also explain discrepancies in the 
net interaction outcome within this group. For instance, previous studies have reported 
the presence of shrub and dwarf shrub species with a negative net effect on diversity in 
low-productive plant communities, due to their allelopathic activity (e.g., Artemisia herba-
alba; Arroyo et al. 2015) or the ability to change soil salt concentration (Zhang et al. 2016). 
Moreover, legumes are often assumed to have a positive effect on neighboring plants and 
diversity due to their ability to increase nitrogen availability (Gómez-Aparicio et al. 2004; 
Wright et al. 2017). However, our results revealed that most woody legumes did not act as 
diversity aggregators (e.g., Anthyllis cytisoides, Astragalus nevadensis, Dorycnium penta-
phyllum, Erinacea anthyllis, Genista sps., Hippocrepis emerus, Ononis sps., Ulex parvi-
florus, etc.), suggesting that only a small fraction of the fixed nitrogen ends enriching the 
surrounding soil (Ulm et al. 2017). Alternatively, it is likely that nutrient enrichment in the 
surroundings of legume species promoted competitive processes between facilitated spe-
cies, reducing their local diversity (Schöb et  al. 2013). Altogether, our results show the 
existence of key nurse species in shaping the local pattern of diversity in Mediterranean 
plant communities, and highlight the importance of a multi-species approach in order to 
clarify their general role at community level.

Contrary to our hypothesis, we found that the spatial heterogeneity in species composi-
tion among local assemblages (i.e., local beta-diversity) did not change significantly along 
the productivity gradient. Nevertheless, we still found that an increase in the nestedness 
component of beta-diversity was associated with less segregated diversity patterns in the 
local neighborhood of shrub species. This finding suggests that an increase in positive 
plant–plant interactions in less productive environmental conditions promotes spatial heter-
ogeneity among local species assemblages due to differences in plant species richness, and 
points to key nurse species maintaining overall community diversity by creating diversity 
islands. This result agrees with previous studies on the role played by nurse species and 
facilitation as biodiversity drivers in severe environments (McIntire and Fajardo 2014; Le 
Bagousse-Pinguet et al. 2014; Cavieres et al. 2014; Gonzalez and Ghermandi 2019), sup-
porting the fact that their protection should be a primary focus for management and con-
servation strategies in order to prevent the loss of diversity and functioning of these eco-
systems (Valiente‐Banuet et al. 2015; Maestre et al. 2016). A high nestedness of diversity 
could imply to focus on the conservation of only the more diverse sites or patches (Socolar 
et al. 2016; Oksuz et al. 2020). However, our results revealed that species turnover was still 
higher than the nestedness of assemblages in all study sites. This means that nurse spe-
cies were not such generalist facilitators, in line with the finding of few species with a net 
positive effect on diversity, and different target species harbored different sub-communities 
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regarding species composition. In fact, patch-forming species with different functional 
traits modify their surroundings in very distinct ways, promoting dissimilarities in species 
assemblages (Macek et al. 2016; Saiz et al. 2018; Tormo et al. 2020). Hence, protecting 
multiple plant species in Mediterranean plant communities, and not only focusing on those 
more diverse patches, would be a more suitable strategy to preserve diversity in face of the 
expected consequences of climate change.

Our results can also be directly applied to restoration practices, as we offer a list of 
suitable species that can be used to enhance the success of diversity restoration projects 
performed in Mediterranean plant communities (Padilla and Pugnaire 2006; Gómez-Apa-
ricio 2009; Hulvey et al. 2017). In this respect, the best candidates would be the abundant 
shrub species acting as nurses in aggregating diverse plant species assemblages (Table 2). 
For instance, Ononis tridentata, Salsola vermiculata and Gypsophila struthium subsp. his-
panica would be good candidates in plant communities of the Middle Ebro Valley, Lavan-
dula multifida, and Teucrium charidemi would be suitable in Cabo de Gata, while Arenaria 
armerina and Rosa sp. should be chosen for Sierra Nevada communities. Moreover, neutral 
shrub species might be also suitable candidates provided that they have a positive net effect 
on certain species of interest. This would be the case of Anthyllis cytisoides and Lycium 
intrincatum in Cabo de Gata or Berberis vulgaris subsp. hispanica and the cushion Hor-
mathophylla spinosa in Sierra Nevada. On the contrary, we did not find any species that 
aggregated diversity in its local neighborhood in Sierra de Guara sites, with the exception 
of Quercus faginea in Ibort (Table 2). This finding might be explained by the fact that in 
Ipies and Rapun plant species establish predominantly in gaps where Q. faginea is absent, 
supporting its negative role on local diversity, while in Ibort, where Q. faginea is quite 
abundant, species in the community can appear within its local neighborhood too, explain-
ing its positive role on diversity.

In conclusion, in our study we found that diversity segregation in the local neighbor-
hood of plant species decreases in the less productive plant communities, according to an 
increase in the relative importance of positive interactions. However, we could not find a 
clear shift towards net diversity aggregation at the most severe environmental conditions. 
On the other hand, despite the general view that shrubs are good candidates to act as nurse 
species, our results emphasize that more studies taking a multi-species approach should be 
performed to clarify their general role at community scale. In fact, the number of species 
with a net positive effect on diversity was relatively low. Nonetheless, these nurse shrub 
species seem to play an essential role in low productive plant communities by creating and 
maintaining diversity islands. In addition, the dominance of species turnover over the nest-
edness component of beta-diversity suggests that each nurse could interact with different 
species, highlighting the presence of contrasted facilitated species assemblages. Overall, 
our results provide further insights into the effect of plant–plant interactions in shaping 
the local structure and composition of diversity in Mediterranean plant communities, and 
emphasize plant species and plant life form groups that should be the focus of management 
and conservation strategies in order to prevent diversity loss.
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