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Summary 

Pancreatic Neuroendocrine Tumors (PanNETs) comprise two molecular subtypes, relatively benign 

islet tumors (IT) and invasive, metastasis-like primary (MLP) tumors. Hitherto, the origin of 

aggressive MLP tumors has been obscure. Herein, using multi-omics approaches, we revealed that 

MLP tumors arise from IT via dedifferentiation following a reverse trajectory along the 

developmental pathway of islet β-cells, which results in the acquisition of a progenitor-like 

molecular phenotype. Functionally, the microRNA-181cd cluster induces the IT-to-MLP transition 

by suppressing expression of the Meis2 transcription factor, leading to upregulation of a 

developmental transcription factor, Hmgb3. Notably, the IT-to-MLP transition constitutes a distinct 

step of tumorigenesis and is separable from the classical proliferation-associated hallmark, 

temporally preceding accelerated proliferation of cancer cells. Furthermore, PanNET patients with 

elevated HMGB3 expression and an MLP transcriptional signature are associated with higher-grade 

tumors and worse survival. Overall, our results unveil a new mechanism that modulates cancer cell 

plasticity to enable malignant progression.  

Significance 

Dedifferentiation has long been observed as a histopathological characteristic of many cancers, 

albeit inseparable from concurrent increases in cell proliferation. Herein we demonstrate that 

dedifferentiation is a mechanistically and temporally separable step in the multistage tumorigenesis 

of pancreatic islet cells, retracing the developmental lineage of islet beta cells.  
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Introduction 

Pancreatic Neuroendocrine tumors (PanNETs) are rare human cancers that arise from the endocrine 

cells of the pancreas, the islets of Langerhans, and are broadly classified as ‘functional’ (secreting 

islet cell hormones, e.g., insulin) and ‘non-functional’ (NF-PanNETs) (1). According to the WHO, 

PanNETs are subdivided into three grades as G1, G2, and G3 based on the mitotic index and 

proliferation index (by Ki-67) (2,3). The majority of PanNETs are sporadic and typically exhibit 

alterations in the MEN1 (~40%) and DAXX/ATRX (~35%) genes (4). Although novel therapies have 

improved the prognosis of low-grade PanNETs, high-grade tumors are invariably lethal (1), which 

motivates further efforts to better understand PanNET biology and the molecular programs that 

characterize high grade tumors. 

Genetically engineered mouse models of cancer have been instrumental in understanding the 

underlying mechanisms of tumor progression. RIP1-Tag2 (RT2) is a prototypical mouse model of 

PanNET, in which the expression of SV40 T antigen in the insulin-producing pancreatic islet β-cells 

incapacitates p53 and Rb-family tumor suppressors, and leads to stepwise tumor development and 

progression  (5). During tumorigenesis, a subset of hyperplastic islets, which appear between 4 to 6 

weeks of age, undergo an angiogenic switch between 6 to 9 weeks, and a subset of these ‘angiogenic 

islets’ subsequently progress to form overt tumors. Histologically, the tumors are heterogeneous, 

representing either encapsulated solid tumors (adenomas) or invasive carcinomas, and a subset of 

cancer cells are capable of metastasizing to the lymph nodes and less frequently to the liver (5–7).  

Using various transcriptomic data, we have previously reported three main molecular subtypes of 

human PanNETs, namely well-differentiated islet/insulinoma tumors (IT), ‘intermediate’ tumors, 

and poorly differentiated tumors associated with liver metastasis, called metastasis-like primary 

(MLP) (4,6,8). The IT subtype represents well-differentiated G1/2 PanNETs in humans, which are 

typically insulin secreting, non-invasive, and poorly metastatic. The human intermediate subtype 

also consists of well-differentiated tumors, both functional and non-functional, typically enriched for 

loss of the MEN1 tumor suppressor. The human MLP subtype is the most heterogeneous, and 

consists of non-functional and poorly-differentiated PanNET (grade G3), and around half have 

associated liver metastasis (8). Molecular subtyping analysis of the RT2 model revealed that a 

majority of tumors belong to the Insulinoma-like (IT) subtype, whereas a smaller subset presents as 

the more aggressive MLP subtype, which has the capability to metastasize to lymph nodes and liver 

(8,9).  Despite lacking the mutational alterations that are present at varying frequencies in human 

PanNET (4), the IT and MLP tumors that arise in RT2 model have highly similar mRNA and 

miRNA transcriptome profiles to the human counterparts arguing that it is a valid model of human 

cancer (8).  The human intermediate subtype is not phenocopied in the RT2 model, but rather in an 

engineered mouse model with β -cell specific inactivation of Men1 tumor suppressor (10). 

Previous studies have suggested two possible pathways for the development of the MLP subtype, 

based on descriptive analyses. The first proposed endocrine progenitors as the cell-of-origin for a 

separate tumorigenesis pathway leading to MLP tumors (6,8,11), whereas the second suggested 
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dedifferentiation to the MLP subtype from pre-existing cancer cells as the mechanism of malignant 

progression (7,12). In lieu of definitive functional studies, there has remained a lack of clarity about 

the molecular mechanism of malignant progression to G3/MLP tumors. The integration of high-

throughput multi-omics data has proved to be a powerful resource for investigating molecular 

determinants of tumor development (13). In this study, we used multi-omics approaches to 

characterize the two main PanNET subtypes (i.e., insulinoma/IT and MLP), aiming to investigate the 

origin of the aggressive MLP subtype. To this end, we profiled primary and metastatic lesions of the 

RT2 mouse model of PanNET, integrating single-cell transcriptomics with bulk mRNA and miRNA 

sequencing and proteomic analysis, followed by functionally perturbing elements of a regulatory 

pathway implicated in specifying the development of the aggressive MLP subtype of PanNET. 
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Results 

MLP PanNETs reactivate pancreatic β-cell progenitor signaling 

To dissect the underlying genetic program of primary and metastatic PanNETs, we collected 

samples via laser-captured microdissection from primary tumors (31 samples) and liver metastases 

(6 samples) from the RIP1-Tag2 (RT2) genetically engineered mouse model in three different 

genetic backgrounds, as well as normal mouse pancreatic islets (4 samples), and normal mouse liver 

(3 samples) (Fig. 1A, Supplementary Fig. S1A to S1D, Supplementary Table 1). The collected 

samples – based on sufficient availability – were profiled for mRNA, miRNA, and proteomic 

analysis (Supplementary Fig. S1D). First, to assess the purity of the samples for cancer cells, we 

applied a cell-type deconvolution method – xCell (14) – to the samples that were subjected to RNA-

sequencing analysis. This revealed a low level of immune- and stroma-scores, indicative of the high 

proportion of cancer cells in the bulk samples (Supplementary Fig. S1D). To evaluate the overall 

heterogeneity of the samples, we separately performed clustering analysis on all the samples from 

each platform, using the non-negative matrix factorization (NMF) method (15). Subsequently, a 

multi-omics clustering method – ‘Similarity Network Fusion (SNF)’ (16) – was applied to integrate 

information from the distinctive datasets – mRNA, miRNA, and protein. Since more samples were 

profiled for both mRNA and miRNA, in a separate analysis, we also applied SNF on the paired 

samples from these two datasets. The multi-omics clusters defined by SNF were highly concordant 

with the NMF clusters derived from a separate analysis of mRNA, miRNA, and proteomics profiles 

(Supplementary Fig. S1D).  

In agreement with our previous reports (6,8), the tumors segregated into two broad subtypes with 

highly distinctive mRNA, miRNA, and proteomic profiles (Fig. 1A and Supplementary Fig. S1D). 

The first cluster, denoted as insulinoma/islet-tumors (IT), contained only primary tumors, which 

maintained high expression of well-defined markers of mature β-cells, including Ins1/2, Insm1, Iapp, 

Nkx-6, Pax6, Pdx1, and Chga (17,18), as detected in both transcriptomic (Supplementary Fig. S1E) 

and proteomic analyses (Fig. 1B). The second cluster, dubbed by Olson et al. (6) as ‘metastasis-like 

primary’ tumors (MLP), contained both primary and metastatic samples and were characterized by 

low expression of mature β-cell markers, along with an elevated expression of a number of 

endocrine progenitor markers (Fig. 1C and Supplementary Fig. S1F), including Hmgb2/3, Fev, and 

Myc (19). The Fisher exact test revealed no association between the IT and MLP phenotypes with 

the mouse strains from in which the tumors arose (Bl6 vs. AJ in all samples; p-value: 0.32, Bl6 vs. 

AJ in RNA-seq samples; p-value: 0.13).  

To further characterize the MLP tumors, a miRNA signature and an mRNA signature for the MLP 

cluster were developed using differential expression analysis and NMF-selected features (see 

Methods). We identified a 28-member miRNA signature and a 203-member mRNA signature that 

each distinguished the IT and MLP subtype samples (Supplementary Table 1). Next, functional 

enrichment analyses (Gene Ontology terms, GO) for up- and downregulated genes in the MLP 

mRNA-signature were performed. Downregulated genes were enriched in GO-terms associated with 
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hormone secretion, pancreas development, cell-cell adhesion, and regulation of insulin secretion 

(Fig. 1D). The majority of the genes in these categories are involved in the homeostasis of mature β-

cells, consistent with the observation that MLP tumors suppress mature β-cell markers.  

Notably, repressors of cell differentiation and developmental processes were among the most 

significantly enriched GO-terms for upregulated genes in the MLP mRNA-signature (Fig. 1E). The 

MLP tumors had high expression of genes previously reported to be involved in maintaining stem-

like features, playing essential roles in embryonic development and regeneration, and in the 

epithelial-to-mesenchymal transition, such as Sox11 (20,21), Sox6 (22), Cited1 (23), Id1 (24,25), and 

Zfp536 (26) (Supplementary Table 1). These results are in agreement with our previous study by 

Sadanandam et al. (8), in which we observed higher expression of pancreatic progenitor-specific 

markers in MLP tumors (Fig. 1C, Supplementary Fig. S1F). Following up on this observation, we 

hypothesized that MLP tumors might have undergone dedifferentiation, thereby enabling the 

transition from IT to MLP subtype.  

To begin assessing the dedifferentiation hypothesis, we leveraged pre-existing knowledge about islet 

β-cell differentiation from pancreatic progenitors to fully mature islet cells. Both human and mouse 

β-cells develop through three sequential phases of differentiation. Specifically, in mice, a primary 

transition takes place from E9.5 to E12.5, a secondary transition from E12.5 to birth, and finally, a 

postnatal maturation phase from birth to weaning (Fig. 1F, ref. (27–29)). Querying the presence of 

the MLP mRNA-signature in two separate datasets profiling the secondary transition (GSE8070) and 

the postnatal maturation of β-cells (19) revealed that the less differentiated pancreatic/β-cell samples 

had a higher MLP mRNA-signature score (Fig. 1G). These results indicated that the MLP 

transcriptome profile is active in normal β-cell progenitor cells. This observation was further 

substantiated by applying the MLP mRNA-signature onto a single cell profile of β-cell postnatal 

maturation (19), which showed a high correlation between the MLP gene-signature and less-

differentiated states, independent of Mki67 proliferation marker (ANOVA p-value: 6.52e-23, 

Supplementary Fig. S1G to S1I). Furthermore, by applying the MLP microRNA-signature as a filter 

in an independent dataset profiling microRNA expression of pancreatic progenitor cells and mature 

β-cells (30), we again found enrichment of MLP microRNA expression in pancreatic progenitor 

cells (Fig. 1H). 

Additionally, the enrichment analysis of upregulated genes revealed, among others, 

‘neurogenesis/CNS development’ and ‘metabolic processes’ as highly enriched categories (Fig. 1E). 

Notably, these categories largely overlapped with the enrichment analysis of upregulated genes in 

embryonic E17.5 progenitors versus mature β-cells (Supplementary Fig. S1J). Concordantly, we 

have previously reported that PanNETs exploit neuronal synaptic signaling pathways to acquire 

invasive capabilities (31), and that altered cell metabolism is a feature of aggressive MLP tumors 

(8). 

Next, we sought to evaluate the overall transcriptomic program of PanNETs further and assess the 

potential similarity between the two subtypes and the distinctive stages of β-cell differentiation. To 
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this end, the ComBat algorithm (“Combatting Batch Effects When Combining Batches of Gene 

Expression Microarray Data” (32)) was used to merge RNA-sequencing datasets describing the 

stages of mouse postnatal maturation (19) with those of tumor samples. Principal component 

analysis (PCA) on the merged dataset (Supplementary Fig. S1K) found PC2 as a highly correlated 

component with postnatal maturation time-points (ANOVA p-value: 0.00224, Fig. 1I); therefore, 

PC2 was considered as a proxy of the differentiation timeline trajectory. As expected, RNA samples 

from normal adult islets collected along with the PanNET tumors grouped closer to the dataset of 

mature (P60) β-cells. Notably, all samples from IT tumors grouped with intermediate-mature P9-P18 

β-cells, and MLP samples clustered with P0-P3 immature β-cells, whereas (presumably more 

aggressive) metastatic samples clustered closer to the inception point of the β-cell differentiation 

trajectory (Fig. 1I).  

Collectively, these results demonstrate that MLP tumors share characteristics with pancreatic 

progenitor cells and pose the intriguing hypothesis that MLP tumors emerge from the progression of 

IT cells via dedifferentiation and reactivation of progenitor-like signaling pathways. 

MicroRNA-181cd induces the activation of the progenitor-like program in IT-like cell lines  

To evaluate the hypothesis that dedifferentiation is a discrete step in tumorigenesis that gives rise to 

MLP tumors, we sought to identify signaling pathways that induce the MLP phenotype in IT-like 

cancer cells. MicroRNAs have been shown to regulate diverse signaling pathways and biological 

processes, including cellular reprogramming (33,34), and we have previously shown that a set of 

miRNAs is differentially expressed in MLP tumors compared to IT tumors (6,8). To identify 

candidate miRNAs with the potential to activate the MLP program in IT-like cell lines, the most 

highly upregulated MLP-associated miRNAs were sorted according to their correlation with the 

MLP-mRNA signature score in the RT2 tumor samples dataset (Supplementary Fig. S2A). 

Additionally, we segregated miRNAs that were differentially expressed between pancreatic 

progenitor cells and mature β-cells (Fig. 2A). This analysis led us to focus on two members of the 

miR-181 family, namely miR-181c and miR-181d, which compose the miR-181cd cluster (Fig. 2B).  

To assess a possible functional role, the miR-181cd cluster was conditionally overexpressed in the 

βTC3 cell line, which showed IT-like phenotype (Supplementary Fig. S2B). To this end, we used a 

piggyBac transposon system enabling doxycycline (DOX)-inducible miRNA expression (35). RNA-

seq analysis was performed for collected samples at 24 hours and seven days after miR-181cd 

overexpression (Supplementary Fig. S2C and S2D), and activation of the progenitor-like program 

was evaluated by applying the MLP mRNA-signature onto the transcriptome profiles of the samples. 

Intriguingly, seven days of miR-181cd expression in the βTC3 IT-like cancer cells resulted in the 

transition of these cells toward the MLP subtype (Fig. 2C).  

Congruently, IT marker genes, such as Ins1, Ins2, and Iapp, were downregulated upon miR-181cd 

expression, whereas various markers of MLP, including Peg10, members of ID family of 

transcriptional regulators, and the Miat long non-coding RNA, were amongst the upregulated genes 
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(Fig. 2D). Moreover, functional enrichment analysis of significantly upregulated genes after seven 

days of miR-181cd expression (Supplementary Table 2) revealed multiple GO-terms associated 

with neurogenesis and cell differentiation regulation as the most enriched categories (Fig. 2E).  

In addition to a significant shift in the transcriptomic program and upregulation of genes involved in 

dedifferentiation, βTC3 cells underwent a morphological change upon induction of miR-181cd 

expression, characterized by the development of neuronal-like structures, similar to the morphology 

that is exhibited by the MLP-like cell line, AJ-5257-1 (Fig. 2F). These morphological changes were 

concordant with the enrichment of neurogenesis GO-term categories for upregulated genes both in 

the MLP subtype (Fig. 1E) and in β-cell progenitors (Supplementary Fig. S1G), as well as 

upregulated genes after seven days of miR-181cd expression (Fig. 2E). Additionally, we also 

evaluated the effect of miR-181cd expression in the 99-3o IT-like cell line (Supplementary Fig. 

S2B). Similar to the βTC3 cells, upon expression of miR-181cd in the 99-3o cells (Supplementary 

Fig. S2C and S2D), we observed downregulation of Ins2, an IT marker (Supplementary Fig. S2E), 

as well as morphological changes, which were accompanied by the appearance of neuronal-like 

structures (Supplementary Fig. S2F).  

Although the βTC3 parental cells expressed higher endogenous levels of miR-181cd compared to 

the 99-3o cells (Supplementary Fig. S2C and S2D), overexpression of the miR-181cd transgene in 

both IT-like cell lines was necessary to induce gene expression and morphology changes that 

resemble the MLP subtype. We suspect that the comparatively higher levels of endogenous miR-

181cd in the βTC3 vs. 99-30 cells might be due to sequestration by competitive endogenous RNAs 

in βTC3, much as has been reported for long-non coding RNAs  (36,37). Irrespective, the results 

indicate that upregulated levels of miR-181cd are capable of instructing dedifferentiation from the IT 

to the MLP subtype.  

Identification of transcription factors regulating the dedifferentiation from IT to MLP subtype 

Next, we sought to explore the gene network underlying the IT-to-MLP transition and identify 

transcription factors (TFs) regulating the dedifferentiation process. To this end, an algorithm for the 

accurate reconstruction of cellular networks (ARACNe (38,39)) was employed to construct a 

transcriptional interaction map of RT2 PanNET tumors, and subsequently, a regulon analysis 

algorithm ('infer protein activity from single gene expression profiles,' VIPER (40)) was applied to 

identify candidate TFs controlling the IT-to-MLP transition (see Methods). VIPER implicated 66 

and 72 TFs as potential positive or negative regulators of the MLP program, respectively 

(Supplementary Table 2). 

First, we explored whether any of the TFs identified as prospective negative regulators might be 

potential targets of the miR-181cd cluster. To this end, a recently developed algorithm that enables 

the identification and ranking of biologically relevant miRNA targets (Bio-miRTa (35)) was used to 

query two datasets: (a) downregulated genes in the MLP signature and (b) downregulated genes in 

the miR-181cd overexpression experiment (Supplementary Table 2). Meis2, which encodes for a 
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homeobox protein that belongs to the three amino acid loop extension (TALE) family of 

homeodomain-containing proteins, ranked as the top miR-181cd gene target (Supplementary Fig. 

S3A). Meis2 has been implicated in prostate cancer and neuroblastoma  (41,42), and VIPER analysis 

revealed that the genes downstream of Meis2 are also altered significantly between IT and MLP 

samples (Fig. 3A). Congruently, Meis2 was downregulated upon forced miR-181cd expression in 

both βTC3 and 99-3o IT-like cell lines (Fig. 3B, and Supplementary Fig. S3B), as well as in MLP 

compared to IT tumors (Supplementary Fig. S3C). Using reporter assays, we verified the ability of 

miR-181cd to bind to the miRNA response element (MRE) in the 3’UTR of Meis2 and trigger 

miRNA-mediated mRNA degradation (Fig. 3C and Supplementary Fig. S3D).    

Then to identify and prioritize potential inducers of the IT-to-MLP dedifferentiation, we queried 

candidate TFs from the VIPER analysis in four mRNA datasets: (a) the secondary-transition phase 

of pancreatic development, (b) the β-cell postnatal maturation phase, (c) the dedifferentiation 

trajectory of primary cancer cells (PC2 in Fig. 1I), and (d) one resultant to miR-181cd 

overexpression in the β-TC3 IT-like cells (Supplementary Table 2). Hmgb3, an X-linked member 

of the high-mobility group box (HMGB) family, was the only gene that scored significantly high in 

all four datasets (Fig. 3D, Supplementary Fig. S3E-G), and the VIPER-inferred downstream genes 

of Hmgb3 were also significantly altered comparing MLP to IT samples (Fig. 3A). Hmgb3 has been 

shown to modulate transcription, replication, recombination, DNA repair, and genomic stability 

(43), and its expression is associated with invasion, metastasis, and poor prognosis of a number of 

human cancers (44). Concordantly with these implications, Hmgb3 was highly expressed in MLP 

samples at the mRNA and protein level (Supplementary Fig. S3H and S3I), and it was upregulated 

upon forced miR-181cd expression in the βTC3 and 99-3o IT-like cell lines (Fig. 3D and 3E, and 

Supplementary Fig. S3J and 3K). 

Meis2 and Hmgb3 transcription factors regulate dedifferentiation to the MLP subtype 

In order to assess the suspected regulatory pathway involving miR-181cd, Meis2, and Hmgb3 in the 

transition from the IT to the MLP phenotype, an inducible miR-E-based shRNA knockdown system 

(as we have described previously in (45)) was used to downregulate the miR-181cd target, Meis2, in 

the IT-like ßTC3 cell line (Supplementary Fig. S3L). Meis2 downregulation led to the upregulation 

of Hmgb3 at the mRNA and protein level (Supplementary Fig. S3M and S3N), concomitant with 

downregulation of the IT marker Ins2 (Supplementary Fig. S3O).  

Next, to ascertain the role of Hmgb3, we used the piggyBac (DOX)-inducible system to 

overexpress Hmgb3 in the βTC3 cell line (Fig. 3F and Supplementary S3P). To characterize the 

effect of Hmgb3 at the transcriptomic level in this IT-like cell line, RNA-seq analysis was performed 

for samples collected seven days after Hmgb3 overexpression, as well as for control cells. 

Subsequently, by applying the MLP mRNA-signature to the transcriptome profiles, we observed that 

the βTC3 cell line transitioned toward the MLP subtype upon seven days of forced Hmgb3 

expression (Fig. 3G). To assess the similarity in MLP gene network activation between the 
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overexpression of miR-181cd and Hmgb3, we merged the two datasets (see Methods) and ran 

hierarchical clustering on the merged MLP-mRNA gene expression matrix. Intriguingly, the result 

showed two main clusters, with the Hmgb3 overexpression dataset clustering closest to the 

transcriptome profile of miR-181cd overexpression in βTC3 cell line (Fig. 3H). 

Similar to miR-181cd, seven days of Hmgb3 overexpression caused downregulation of IT markers 

such as Ins2, and Nkx6-1 (Fig. 3I). Differential expression analysis of Hmgb3-overexpressing and 

control cells revealed increased expression of multiple genes involved in regulating neuronal 

programs, pluripotency, and cellular morphogenesis and migration (Supplementary Table 2 and 

Fig. 3I). Consistently, the majority of these genes are similarly upregulated by miR-181cd 

overexpression (Supplementary Fig. S3Q-U). Overall, these results establish Hmgb3 as a key 

downstream effector of the miR-181cd-induced transition from IT cells to the dedifferentiated MLP 

subtype.  

Hmgb3 is a marker of dedifferentiation and metastasis-like cells 

Seeking to substantiate the evidence for dedifferentiation as a discrete regulatory event, we assessed 

the proposed miR-181cd/Meis2/Hmgb3 axis in vivo. First, we immuno-stained tumor lesions for 

Insulin and Hmgb3, as well as for the oncoprotein T-antigen (to identify cancer cells) from two RT2 

strains, i.e., AB/6J-F1 and C57Bl/6N, at early (7-9 weeks), middle (10-11 weeks), and advanced (14-

16 weeks) stages of tumorigenesis. As expected, cancer cells (T-antigen
+
 cells) with 

Ins
high

/Hmgb3
neg.

 expression marked the IT tumors (Fig. 4A and Supplementary Fig. S4A). Notably, 

the initial downregulation of Insulin was coincident with Hmgb3 upregulation, as indicated by the 

presence of Ins
low

/Hmgb3
high

 cancer cells (Fig. 4A), which marked the transition from IT to MLP 

subtype emerging at the early stages of tumorigenesis. The IT-to-MLP transition was followed by 

complete loss of Insulin and high expression of Hmgb3 in MLP lesions, indicated by 

Ins
neg.

/Hmgb3
high

 cancer cells, both in early and late-stage primary tumors (Fig. 4A and 

Supplementary Fig. S4B). These results indicate that the induction of Hmgb3 is an early event in 

the dedifferentiation process of IT cancer cells into MLP subtype.  

Examining the tumor sections from three different temporal stages of the disease showed an increase 

in the incidence of the IT-to-MLP and MLP lesions for both models during tumor progression 

(Supplementary Fig. S4C and S4D). Furthermore, when lymph node and liver metastases in the 

highly metastatic RT2;AB/6J-F1 model were examined, all lesions proved to be negative for the IT 

marker Insulin, and uniformly positive for Hmgb3, providing further evidence that Hmgb3 marks the 

aggressive and metastatic cancer cells of the MLP subtype, which consistently express this MLP 

marker, even after metastasizing and colonizing secondary parenchyma  (Fig. 4B, Supplementary 

Fig. S4B and S4E). 

Next, we sought to investigate the intra-tumoral heterogeneity at the single-cell level for IT and 

MLP subtypes in advanced lesions from the prototypical RT2;C57Bl6/N mouse model. Accordingly, 

two individual tumors were collected from two 14-week-old RT2 mice. The samples were processed 
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separately, and single-cell RNA sequencing (scRNA-seq) was performed for 2,375 individual cells 

in total. The clustering analysis was performed to identify and visualize the cells with similar 

expression patterns (see Methods and Supplementary Fig. S5A and S5B). Using known gene-

markers (Supplementary Fig. S5C), we annotated different cell populations of the tumor 

microenvironment in primary PanNETs (Supplementary Fig. S5D), which revealed a similar ratio 

of various immune (infiltrating B- and T leukocytes, macrophages, and neutrophils) and stromal cell 

types (endothelial cells, pericytes, and cancer-associated fibroblast (CAFs)) in both primary tumor 

samples (Supplementary Fig. S5E).  

Cancer cells were identified by expression of the SV40 large T-antigen oncogene and by a PanNET 

mRNA signature score comprising a 62-gene set diagnostic for transformed islet β-cells that was 

developed from the bulk RNA-seq data (Supplementary Fig. S5F and S5G, Supplementary Table 

1). Clusters with average signature score above -0.4 were selected as cancer cells. Cluster 2 was 

excluded from the follow-up analysis due to low RNA-seq reads, and cluster 13 was excluded due to 

the low number of SV40 expressing cells. Although cluster 6 also scored highly for the PanNET 

signature, this cluster is comprised of macrophages (Csf1r positive cells; T-antigen negative, 

Supplementary Fig. S5H); and we envisage that phagocytosis incorporated the so-called 

“passenger” transcripts originating from engulfed apoptotic cancer cells (46). Accordingly, the cells 

within clusters 0, 1, 3, 4, and 5 were classified as cancer cells. 

Next, clustering analysis was performed specifically for the selected cancer cells, which revealed 

seven distinct populations of cancer cells (cancer sub-clusters i to vii) with different transcriptome 

profiles (Fig. 4C and Supplementary Fig. S5I); both of the analyzed tumors showed a similar 

distribution in these sub-clusters (Supplementary Fig. S5J). Although cancer cells had variable level 

of SV40 expression, all sub-clusters demonstrated a similar level of the PanNET signature score 

(Supplementary Fig. S5K). Seeking to delineate cancer cells into IT vs. MLP subtypes, the MLP 

mRNA-signature was overlaid onto the single-cell transcriptome data. Sub-cluster i demonstrated 

the lowest MLP score, with high expression of mature β-cell markers such as Ins2 (Fig. 4D, 4E, and 

Supplementary Fig. S5L). Relative to sub-cluster i, the rest of the six sub-clusters in the primary 

tumor demonstrated high activity of MLP transcriptomic program (Fig. 4D). Therefore, we 

concluded that sub-cluster i represents the IT cancer cells, and sub-clusters ii to vii are MLP cancer 

cells within primary tumors. Notably, we observed an inverse correlation of the Meis2 and Hmgb3 

expression in the IT (sub-cluster i) and MLP cells (sub-clusters ii - vii) (Fig. 4E and Supplementary 

Fig. S5L), supporting our previous data implicating the Meis2/Hmgb3 axis in the IT-to-MLP 

transition. 

Collectively, these results establish a miRNA/TF regulatory pathway, wherein miR-181cd induces 

downregulation of the Meis2, which leads to upregulation of Hmgb3 expression. This pathway 

evidently plays an important role in the induction of the dedifferentiation process and the consequent 

transition of IT into MLP cancer cells, contributing thereby to the acquisition of invasive and 

metastatic capabilities (Fig. 4F). 
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Single-cell RNA-sequencing reveals a high proliferation rate in late-stage MLP tumors 

Next, we used the PCA analysis on the transcriptomic data from the scRNA-seq to investigate the 

gene regulatory pathways contributing to the heterogeneity of the late-stage tumors. Considering the 

first two components of PCA (Fig. 5A and Supplementary Fig. S6A), PC-1 clearly showed a high 

correlation with the MLP mRNA-signature score, separating IT from MLP cancer cells (Fig. 5B and 

Supplementary Fig. S6B). Congruently, functional enrichment analysis on differentially expressed 

genes showed that the categories associated with the regulation of hormone and insulin secretion in 

normal β-cells were enriched in IT cancer cells (sub-cluster i, Fig. 5C, Supplementary Table 3). 

Conversely, categories related to cellular homeostasis, regulation of cell differentiation and CNS 

development were associated with MLP cancer cells (sub-clusters ii - vii, Fig. 5D, Supplementary 

Table 3).  

Intriguingly, in addition to GO-terms representing MLP phenotype, the upregulated genes in MLP 

clusters exhibited high enrichment of functional categories associated with regulation of cell division 

and cell cycle (Fig. 5D, Supplementary Table 3). Therefore, we hypothesized that proliferation 

might be another major pathway contributing to the phenotypic state of cancer cells in the primary 

tumor. Accordingly, the second most variable component in the PCA analysis (PC-2) revealed a 

high correlation with cellular proliferation rate (Fig. 5E), with the highest significance for MLP 

cancer cells (sub-clusters ii - vii, cor.: 0.96, p-value < 2.2 e-16). Concordantly, the MLP clusters 

within the primary tumors exhibited different levels of proliferation capability (Fig. 5F) and Mki67 

expression (Supplementary Fig. S6C) showing the significant contribution of proliferation 

regulatory network in cellular heterogeneity of late-stage MLP cancer cells. Thus, the initial MLP 

sub-clusters ii and iii had a low proliferation score, whereas the progressive MLP sub-clusters v, vi, 

vii had a high score, with the intermediate sub-cluster iv highly variable, suggestive of a transition 

phase. Notably, the proliferation status of the cancer cells in these 7 sub-clusters was independent of 

the variable expression of the driving SV40 large T-antigen oncogene (Supplementary Fig. S6D and 

S6E). 

In order to further investigate the sub-populations of MLP cancer cells, differential expression 

analysis was performed on each sub-cluster, followed by GO-term enrichment analysis 

(Supplementary Table 3). As expected, sub-cluster i showed a high expression of β-cell markers, 

including Ins1/2, Nkx-6-1, Iapp, and Mafa (Fig. 5G). On the other hand, sub-cluster ii, the first 

cluster with high expression of MLP signature genes (Supplementary Fig. S6B), was enriched in 

GO-terms representing negative regulation of differentiation (Supplementary Table 3). 

Interestingly, we observed upregulation of the islet -cells gene markers Gcg (encoding for 

glucagon) and Mafb in sub-cluster ii. The switch from Mafb to Mafa expression is vital for islet -

cell maturation (28); hence, the transition from Mafa expression in sub-cluster i to Mafb expression 

in sub-cluster ii can be envisaged to signify the activation of dedifferentiation in cancer cells toward 

an endocrine progenitor-like state (Fig. 5G). Genes distinguishing sub-cluster iii proved to be 

involved in the G to S phase transition, as well as DNA repair and chromosomal stability, while sub-
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cluster iv had the highest expression of genes associated with metabolism and hypoxia 

(Supplementary Table 3, Fig. 5G). This result suggests the presence of unfavorable conditions in 

the tumor microenvironment, such as hypoxia, experienced by a subset of MLP cancer cells. Finally, 

functional enrichment analysis for the differentially expressed genes in the last three sub-clusters (v, 

vi, vii) revealed cell division and cell cycle regulation as the most enriched categories (Fig. 5G, 

Supplementary Table 3). Most of the upregulated genes in these clusters were involved in the last 

phases of mitosis and G2 to M phase of the cell cycle, showing the hyperproliferative status of the 

cancer cells in these three sub-clusters (Fig. 5G). 

These results collectively establish dedifferentiation and proliferation as the two qualitatively 

distinct cellular programs shaping the heterogeneity of late-stage primary tumors in the mouse model 

of PanNET. 

Dedifferentiation precedes the activation of hyperproliferation during tumorigenesis  

The hyperproliferative state of MLP cancer cells at advanced stages prompted us to investigate 

whether induction of dedifferentiation is temporally associated with substantive increases in the rate 

of cancer cell proliferation. Therefore, we examined the proliferation index of IT and MLP lesions in 

the early-stages of tumorigenesis by immunostaining the small, well-separated tumor lesions that are 

typical in young (8-10 week old) RT2;AB/6J-F1 mice. To this end, Insulin and Hmgb3 were used as 

biomarkers to distinguish IT and MLP subtypes, respectively, while EdU immunostaining marked 

proliferating cells. Notably, a similar number of proliferating cells was observed in both IT and MLP 

lesions in this early phase of tumor growth (Fig. 5H and 5I), indicating that dedifferentiation does 

not lead to an immediate increase in the proliferative capacity of cancer cells.  

To further validate the immunostaining data, the effect of the miR-181cd expression on proliferation 

was examined by performing cell cycle analysis of βTC3 IT-like cancer cells seven days after miR-

181cd overexpression. While overexpression of miR-181cd induced dedifferentiation in βTC3 cell 

line, we found no difference in proliferation status of the cells before and after miR-181cd induction 

(Fig. 5J and S5F). Concordantly, the GO-terms enrichment analysis of differentially expressed genes 

after seven days of miR-181cd expression did not show any categories associated with the cell cycle 

(see Fig. 3D). Overall, these results suggest that dedifferentiation is an early event in tumor 

progression, one that does not directly affect the proliferation capability of the cancer cells. This 

observation agrees with the previous data from the scRNA-seq analysis of islet β-cells during 

postnatal maturation that similarly revealed a dissociation between the β-cell differentiation program 

and proliferation (see Supplementary Fig. S1G to S1I). 

Finally, we evaluated the proliferation rate in late-stage IT and MLP lesions from older (14–15-

week-old) RT2 mice, again via immunostaining for Insulin, Hmgb3, and EdU. Consistent with the 

scRNA-seq data, late-stage MLP lesions showed a higher proliferation rate than late-stage IT lesions 

(Supplementary Fig. S6G-I). However, late-stage IT tumors exhibited a higher rate of proliferation 

compared to IT lesions in the early stage (Fig. 5I and Supplementary Fig. S6H). Collectively, these 
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data reveal that induction of the progenitor-like program is separable from and temporally precedes 

activation of the hyperproliferative signature in MLP cancer cells. 

The MLP cluster in human PanNET is associated with higher grades, more frequent 

metastasis, and poor prognosis. 

To investigate the possibility that the described dedifferentiation pathway and its regulators might be 

operative in human PanNET, we applied the MLP mRNA-signature onto a cohort of 110 human 

samples from both primary and metastatic tumors (47). Mirroring the approach used above to 

analyze mouse PanNET, RNA-sequencing datasets from mouse postnatal maturation (19), and 

human PanNETs (47) were merged. PCA analysis (Supplementary Fig. S7A) revealed that PC2 

correlated with the postnatal maturation timeline trajectory of developing β-cells (Fig. 6A) (cor.: 

0.53, p-value: 2.09e-09). Accordingly, human MLP tumors, identified by applying the mouse MLP 

mRNA-signature, were most similar to immature β-cells (Fig. 6A), suggesting that human cancer 

cells follow the same reverse developmental trajectory to acquire a progenitor-like phenotype that 

ostensibly contributes to increased malignancy. 

Then we queried the MLP mRNA-signature in a cohort of 29 human tumor samples with available 

clinical follow-up data (4,48). The MLP signature had a significantly higher score in more 

aggressive human PanNETs, based on grade and T-stage (Fig. 6B and 6C). The MLP mRNA-

signature was also assessed in a cohort of primary PanNETs and liver metastasis (47), which 

revealed a significantly higher signature score in metastatic samples (Supplementary Fig. S7B). 

Finally, the MLP mRNA-signature was associated with overall survival: patients with a high MLP 

score had poorer prognosis (Fig. 6D); in notable contrast, tumor grade and stage in the same cohort 

of patients did not have any predictive value (Supplementary Fig. S7C and S7D).  

To assess the role of miR-181cd in tumor progression in the human disease, miRNA profiling of a 

cohort of human PanNETs (49) was used to examine the correlation of miR-181cd expression with 

clinicopathological features. Intriguingly, we found that high miR-181c and miR-181d expression 

was associated with more aggressive and non-functional PanNETs (Supplementary Fig. S7E-G). 

Then, to explore the predicted anti-correlation of MEIS2 and HMGB3 in human PanNETs, their 

expression was assessed in the human PanNET datasets (4,47,48). Consistent with the data from the 

PanNET mouse model, we observed a significant negative correlation between the mRNA 

expression of these two transcription factors in human patients (Supplementary Fig. S7H). 

Interestingly, MEIS2 and HMGB3 expression exhibited negative and positive correlation with more 

aggressive tumors, respectively (Fig. 6E and 6F, Supplementary Fig. S7I and S7J). This result is in 

agreement with a previous report showing down-regulation of MEIS2 in metastatic pancreatic 

neuroendocrine neoplasm (50).  

Furthermore, we used a cohort of archival human PanNETs tissue-microarrays (TMAs), which was 

immune-stained for HMGB3 protein. Congruently, HMGB3 positive sections were associated with 
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higher grade, T-stage and metastasis (Fig. 6G-I), suggesting that this transcription factor is also 

operative in specifying the human MLP PanNET subtype. Subsequently, we performed double 

immunostaining of the human PanNETs TMAs for the IT and MLP markers Insulin and HMGB3, 

respectively. The results revealed an anticorrelation for the two markers; high insulin-positive cells 

were HMGB3 negative, while insulin-negative cells were HMGB3 positive (Fig. 6J). Notably, 

similar to the mouse model, a small portion of cells had low expression of both markers, suggestive 

of an ongoing transition from IT to MLP phenotype (Fig. 6J; green arrows). Furthermore, we also 

observed interspersed IT (insulin-positive), and MLP (HMGB3-positive) cells in the same specimen, 

revealing intra-tumoral heterogeneity of human tumors with respect to IT and MLP subtypes 

(Supplementary Fig. S7K). Finally, the majority of liver metastases were negative for insulin while 

expressing high levels of Hmgb3 (Fig. 6K). 

These results implicate miR-181/MEIS2/HMGB3-mediated dedifferentiation during malignant 

progression of human PanNETs to the more aggressive and metastatic MLP subtypes. 
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Discussion 

Pancreatic Neuroendocrine Tumors (PanNETs) are histologically-diverse and oligo-mutated tumors 

lacking prevalent driving mutations in oncogenic signaling (1,4). Studies in mouse PanNET models 

have suggested two alternative tumorigenesis pathways leading to the predominant molecular and 

histopathologic subtypes, dubbed IT and MLP. One schematic envisioned parallel pathways, 

wherein β-cell progenitors were the cell-of-origin for the aggressive MLP subtype, and mature islet 

β-cell spawned benign insulinomas/islet tumors (IT) (6,8). The alternative scenario suggested 

dedifferentiation of relatively benign insulinomas/islet tumors (IT) into the invasive and metastatic 

MLP subtype  (7). These alternative pathways were proposed based on comparative analyses of the 

molecular profiles of the IT and MLP tumors, but neither has been functionally validated so as to 

establish which mechanism is actually operative.  

Although we cannot exclude the possibility that the aggressive MLP subtype can also arise directly 

from β-cell progenitor cells, herein we present compelling lines of evidence and functional 

validation that dedifferentiation and reactivation of a β-cell progenitor transcriptional program 

dictates the transition from the IT to the MLP subtype.  First, our computational analysis of single-

cell and bulk mRNA transcriptome profiling, and miRNA transcriptomic data, along with proteomic 

data, revealed a transition phase from IT to MLP tumors concordant with the activation of a β-cell 

progenitor-like program. Second, the miR-181cd cluster was identified as a regulatory factor that 

functionally contributes to the IT-to-MLP transition. Expression of the miR-181cd cluster was 

enriched both in normal pancreatic islet cell progenitors and in the MLP tumor subtype, and 

overexpression of miR-181cd in IT-like cancer cells activated a progenitor-like molecular phenotype 

and led to distinct morphological changes similar to the MLP subtype. Third, we uncovered 

elements of a regulatory circuit mediating dedifferentiation of PanNETs, in which the transcription 

factors Meis2 and Hmgb3 act as negative and positive regulators, respectively. Notably, Meis2 is a 

direct target of miR-181cd, and its downregulation leads to the induction of Hmgb3 expression. 

Hmgb3 expression correlated both with β-cell progenitor stages and with the MLP signature, and its 

overexpression in an IT-like cell line similarly induced the IT-to-MLP transition. Concordantly, 

immunohistochemistry revealed a progressive increase in Hmgb3 expression correlated with 

decreasing expression of the IT marker insulin, demonstrating a gradual phase transition from IT to 

MLP subtypes. Finally, LN and liver metastases were characterized by a complete loss of insulin 

expression and uniformly elevated expression of Hmgb3, consistent with the dependence of 

metastatic growth on the activation of this progenitor-like signaling pathway. The results establish 

the miR-181cd/Meis2/Hmgb3-axis as a key regulatory mechanism orchestrating the dedifferentiation 

program in PanNETs. 

Furthermore, we validated our findings in different cohorts of human PanNETs, by demonstrating 

that the MLP signature, upregulation of miR-181cd and HMGB3, as well as downregulation of 

MEIS2, were all associated with aggressive tumors. Similar to the mouse PanNETs that develop de 

novo in RT2 mice, the MLP signature score in human PanNETs also correlated with pancreatic 

progenitors. Additionally, metastatic samples had higher expression of MLP-specific genes, and 
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patients bearing PanNET with high MLP-signature scores had worse prognosis. Notably, we also 

observed an anticorrelation of MEIS2 and HMGB3 expression, further substantiating the role of 

miR-181cd/MEIS2/HMGB3-axis in the dedifferentiation of human PanNETs. 

Cellular plasticity enables cancer cells to evolve and activate ectopic programs in order to facilitate 

malignant progression (51). Dedifferentiation has been implicated but not functionally established as 

a discrete step in the progression of various cancers, such as melanoma (52), non-small cell lung 

(53,54), colorectal (55,56), breast (57,58), and pancreatic ductal adenocarcinoma (59,60). Herein we 

have revealed dedifferentiation to a progenitor-like state is a separable step in multistage 

tumorigenesis, wherein activation of the dedifferentiation transition to the MLP subtype does not 

directly alter cancer cell proliferation, which establishes dedifferentiation as an independent 

hallmark of aggressive tumors, one that is mechanistically separate from proliferation.  

The human PanNET grading system currently used in the clinic is based on the proliferation index, 

characterized by the Ki67 histological marker, where poorly differentiated MLP-like neuroendocrine 

tumors show the highest Ki67
+
 labeling index (>20% (61)). Our data reveal that initial 

dedifferentiation from IT-like cancer cells produces progenitor-like cells that are unaltered in their 

low proliferation index. Subsequently, the dedifferentiated cancer cells undergo dynamic evolution 

to a highly proliferative state that becomes predominant in MLP tumors. As such, some bona fide 

MLP lesions in human PanNET may not show a high proliferative index, despite the likely 

possibility of progressing in the future to the well-described highly-proliferative PanNET-G3 stage, 

indicating therefore that proliferation index may not be a fully informative marker of tumor grade. 

As such, incorporation of biomarkers of dedifferentiation, in particular Hmgb3, might offer added-

value to the stratification of patients and better prediction of clinical outcomes. 

Cancer cell progression coevolves with the tumor microenvironment (TME). This includes 

microvascular density (MVD), immune infiltration, and cancer-associated fibroblasts. In our 

previous study, we reported that the IT and MLP tumors have distinct MVD (8), while a recent study 

has shown that at least a subset of MLP in human PanNET patients exhibits high immune infiltration 

(62). The distinctive molecular profile of IT and MLP tumors warrants future studies to investigate 

reciprocal interaction between cancer cells and different cells within the TME and the roles that they 

play in the process of dedifferentiation and development of the MLP subtype.  

Characterization of the miRNA transcriptome during multistep tumorigenesis of PanNET has 

previously revealed signature sets of differentially expressed miRNAs in the distinctive stages of 

PanNET tumorigenesis (6). We have recently shown two members of the MLP signature set, i.e. 

miR-137 and the miR-23b cluster, contribute to the invasive and metastatic capabilities of PanNETs 

(35). Specifically, the miR-23b cluster modulates the expression of ALK7, a receptor of the TGF-β 

superfamily, and a metastasis suppressor in PanNETs (45). Notably, ALK7 is one of the 

downregulated genes in MLP samples, which substantiates the link between the MLP phenotype and 

the evasion of homeostatic tissue barriers to tumor metastasis. In the present study, we have 

demonstrated that another member of the MLP signature set, the miR-181cd cluster, regulates a 
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distinctive parameter of the invasive and metastatic phenotype, namely dedifferentiation. The 

transcription factor Hmgb3 was identified as an indirect downstream effector, demonstrably 

involved in the transition from IT to MLP subtype. Hmgb3 has been previously implicated in 

maintaining the proper balance between hematopoietic stem cell (HSC) self-renewal and 

differentiation, wherein its expression inhibits the terminal differentiation of hematopoietic 

progenitor cells (63). These results motivate future investigations aimed to further chart the 

regulatory pathway, to identify upstream inducers of miR-181cd expression as well as downstream 

effectors of the miR-181cd/Hmgb3-mediated progenitor state operative in invasive and metastatic 

neuroendocrine pancreatic tumors.   

The dedifferentiation process and activation of progenitor-like molecular phenotype in the MLP 

PanNETs were accompanied by the enrichment of neuronal gene sets that are also elevated in β-cell 

progenitors. Congruently, expression of miR-181cd in an IT-like cancer cell line led to 

morphological changes in the form of neuronal-like structures and activation of genes involved in 

neurogenesis.  Interestingly, neurite outgrowth has been previously implicated in PanNET 

progression (64), and we have shown that PanNETs activate neuronal NMDAR signaling to acquire 

invasive capabilities (31,65), and that basal breast cancers activate the same pathway during brain 

metastasis (66). Neuronal pathways have also been implicated in neuroendocrine trans-

differentiation in resistant tumors across different cancer types (67), and neuronal-like morphology 

such as axon-like protrusions linked to the malignant phenotype of small cell lung cancer (SCLC) 

(68). Thus, ectopic activation of neuronal signaling pathways may prove to be a broader mechanism 

involved in acquiring invasive and metastatic capabilities. 

In summary, this work has established dedifferentiation as a discrete stepwise transition via which 

neuroendocrine cancer cells acquire progenitor-like features, contributing to malignant progression. 

The dedifferentiation pathway is demonstrably orchestrated by the upregulation of the miR-181cd 

cluster, which inhibits Meis2 expression, leading in turn to the expression of Hmgb3. Identifying this 

network of progenitor-associated genes fills a conceptual gap in our understanding of the factors 

contributing to the specification of invasive and metastatic neuroendocrine pancreatic tumors, 

knowledge that could lay a foundation for therapeutic strategies aimed to hinder tumor progression 

and metastasis. 
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Methods 

Animal studies 

All animals used in this study were maintained as a colony in a pathogen-free animal facility and all 

animal studies were approved by the Veterinary Authorities of the Canton Vaud according to Swiss 

Law. The following four RIP1-Tag2 (RT2) strains were used RT2;C57Bl6/N 

(RRID:IMSR_NCIMR:01XD5), RT2;C57Bl6/J (obtained by G. Christofori, University of Basel), 

RT2;A/J (RT2;C57Bl6/N were backcrossed to A/J mice for 10 generations), and the RT2;AB6F1 

(F1 generation of A/J female mice crossed with male RT2;C57Bl6/J) (45). 

Laser Capture Microdissection (LCM) sample collection 

Tumor frozen sections were mounted onto PET-membrane slides (MMI). Sections were incubated 

with 70% ethanol and stained with cresyl violet. Each sample was microdissected using a PALM 

laser dissecting microscope (Zeiss). Serial sections from each lesion were used for the RNA or 

protein isolation: 

 Total RNA was isolated using the QIAzol Lysis Reagent according to the instructions 

(QIAGEN, Cat. No. 217084).  

 Total protein was extracted in 0.1% RapiGest SF Surfactant (Waters). Protein extracts were 

In-Solution digested as previously described (69). The reaction was stopped, and RapiGest 

cleaved by the addition of pure trifluoroacetic acid (TFA) during a final one-hour incubation at 

37°C.  

EdU cell proliferation assays 

Mice were injected intraperitoneally with 100 μg of EdU in PBS. One hour post-injection, the mice 

were anesthetized using pentobarbital sodium and followed with transcardial perfusion with 20 ml of 

PBS, and then with 20 ml of 1% PFA. 

Cell culture 

All cell lines used in this study were maintained in a 5% CO2 incubator at 37
°
C. The TC3 cell line 

(RRID:CVCL_0172) was cultured in DMEM media containing 10% (v/v) Fetal Bovine Serum, and 

the AJ-5257-1 (ref: (45)) in DMEM-F12 media containing 10% (v/v) Fetal Bovine Serum, 1% (v/v) 

Insulin/transferrin/ Selenium, 4 mg/ml hydrocortisone and 5 mg/ml mouse EGF. Two mg/ml of 

doxycycline (DOX) was added to the media for the inducible miRNA/gene expression and knock-

down experiments. The cell lines were tested to exclude Mycoplasma contamination via PCR by 

GATC Biotech every 12 months, and for all the experiments the cells were used within 5 passages 

after thawing. 

Knockdown experiments 
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For the DOX-inducible gene knockdown experiments we used previously described PB-31 piggyBac 

transposon vector (45), which allows for the expression of three tandem miR-E based shRNAs. The 

oligos for miR-E based shRNA are listed below: 

 Meis2-shRNA-1: 

1. Meis2_17536_313_t: 

tcgagaaggtatatTGCTGTTGACAGTGAGCGCCACACGCAAAAACTATTTTAATA

GTGAAGCCACAGATGTATTAAAATAGTTTTTGCGTGTGTTGCCTACTGCCTC

GGActtcaaggggctag 

2. Meis2_17536_313_b: 

aattctagccccttgaagTCCGAGGCAGTAGGCAACACACGCAAAAACTATTTTAATA

CATCTGTGGCTTCACTATTAAAATAGTTTTTGCGTGTGGCGCTCACTGTCAA

CAGCAatataccttc 

 Meis2-shRNA-2: 

1. Meis2_17536_353_t: 

tcgagaaggtatatTGCTGTTGACAGTGAGCGAAGATGTGACACTTAATATGAATA

GTGAAGCCACAGATGTATTCATATTAAGTGTCACATCTGTGCCTACTGCCTC

GGActtcaaggggctag 

2. Meis2_17536_353_b: 

aattctagccccttgaagTCCGAGGCAGTAGGCACAGATGTGACACTTAATATGAATA

CATCTGTGGCTTCACTATTCATATTAAGTGTCACATCTTCGCTCACTGTCAA

CAGCAatataccttc 

 Meis2-shRNA-3: 

1. Meis2_17536_352_t: 

tcgagaaggtatatTGCTGTTGACAGTGAGCGACAGATGTGACACTTAATATGA

TAGTGAAGCCACAGATGTATCATATTAAGTGTCACATCTGGTGCCTACT

GCCTCGGActtcaaggggctag 

2. Meis2_17536_352_b: 

aattctagccccttgaagTCCGAGGCAGTAGGCACCAGATGTGACACTTAATATGA

TACATCTGTGGCTTCACTATCATATTAAGTGTCACATCTGTCGCTCACTG

TCAACAGCAatataccttc 

MicroRNA cloning 

The genomic area encompassing the miR-181c and miR-181d cluster (GRCm38/mm10 

chr8:84,179,184-84,178,505) was PCR amplified from genomic DNA isolated from C57Bl6/N wild 

type mice. The Forward and Reverse primers (below) contained AttB1 and AttP1 sites to facilitate 

cloning in the pDNR221 vector, and subsequent subcloning to the PB-31 destination vector (45). 

 Fwd-attB1-miR-181cd: 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAGTTGTGAATGCATCCCTTG 
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 Rev-attB2-miR-181cd: 

GGGGACCACTTTGTACAAGAAAGCTGGGTCATCTACCAGTTTGCCCACTG 

Transfections 

One million cells were plated in 6-well plates 24 hrs before transfection and the media was changed 

2 hrs before transfections. For the transfection, the following liposomal complexes were set up: 

 Single piggyBac vector: 4.5 μg PB-1 + 1.5 μg PBase; 12 μl of Lipofectamine 2000 

 Two piggyBac vectors: 2.25 μg PB-1 + 2.25 μg PB-2 + 1.5 μg PBase; 12 μl of 

Lipofectamine 2000 

The complexes were incubated for 20 min at room temperature and subsequently applied dropwise 

to the cells. The media was changed the next day, and stable cell lines were selected for resistance to 

Geneticin (G418; 1mg/ml) and/or Puromycin (2 μg/ml). 

DNA synthesis 

The coding area of mouse Hmgb3 transcript variant 2 (Gene Accession NM_008253) was purchased 

from OriGene (Hmgb3 Mouse Tagged ORF Clone, Cat#: MR202042). The Hmgb3 open-reading 

frame (ORF) was amplified using the primers shown below. The Kozak sequence GCCACCATG 

was included before the start codon in the Forward primer. AttB1 and AttP1 sites were also included 

to facilitate cloning in the pDNR221 vector, and subsequent subcloning to the PB-33 destination 

vector (45). 

 Forward primer:  

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCCACCCGCGATCGCCATGGCTAAAG

G 

 Reverse primer: 

GGGGACCACTTTGTACAAGAAAGCTGGGTTCATTCATCTTCCTCCTCTTCCTCCTCC 

Reporter assay 

The Meis2 3’UTR (GRCm39/mm39 chr12:115,693,545-115,694,018) containing either the wild 

type or mutated miR-181 MRE were synthesized and subsequently cloned in the destination vector 

pcDHA-effLuc-RfA. The HEK293T cells (RRID:CVCL_0063) were stably transfected with the 

vector PB-13/PB-RB, allowing constitutive expression of the miR-181cd cluster. The reporter assays 

were performed as previously described in (35). 

Cell cycle analysis 

For this assay, the cells in suspension, as well as adherent cells were collected. The total number of 

0.2*10
6
 cells were centrifuged and resuspended in 500 μl of 70% EtOH and incubated for 30 min in 

-20°C. Then the cells were centrifuged and washed with FACS buffer (PBS 2% FBS). Subsequently, 
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the cells were centrifuged again and then incubated staining buffer (FACS buffer, 20 μg/mL RNAse 

A (Invitrogen #12091-021), 40 μg/mL PI (Sigma #P4864-10ML)) for 15 min at room temperature.  

mRNA extraction and cDNA synthesis 

mRNA extractions from cultured cell lines were performed with the QIAGEN RNeasy kit (74106). 

Reverse transcription into cDNA was performed with PrimeScript RT Master Mix (Takara Bio 

Europe SAS) using five hundred nanograms of total RNA. 

Real-time PCR for mRNA quantification 

RT-PCR was carried out with primers designed according to the PrimerBank database 

(https://pga.mgh.harvard.edu/primerbank/index.html; RRID:SCR_006898) and synthesized by 

Microsynth AG, Balgach, Switzerland. All RT-PCR reactions were performed in triplicates using the 

7900HT Fast RT-QPCT System (Applied BiosystemsTM). 

 Ins2 forward primer: GCTTCTTCTACACACCCATGTC 

 Ins2 reverse primer: AGCACTGATCTACAATGCCAC 

 Meis2 forward primer: CAGGGTGGTCCAATGGGAATG 

 Meis2 reverse primer: GGGGGTCCATGTCTTAACTGAG 

 Rpl13 forward primer: AGCCGGAATGGCATGATACTG 

 Rpl13 reverse primer: ATCTCACTGTAGGGCACCTCA 

Real-time PCR for miRNA quantification 

MystiCq® microRNA® SYBR® Green qPCR ReadyMix (cat. #: MIRRM02) was used to quantify 

miRNA expression levels in different cell lines. All the primers used for this analysis were ordered 

from MystiCq® microRNA qPCR kit as the following: 

 miR-181c: mmu-miR-181c-3p (cat. #: MIRAP01276) 

 miR-181d: has-miR-181d (cat. #: MIRAP00210) 

 U6 (housekeeping miRNA): RNU6-1 (cat. #: MIRCP00001) 

mRNA sequencing 

RNA-seq libraries were prepared by first generating double-stranded cDNA from 10 ng total RNA 

with the NuGEN Ovation RNA-Seq System V2 (NuGEN Technologies, San Carlos, California, 

USA). 100 ng of the resulting double-stranded cDNA was fragmented to 350 bp using Covaris S2 

(Covaris, Woburn, Massachusetts, USA).  Sequencing libraries were prepared from the fragmented 

cDNA with the Illumina TruSeq Nano DNA Library Prep Kit (Illumina, San Diego, California, 

USA) according to the protocol supplied by the manufacturer. Cluster generation was performed 

with the libraries using the Illumina TruSeq SR Cluster Kit v4 reagents and sequenced on the 

Illumina HiSeq 2500 with TruSeq SBS Kit v4 reagents.  Sequencing data were processed using the 

Illumina Pipeline Software version 1.82. 
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Purity-filtered reads were adapted and quality trimmed with Cutadapt (v. 1.2.1; 

RRID:SCR_011841). Reads matching to ribosomal RNA sequences were removed with fastq_screen 

(v. 0.11.1). The remaining reads were further filtered for low complexity with reaper (v. 15-065; 

RRID:SCR_009354). Reads were aligned against Mus musculus.GRCm38.86 genome using STAR 

(v. 2.5.3a; RRID:SCR_004463). The number of read counts per gene locus was summarized with 

htseq-count (v. 0.9.1; RRID:SCR_011867) using Mus musculus.GRCm38.86 gene annotation. The 

quality of the RNA-seq data alignment was assessed using RSeQC (v. 2.6.4; RRID:SCR_005275). 

Raw counts were further processed for normalization using DESeq2 pipeline (RRID:SCR_015687), 

where the data is normalized with the size factor to bring the count values to a common scale. This 

method is implemented in the R Bioconductor (RRID:SCR_006442) package DESeq2 

(RRID:SCR_015687). 

miRNA profile  

The miRNA expression profiles were evaluated using the Agilent miRNA microarrays. Fluorescence 

was scanned with an Agilent G2566AA scanner and analyzed using the Feature Extraction 10.7.3.1 

software. Normalization was performed on the Total Gene Signal from Agilent "GeneView" data 

files in R. Data were log2 transformed after adding a small constant (here: 4). Quantile 

normalization was performed using the "normalize.quantiles" function from R package 

"preprocessCore" from the Bioconductor project (ref. (70)). 

Proteomics 

Protein extracts from LCM samples were digested using the FASP procedure as previously 

described (ref. (71)). Peptides were desalted using StageTips (ref. (72)) and dried using a vacuum 

concentrator. For LC-MS/MS analysis, resuspended peptides were separated by reverse-phase 

chromatography on a Dionex Ultimate 3000 RSLC nano UPLC system connected in-line with an 

Orbitrap Fusion (Thermo Fisher Scientific, Waltham, USA). Raw data analysis was processed using 

MaxQuant 1.5.1.2 (RRID:SCR_014485), and database searches were performed against a human 

UniProt protein database.  

The single-cell RNA sequencing 

Single-cell tumor samples were freshly prepared. Tissues were cut with surgical scissors into 1 to 3 

mm
3
 cubes. The tissue was digested in a digestion mix with collagenase-I (25 mg) and collagenase-

IV (25 mg) and DNAse-I (5 mg) in 10 ml HBSS. Tissue was digested for 30 to 40 min at 37°C in 5 

ml digestion mix. After digestion, 35 ml of FACS buffer (2% BSA in 1x PBS) was added to the 5 ml 

digestion mix. This solution was passed through a 70 μM cell strainer and then centrifuged at 600 g 

for 5 min. The single-cell pellet was resuspended in 5 ml of 1x lysis buffer for 3 min. 35 ml of FACS 

buffer (2% BSA in 1x PBS) was added to the lysis buffer and centrifuged again at 600 g for 5 min. 

Cells were counted and diluted to 1 million cell/ml concentration. We used 10x Chromium standard 

5’ seq assay. We aimed at 3000 to 5000 cells final. The standard library preparation was done 
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following 10x Chromium protocol. Sequencing was done at a HiSeq4000 machine with the standard 

sequencing parameters (Read 1: 26 cycles, i7 index: 8 cycles, i5 index: 0 cycles, Read 2: 98 cycles).  

Western blots 

For western blotting, 10-20 μg of total protein extract were separated using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and transferred onto PVDF blotting-membrane. Subsequently, 

the membranes were blocked with 5% Bovine Serum Albumin Fraction V (BSA) in TBS-T (pH 7.6; 

0.5% Tween 20), and incubated with the primary and secondary antibodies diluted in 5% BSA in 

TBS-T. Finally, the membranes were visualized using ECL and imaged with Fusion FX7. The 

HMGB3 antibody (Abcam, ab75782; RRID:AB_1310317) and HSP90 antibody (Santa Cruz 

Biotechnology, SC-13119; RRID:AB_675659) were used in this study.  

Immunostaining (mouse samples) 

For immunostaining, the tissue sections were first dewaxed and rehydrated, and heat-induced epitope 

retrieval was done with 10 mM Sodium Citrate pH 6.0, followed by washing with PBS. The samples 

were incubated overnight at 4
°
C with antibodies diluted in 1% BSA. The next day, the samples were 

incubated for 40 min with the secondary Alexa Fluor antibodies (AlexaFluor488, AlexaFluor568, 

and AlexaFluor647; diluted according to the supplier's instruction). When needed, Tyramide Signal 

Amplification (TSA) revelation was done with AlexaFluor488. DAPI was used to stain the nuclei. 

The immunofluorescence EdU was performed manually. After dewaxing and rehydration, sections 

were pretreated with heat in 10 mM Sodium citrate buffer pH 6 using the PT module (Thermo Fisher 

Scientific) for 20 min at 95
°
C. The primary antibodies were incubated overnight at 4

°
C under 

agitation. After three washes, the slides were incubated for 45 min with the secondary antibodies at 

RT. Tissue was treated with 0.5% Triton in PBS for 20 min at RT before incubation with the Azide 

reaction cocktail (0.1 M TBS pH7.4, 4 mM CuSo4, 100 mM Na-ascorbate, and 10 μM Azide 

Alexa594) to reveal the presence of EdU. The HMGB3 antibody (Abcam, ab75782; 

RRID:AB_1310317; dilution: 1:200), Insulin antibody (Dako A0564; dilution: 1:500) and SV40 T-

antigen (in-house; dilution 1:1000) were used in this study. 

Immunostaining (TMA cohort from human PanNETs) 

Immunohistochemistry was performed on a TMA including 110 primary PanNETs and 62 

metastases from patients who underwent surgery at the Inselspital Bern between 1990 and 2017. The 

study on this cohort was approved by the local ethics committees (KEK number 105/2015).  

Sections of 2.5 µm were prepared from a TMA were used for staining with HMGB3 antibody 

(Abcam, ab75782; RRID:AB_1310317). Immunostaining was performed by automated staining 

using Bond RX (Leica Biosystems) immunostainer. All slides were dewaxed in Bond dewax 

solution (product code AR9222, Leica Biosystems) Heat-induced epitope retrieval at pH 9 in Tris 

buffer based (code AR9640, Leica Biosystems) for 30 min at 95°C. HMGB3 was diluted 1:200 and 
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incubated for 30 min. Samples were then incubated HRP (Horseradish Peroxidase)-polymer for 15 

min and subsequently visualized using 3,3-Diaminobenzidine (DAB) as brown chromogen (Bond 

polymer refine detection, Leica Biosystems, Ref DS9800) for 10 min. HMGB3 was scored by a 

pathologist (A.P.) as negative, positive, and heterogeneous.  

For the double HMGB3 and Insulin staining, the antibodies were incubated sequentially. Following 

on HMGB3 staining as described above, mouse Insulin antibody (Sigma Aldrich, I2018) was diluted 

1:12000, incubated for 15 min. Secondary antibody, AP (Alkaline phosphatase)-polymer for 8 min, 

and visualized using fast red as red chromogen (Red polymer refine Detection, Leica Biosystems, 

Ref DS9390). Finally, the samples were counterstained with Haematoxylin and mounted with 

Aquatex (Merck). Slides were scanned and photographed using Pannoramic 250 (3DHistech). 

Total RNA extraction – including small miRNA – from formalin-fixed human PanNETs 

Total RNA extraction, including miRNAs, has been performed using the RecoverAll™ Total 

Nucleic Acid Isolation Kit for FFPE (Ambion; AM1975) according to the provider’s instructions. 

DNA digestion via DNase has been performed during RNA isolation according to the 

manufacturer’s instructions. 

miRNA expression profiling on human PanNETs 

We have analyzed miRNA expression from 24 PanNETs using the NanoString nCounter Human v3 

miRNA Panel (NanoString Technologies, Seattle, USA) according to the manufacturer’s 

instructions, 150 ng of total RNA have been used for running the assay. Normalization has been 

performed using the quantile normalization method (70). All the analyses have been performed 

within the R environment. 

Image data acquisition and analysis 

The entire tissue area of all slides was scanned using an Olympus slide scanner at 20x magnification, 

and the images were analyzed using the open-source software QuPath (RRID:SCR_018257). For 

quantifying the cells stained positive for a marker, we selected sections from different regions used 

“CellIntensityClassifications” method, as described in ref. (73). 

Clustering analysis 

For subtype identification, we applied the NMF algorithm (“NMF” package in R, ref. (15)) on each 

profiling platform (i.e., mRNA, lncRNA, miRNA, and protein), separately. For clustering, we 

selected the top 25% most variable genes (features) from the normalized datasets. The Cophenetic 

coefficient was used to select the optimized number of clusters for each analysis. The features 

contributing the most to each cluster were also extracted using “extractFeatures” function in the R 

package. 
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SNF algorithm (ref. (16)) was applied for multi-omics clustering. The top 25% of the most variable 

features in mRNA, lncRNA, miRNA, and proteomics were used as an input for the algorithm. We 

used “SNFtool" package in R for running this analysis, and we applied the default setting in the 

package. Estimating the most optimal number of clusters was done using 

"estimateNumberOfClustersGivenGrap” function. For a better resolution on the final clustering, we 

excluded the normal pancreatic and liver samples from this analysis. The final clusters were 

manually curated and annotated, based on single platform NMF clustering in addition to SNF results. 

Differential expression analysis 

For mRNA differential expression analysis, we used DESeq pipeline (DESeq2 R package; 

RRID:SCR_015687), where the data is modeled with a negative binomial distribution to estimate the 

dispersion and fold changes. For extracting the differential expressed genes, we consider the 

samples’ mouse strain as covariates to remove its effect on the downstream analysis. The cutoffs for 

gene selection were adjusted p-value < 0.01 and Fold change > 1.5. 

As for the differential miRNA expression was assessed using the limma package 

(RRID:SCR_010943), p-values were adjusted using the Benjamini–Hochberg method and 

significance cut-off set at 0.05. We selected miRNA with greater than 1.5 fold change.  

Subtype signature development 

The MLP mRNA-signature was generated based on the result of differential expression analysis of 

mRNA and lncRNA datasets (IT samples vs. MLP samples). We also included the genes that were 

identified as the contributing features for NMF clustering in both mRNA and lncRNA datasets. 

Furthermore, we also checked in the protein analysis to see which of the genes differentially 

expressed have a similar trend in the proteomics data and a control dataset. 

Likewise, the miRNA signature was generated by the union of the differential expressed miRNA (IT 

vs. MLP samples), and features contributing to the NMF clustering in the miRNA dataset. 

PanNET signature development 

The 62-mRNA signature for transformed islet -cells (PanNET signature) was generated from the 

bulk RNA-seq data following these criteria: 

1. Differentially upregulated genes in IT and MLP tumors vs normal islet -cells (fold change 

> 4; adjusted p-value < 0.01) 

2. Excluding the genes that were also differentially expressed between IT and MLP tumor 

samples. 

3. Excluding the genes that are involved in cell cycle regulation (genes in Cell-Cycle GO term) 

Cross-species analysis 
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To merge different datasets and correct for the batch effects, we employed ComBat (“sva ” package 

in R; RRID:SCR_010974). For merging human and mouse datasets, the HUGO gene nomenclature 

was used as the reference.  

Single-cell RNA sequencing data analysis 

We used the Cell Ranger pipeline (version 3.1; RRID:SCR_017344) for processing the raw data. 

The downstream analysis was performed using Seurat package in R (RRID:SCR_007322). Cells 

were filtered based on the number of features from 200 to 7500, percentage of mitochondrial genes 

<10%. We used all standard Seurat setting for normalization, PCA, tSNE analysis, and clustering.  

Single-cell clusters’ annotation 

Gene expression levels of different markers used to identify the cell-type population in the tumor 

microenvironment: SV-40; cancer cells, Ins2; ß-cells and cancer cells, Cd3e: T-cell Leukocytes, 

Cd19 & Ms4a1: B-cell Leukocytes, Pecam1: Endothelial cells, Csf3r: Neutrophils, Csf1r: 

Macrophages, Mrc1: M2 macrophages, Mfap5: CAFs, Acta2: Pericytes. 

We also used the total number of features for the cells to filter out the cancer cells having a 

significantly lower number of detected features (<2500). This cluster was called “Tumor low-reads” 

and was excluded from the downstream analysis of cancer cells. 

Differential expression analysis in scRNA-seq data 

Differential expression analysis between clusters were performed using the Wilcoxon rank-sum test, 

using 0.05 as the cut-off for adjusted p-value, and 1.5 for the average fold change in expression 

level. Then the genes were sorted based on average fold-change and the top 20 were selected for 

clusters’ marker genes. In the case of IT vs. MLP analysis, the top 100 genes were kept and reported. 

Proliferation signature score for scRNA-seq data 

To estimate the proliferation capability of the single cells, we used a signature of G2M marker genes 

provided by Seurat R package (V.3.2; RRID:SCR_007322). 

PanNET regulator network 

The regulatory network was constructed using the ARACNe package (RRID:SCR_002180) from 54 

samples from RT2 mouse model. We ran ARACNe with 100 bootstrap iterations using all the genes 

in the dataset and the parameters were set to 0.15 DPI (Data Processing Inequality) tolerance and MI 

(Mutual Information) P value threshold of 10
−7

.  

Transcription factor regulators of IT to MLP transition 

The candidate transcription factors regulating IT-to-MLP transition were inferred using VIPER 

analysis as described in (40). The differential expression analysis for all the genes in the datasets was 
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performed according to the package manual at Bioconductor, by comparing IT to MLP samples 

identified from the clustering analysis. For selecting the transcription factor from the list of VIPER-

inferred regulators we used a list of 1636 Mus-musculus TF reported at (74). 

Gene Ontology (GO) terms enrichment analysis 

GO Terms enrichment analysis was performed using the online web service based on the Molecular 

Signatures Database (MSigDB; RRID:SCR_016863). Enriched GO terms were defined as GO 

biological process (BP) obtaining an FDR-adjusted P-value < 0.05, retrieving a maximum of 50 

terms. 

Gene signature enrichment analysis 

Single sample Gene Set Enrichment Analysis (ssGSEA, ref. (75)), implemented in the R package 

GSVA, was used to calculate an expression score for each gene expression signature and each 

sample. The method that was used to estimate the gene-set enrichment scores were specified to 

“ssgsea” in GSVA package. 

Correlation analysis 

To evaluate the degree of correlation between two continuous variables, we employed “cor” function 

in R to retrieve the Pearson correlation coefficient. For the significance estimation of the extracted 

correlation, we used "lm” function in R for linear modeling the data and retrieved FDR-adjusted P 

values. 

Survival analysis 

Kaplan–Meier survival analysis was used to assess the relationship of the signature scores with 

overall survival. We applied the Large-sample Chi-square test (log-rank test) to determine the 

associations between predictor variables and to obtain adjusted hazard-ratios. These analyses were 

performed with the R package ‘‘survival.’’ 

Quantification and statistical analysis 

All statistical analyses described above were performed with R.  

Data availability 

RNA sequencing data and regulon analysis presented in this study are deposited at ZENODO 

database (RRID:SCR_004129), and are accessible via https://doi.org/10.5281/zenodo.4160441 
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Figure legends: 

Figure 1: The aggressive MLP subtype of PanNET has a similar expression profile to islet β-

cell progenitors 

A. Multi-omics clustering of samples isolated via LCM from primary tumors and liver metastasis 

from the RT2 mice, as well as pancreatic islets and liver from wild type mice, in the C57Bl6/N, 

C57Bl6/J, and A/J genetic backgrounds. Samples of the IT and MLP subtype are colored as green 

and red, respectively. 

B-C. Heatmaps of protein levels, detected by mass spectrometry from LCM samples, of mature β-

cell markers (B) and endocrine progenitor markers (C) in IT and MLP PanNET tumor samples. 

D-E. Gene Ontology (GO) categories significantly enriched (FDR q-value on the y-axis) for 

downregulated (D) and upregulated (E) genes in the MLP transcriptome signature. 

F. Schematic representation of mouse endocrine pancreas development depicting the stages from 

early progenitors (E9.5) to fully mature β-cells (P60). 

G. Score of the MLP mRNA signature in different embryonic stages during the secondary transition 

of mouse pancreatic development (left panel) and postnatal maturation (right panel). In both datasets 

there MLP score declines in the curse of differentiation. 

H. The MLP miRNA signature scores are high in endocrine pancreatic progenitor cells (E10), but 

not in mature β-cells. 

I. PCA analysis of samples from the temporal mouse pancreatic islet postnatal maturation phase 

compared to primary tumors and liver metastasis from the RT2 mouse model along with normal 

(non-transgenic) islets. The x-axis shows PC2, which represents a surrogate for dedifferentiation 

time-points. The samples from each cohort are separated in different rows (see also Supplementary 

Fig. S1K.) 
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Figure 2: MicroRNA-181cd induces dedifferentiation when upregulated in IT cancer cells 

A. Heatmap of differentially expressed MLP-signature miRNAs comparing mature β-cells and 

pancreatic progenitor cells from wild-type mice.  

B. Scatter plot showing the correlation between miR-181c (top) and miR-181d (bottom) expression 

(x-axis) and the MLP mRNA signature score (y-axis) in RT2 PanNET tumor samples.  

C. MLP mRNA-signature scores in cell cultures collected 24 hours and 7 days following induction 

of miR-181cd expression in the βTC3 IT-like cancer cell line, which reveals a transcriptional shift 

toward MLP after 7 days. 

D. Heatmap of MLP mRNA-signature genes in miR-181cd transfected TC3 cells, which indicates 

that the majority of upregulated MLP genes (colored coded as red in the y-axis) were upregulated 

after 7 days of miR-181cd expression; conversely, the genes downregulated in the MLP signature 

(colored coded as green in the y-axis) were congruently downregulated after 7 days of miR-181cd 

expression. Selected IT and MLP gene markers are identified on the right side (see Supplementary 

Table 2 for the list of genes in order). 

E. Gene Ontology (GO) categories that were significantly enriched (FDR q-value on the y-axis) for 

upregulated genes after 7 days of miR-181cd cluster overexpression in βTC3 cells. 

F. Brightfield images of cancer cells: i. βTC3 IT-like cells; ii. βTC3 cells transfected with miR181cd 

cluster after 2 weeks of expression induced with DOX; iii. AJ-5257-1 MLP-like cells. Lower right 

panel: Magnified image illustrating miR-181cd-induced neuronal-like structures (in dashed lines) in 

ßTC3 cells.  
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Figure 3: The axis miR-181cd/Meis2/Hmgb3 regulates the IT to MLP transition 

A. The Meis2 and Hmgb3 transcription factors (TFs) were identified as potential TF regulators using 

VIPER. Red and blue vertical lines indicate genes induced and repressed, respectively, by each TF. 

B. mRNA expression levels of Meis2 upon DOX-induced overexpression of miR-181cd in ßTC3. 

C. Luciferase reporter assay shows the direct targeting of Meis2 mRNA by miR-181cd. 

D. Hmgb3 mRNA expression in ßTC3 cells upon DOX-induced overexpression of miR-181cd. 

E. Protein expression level of Hmgb3 in the AJ-5257-1 cell line as well as in ßTC3 upon DOX-

induced miR-181cd overexpression. 

F. Hmgb3 protein expression levels in ßTC3cells upon DOX-induced Hmgb3 overexpression. 

G. MLP mRNA-signature scores in βTC3 cancer cells collected 7 days after the induction of Hmgb3 

expression, which shows a transcriptional shift toward the MLP phenotype. 

H. Unsupervised hierarchical clustering of TC3 cells before (control) and after miR-181cd or 

Hmgb3 induction for 7 days.  

I. Heatmap of selected differentially expressed genes in TC3 cell lines before (control) and after 7 

days of Hmgb3 overexpression, reflecting pathways related to neuroendocrine phenotype, neuronal 

programming, pluripotency, and morphogenesis (see Supplementary Table 2 for the complete list of 

genes). 

 

  

Cancer Research. 
on December 2, 2021. © 2021 American Association forcancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on April 28, 2021; DOI: 10.1158/2159-8290.CD-20-1637 

http://cancerdiscovery.aacrjournals.org/


 39 

Figure 4: Hmgb3 upregulation is an early event in the dedifferentiation of IT into MLP 

A, B. Representative images of Insulin and Hmgb3 immunostaining, alongside DAPI, of early 

pancreatic tumors (A) and liver metastasis (B) in the RT2;AB/6J F1 mouse model of PanNETs.  

A. Representative images of early lesions showing: IT cells; identified as Ins
high

/Hmgb3
neg.

 (left 

panel), cells undergoing IT-to-MLP transition; identified as Ins
high

/Hmgb3
low 

and Ins
low

/Hmgb3
high

 

(middle panels), and fully dedifferentiated MLP cells; identified as Ins
neg.

/Hmgb3
high

 (right panel) 

(see also Supplementary Fig. S4A-D).  

B. Metastatic cancer cells exhibit Ins
neg.

/Hmgb3
high

 expression pattern (see also Supplementary Fig. 

S4E).  

C. t-distributed Stochastic Neighbor Embedding (t-SNE) analysis for all cancer cells based on 

scRNA- sequencing analysis, color coded according the seven distinct sub-clusters. 

D. Individual cancer cells (points) in two-dimensional t-SNE plots, color-coded according to the 

MLP signature score. 

E. mRNA expression levels of Ins2 (left), Meis2 (middle), and Hmgb3 (right) in scRNA-sequencing 

data from primary tumor samples. 

F. Schematic representation of dedifferentiation process during PanNETs tumor progression: The IT 

cancer cells (Ins
high

/Hmgb3
neg.

) go through dedifferentiation and transition to MLP subtype 

(Ins
neg.

/Hmgb3
high

), enabling them to disseminate to the liver. This transition is induced by 

upregulation of miR-181cd, which directly inhibits Meis2 expression, and indirectly effects the 

upregulation of Hmgb3 expression.  
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Figure 5: Dedifferentiation and proliferation are two separate molecular pathways 

contributing to the heterogeneity of primary tumors 

A. Principal component analysis (PCA) of all cancer cells based on scRNA- sequencing analysis, 

color coded according to the cell sub-clusters. 

B. Scatter-plot showing a high correlation of PC-1 from the PCA analysis and the MLP mRNA-

signature score. 

C-D. Gene Ontology (GO) categories that are significantly enriched (FDR q-value on the y-axis) for 

upregulated genes in sub-cluster i (C; IT cancer cells), and in sub-clusters ii to vii (D; MLP cancer 

cells). 

E. Scatter-plot showing a high correlation of PC-2 from PCA analysis with the mRNA proliferation-

signature score for both IT (sub-cluster i) and MLP clusters (sub-clusters ii - vii). 

F. Violin plot showing the mRNA proliferation-signature score for each cancer cell sub-cluster. 

G. Heatmap of top 20 differentially expressed genes for each cancer cell sub-cluster in the primary 

tumor. 

H. Images of Insulin, Hmgb3, and EdU immunostaining, along with DAPI, for early lesions from 7-

8 week old RT2;AB/6J-F1 mice, illustrating representative IT, MLP and transitional histological 

stages. 

I. Quantification of EdU immunostaining to reveal proliferation of cancer cells in IT and MLP tumor 

lesions isolated from early, 7-8 week old, RT2;AB/6J-F1 mice. 

J. Cell cycle analysis of ßTC3 cells before (control) and after 7 days of miR-181cd DOX-induced 

expression. 
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Figure 6: The MLP cluster in human PanNETs correlates with dedifferentiation, tumor grade, 

metastasis, and clinical outcome 

A. PCA analysis of samples from mouse pancreatic postnatal maturation and human PanNET 

primary tumors and liver metastasis. The PC2 is shown in the x-axis as a surrogate for 

dedifferentiation time-points. The samples from each cohort are separated in different rows.  

B, C. The MLP mRNA signature scores in low- and high-grade (B) and different stages (C) of 

human PanNETs. 

D. Association of overall survival of PanNET patients with a high MLP signature score (score > 

median, red line) versus low score (score < median, green line). 

E, F. MEIS2 (E) and HMGB3 (F) mRNA expression in different stages of human PanNETs. 

G-I. Association of HMGB3 protein expression in human PanNET tissue-microarrays (TMA) with 

clinicopathological features. 

J, K. Representative images of Insulin (identified by red cytoplasm) and HMGB3 (marked by brown 

nucleus) immunostaining of primary human PanNETs (J) and liver metastases (K).  

J. In the middle panels, red arrowheads denote the IT subtype; INS
high

/HMGB3
neg.

 cells; green 

arrows the IT-to-MLP transition; INS
low

/HMGB3
low

 cells, and black arrows the MLP subtype; 

INS
neg.

/HMGB3
high

 cells. 
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